Robotica (2023), 41, pp. 48-73

]
doi:10.1017/S0263574722000443 ; CAMBRIDGE

¥ UNIVERSITY PRESS

RESEARCH ARTICLE

Fabrication-aware design for furniture with planar pieces

Wenzhong Yan'*@, Dawei Zhao? and Ankur Mehta?

"Mechanical and Aerospace Engineering Department, UCLA, Los Angeles, CA, USA, 2Computer Science Department, UCLA,
Los Angeles, CA, USA, and >Electrical and Computer Engineering Department, UCLA, Los Angels, CA, USA
*Corresponding author. E-mail: wzyan24 @g.ucla.edu

Received: 15 January 2020; Revised: 4 January 2022; Accepted: 2 March 2022; First published online: 11 April 2022

Keywords: flat-pack furniture, furniture design, fabrication-aware design, parameterized abstraction, hierarchical composition

Abstract

We propose a computational design tool to enable casual end-users to easily design, fabricate, and assemble flat-
pack furniture with guaranteed manufacturability. Using our system, users select parameterized components from
a library and constrain their dimensions. Then they abstractly specify connections among components to define
the furniture. Once fabrication specifications (e.g., materials) designated, the mechanical implementation of the
furniture is automatically handled by leveraging encoded domain expertise. Afterwards, the system outputs three-
dimensional models for visualization and mechanical drawings for fabrication. We demonstrate the validity of our
approach by designing, fabricating, and assembling a variety of flat-pack (scaled) furniture on demand.

1. Introduction

Three-dimensional (3D) objects built from planar pieces have drawn extensive attention and been widely
applied to owe to their properties, including high strength-to-weight ratio [1], rapid design, and proto-
typing [2], low cost [3], compact storage, and transport [4]. Recently, digital fabrication techniques have
greatly increased the ability of casual end-users to create certain physical objects by reducing necessary
design and manufacturing investments. However, the creation of functional furniture is still limited to
domain experts due to requirements of in-depth engineering understanding for design, skilled carpentry
expertise for fabrication and assembly, and material resources to facilitate the whole process. To bring
digital fabrication to this space, we have developed a computational design pipeline enabling casual end-
users to easily handle the whole creation process of flat-pack furniture, from design, through fabrication,
to assembly.

In our system, the design process is abstracted and parameterized, which allows users to easily design
their furniture models in a function-based manner without worrying about the low-level engineering
implementation. Besides a conventional incremental method, we also harness a hierarchical composition
scheme, which further facilitates and accelerates the design process by providing a recursive approach
to build complex models from relatively simple designs through combining functions. Moreover, an
intersection autodetection algorithm is employed to automatically identify connections that are not spec-
ified but necessary for assembly, and insert planar joints to finalize the designs. In other words, users
merely need to specify a minimal number of connections that define the spatial structures of their furni-
ture models; our system will automatically detect other necessary connections and insert specific joints
accordingly to generate fabricable embodiment of user-defined models. This algorithm releases users
from the tedious connection (and joint) specification process, increasing the flexibility of design process
by enabling users to freely build their furniture without being concerned with the order of design. In
addition, the incorporation of embedded planar joints within our abstracted and parameterized design
scheme greatly reduces the complexity of resulting models and increases the feasibility of assembly for

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 49

casual end-users. Combining all these features, our system enables casual end-users to easily and intu-
itively design, fabricate, and assemble flat-pack furniture with guaranteed manufacturability. Using our
system, users mainly need three steps to create their desired furniture. First, designers select components
(or use composed designs as components) from our library. Then they abstractly define dimensions of
selected components and specify necessary connections between components to build furniture models.
Our system will automatically handle the detailed fabrication-aware processing to output files for 3D
visualization and 2D fabrication. Finally, users assemble their furniture with ease thanks to the embed-
ded planar joint design. The creation process is simple and intuitive, allowing rapid and easy design of
sophisticated furniture for casual end-users. By adopting open-source software, inexpensive raw materi-
als, and generalizable fabrication processes, our system expands the accessibility of personalized design
to a broader set of nonexpert users. In summary, this work specifically simplifies design, fabrication,
and assembly of the creation process, which is then followed by manual part assembly. We address ques-
tions of assemblability (i.e., sequencing the motions required to join the constituent pieces) via low-cost
substitutes (e.g., copy paper or acrylic sheet) to build prototypes to validate their feasibility. The field
of assembly sequence planning (ASP) could potentially be used to solve this problem more efficiently
thanks to the widely available similar research that has been done for products of structure engineering
[5], mechanical parts [6, 7], concrete buildings [8], and furniture [9, 10].
In this paper, we present the following specific contributions:

« a computational design pipeline that allows casual end-users to easily generate customizable,
manufacturable, easy-to-assemble flat-pack furniture designs;

« an extensible framework that enables users to create furniture designs of arbitrary complexity by
hierarchically composing preexisted designs in a function-based manner;

« an algorithm that greatly increases the feasibility and flexibility of design process through
automatically detecting and inserting necessary joints (connections) for user-defined furniture
models; and

« arepresentative variety of (scaled) furniture designed and fabricated using the proposed system.

2. Related work

This paper is inspired by the architecture of previous work [11, 12], which exclusively targets origami-
inspired structures—3D geometries folded from stock sheets of negligible thickness—to create a system
that translated structural specifications into a fully functional printable robot. Here, we focus on flat-pack
furniture creation with thick sheet materials instead of origami-inspired structures, which brings in new
challenges to design. We also draw upon other academia in the broad categories of modeling by example,
fabrication-aware design and personal fabrication.

2.1. Modeling by example

Shape collections have been widely used to allow data-driven geometric modeling [13]. Modeling by
example [14, 15, 16] enables the users to customize their own models by manipulating existing templates
from a large database built by domain experts. More recent work uses recombination of model parts
to expand the databases [17]. Data-driven suggestions can be used to provide recommendations for
designs [18].

Perhaps the closest work to this project in terms of the desired goals comes from Schulz et al.
[19], in which models—including furniture—could be physically realized via modeling and fabrica-
tion by example. From an expert-created database of fabricable templates of finished designs, users
could manipulate parameterized models with automatically positioning, alignment, and composition.
This “model by example” process thus allows casual end-users to explore a predefined design space
bounded by example designs created by domain experts. However, this “model by example” approach

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

50 Wenzhong Yan et al.

requires extensive efforts from domain experts to build a representative library of the targeted models.
In our work, we propose a computational design pipeline for flat-pack furniture. Users are allowed to
freely design their desired models with their manufacturability guaranteed.

Our system needs initial seed designs instantiated by experts, but they need not be any more than
simple polygons (e.g., triangles and rectangles). From there, other desired planar and nonplanar geome-
tries can be easily composed by casual users from the seed polygons using our hierarchical composition
strategy (see Section 4.2). Expert users can further seed more complex assemblies—all the way up to
complete furniture designs—to further simplify the design load on the casual user. The main difference
from Schulz’s work comes from remixing components within that library, which can be done without any
expert knowledge in our system; those new designs further extend the library, allowing for ever-growing
complexity of designs without expert design.

2.2. Fabrication-aware design

Manufacturability of resulting models has long been a concern in the computer graphics community and
attracted increasing interest recently [20]. Fabrication-aware design is proposed to guarantee generating
fabricable models with fabrication specifications. It is based on digital parameterization of the building
models and then implemented by considering the fabrication specifications through built-in algorithms.
These systems with fabrication-aware design aimed at empowering novice users without desired skills
to develop real-world designs.

Recently, an interactive system SketchChair [21] was proposed to assist in designing chair mod-
els that can easily be fabricated and assembled. This system automatically generates a set of planar
pieces that can be intersected along slots to form a 3D realization of a designed chair model. Inspired
by the same idea, Chen et al. [22] and Hildebrand et al. [23] attempt to convert 3D structures into a
set of simplified and fabricable planar polygons connected by interlocking planar pieces. These ideas
are developed by building an interactive system where users can have access to real-time feedback by
incorporating structure optimization and analysis [10]. Most of that work employs a planar interlock
mechanism to implicitly render the design due to its easy manufacturability and assemblability. This
interlock mechanism constrains the achievable design space of furniture. Though this method can gen-
erate arbitrary solid geometries, it requires dense interlockers which may consume massive materials
and cause material waste [24]. Recently, automated architecture proposed a similar modular strategy to
create architecture by using prefabricated plywood building blocks, which can be assembled into a home,
office, or coworking space [25]. However, these plywood building blocks require extensive engineering
and complicated installation instruction, which limits it within domain experts. Similarly, Groenewolt
et al. have presented several methods to enable the computational design of large-scale architecture [26].
Nonetheless, the fabrication and assembly of these components require domain experts.

Our proposed system makes use of an extensible collection of planar joints to connect different planar
elements to generate furniture designs. Similar to the interlocking slots, these joints are rapidly fabricable
due to their 2D geometries. A variety of furniture designs have been enabled in this paper. In addition,
the design space is potentially extendable thanks to the abstract design scheme. Moreover, other planar
joints can be incorporated into our system to enable users to create more different types of furniture.

