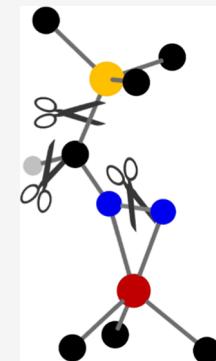


1 Trimethylsilyldiazomethane Disassembly at a Three-Fold Symmetric Iron Site

3 Austin D. Chivington, Sammie Squire, Nobuyuki Yamamoto, Maren Pink, Morgan D. Griffith,
 4 Jess Fletcher, Yafei Gao, Joseph M. Zadrozny, and Jeremy M. Smith*

Cite This: <https://doi.org/10.1021/acs.inorgchem.4c00604>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

5 ABSTRACT: The reaction of equimolar trimethylsilyldiazomethylolithium (LiTMSD) with high spin ($S = 2$)
 6 $\text{PhB}(\text{AdIm})_3\text{FeCl}$ ($\text{PhB}(\text{AdIm})_3^- = \text{tris}(3\text{-adamantylimidazol-2-ylidene})\text{phenylborate}$) affords the correspond-
 7 ing N -nitrilimido complex $\text{PhB}(\text{AdIm})_3\text{Fe}-\text{N}=\text{N}=\text{C}(\text{SiMe}_3)$. This complex can be converted to the
 8 thermodynamically more favorable C -isocyanoamido isomer $\text{PhB}(\text{AdIm})_3\text{Fe}-\text{C}=\text{N}=\text{N}(\text{SiMe}_3)$ by reaction
 9 with an additional equivalent of LiTMSD. While the iron(II) complexes are four-coordinate, the diazomethane
 10 is bound side-on in the iron(I) congener $\text{PhB}(\text{AdIm})_3\text{Fe}(\text{N},\text{N}'-\kappa^2-\text{N}_2\text{C}(\text{H})\text{Si}(\text{CH}_3)_3)$. The latter complex
 11 adopts high spin ($S = 3/2$) ground state and features an unusually weak $\text{C}-\text{H}$ bond. Photolysis of the iron(II)
 12 complexes induces $\text{N}=\text{N}$ bond cleavage, with the iron(II) cyanide $\text{PhB}(\text{AdIm})_3\text{Fe}-\text{C}\equiv\text{N}$ and iron(IV)
 13 nitride $\text{PhB}(\text{AdIm})_3\text{Fe}\equiv\text{N}$ complexes being the major products of the reaction. The same products are
 14 obtained when the iron(I) complex is photolyzed or treated with a fluoride source. The trimethylsilyldiazo-
 15 methane-derived ligand disassembly reactions are contrasted with those observed for related tris(carbene)-
 16 amine complexes.

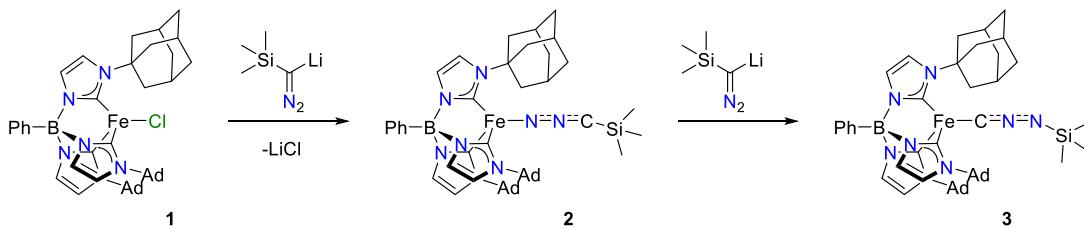
17 ■ INTRODUCTION

18 Diazoalkane (N_2CR_2) complexes are conceptually appealing as
 19 an entry point to the synthesis of metal–carbon multiple
 20 bonds, where the expulsion of N_2 gas provides a strong
 21 thermodynamic driving force. For example, nickel carbene
 22 complexes are accessible through both photochemical and
 23 Lewis acid-catalyzed loss of N_2 from the corresponding
 24 diazomethane complexes.¹ However, this same diazo group
 25 may also be associated with undesired complications, including
 26 two commonly observed coordination modes: “end-on” in
 27 which the metal is σ -bonded through the terminal nitrogen
 28 atom of the diazoalkane, and “side-on” via the diazoalkane π -
 29 system. More exotically, the metal can function as a substituent
 30 on the diazoalkane in the form of a C -bound diazoalkane
 31 complex.^{2,3}