2.3. Personal fabrication and assembly

Based on the continued development of democratized tools [27, 28, 29, 30], it is expected that casual
end-users will play an important role in designing and creating their own products in the future. Several
researchers have recently introduced systems for personal fabrication. Spatial Sketch [31] allows users
to sketch in a 3D real-world space. This system realizes the personal fabrication by converting the orig-
inal 3D sketch into a set of planar slices realized using a laser cutter and assembled into solid objects.
Similarly, users can create customized plush toys [32] and chairs [21]. These systems convert designs
from 3D geometries to a series of planar pieces to simplify fabrication. Postprocessing assembly of

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 51

e~ © D (Eij (d) ik
—

)
+
ﬁ 2D fabrication file

O~—" = Component selection w
&> Picnic table = Dimension constraint
g = Connection definition

= Fabrication specification

(b

Assembly

Figure 1. Workflow for making furniture. We use a picnic table as an example. (a) Conception of
designs; (b) Design in our system. Users select components (or designs) from our library, constrains
their dimensions, define connections of selected components (or designs), and input fabrication specifi-
cations (e.g., materials and corresponding thicknesses), (c) 2D fabrication. The output 2D fabrication
file is patterned on planar materials (e.g., plywood, 3 mm) by 2D fabrication machinery (e.g., laser
cutter); (d) Assembly. Furniture is built with easy-to-assemble joints through interference fit.

varying complexity is needed to complete the manufacture. Our work similarly approaches personal
fabrication through the use of planar joints which are instinctively easy to assemble, minimizing the
need for careful positioning or hardware-based attachments.

3. System overview

In this section, we will overview our system by outlining the design workflow and discussing the design
space enabled by our computational method.

3.1. Design workflow

As shown in Fig. 1, our system assists inexpert end-users in handling the whole creation process of
flat-pack furniture, from design, through fabrication, to assembly. More specifically, with a furniture
model in mind, users can follow these four sequential steps (Fig. 1(b)) to achieve their designs: (1) com-
ponents selection; (2) parameter constraint; (3) connection definition; and (4) fabrication specification.
To demonstrate the process, we use a very simple model (two rectangles connected perpendicularly
along an edge—perhaps serving as a bookend—as shown in Fig. 2) as an example with its script-based
interface (see Fig. 3). In the first step, casual end-users select two predefined parameterized rectangle
components from an existing library (Fig. 2(a), and lines 8—10 in Fig. 3) to match their conception of the
designs (experts can create their own components, see Section 4.1.1). Then, they constrain the selected
components’ geometries, that is, widths and lengths (Fig. 2(b), and lines 16-21 in Fig. 3). In the third
step, users specify the design by defining the connections with connected edges and angle (Fig. 2(c),
and lines 23-27 in Fig. 3). In the last step, given a description of available fabrication specifications
(e.g., tools, materials), our system will automatically produce manufacturable specifications that cap-
ture dimensioned geometries, joint types, and joint patterns into a 3D rendering file and a 2D fabrication
file (lines 32-36 in Fig. 3). The 3D file can be used to visualize the design. The 2D file can be directly
sent to 2D fabrication machines (e.g., laser cutter); thus the resulting fabricated components could be
assembled into the desired physical models. Users can repeat steps 1-3 to build designs of arbitrary
complexity. Also, hierarchical composition (see Section 4.2) could also be harnessed to create sophisti-
cated furniture models. It is worth noting that we represent all components as 2D polygons since they are
defined as planar geometries in our system and only substantialized as 3D structures when fabrication
specifications (especially material and its thickness) are resolved.

By leveraging the knowledge of domain experts, our system can release novice from tedious engineer-
ing details and underlying system implementation, and instead focusing on functional design of desired

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

52 Wenzhong Yan et al.

(a) |:| (b) (©

Rec. A Rec. A Length

A v Rec. A

Width Connected edge

Connected angle

Length

Library Width

Figure 2. An illustration of a typical design process in our system. (a) Users select two predefined
rectangle components from our library; (b) Users specify the dimension of each component (e.g., widths
and lengths of the rectangles); (c) Then they define the connection between the two rectangles at selected
edges with an 90° angle.

1 # Import the Component and Joint Type

2 from svggen.api.component import Component

3 from svggen.api.composables.graph.Joint import FingerJoint
4

5 # Initialize the component

6 Component = Component ()

7

8 # Select the predefined components

9 Component.addSubcomponent ("A","Rectangle")
10 Component.addSubcomponent ("B","Rectangle")

12 # Add the dimensional constraints
13 Component.addParameter("11", 3@, paramtype="length")
14 Component.addParameter("12", 6@, paramtype="length")

15

16 # Specify the dimensional constraint for the components
17 Component.addConstraint{("A","1"), "11")

18 Component.addConstraint{("A","w"), "12")

19

20 Component.addConstraint{("B","1"), "11")
21 Component.addConstraint(("B","w"), "12")

23 # Define the connection between components
24 Component.addEdgeToEdge(

25 {"a", "t"),("B","b"), orientation="front-front",

26 offset = (0,0,0), angle=(90, @, @), alignment = "left"
27)

28

29 # Save the design file for later hierarchical composition design
308 Component.toYaml("library/ConnectionJointBuilder,yaml")

32 # Generate the output files for the design
33 Component.makeOutput(

34 "output/ConnectionlointBuilder", tree=False,
35 display=False, thickness=3, joint=FingerJoint(thickness=3)
36)

Figure 3. The interface of our proposed system, showing how we connect two rectangle components at
selected edges with an 90° angle, as presented in Fig. 2.

furniture by following the above-mentioned steps. For experts, our system has also provided the freedom
to (1) create their own new basic components by defining polygons (needs to specify parameters and
ports as shown in Fig. 5), (2) to define fabrication specifications, like kerf and amplitude of interference,
and (3) to add new joints. It is worth noting that all the three advanced operations are only introduced
for completeness of presentation and limited to experts; novices only need to design and build new fur-
niture by composing existing components using the four step process (component selection, parameter
constraint, connection definition, and fabrication specification).

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 53

O] (d)

oooo
EEpipEpEn

Jon! I

(e

(a) g (b)
)

|_|—I_|\ ©
W O
Figure 4. Joint collection. (a) A finger—finger joint for an edge—edge connection; (b) A finger—hole
Jjoint for an edge-face connection; (c) A slot—slot joint for a face—face connection; (d) A flap joint for
edge—edge connection [33]. (e) The fabrication pattern of a cable-driven joint. The relaxed and bent

states of the joint are shown in (f) and (g), respectively. It is worth noting that cables are needed for both
flap joints and cable-driven joints and linear motors are required for cable-driven joints.

(a) YA (b)[1 def assenble(self):
(O,w) | L > | (I,w) 2 1 = self.addParameter("length")
4 t 3 w = self,addParameter("width")
wi || r 5 self.setVertices((e, @), (1, @), (1, w), (2, w))
6
 J b X o 7 self,setInterfaces("b", "r", "t", ")
(0,0) .0~

Figure 5. An example of parameterized abstraction. (a) Rectangle component geometric diagram with
parameters labeled; (b) Program implementation of a parameterized rectangle class in Python script in
our system.

3.2. Design space

In our system, connections represent the spatial relationship of the two connected components, while
joints are physical implementations of the corresponding connections. Theoretically, our system can
design furniture with arbitrary complexity according to users’ input due to the availability of our con-
nection architecture. Despite the arbitrary complexity of designs allowed in our system, the design space
is confined by the physical limitations of the joints to ensure the manufacturability of the resulting furni-
ture. Currently, we employ three types of joints, that is, finger—finger joint, finger—hole joint, and slot—slot
joint (as shown in Fig. 4(a)—(c)), to implement corresponding connections. These joints are instinctively
easy to assemble, minimizing the need for careful positioning or hardware-based attachment for casual
end-users. These three types of joints are only applicable to 90-degree connections; thus, furniture with
non-90-degree joints can be designed in our system but are not valid for assembly. However, this limita-
tion can be removed as long as we can find available joints that can be implemented to fix two connected
components at a specific angle, and easy to be assembled by novice users. For example, flap joints can
be a good candidate as demonstrated in Fig. 4(d). Likewise, other types of joints can be implemented to
expand the design space to enable more functionalities of the resulting models.

Our system is currently specialized for furniture designs with single-type raw materials with uni-
form thickness. However, our system has the potential to accommodate multiple materials with various

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

54 Wenzhong Yan et al.

thicknesses. For example, we can add two additional parameters, that is, material type (including
Young’s modulus, Poisson ratio, and so forth) and thickness, into the component class as described
in Section 4.1.1. Consequently, our system can modify the length and width of the fingers of joints.

4. System implementation workflow

In this section, we outline the five main steps of system implementation workflow, including parameter-
ized abstraction, hierarchical composition, coordinate placement, intersection autodetection, and output
and assembly. (1) All design elements, including components, connections, and resulting models, are
parameterizedly abstracted, which allows users to design furniture in a function-based manner; (2) A
hierarchical composition algorithm is then employed to enable users to create complex furniture by func-
tionally combining existing furniture models; (3) the 3D coordinates of all components are computed
through a coordinate placement algorithm; (4) these coordinates are then fed into an intersection autode-
tection algorithm to automatically identify necessary connections and thus place joints to corresponding
positions according to the input fabrication specifications to finalize the models; (5) the resulting furni-
ture models are output with 2D fabrication files (such as .DXF and .SVG) and a 3D .STL file, ready for
fabrication and assembly. In addition, we describe the main operational features of our system in detail.

4.1. Parameterized abstraction

The 3D geometries of flat-pack furniture in our system are defined as a composition of connected com-
ponents. In traditional furniture design process, creating a piece of functional furniture design can be
rather challenging since users may need to adjust many parameters with complex dependencies while
maintaining the manufacturability and assemblability. Even with the aid of some CAD tools, users may
still experience great difficulties due to the lack of in-depth understanding of CAD software and the
manufacturing process.

In order to allow casual end-users to design furniture with ease, our system largely simplifies
the design process into an abstracted function-based manner. To achieve this abstracted design, we
parameterize all elements in furniture creation process, including components, connections, designated
furniture models, and fabrication specifications. Therefore, we introduce the parameterized abstraction
of components, connections, and furniture models in following paragraphs.

4.1.1. Components

Representation. As mentioned before, components are represented as 2D polygons. Therefore, in our
system, a component’s fabrication-related parameters, for example, material type and its thickness, are
not defined until specific fabrication and assembly methods are determined by users in the final steps of
the design process. At that time, these abstract components are implemented automatically as 3D ingre-
dients according to the input fabrication specifications. More details about how we represent components
are described in the next section, where we use a rectangle as an example.

Components in our system fall into two categories: basic components and hierarchically composed
components (later introduced in Section 4.2). Our system already comes with a set of predefined, com-
monly used polygon components, such as rectangle, trapezoid, n-side polygon, and so forth. After
abstract parameterization, every component in our system is programed as an object instantiated from
a corresponding component class, and represented as follows:

Component (paral,para?2,...,parai,...,paran)

where Component is the component class name and para i is the ith predefined parameter of the com-
ponent. To instantiate a component object of the corresponding component class, users only need to
specify the parameters.

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 55

Construction. Figure 5 uses a rectangle component as an example to demonstrate how we define a
component class in our system (each component is an instance of the component class). Firstly, we need
to define the parameters of the component class (lines 2-3), which are the length / and width w of the
rectangle in this case. Then, we specify the outer vertices of the component class whose order follows
the right-hand rule so that the front of the component is facing the out-of-page direction (line 5). Lastly,
we set a series of interfaces to the component class, which are some ports that can be used to connect
with the interfaces of other components. In this example, we set the edges of the rectangle as interfaces
with the name b, r, t, and /. Thus, we have a rectangle class with four interfaces and two parameters. It
is worth noting that we have specified the angle between the length / and width w to be 90 degrees due
to the definition of a rectangle shape. Otherwise, we could add another parameter, angle a, to specify a
parallelogram component, which is a super-set of the rectangle class. In the same manner, we can follow
this recipe to build arbitrary 2D polygon classes.

Experts or developers can also define their own custom components following the same workflow
illustrated above, which only requires them to specify the parameters, vertices, and interfaces of the com-
ponents. Customizing components is one way to define desired components when they are not available
in our library. This base-level component creation is typically not necessary, though, and presented here
for completeness. More commonly and more intuitively, users can harness hierarchical composition (see
Section 4.2) to piece together elementary components into new complex component. For example, users
can obtain a new “L” shape component by combining two rectangles together along edges. Thus, we
theoretically only need a few basic polygons, that is, triangle and rectangle (though it can also be built
from combining two right triangles). Therefore, the number of initial designs in the library is not critical;
however, it is easier and faster for the nonexpert users to create their design if there are more available
basic designs so that they can directly pick-and-place components instead of creating every component
from scratch. It is worth noting that experts or developers are allowed to define components with fewer
parameters, called meta-parameters, by adding some geometric constraints to the original parameters.
Thus, they are not exposed to the enormous design parameters when the design becomes complicated.
For example, we can only select the length of the rectangle as the manipulable metaparameters and
geometrically constrain its width as a half of its length to create a component with a fixed aspect ratio.

4.1.2. Connection

Representation and construction. Connections in our system are also parameterizedly abstracted. Once
a connection has been defined, we build an associated connectivity item to store all its information that
is efficient to embody the connection physically in following operations. Later, the abstract connections
will be implemented physically to actually join connected components. There are in general two differ-
ent methods to specify connections between components: (1) users can create connections in a global
coordinate frame or (2) in a local coordinate frame. These two methods have their own advantages and
disadvantages. In this project, we choose to use the latter so that the connection is defined referring to the
local coordinate frame of the existing component instead of the global coordinate frame of the design.
In this manner, the connection between the two connected components can be defined easily since the
connection itself is the local relationship of the two components. Otherwise, the global design frame
would post challenges to the implementation of joints that must accommodate arbitrary connections.
This requirement would complicate the structure of designs and may need extra accessories for joints,
which would increase the difficulty of fabrication and (1) assembly.

A connection is represented by a directed line in a connectivity graph of a furniture model. Here, we
use a computer desk, as shown in Fig. 6 as an example. In the figure, connection @ (2) — (1)) denotes
that component (2) is connected to component (1) at some interfaces. In the graph, the edges of the
line represent the connected interfaces of corresponding components. The direction specifies the way
we specify the connection. Note that @ (1) — (2)) is different from @ (2) — (1)); they may represent
the same spatial relationship with specific parameters in the 5-tuple. However, the way we specify a
connection does not indicate the assemblability and the order of the assembly. More explanations would
be found in the following paragraphs.

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

56 Wenzhong Yan et al.

Figure 6. Representation of a furniture model. We take a computer desk as an example. Components
labeled as circled number, for example, (1)) and connections as boxed number, for example, 0. (a) 3D
model of the desk; (b) Connectivity graph of the desk with connections represented as directed yellow
lines, whose directions indicate the connection orientation.)

Finding a proper way to specify the abstracted connection between two components can be nontrivial
because it needs to be accurate, concise, and intuitive for users, while being able to express all possible
spatial relations. In our system, the connection is specified abstractly as a 5-tuple. For instance, when
component C, is connected to Cp, we can call the constructor to define the connection:

Connection ((Cy. 1), (Cy.) , Pa, Po, Px)

where C, and Cy are two connected components. In this expression, the first component C, is con-
nected to the second component Cj. In this connection, C, is named as the connecting component
and Cj is named as the connected component. Thus, this connection could be shortly annotated as
Connection(A — B). The sequence of the two components matters. [}, and I, represent the selected
interface i of component C, and the interface j of component Cyz. These two selected interfaces will
be connected together. P,, P,, Py represent the alignment, offset, and rotation of the connection. The
value of P, is either “front-front” or “front-back.” “Front-front” means that two connected components
have the same orientation while “front-back™ indicates their orientation is opposite to each other. Py, is
a 3-tuple, specifying the 3D offset vector that component A (connecting component) should travel in
accordance with. Py is also a 3-tuple, defining how component A along with its local coordinate system
is rotated around its own X, y, and z axis, respectively. For example, in Fig. 6(b), the connection between
component (1) and (2) can also be described as Connection((2) — (D).

Using this 5-argument connection constructor, we can represent any possible spatial rela-
tions between two components while providing users an intuitive and easy way to state con-
nections. Here, we will illustrate this connection constructor in detail (see Fig. 7). For instance,
Connection((A, 1), (B, b), front — front, (v,, v,, v,), (6, ,, 0,)) can be visualized as in Fig. 7(b). From
the connection constructor, we know that interface ¢ of component A is connected to interface b of com-
ponent B. Since the alignment is specified as “front-front,” the orientation of both faces facing up results
in a temporary position as the left graph in Fig. 7(b). x-y-z is the coordinate of component B being set
as the global coordinate for this connection while x’-y’-z’ is the local coordinate of component A, fully
overlapping with B’s. Then a 3D offset vector (v,, v, v;) is applied to component A (as the middle graph
shows) and followed by a 3-Axis rotation (6,, 6,, 6,)) to change the orientation of the component (e.g.,
(90,0,0) represents a 90° rotation about x axis as in the right graph in Fig. 7(b)). The other case with
“front-back” alignment is also presented in Fig. 7(c). Though rather simple and intuitive, the connection
specification process could be greatly simplified with a graphic user interface later on.

With these well-defined connections between components, each furniture design can be organized
into a connectivity graph (Fig. 6(b)). Thus, the position of each component can be computed by trac-
ing this connectivity graph. For example, we can compute the position of component (2) with the
Connection((2) — (1)) and the position of component (1) (which is known). In the same manner, we can
calculate the positions of the rest of the components accordingly. It is worth noting that we can have two

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 57

r

Component A

Offset, P,

!
|
:

\ Component B /

Figure 7. Connection visualization. (a) Component A and B with their interfaces labeled and original
coordinates specified; Connections with “front-front” alignment (b) and “front-back” alignment (c).
Left: Alignment defined; Middle: 3D offset; Right: 3-axis rotation.

different expressions to represent the same spatial connection. In other words, these two different expres-
sions are interchangeable and depict the same spatial relationship. For example, Connection(2) — (1)
is different from Connection((1) — (2)). However, they characterize the same 3D relationship that two
components are connected at the edge orthogonally (see Fig. 6).

Physical implementation. Though parameterized abstraction can greatly facilitate the design process,
the connections need to be implemented physically to actually join connected components when it comes
to manufacture. In this paper, we decide to use planar joints to embody the connections to reduce the
difficulty of fabrication and assembly. Thus, users do not need to go through the tedious assembly process
with system-defined joints [19].