32 We (and others) have shown the utility of rigid, strongly
 33 donating tris(carbene)borate ligands for the isolation of late
 34 transition metal complexes bearing metal–ligand multiple
 35 bonds.^{2–5} By stabilizing a 3-fold symmetric environment at a
 36 four-coordinate metal center, these ligands create a d-orbital
 37 manifold that diminishes destabilizing σ^* and π^* interactions
 38 with the multiply bonded ligand. Consequently, we have been
 39 able to isolate tris(carbene)borate iron complexes featuring
 40 terminal oxo,⁵ imido,⁶ sulfido,⁷ and nitrido⁸ ligands.

41 In light of this precedent, we were interested in extending
 42 the library of tris(carbene)borate iron complexes to include
 43 iron–carbon multiple bonds. Indeed, the synthetic flexibility
 44 inherent to trimethylsilyldiazomethane provides a tantalizing
 45 motivation to use this molecule as a synthon for accessing
 46 iron–carbon multiple bonds. Specifically, in addition to N_2

extrusion, access to iron–carbon multiple bonds via the 47
 deprotonation and desilylation of trimethylsilyldiazomethane- 48
 derived ligands can also be envisioned. Perhaps surprisingly, 49
 isolable iron complexes bearing a trimethylsilyldiazomethane- 50
 derived ligand are rare. While trimethylsilyldiazomethane has 51
 been used to install a bridging alkylidene ligand in a diiron 52
 complex,⁹ similar reactivity has yet to be observed in 53
 mononuclear iron complexes.^{10,11} For example, $(^{1\text{P}}\text{PDI})\text{Fe}-$ 54
 $\text{N}=\text{N}-\text{C}(\text{H})\text{SiMe}_3$ ($^{1\text{P}}\text{PDI} = 2,6-(2,6-\text{iPr}_2\text{C}_6\text{H}_3\text{N}=\text{CMe})_2\text{C}_5\text{H}_3\text{N}$) reacts intramolecularly to eliminate Me_3SiF ,¹⁰ while $[(\text{TIMEN}^{\text{mes}})\text{Fe}(-\text{N}=\text{N}=\text{CSiMe}_3)]^+$ ($\text{TIMEN}^{\text{mes}} =$ 57
 tris[2-(3-mesityl-imidazole-2-ylidene)ethyl]amine) reacts with 58
 fluoride to generate the corresponding iron(IV) nitride 59
 complex along with CN^- and Me_3SiF .¹¹ The paucity of iron 60
 complexes bearing trimethylsilyldiazomethane-derived ligands, 61
 along with their divergent reactivity, provides additional 62
 impetus for our studies.⁶³


64 In this work, we report our investigations into iron 64
 tris(carbene)borate complexes with trimethylsilyldiazo- 65
 methane-derived ligands. In contrast to previous reports, a 66
 number of binding modes are observed on the same metal 67
 scaffold, with the oxidation state of the metal dictating the 68
 denticity of the ligand. While we have been unable to coax the 69

Received: February 9, 2024

Revised: May 7, 2024

Accepted: May 13, 2024

Scheme 1

70 formation of iron–carbon multiple bonds by thermal or
 71 photochemical means, we observe interesting differences with
 72 related complexes, highlighting the nuanced reactivity of
 73 trimethylsilyldiazomethane and its ligands.

74 ■ RESULTS AND DISCUSSION

75 **Synthesis of iron(II) Nitrilimido and Isocyanoamido**
 76 **Complexes.** In solution, trimethylsilyldiazomethyllithium
 77 (LiTMSD) exists as an equilibrium mixture of N - and C -
 78 lithiated isomers, with the equilibrium position dependent
 79 upon the coordinating ability of the solvent.^{9,12} The C -lithiated
 80 ion is favored for coordinating solvents that are better able to
 81 solvate the lithium cation. Despite these considerations, we
 82 observe that the reaction of equimolar LiTMSD with
 83 $\text{PhB}(\text{AdIm})_3\text{FeCl}$ (**1**) in THF provides the high spin ($S =$
 84 2) N -nitrilimido complex $\text{PhB}(\text{AdIm})_3\text{Fe}-\text{N}=\text{N}=\text{C}(\text{SiMe}_3)$
 85 (**2**) as the sole iron-containing product (Scheme 1). This
 86 complex can also be synthesized by the addition of
 87 trimethylsilyldiazomethane to $\text{PhB}(\text{AdIm})_3\text{FeNH}_2$ (which is
 88 readily prepared by addition of sodamide to $\text{PhB}(\text{AdIm})_3\text{FeCl}$,
 89 see Supporting Information for more details).