To enable the manufacturability of furniture designs, joints must be added at places of intersections.
However, for casual end-users, determining and drawing proper joint patterns can be a liability, even
with the help of some design software (e.g., AutoCAD, Solidworks, UG, Inventor, Inkscape, and so
forth). Our computational design tool will automatically add one of the three types of joints (as shown
in Fig. 4(a)—(c), respectively) according to specific abstract connections. More details for these three
types of joints can be found in Appendix A.1). The joints that we introduce here have the following two
advantages: (1) they can be easily fabricated using modern 2D manufacturing tools (e.g., laser cutter,
waterjet, and jigsaw); (2) are handy to assemble even without skilled craftsmanship.

Theoretically, any joints, especially those that satisfy the above requirements, can be incorporated into
our system since the joints are merely the physical implementation of abstracted connections [34]. For
example, the flap joints [33] (see Fig. 4(d), not implemented in our system) could potentially be adopted
to achieve edge—edge connections. Thus, the system would generate holes for connections instead of
finger patterns to implement joints. However, this type of joint requires more labor and skill to assemble.
Similarly, fasteners (e.g., nails) or adhesives (e.g., glue) can be used in additional types of joints; this
would increase the difficulty of assembly as well [29]. It is straightforward to extend our library of joints
to expand the design space, though care must be taken to balance against the capabilities of a proposed
user.

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

58 Wenzhong Yan et al.

In addition, active joints could be possible to realize connection implementation, which leads to active
devices, such as active furniture and robots. As a proof of concept, we create cable-driven joints to allow
resulting devices to have angular movements. For example, we connect two rectangle components with a
cable-driven joint, as shown in Fig. 4(f) and (g). The fabrication pattern is shown in Fig. 4(e). By adding
a lattice pattern [35] (more details can be found in Section A.2) along the connected edges of the two
rectangles, a flexible joint is formed to allow angular movements between two connected components.
A linear motor with its shaft is tied to the left rectangle using a cable, is then attached to the right
rectangle, as shown in Fig. 4(f). The back-and-forth movement of the shaft of the motor will change
the angle between two components (see Fig. 4(f) and (g)). Presumably, this type of joint can be used as
living hinges for doors of furniture or movable joints of robots.

In this paper, joints are mainly assembled through interference fit—also known as a press fit or fric-
tion fit—a form of fastening between two tight-fitting mating parts that produces a joint held together
by friction from a compressive normal force. As the amplitude of interference (amount of geometric
overlap between mating parts) grows, both the deformation of the joint material and the difficulty of
assembly increase, which means optimal interference amplitudes are needed to be calculated based on
the fabrication specifications. Our system can automatically output the optimal profiles of joints once the
fabrication specifications (e.g., materials and fabrication machines) are defined by users. More details
could be found in Appendix A.1.

4.1.3. Model

Using the connection constructor specified on relevant components, an abstract design model is built
internally to store all the information (including components with specific geometry constraints and
connections between components) relevant to the design. This designed model can be visualized as a
directed connectivity graph. Here, we use a computer desk as an example. As shown in Fig. 6(a), the
computer desk consists of five rectangle components and five connections. The connectivity graph of
the computer desk is shown in Fig. 6(b). Each component is labeled as a circled number, such as
and each connection is represented by a numbered symbol, for example, @. Each directed edge denotes
a connection with its vertices intersected with circles at their corresponding interfaces. For example,
component (1) is connected to one interface of component (2) resulting in connection @ while compo-
nent @ is connected to another interface of component @ to form connection @. Thus, a connectivity
graph effectively includes all information relevant to the corresponding design. By traversing the graph
following the algorithm presented in Section 4.3, we can generate the 3D coordinates of each component
of the design for further operations. Each connectivity graph, representing a design, can also be stored
in our library as a .YAML file, which can be in turn used as a new component to hierarchically compose
more complex designs in a function-based manner.

4.2. Hierarchical composition

4.2.1. Design principle

To enable users to build complex furniture designs with ease, we harness function-based hierarchical
composition, which allows users to recursively build up to the desired complex furniture constructions
from relatively simple existing designs. This means we organize all the parameterized data of the furni-
ture design into a hierarchical tree, whose structure is defined by how we recursively create the furniture.
In this manner, functional models at any level could be treated as components to specify higher level
furniture designs. For instance, to build a bunk bed as illustrated in Fig. 8(d), instead of building the
whole piece from scratch, users can simply select these existing designs, a computer desk, a bed, and a
ladder (as shown in Fig. 8(a)—(c), respectively) to be composed together. The computer desk, bed, and
ladder can be further decomposed into elementary components (e.g., rectangle). Therefore, the i,, level
hierarchy M’ of a hierarchically composed model can be written as:

M’ = ({Component'} , { Connection'} , { Constraint'} , { Interface'})

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 59

4 Bed
.Desk .
’ Ladder
© 0]) .-~
g @ ® (M@
@ o+ 2020 +0Bfe = g
® @ ® (e

Figure 8. A illustration of hierarchical composition with a bunk bed. Three “components,” that is, a
computer desk (a), a bed (b), and a ladder (c) are composed into a bunk bed (d). Each “component”
itself is a furniture design with certain functionalities. The connectivity graphs of three “components”
are also picturedin (e), (f), and (g). The final connectivity graph of the bunk bed is also directly composed
of all “components” H).

where {Component'} is a set of “basic” components consisting of the hierarchical design in this level.
Each “basic” components in this set can be a composed furniture design or an elementary compo-
nent. {Connection'} is a set of connections specifying how the “basic” components are connected,
{Constraint'} is the set of parameters constraining model M, and {Interface'} is the set of interfaces
of the new hierarchically composed model M'.

To further demonstrate how we implement our system, we use the above mentioned bookend (see
Figs. 2 and 3) as an example. Each rectangle (A and B) is an instance of the Rectangle class, which
is defined in Python. After parameter constraint and connection definition, we can obtain a composite
structure—two rectangles connected perpendicularly along an edge. Due to the hierarchical architecture
of our system, this composite structure can itself be used as a component, ConnectionJointBuilder, by
saving it as a .YAML file into the library (see lines 29—30 in Fig. 3). This new class of component,
ConnectionJointBuilder, inherits the properties from the composite structure with two rectangles con-
nected perpendicularly along an edge. Recursively, we can use this hierarchical composition strategy to
build furniture with arbitrary complexity with ease, as shown in Fig. 8.

4.2.2. Model reconstruction

Each design in our system is represented and stored as an abstract connectivity graph. When users
compose several simpler designs into a more complex functional model, all connectivity graphs will be
added to a new high-level connectivity graph as per the connections specified at this hierarchy by the
user. This means that all information of each simpler design is integrated to generate a new hierarchical
data tree with its own components and connections preserved, as shown in Fig. 8(e)—(h). In the same
manner, this hierarchical data tree will be integrated as a branch of a new tree at a higher hierarchy when
current design is composed into a more complicated furniture.

4.3. Coordinate placement

To place each component in a global coordinate system and find the places of intersections to add proper
joints, we employ a coordinate placement algorithm. At the design stage, we require users to define
connections between components. However, these connections only specify the relative spatial rela-
tion, which is not necessarily the positions at which joints are placed. Therefore, we use an intersection

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

60 Wenzhong Yan et al.

Algorithm 1. Compute the global 3D coordinates for every component of the component set {C} of a
design based on the defined associated connections

1: Randomly select a component C; from {C}
//Return coordinates of components connected to C;
: function FIND3D(C;, Tyopar)

[\¥]

3: C(1'-1—‘3D — Tglobal
4: for Connection(A — B) in C;.Connections do

//Ci is connected component
5: if C;is Cg then
6: Tretative < FindRT(Carp) > Find relative transformation matrix
7 T g/zobaz < Tyiobal - Tretative > Calculate new global transformation matrix
8: return Find3D(Ca, Tyy,p01)

//C; is connecting component
9: else if C;is C'4 then
10: T, crative < FindRT(Cap) > Find relative transformation matrix
11: Tg;lobal Tyiobar * Trofurive > Calculate new global transformation matrix
12: return Find3D(Clp, T;lobal)

autodetection algorithm (see Section 4.4) to place necessary joints based on the derived spatial relation
to finalize the design for manufacturing and assembly. Having derived the connectivity graph represent-
ing the furniture designs, our system can perform a traversal on the graph to recursively compute the
3D coordinates of each component following Algorithm 1, which will later be used to build up the 3D
model.

Initially, each component is placed within its own local coordinates as defined by the user as in
Fig. 5(a). Our goal is to find each component’s 4 by 4 transformation matriX, Tyes., Which transforms
the homogeneous coordinates of the original components into a global 3D coordinate space as per the
connections. To do so, we adopt the recursive Algorithm 1. The input of the function consists of the
component set C, a 4 by 4 transformation matrix 7, that represents its global coordinate. The algo-
rithm randomly selects a component C; as a starting point and recursively find the coordinate of all
components connected to it. This step starts by storing the transformation matrix as an attribute of the
component. Then, for each connection, for example, Connection(A — B), that involves this component,
if this component C; is connected to component C® (i.e., C; = Cg, line 5), we can find the relative transfor-
mation, T, through the function, FindRT(Connection(A — B)), between them and times the global
transformation matrix of Cy (= C;) to obtain the new global transformation matrix T;lohal to run the next
iteration until the 3D coordinates of all components are calculated (lines 6-8). Another execution will
be made for C,. If C; is connecting component C* (i.e., C; = C,, line 9), then we should find the inverse
of the relative transformation between them and times the global transformation matrix of C, (= C;) to

have new global transformation matrix 7'

wiovar 10 TUN the next iteration (lines 10—12).

4.4. Intersection autodetection

After the coordinate placement phase illustrated in Section 4.3, we derive the global 3D coordinates
for all components, but the design is still by no means manufacturable. In other words, we need to
detect the places of intersections and add proper joint mechanisms to finalize the model as well as to
ensure its manufacturability. By performing an automatic intersection detection, we release users from
the burden of specifying all places of intersections with connections explicitly. More specifically, using

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 61

@‘ B WE_(13)
an, 12

O Y ®

Figure 9. An illustration of intersection auto-detection. Components labeled as circled number, for
example, (1)) and connections as boxed number, for example, (1. (a) 3D model of a reading desk; (b)
Connectivity graph; (c) Fabricated and assembled (scaled) reading desk with 3 mm plywood. Note: This
desk can also be built through hierarchical composition, which will be discussed later in Section 5.2.

the connection constructor, user can easily build the 3D model for their designs with a minimal number
of connections, which may not include all necessary intersections. Then our algorithm can automatically
handle the intersection detection to guarantee the manufacturability and functionality. This algorithm
is particularly useful for hierarchical composition because it is very challenging for casual end-users to
specify all necessary connections thoroughly due to the geometry complexity. Hence, it help users to
focus on design in a function-based manner.

In this section, we use a reading desk, as shown in Fig. 9(a), as an example to illustrate the algo-
rithm. To design such a reading desk with 11 components and 17 joints, users only need to specify 10
connections (from @ to 1@ in Fig. 9(b)) with other necessary intersections (or joints) (from (11) to (17))
inserted automatically by our algorithm. For instance, a joint is automatically added between component
(2) and (8) while there is no connection defined by users. Moreover, our algorithm can help to merge
coplanar components to reduce the complexity of design and assembly. For example, component (1) and
(4), originally connected by connection 3], are merged into a single component.

In the following two sections, we will explain the intersection autodetection algorithm in detail with
which divided into two parts: coplanar faces merging (lines 1-6), intersection segments searching (lines
7-16), and joints inserting (lines 17-27).

4.4.1. Coplanar faces merging

Frequently, several different components of a furniture design end up being coplanar (or overlapping).
Merging them often not only simplifies the design but also lowers the difficulty of fabrication and assem-
bly. For coplanar faces merging, we iteratively select two components C;, C; from the components set
{C} (line 4) and determine if they are coplanar faces with intersections, which is fairly easy as we have
already found the 3D coordinates of all components. Then, we use a geometry boolean operation library
to find the union of the 3D global coordinates of C;, C; (line 5). After finding the union of 3D global
coordinates, we need to transform them into the local 2D coordinate system of the planar component so
that we can later work on the 2D output file for the design. Therefore, we will dot product the union of
the 3D global coordinates with the inverse of the 3D transformation matrix of one component C; (line
6) and set the vertices of the other component C; (line 7) to be empty. This means that all information
of component C; is transferred into component C;.

4.4.2. Intersection segments searching

For any two components C;, C; that are not coplanar or parallel, we will first find the intersection line /
of the two 3D planes that these components are lying in (line 11). Then, we find the two sets of segments
where the intersection line intersects with component C;, C; (lines 12—13). After finding the union of

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

62 Wenzhong Yan et al.

Algorithm 2. Find all necessary intersections and joints of a designed model composed of a set of
components {C} and specified connections

1: function INTERSECTIONDETECTION({C'})
//Merge coplanar faces

2: for C; in {C} do
3: for C; in {C} do
4: if coplanar(C;,C;) ANC; N C; # () then
5: Viuj < (C; U Cy) > find the geometric union of C;, C;
6: C,. V2P« ¢, T30 . Viu; > convert to global coordinate system
7 Cj.V2D — 0
//Find segments of intersections of each component
8: for C; in {C} do
9: for C; in {C} do
10: if —coplanar(C;, C;) A —parallel(C;,C;) then
11: I+ C;nC; > find the line of intersection between C; and C;
12: {s:} < 1INC; > find segments of intersection between [and C;
13: {s;} «INnC; > find segments of intersection between [and C}
14: for s, in {s;} N {s;} do
15: st CL.T3P - 5 > convert to global coordinate system
16: 87, C']-.Tg’D*1 - Sp > convert to global coordinate system
//Add joints according to the types of intersections
17: if [; € edge(C;) Nl; € edge(C;) then
18: C;.finger + C;.finger U{l}}
19: C;.finger < C;.finger U {17}
20: else if [; € edge(C;) then
21: C;.finger + C;.finger U{l}}
22: C;.hole < C;.hole U {I?}
23: else if S; € edge(C;) then
24: C;.hole < C;.hole U {I}}
25: C;.finger « C;.finger U {l?}
26: else
27: C;.slot + Cy.slot U {l}}
28: C;.slot + Cj.slot U {I?}

these two line segment sets (line 14), we will also perform coordinate system transform step, similar to
line 6, to transform the coordinates from the 3D global coordinate system to the local 2D coordinate
system of C; and C; (lines 15-16). So far, all of the intersection segments within a certain design are
identified, ready for joints to be inserted in next step.

4.4.3. Joints inserting

The last step is to determine the types of joints for each component based on the positions of intersection
segments. If the intersection segment of a connection is on the edge of both connected components, then
a finger—finger joint will be added on them (lines 17-19). If the intersection segment is on the edge for
one component and within the face of the other, a finger—hole joint will be selected. Fingers will be added
on the former component, and holes will be added on the latter (lines 20-25). If the intersection segment
is within the face of both components, then a slot—slot joint (lines 26-28) will be added on them. All

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 63

inserted patterns of joints are automatically calculated by considering fabrication specifications (more
details about the pattern generating can be found in Appendix A.1).

4.5. Output and fabrication

Each furniture design in this system is an instance of a common parent class, stored as an executable
Python script (see Fig. 3). At execution time, running this script places all the components into a final 2D
design file (.SVG or .DXF)—as shown in Figs. 4 and 15—to be sent directly to the 2D cutting machine
(e.g., laser cutter or waterjet) or printed onto a pattern for hand cutting. During this process, the fabri-
cation specifications are considered, and joints are selected and rendered in the final files. Components
are placed separately from each other to avoid overlapping. However, we can manually rearrange com-
ponents (or even divide components into two separate files) if the cutting space cannot accommodate
all components. In addition, we need to manually split (at a position away from the original edge for
connection) and fabricate long pieces that do not fit within the cutting space; then combine split pieces
back together by using coplanar finger—finger joints.

To enable easy and fast fabrication, we adopt planar joints that can be cut through the 2D cutting
process. A typical manufacturing specification is a material with its corresponding thickness. For finer
grained expert control, additional fabrication specifications could adjust laser cutting kerf and desired
magnitude of friction-fit interference. A specific joint pattern is chosen appropriate to these specifica-
tions (see Section A.1). To ensure successful manufacturability, our system automatically evaluates some
geometrical considerations about the connected components and corresponding joints: (1) the dimen-
sion perpendicular to the connected edge of components must accommodate the finger length and (2) the
dimension along the connected edge of components must accommodate sufficient finger widths. More
details are given in Section A.1; our system prompts warnings when these conditions are not satisfied.

In this way, our system as mentioned above assigns each component a unique manufacturing specifi-
cation that dictates how the design specifications translate to real-world realizable output files. These 2D
files are also available for paper cutters (e.g., Silhouette CAMEOQO 2) and CNC router (via conversion of
the .DXF files to .IGES or .G-code). Our system also can render 3D models (.STL files, see Figs. 6(a),
8, and 9(a) for visualization to assist design process. If necessary, these .STL files can be used as inputs
of a 3D printer to directly generate 3D mockups. This complete process is validated through several
successful designs (see Figs. 11, 13, and 14).

4.6. Validation and assembly

Though some other design tools simplify the design process, the assembly processes still require a lot
of experience, which inhibits novice users from creating their own custom furniture (see Table I). Our
solution for this issue is to adopt planar joints that are realized exclusively through the single 2D cutting
process and the easily assemblable planar joints as mentioned in Section A.1. These planar joints are
easy to align due to the particular finger configuration and are easy to assemble through interference fit
without the requirement for extra carpentry skills, tools, or materials.