90 The molecular structure of **2**, as determined by single crystal
 91 X-ray diffraction, reveals a pseudotetrahedral iron center with a
 92 terminal N -nitrilimido ligand (Figure 1).¹³ The nitrilimido
 93 structural metrics ($\text{N}=\text{N}$ 1.123(2) Å; $\text{N}=\text{C}$ 1.203(3) Å) are
 94 consistent with an allenic electronic structure. This linear
 95 allenic core of the ligand is also consistent with this assignment
 96 ($\text{N}=\text{N}=\text{C}$ 173.4(2)°), although the ligand substituents are
 97 bent away from linearity ($\text{Fe}=\text{N}=\text{N}$ 150.7(1)° and $\text{N}=\text{C}=\text{Si}$
 98 143.5(2)°). It is interesting to compare this structure with that

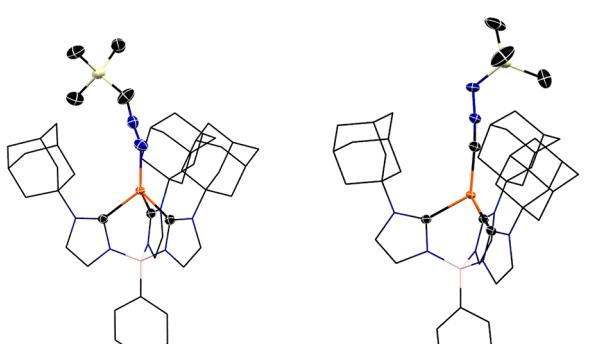
of the related iron N -nitrilimido complex $[(\text{TIMEN}^{\text{mes}})\text{Fe}-$
 99 $(\text{N}=\text{N}=\text{CSiMe}_3)]^+$.¹¹ While the nitrilimido bond distances
 100 of both complexes are similar, in $[(\text{TIMEN}^{\text{mes}})\text{Fe}(\text{N}=\text{N}=\text{CSiMe}_3)]^+$, the ligand is nearly linear ($\text{Fe}=\text{N}=\text{N}$ 177.0(2);
 101 $\text{N}=\text{N}=\text{C}$ 179.7(4); $\text{N}=\text{C}=\text{Si}$ 179.3(4)°).³³ Here, it is worth
 102 noting that computational studies have shown that the thermal
 103 barrier between the two major resonance forms of the N -
 104 nitrilimido ligand, namely, propargylic and allenic, is relatively
 105 small (~2.5 kJ mol⁻¹).¹⁴ Thus, we suggest a dominant allenic
 106 resonance for **2** and that the bending results from packing
 107 forces in the solid state.³³ The other structural metrics for the
 108 complex are unremarkable, with the $\text{Fe}=\text{N}$ (2.005(1) Å) and
 109 $\text{Fe}=\text{C}$ bond distances (2.070(1)–2.117(1) Å) being typical
 110 for a high spin ($S = 2$) iron(II) tris(carbene)borate complex.
 111

112 Solution characterization of **2** is consistent with the solid-
 113 state structure. The ¹H NMR spectrum of the complex is
 114 consistent with a 3-fold symmetric structure, with a diagnostic
 115 resonance at $\delta = 34$ ppm assigned to the protons of the
 116 trimethylsilyl group. The high spin state is characterized by
 117 Evans' method ($\mu_{\text{eff}} = 5.0(2)$ μ_{B}). Vibrational spectroscopy
 118 confirms the presence of the N -nitrilimido ligand ($\nu_{\text{N}=\text{N}} =$
 119 2047 cm⁻¹). Complex **2** has high thermal stability, with no
 120 spectral changes occurring on heating for 3 h at 50 °C.
 121

122 Unexpectedly, complex **2** reacts with additional LiTMSD to
 123 afford the C -isocyanoamido isomer $\text{PhB}(\text{AdIm})_3\text{Fe}-\text{C}=\text{N}=\text{N}(\text{SiMe}_3)$ (**3**), as determined by single crystal X-ray diffraction
 124 (Scheme 1, Figure 1).⁸ Compared to the N -nitrilimido ligand
 125 in **2**, the C -isocyanoamido ligand in **3** has a shorter $\text{C}=\text{N}$
 126 bond (1.164(3) Å) and a longer $\text{N}=\text{N}$ bond (1.285(3) Å).
 127 While the $\text{C}=\text{N}=\text{N}$ core in **3** is also linear (174.2(2)°), the
 128 $\text{N}=\text{N}=\text{Si}$ bond angle (119.8(1)°) is significantly smaller than
 129 the related $\text{N}=\text{C}=\text{Si}$ angle in **2** (143.5(2)°), indicative of lone-
 130 pair character at the silicon-bound nitrogen atom. The $\text{C}=\text{N}$
 131 bond distance in **3** is the same as that observed for the only
 132 other structurally characterized C -isocyanoamido complex
 133 ($\text{TIMEN}^*\text{CoC}=\text{N}=\text{NMes}$).³⁸ However, the $\text{N}=\text{N}$ distance
 134 in the latter complex (1.332(2) Å) is longer than that in **3**. As
 135 with **2**, the $\text{Fe}=\text{C}$ distances to the tripodal ligand (2.071(1)–
 136 2.094(1) Å) and isocyanoamido (2.011(2) Å) ligands are in
 137 the range observed for a high spin ($S = 2$) iron(II)
 138 tris(carbene)borate complex.
 139

140 Complex **3** is also spectroscopically distinct from the N -
 141 nitrilimido complex **2**. Most notably, the diagnostic resonance
 142 of the trimethylsilyl protons in the ¹H NMR spectrum is
 143 shifted upfield from 34 ppm in **2** to 18 ppm in **3**. Additionally,
 144 vibration spectroscopy is consistent with the shorter $\text{N}=\text{N}$
 145 bond, as the IR spectrum shows that the band attributed to the
 146 isocyanoamido ligand is red-shifted ($\nu_{\text{N}=\text{N}} = 2062$ cm⁻¹) from
 147 the related band in **2**.

148 The mechanism by which **3** is formed is not clear, although
 149 DFT calculations (B3LYP/def2-TZVP) reveal that this isomer
 150 is thermodynamically favored by 6.7 kcal/mol (Table S3). The
 151 formation of **3** is only facilitated by stoichiometric LiTMSD
 152



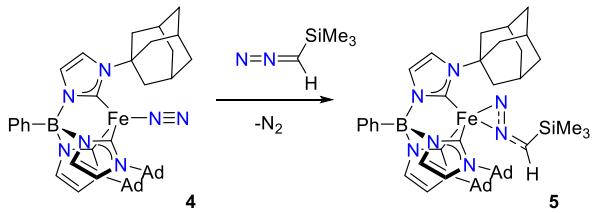
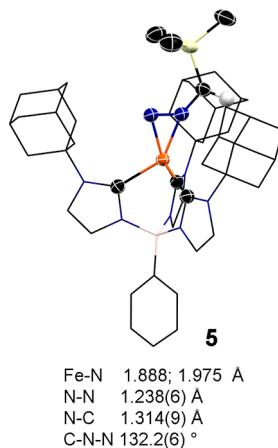

Figure 1. X-ray crystal structures of **2** and **3**, along with the selected bond distances and bond angles. Thermal ellipsoids are at 50% probability; hydrogen atoms omitted and most of the tris(carbene)-borate ligand shown as wireframe for clarity. Black, orange, blue, and yellow ellipsoids represent carbon, iron, nitrogen, and silicon atoms, respectively.