To validate the assemblability and generate an assembly plan of the resulting furniture, we currently
provide users a testing process with low-cost substitutes (e.g., copy paper or acrylic sheet) to build small-
scale prototypes; this yields intuitive tactile feedback for novice users, without requiring them to map
digital/computational representations of the physical assembly steps. Here, we use two furniture designs
that have been shown before in the paper as examples. For instance, the original design of the reading
desk is not assemblable due to the interlocking between components (5) (or (6)) and (9) as shown in
Fig. 10(a) and (b). By modifying the geometry of components (8) and (9) into convex shape, we obtain
an assemblable reading desk as shown in Fig. 10(c) and (d). Also, by experimenting with the prototype,
we can explore and find some valid assembly plans. One of the valid assembly plans is to (1) install
components (5)—(8) onto (9); (2) add (2) and (4) to the assembled structure; (3) finalize the assembly
by fixing (1) and (3) onto the designed position. Also, it is possible to over constrain the design due to

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

64 Wenzhong Yan et al.

Figure 10. Examples of assemblability testing by using acrylic sheets (thickness, 1.5 mm) as the
low-cost substitutions of lumber. The components that are nonassemblable are in red color.

redundant connections. As shown in Fig. 10(e) and (f), the two connections between components @ (or
(3)) and (5) (or (4)) of the picnic table are incompatible, which makes the design nonassemblable. By
removing one of them, the table can be easily installed (see Fig. 10(g) and (h)). Similarly, this validating
method can be used to explore the assemblability and assembly plan for other furniture designs due to
the low-cost and rapid prototyping provided by our system.

5. Results and discussion

To demonstrate the proposed system in this paper, a variety of (scaled) furniture are designed, manu-
factured, and assembled. In this section, in order to have a quick demonstration, we choose 3 and 6 mm
plywood as raw materials to fabricate (scaled) furniture. The fabrication of real size furniture is very
similar. We use a laser cutter to pattern these materials and assemble components manually through
interference fit (see Section A.1). Full-sized furniture could be created by using a waterjet on thicker
plywood; a similar assembly process could be used to assemble those pieces.

5.1. Design examples

We start with a collection of rather simple furniture designs (see Fig. 11) by simply connecting existing
elementary components together. These components are typically simple geometric faces, such as tri-
angles, squares, and polygons. In most cases, users only need to define a small number of connections,
which can be far less than the number of joints. For example, users only need to specify six connections
to define the spatial relations for all components of a stool in Fig. 11(h). Our system will automatically
place all 42 joints (slot—slot joints), which greatly lowers the difficulty of creating this furniture design.
The same phenomenon can be found in most of the designs as shown in Fig. 11.

In addition, our intersection detection algorithm can help to merge coplanar components to reduce
the number of components of a specific design, which lowers the difficulty of fabrication and assembly
for casual end-users. For instance, in Fig. 11(e), two trapezoids are combined into a L -shape component
due to coplanar faces merge, which means we have fewer components and joints. Also, the usage of built-
in planar joints significantly reduces the number of specifying elements (in particular joints) for similar
furniture designs [19] (also see Figs. 13 and 14). This reduction can make the design, fabrication, and
assembly processes much easier. Lastly, every model in our system has a large number of continuous
design parameters, which allows users to freely customize their furniture to match their desires. After
specific constraints added to the original design parameter set, a handful of meta-parameters are obtained
to allow for design manipulation with structure preserved. For instance, the simple table in Fig. 11(g), has
4 structure-preserved design parameters, including the length, width, height of the table, and the width

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 65

H

9 components ' 9 component 3 components

16 components
4 (32) parameters 5 (22) parameters 3 (18) parameters 4 (12) parameters
15 connections 8 connections 8 connections 2 connections
20 joints 20 joints 18 joints 3 joints

()

10 components 4 components 5 components
7 (20) parameters 4 (8) parameters 4 (22) parameters
10 connections 3 connections 4 connections
8 joints 3 joints 8 joints

13 components 5 components
4 (32) parameters 5 (10) parameters
6 connections 4 connections
42 joints 6 joints

Figure 11. Furniture design examples using our system. The numbers of components, available design
parameters, connections, and joints of each design are labeled. For design parameters, the structure-p-
reserved values are calculated after some constraints are added to preserve the structure of the designs
while the maximal values are included in brackets.

g O pg®@® i @®g®©g® @g 6 gd ®

a@
@@

150 | 3P | 50 9@ 0w
%0 o 0o 0o @:@@@) ®
O o RRC LI 8 PO SL G RO FO R

(a) (b) (© (d)

Figure 12. An illustration of the flexibility of modeling process in our system. Components labeled
as circled number, for example, (1)) and connections represented by boxed number,for example, [I.
Components from different furniture models are differentiated by color. (a) Opposite connection direc-
tion but the same ordering; (b) Different connection ordering; (c) Hierarchically composed from two
different designs, (d) Hierarchically composed from three models.

https://doi.org/10.1017/50263574722000443 Published online by Cambridge University Press

66 Wenzhong Yan et al.

Figure 13. Anillustration of design manipulation after a rocker chair has been composed in our system.
Eight metaparameters of a rocker chair are labeled (a). A bunch of variants of the rocker chair are
created by manipulating the metaparameters. These variants included a long bench for the side of the
pool (b), a tall chair for bar (c), and a rocking bed (d). Other wildly modified rocker chairs are shown in
(d)—(m) to demonstrate the vast design space. Several scaled chairs are fabricated and assembled (n).

of table leg. However, an unconstrained table can have up to 22 parameters allowed to be modified to
generate a much broader set of designs.

5.2. Flexibility of modeling process

It is important that the modeling or designing process of a furniture is flexible and robust, which allows
casual end-users to freely design a furniture design as they prefer with any ordering or approach. Enabled
by the abstract scheme and unique intersection algorithm (see Section 4.4), users can obtain the same
desired model (along with fabrication file) with different design processes (e.g., different order or hier-
archy). We use the reading desk (see Fig. 6(a)) as an example to show how users can build a furniture
differently. Users can follow the same connection order as the original design but flip the direction
of every connection (see Fig. 12(a)). For instance, connection O is flipped from (@—> @) to
(D — (2))). Still, users obtain the same final model as previous. Users can use a more intuitive order of
connections as they prefer. One of the example orders is shown in Fig. 12(b). In addition, as illustrated
in Fig. 12(c), users are enabled to hierarchically compose the reading desk from two simple furniture
models, such as a simple table (composed of components 1-3) and a trapezoid shelf (composed of
components 4—11). Similarly, the desk can be composed from three low-level models (see Fig. 12(d)).
This high flexibility of modeling process allows users to only focus on design itself instead of tedious
engineering details.

5.3. Design manipulation

Owing to the parameterized modeling scheme, users are allowed to manipulate parameters of a design,
which means users are capable of modifying a furniture’s dimensions while preserving its overall

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 67

_Horizontal Shelf

(h)

Figure 14. Compound furniture designs hierarchically composed from existing furniture models. (a) A
collection of simple furniture models, including a vertical shelf, a horizontal shelf, and a simple table.
Six compound furniture models, composed from the aforementioned simple designs are displayed from
(b)—(g). They are a TV console (b), a study desk (c), a multiuse shelf (d), an over-the-toilet storage (e),
a corner workshop bench (f), and a dresser (g), respectively. Several other compound designs are also
presented in (h), (i), and (j).

structure. Design manipulation is permitted at all levels of hierarchy. Therefore, the user can make
higher-level modifications by editing the hierarchical composition and make more detailed changes by
selecting low-level internal nodes. Figure 13 shows an example of how users can continue to explore
the design space of a furniture model. For this rocker chair design, eight metaparameters are defined
by adding some geometric constraints to greatly reduce the design parameters for structure-preserved
manipulation. By varying these eight parameters, users can have a bunch of variants that have distinct
functionalities for various applications. For example, users can widen the chair to obtain a long bench
for the side of a pool, as shown in Fig. 13(b). Users are also allowed to modify the parameters wildly to
create extreme designs, as shown in Fig. 13(e)—(m), for special applications. In addition, some scaled
rocker chairs are fabricated and assembled to validate the design manipulation (see Fig. 13(n)).

For users with more expertise, they can impose constraints between related parameters of its con-
stituent parts. For example, we can add constraints between two edges to make them always equal to
each other to simplify the design process if they are supposed to be equal. Also, casual end-users can
benefit from the constraints encoded by experts by narrowing down the parameters of designs, as the
above demonstrated metaparameter definition.

https://doi.org/10.1017/50263574722000443 Published online by Cambridge University Press

68 Wenzhong Yan et al.

5.4. Compound designs

Though the users can always design their furniture from scratch, it is extremely challenging to do so for
those who do not possess domain skills. Our hierarchical scheme will save them by composing com-
plex furniture from simpler ones. This hierarchical implementation resolves the challenge by breaking
down the complicated design process into recursively combining the relevant simpler building blocks.
Figure 14 demonstrates how users can compose several simple designs into more complicated com-
pound furniture models. The building blocks are vertical shelves, horizontal shelves, and simple tables
(see Fig. 14(a)). The constructions of these building blocks are rather easy. By hierarchically combining
these building blocks, we can obtain numerous various furniture models as shown in Fig. 14(b)—(g).
Basically, users merely need to specify how these building blocks are placed against each other, leaving
the tedious engineering implementations, such as joints intersection, to our system. Take a study desk as
an example (see 14C). Firstly, users stack two tables vertically. Secondly, users add a horizontal shelf on
the top of the previously composed design. Lastly, users attach a vertical shelf on the right sideboard of
the bottom table to finalize the study desk design. Other compound designs can be created in a similar
manner, which greatly releases casual end-users from the tedious work. As you can see, this hierarchi-
cal process decomposes the complex modeling into a series of trivial composition steps. The power of
this hierarchical approach is also validated by other several hierarchically composed furniture designs
shown in Fig. 14(h), (i), and (j). Combining several basic units can result in sophisticated designs. For
example, as shown in Fig. 14(i), a fancy bookshelf can be obtained by stacking three identical stools.

The design and assembly of the above-mentioned complicated furniture models were conducted by
nonengineering developers of our system. These developers were not familiar with mechanical tol-
erances, dimensioning, joint configuration, fabrication tools, kerf, and so forth. They were even not
familiar with Solidworks or other CAD environments and have very limited hands-on skills, for exam-
ple, machining. However, they were able to design and create furniture models with the help of our
system, which illustrates the feasibility of our system for novice users. In addition, we have involved
several nonengineering volunteers during the development phase and improved our system regarding
the collected feedback.

6. Conclusion and Future Work

In this paper, we have proposed a computational, function-based design pipeline for digital fabrication
of flat-pack furniture. Our system enables casual end-users to easily design, customize, fabricate and
assemble furniture models by leveraging parameterized abstraction, hierarchical composition, intersec-
tion autodetection, and planar joint design. Specifically, the finger-based design of the joints allows an
easier alignment between the components; it also obviates the need for adhesives or fasteners to join two
pieces together. For example, carpentry skills (including but not limited to alignment, position holding,
and nailing) and tools (such as nails, screws, and markers) are usually necessary for connecting two
pieces together (see Table I). However, in our system, the user only needs a mallet (for press fit connec-
tion) and minimal carpentry skills, which can greatly reduce the difficulty and enhance the accessibility
of furniture creation. Moreover, thanks to the template-free design scheme, no predefined models are
needed, which further reduces the dependence of design on domain experts [19]. We have demonstrated
the power of our approach by designing, fabricating, and assembling various (scaled) furniture models.
Our method also shows the potential of introducing the design of customizable furniture to the general
public by greatly reducing the required resources. In conclusion, we present a fully computational design
tool for casual end-users to design their own flat-pack furniture that are guaranteed to be manufacturable
and easy to assemble. We believe that our work, together with the flat-pack furniture library we release,
will inspire interesting future studies. For instance, building a variety of graphical and visual interfaces
atop the scripted design language could explore interactions to further facilitate the accessibility of the
design process.

A natural extension of our pipeline is to incorporate physical simulation. There are many mechanical
properties of furniture designs that need to be investigated in order to guarantee their functionality.

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 69

These properties include strength of joints, stability, and stress distributions of furniture models under
typical loading in daily life. Given the abstract and hierarchical scheme of our system, components and
designs are frequently reused to build more complex models, which suggests a data-driven approach to
accelerate the physical simulations.

Currently, the mechanical structural performance of the designed furniture can only be validated after
fabrication and assembly. Therefore, to guarantee the strength of the joints and minimize risk of failure
in the assembled furniture, we intentionally enlarge the amplitude of the interference between fingers of
joints. This heuristic notably improves the performance of designed furniture in practice. However, this
method increases the difficulty of assembly, and a computational evaluation of such tradeoffs would be
an interesting analysis possible within this framework.

There can also be other questions of assemblability that our framework could form a foundation to
address. As the models get more complicated or more types of joints get involved, additional kinematic
geometric interactions could arise. We tackle the validation of the assembly process with low-overhead
assembly prototypes generated automatically by our system from the candidate design. We can also
use this prototype method to help plan an assembly order. In other words, we provide nonexpert users a
scale-down version of the resultant furniture design so that they can instead use low-cost substitutes (e.g.,
copy paper or acrylic sheet) to create a prototype; thus they can explore its assemblability and assembly
plan with this prototype easily and rapidly. By verifying the assemblability of the final flat-pack designs
through the paper prototypes, we empower the users to create their own customized furniture [36].
Nonetheless, an algorithm to validate such assemblability and schedule an assemble plan could further
advance furniture design for novices [10]; computational algorithms built on our connectivity-based
component representation could be used to evaluate such concerns. This ASP problem is extensively
researched and explored for engineering structures and machines [5—-8]. Specifically, there are several
works addressing furniture designs [9, 10], which could be a great enabling technology to extend our
work. One of the most promising and efficient methods is to consider the problem from the opposite
direction—disassembly: if a furniture represented by a connectivity graph can be separated into indi-
vidual pieces, then the assemblability can be validated, and the inversion of this disassembly sequence
can yield an assembly plan [10].

Our framework enables a basis for computational evaluation systems that can assess or even auto-
mate interactions between fabrication, assembly, and performance thus further accelerating the design
iteration for novices. Nonetheless, despite the many possibilities for further such automation and com-
putational design, our system—Dby ensuring the manufacturability of designed furniture models—allows
users to much more rapidly iterate designs through the remaining tradeoffs, focusing on achieving their
desired mechanical and esthetic functionality.

Lastly, it would be exciting to extend our work to enable active furniture design. Active designs will
add reconfigurability to furniture, which allows more interactions with humans in everyday life and
could enrich the design space for smart homes [37]. Since our framework is abstract and parameter-
ized, it is straightforward to add new joints and active components to the system. The most challenging
part is to define a set of appropriate joints to allow active movements. Thanks to our abstract design
scheme, it is possible to replace the stationary planar joints with special active counterparts with con-
trollable actuation (e.g., servo-driven actuation [11]). The active connections could be implemented by
the flexible joint, as shown in Fig. 16, which allows angular movements. On the other hand, the ability
to codesign electrical components and controlling software for actuation is another challenge, which
can refer to the method proposed by Mehta et al. [12]. One example of this active design can refer to
Fig. 4(e)~(g).

Ultimately, we have presented an abstract and hierarchical approach as a very general method for
design, fabrication, and assembly, which lays the foundation of exploring this class of flat-pack furniture.
In the future, we believe this method will enable casual end-users to design, manufacture and assemble
various models, such as furniture, architecture, robots, and beyond.

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

70

Wenzhong Yan et al.

Acknowledgments. The authors would like to thank Mr. Christian Warloe and Mr. Gopi Suresh for their valuable comments and
helpful suggestions.

Financial support. This work is supported by the National Science Foundation under grant #1644579: A Comptuational
Approach to Customizing Design, for which the authors express thanks.

Competing interests. The authors declare that they have no competing interests.

Author contributions. W.Y. and A.M. designed the research, W.Y. and D.Z. conducted the research; W.Y. prepared figures and
drafted the manuscript; W.Y., D.Z., and A.M. revised the manuscript; A.M. supervised the research.

References

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]

(11]
[12]

[13]
[14]
[15]
[16]
(17]
[18]
[19]
[20]

[21]

[22]
(23]

[24]

S.-J. Kim, D.-Y. Lee, G.-P. Jung and K.-J. Cho, “An origami-inspired, self-locking robotic arm that can be folded flat,” Sci.
Robot. 3(16), 217 (2018).

W. Yan, A. L. Gao, Y. Yu and A. Mehta, “Towards autonomous printable robotics: Design and prototyping of the mechanical
logic,” In: International Symposium on Experimental Robotics (Springer, Buenos Aires, Argentina, 2018) pp. 631-644.
W. Yan and A. Mehta, “Towards one-dollar robots: an integrated design and fabrication strategy for electromechanical
systems,” Robotica, 1-17 (2020). https://doi.org/10.1017/S0263574720001101

E. Hawkes, B. An, N. M. Benbernou, H. Tanaka, S. Kim, E. D. Demaine, D. Rus and R. J. Wood, “Programmable matter
by folding,” Proc. Natl. Acad. Sci. 107(28), 12441-12445 (2010).

F. Demoly, X.-T. Yan, B. Eynard, L. Rivest and S. Gomes, “An assembly oriented design framework for product structure
engineering and assembly sequence planning,” Robot. Cim-INT. Manuf. 27(1), 33-46 (2011).

C. Sinanoglu and H. R. Borklii, “An assembly sequence-planning system for mechanical parts using neural network,”
Assembly Autom. 25(1), 38-52 (2005).

T. Dong, R. Tong, L. Zhang and J. Dong, “A knowledge-based approach to assembly sequence planning,” Int. J. Adv. Manuf.
Tech. 32(11-12), 1232-1244 (2007).

Y. Wang, Z. Yuan and C. Sun, “Research on assembly sequence planning and optimization of precast concrete buildings,”
J. Civ. Eng. Manag. 24(2), 106-115 (2018).

W. Pan, Y. Wang and X.-D. Chen, “Domain knowledge based non-linear assembly sequence planning for furniture products,”
J. Manuf. Syst. 49, 226-244 (2018).

Y. Schwartzburg and M. Pauly, “Fabrication-aware design with intersecting planar pieces,” Comput. Graph. Forum 32(2pt3),
317-326 (2013).

A. Mehta, J. DelPreto and D. Rus, “Integrated codesign of printable robots,” J. Mech. Robot. 7(2), 021015 (2015).

A. M. Mehta and D. Rus, “An end-to-end system for designing mechanical structures for print-and-fold robots,” In: 2014
IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Hong Kong, China, May 2014) pp. 1460-1465.
H. Xia, B. Araujo, T. Grossman and D. Wigdor, “Object-oriented drawing,” In: Proceedings of the 2016 CHI Conference
on Human Factors in Computing Systems, CHI (ACM, New York, NY, 2016) pp. 4610-4621.