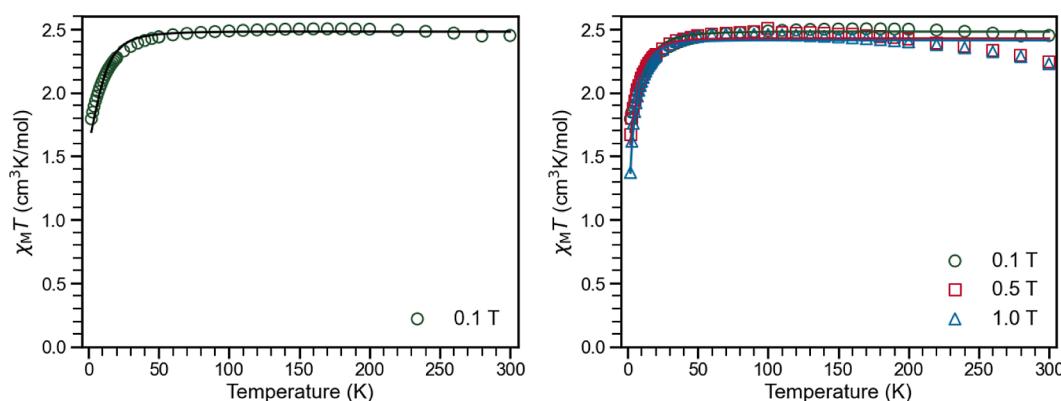
Figure 1. X-ray crystal structures of **2** and **3**, along with the selected bond distances and bond angles. Thermal ellipsoids are at 50% probability; hydrogen atoms omitted and most of the tris(carbene)-borate ligand shown as wireframe for clarity. Black, orange, blue, and yellow ellipsoids represent carbon, iron, nitrogen, and silicon atoms, respectively.


152 and is not induced by other bases such as $\text{KN}(\text{SiMe}_3)_2$ or
 153 NaNH_2 . Monitoring the reaction by ^1H NMR spectroscopy
 154 reveals that the additional LiTMSD is completely consumed;
 155 however, attempts to determine the byproducts of the reaction
 156 have been unsuccessful. These observations suggest that the
 157 reaction mechanism involves coordination of the second
 158 trimethylsilyldiazomethyl ligand to iron. Akin to observations
 159 for trimethylsilyldiazomethyl ligand isomerization in a diiron
 160 complex,⁹ we speculate that the carbon atom of the bound
 161 trimethylsilyldiazomethyl ligand binds to the lithium ion,
 162 facilitating delivery of the C-bound isomer to iron. However,
 163 since the reaction is not catalytic in LiTMSD, a simple ligand
 164 exchange mechanism is unlikely. Unfortunately, we have been
 165 unable to determine the fate of the additional trimethylsilyl-
 166 diazomethyl ligand, hindering additional mechanistic insight.
 167 Previously, isocyanoamido ligand formation in (TIMEN^*) -
 168 $\text{CoC}=\text{N}=\text{NMes}$ was induced by the reaction of the
 169 nitrilimido complex $[(\text{TIMEN}^{\text{mes}})\text{Co}(\text{N}=\text{N}=\text{CSiMe}_3)]^+$
 170 with fluoride.¹⁵ However, reaction of **2** with fluoride sources
 171 does not provide tractable products.

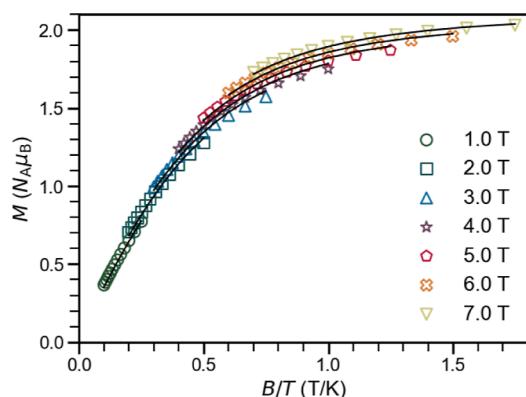
172 **Synthesis, Characterization, and Reactivity of an**
 173 **Iron(I) Azomethane Complex.** The previously reported
 174 iron(I) dinitrogen complex $\text{PhB}(\text{AdIm})_3\text{FeN}_2$ (4) reacts with
 175 trimethylsilyldiazomethane in THF to afford $\text{PhB}(\text{AdIm})_3\text{Fe}-$
 176 $(N,N'\text{-}\kappa^2\text{-N}_2\text{C}(\text{H})\text{Si}(\text{CH}_3)_3)$ (5); see **Scheme 2**. The structure

Scheme 2

177 of 5 was elucidated by single crystal X-ray diffraction, revealing
 178 a five-coordinate complex with a side-bound trimethylsilyldia-
 179 zomethane ligand (**Figure 2**). The diazoalkane N=N
 180 (1.238(6) Å) and C=N (1.314(9) Å) bond distances suggest
 181 that the dominant resonance form is maintained upon binding.