T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal, S. Rusinkiewicz and D. Dobkin, “Modeling by example,”
ACM Trans. Graph. 23(3), 652-663 (2004).

X. Chen, C. Zheng and K. Zhou, “Example-based subspace stress analysis for interactive shape design,” IEEE T Vis. Comput.
Gr. 23(10), 2314-2327 (2017).

A. Schulz, J. Xu, B. Zhu, C. Zheng, E. Grinspun and W. Matusik, “Interactive design space exploration and optimization
for cad models,” ACM Trans. Graph. 36(14), 157-1-157-14 (2017).

E. Kalogerakis, S. Chaudhuri, D. Koller and V. Koltun, “A probabilistic model for component-based shape synthesis,” ACM
Trans. Graph. 31(11), 55-1-55-11 (2012).

S. Chaudhuri and V. Koltun, “Data-driven suggestions for creativity support in 3d modeling,” ACM Trans. Graph. 29, 183:
(2010).

A. Schulz, A. Shamir, D. I. W. Levin, P. Sitthi-amorn and W. Matusik, “Design and fabrication by example,” ACM Trans.
Graph. 33(11), 62-1-62-11 (2014).

M. Lau, A. Ohgawara, J. Mitani and T. Igarashi, “Converting 3d furniture models to fabricatable parts and connectors,”
ACM Trans. Graph. 30(6), 85-1-85-6 (2011).

G. Saul, M. Lau, J. Mitani and T. Igarashi, “Sketchchair: An all-in-one chair design system for end users,” In: Proceedings
of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction, TEI (ACM, New York, NY, 2011)
pp. 73-80.

D. Chen, P. Sitthi-amorn, J. T. Lan and W. Matusik, “Computing and fabricating multiplanar models,” Comput. Graph.
Forum. 32(2pt3), 305-315 (2013).

K. Hildebrand, B. Bickel and M. Alexa, “crdbrd: shape fabrication by sliding planar slices,” Comput. Graph. Forum.
31(2pt3), 583-592 (2012).

L. Sass, “Synthesis of design production with integrated digital fabrication,” Automat. Constr. 16(3), 298-310 (2007).

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 71

[25] M. Claypool, G. Retsin, M. J. Garcia, C. Jaschke and K. Saey, “Combinatorial design: designing collaborative models
for construction,” Proceedings of the Convegno Internazionale Naples 2020 International Conference ‘DESIGN IN THE
DIGITAL AGE’. (2020).

[26] A. Groenewolt, T. Schwinn, L. Nguyen and A. Menges, “An interactive agent-based framework for materialization-informed
architectural design,” Lect. Notes Comput. Sc. 12(2), 155-186 (2018).

[27] J. A. Landay, “Technical perspective: design tools for the rest of us,” Commun. ACM 52(12), 80-80 (2009).

[28] C. Torres and E. Paulos, “Metamorphe: Designing expressive 3d models for digital fabrication,” In: Proceedings of the
2015 ACM SIGCHI Conference on Creativity and Cognition, C&C *15 (ACM, New York, NY, 2015) pp. 73-82.

[29] N.Umetani, T. Igarashi and N. J. Mitra, “Guided exploration of physically valid shapes for furniture design,” Acm T Graphic
31(4), 86-1-86-11 (2012).

[30] A. Schulz, C. Sung, A. Spielberg, W. Zhao, R. Cheng, E. Grinspun, D. Rus and W. Matusik, “Interactive robogami: an
end-to-end system for design of robots with ground locomotion,” Int. J. Rob. Res. 36(10), 1131-1147 (2017).

[31] K.D. Willis, J. Lin, J. Mitani and T. Igarashi, “Spatial sketch: Bridging between movement & fabrication,” In: Proceedings
of the Fourth International Conference on Tangible, Embedded, and Embodied Interaction, TEI 10 (ACM, New York, NY,
2010) pp. 5-12.

[32] Y. Mori and T. Igarashi, “Plushie: an interactive design system for plush toys,” In: ACM SIGGRAPH 2007 papers,
(San Diego, CA: USA), ACM (2007) pp. 45-es.

[33] C. Zheng, “Joinery: joints for laser cut assemblies,” Instructables, (8 Mar. 2018), https://www.instructables.com/
id/Joinery-Joints-for-Laser-Cut-Assemblies/.

[34] R. Tian, S. Sterman, E. Chiou, J. Warner and E. Paulos, “Matchsticks: Woodworking through improvisational digital fab-
rication,” In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, (ACM, New York, NY,
2018) pp. 149-1-149-12.

[35] B.Guy, “How to: design aliving hinge” Ponoko (31 Jul. 2018). https://www.ponoko.com/blog/how-to-make/how-to-design-a-
living-hinge/.

[36] J. I Lipton, A. Schulz, A. Spielberg, L. Trueba, W. Matusik and D. Rus, “Robot assisted carpentry for mass customiza-
tion,” In: 2018 IEEE international conference on robotics and automation (ICRA) (IEEE, Brisbane, Australia, 2018)
pp. 3540-3547.

[37] Wikipedia, “Home automation,” Wikimedia Foundation, (15 Mar. 2022), https://en.wikipedia.org/wiki/Home_automation.

A. Appendix
A.l. Current Joint Collection
In this section, we introduce the details about three planar joints implemented in our paper.

A.1.1. Finger—finger joint

Finger—finger joints are used to connect two components with their segment of intersection both on
the edges. The geometric outline of this finger—finger joint is shown in Fig. 15(a), where alternating
rectangular fingers are added to the two coupled edges, and the length of these fingers I, are matched
with the thickness of the material (3 mm in this case) to ensure that the seamless outline of the attached
edges. The interval between two fingers forms a dent, which is fulfilled by a finger when the joint is
assembled.

As shown in Fig. 15(a), to ensure that the finger—finger joint can indeed hold components together, we
introduce a certain amplitude of interference to the joint. In addition, a geometry correction is necessary
to compensate for the fabrication kerf introduced by the machines. Thus, when user has specified a
interference fit value § and a certain fabrication method, the convex finger is expanded to the designated
value wy, while the concave dent is trimmed down accordingly. The relationship between these two
parameters is described by

WfZWd+4A+8

where A is the fabrication kerf and § is the interference amplitude. For the specific material and fabri-
cation method used, users may need to perform some experiments to find the best interference fit value
and the fabrication kerf.

Due to the limitation of 2D fabrication, finger—finger joints are only well suited for connections at
angle of 90°. Although user can easily spin components around to form other angles of connections,
we do not regard it as the expected usage of finger—finger joint due to the questionable firmness of such
connections.

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

72 Wenzhong Yan et al.

(a) LFinger

(b) (c) /lot
D—%% Wfi : (KS)
I

ls

r

Figure 15. A collection of planar joints used in our system. (a) Finger—finger joints; (b) Finger—hole
Jjoints; (c) Slot=slot joints.

Junctions / Spring connection

Finger Slot

Figure 16. A basic module of a flexible joint, with its junctions and spring connection structure labeled.
The junctions are supposed to behave as rigid joints while the spring connections are responsible for
plate bending.

A.1.2. Finger—hole joint

If the segment of intersection is on the edge of one component while within the face of the other, finger—
hole joints are needed. We add fingers to the former component and holes to the latter component
(see Fig. 15(b)). Similar to finger—finger joints, users can specify the interference fit value to deter-
mine the final geometry of the joint. The relationship between the widths of finger w; and hole w), is
expressed by

where A is fabrication kerf and § is interference amplitude. Again the length /; of these fingers and length
I, of holes should both be equal to the thickness of the material. Finger-hole joints are also limited to
90° connections.

A.1.3. Slot=slot joint
If the segment of intersection is within the face of both components, we will add a slot—slot joint to
connect them. If neither face is fully within each other, then we will cut rectangular slots on both com-
ponents, and each slot accounts for half of the segment of intersection (see Fig. 15(c)). If one face is
fully with another, then we will only cut the slot on one face so that the other face can be stuck through
it (see Fig. 11(i)).

The length of the slot [; is half of the length of the segment of intersection and the width w; of the
slot can be expressed by

Wy=w, +2A+$§
where w,, is the thickness of material, A is the fabrication kerf, and § is the interference amplitude.

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

Robotica 73

A.2. Flexible Joint

A basic module of flexible joints is shown in Fig. 16. For wider flexible joints, this pattern could be
replicated several times along the transverse direction. This module consists of junctions and spring
connections. The junctions behave as rigid joints to connect spring connections. The spring junctions
function as bending spring to enable angular movement. More details about the design of flexible joints
can be found in the reference [35].

A.3. Assembly of Furniture

Table 1. Comparison of assembly of related furniture design systems.

System Carpenter skill level Required tools Alignment Time
Ref. [36] Expert Mallet, nails, marker Hard 0-3h
Ref. [19] Expert Mallet, ball joint, Hard —

hinge joint, screws, etc.
Ref. [29] Expert Mallet, nails, marker Hard 4 h
Our system Novice Hammer Easy 0-30 min

Cite this article: W. Yan, D. Zhao and A. Mehta (2023). “Fabrication-aware design for furniture with planar pieces”, Robotica
41, 48-73. https://doi.org/10.1017/S0263574722000443

https://doi.org/10.1017/S0263574722000443 Published online by Cambridge University Press