Figure 2. X-ray crystal structure of 5. Thermal ellipsoids are at 50% probability; most of the hydrogen atoms omitted and most of the tris(carbene)borate ligand shown as wireframe for clarity. Black, orange, blue, and yellow ellipsoids represent carbon, iron, nitrogen, and silicon atoms, respectively.

Indeed, the N=N bond distance is shorter than for other reported side-bound trimethylsilyldiazomethane complexes, namely, $\text{Cp}_2^*\text{Ti}(\text{N}_2\text{C}(\text{H})\text{SiMe}_3)$ (1.276(3) Å)¹⁶ and (BDI)- $\text{Cr}(\text{CH}_2\text{SiMe}_3)(\text{N}_2\text{C}(\text{H})\text{SiMe}_3)$ (1.332(3) Å),¹⁷ suggesting a lower degree of π -backbonding in S. The N=N bond distance is also shorter than in the iron diphenylazomethane complex ($^{i\text{Pr}}\text{PDI}\text{Fe}(\text{N}_2\text{CPh}_2)$) (1.280(3) Å).¹⁸ It is remarkable that side-on binding is favored over an end-on mode, despite the large steric encumbrance of the very bulky tris(carbene)borate ligand. It is worth noting that five-coordinate complexes with this tris(carbene)borate ligand are known, namely, the iron(I) dicarbonyl complex $\text{PhB}(\text{AdIm})_3^-\text{Fe}(\text{CO})_2$ ¹⁹ and the iron(III) disulfide $\text{PhB}(\text{AdIm})_3^-\text{Fe}(\kappa^2-\text{S}_2)$.


Interestingly, the Fe–C distances in **5** (2.102–2.084 Å) are longer than in the related iron(I) complex $\text{PhB}(\text{MesIm})_3\text{Fe}(\text{CO})_2$ (1.978(5) – 2.007(5) Å), which is low spin ($S = 1/2$), implicating a different electronic structure for **5**. Variable temperature dc magnetic susceptibility data were collected at three different fields (0.1, 0.5, and 1.0 T) to probe the ground-state spin of complex **5**. At 300 K, the value of $\chi_M T$ is 2.45 cm³ K/mol at 0.1 T, which is close to the expected value of 2.46 for an $S = 3/2$ system with $g = 2.29$ (Figure 3). With decreasing temperature, $\chi_M T$ stays relatively constant until 50 K, wherein $\chi_M T$ begins to drop and ultimately reaches 1.79 cm³ K/mol at 2 K, likely as a result of zero-field splitting. Fitting these data with PHI²⁰ provided spin-Hamiltonian values $g_{\text{iso}} = 2.30$ and $D = -12.9$ cm⁻¹.

Reduced magnetization data provided nonsuperimposable 209 isofield lines, also suggesting the presence of zero-field splitting 210 (Figure 4). The spin-Hamiltonian values suggested also a large 211 f_4 zero-field splitting, though the fitted parameters from PHI 212 were different than the 2–300 K dc $\chi_M T$ data set: $g_{\text{iso}} = 2.62$, D 213 = -42.91 cm^{-1} and $|E| = 0.03 \text{ cm}^{-1}$. The discrepancy between 214 the $\chi_M T$ and magnetization data fitting results suggests that the 215 sign and magnitude of D are not precisely defined. However, 216 we can confidently infer that **5** is anisotropic and the 217 magnitude of D is between 10 and 40 cm^{-1} , in line with 218 literature expectations for this ion. For example, low-spin five- 219 coordinate iron(1) complexes are reported with $g_{\text{iso}} = 2.03$ – 220 2.06 determined by EPR spectroscopy,²¹ and high-spin, four- 221 coordinate iron(1) complexes can show g values of 2.13 up to 222 3.81 by electron paramagnetic resonance (EPR) spectroscopy.^{22,23} Parameterization of D in one of these complexes 224 revealed a D up to 20 cm^{-1} .²⁰ A separate high-spin iron(1) 225 tris(thiolate) complex also produced very large g values (up to 226 3.41), indicative of zero-field splitting effects in its $S = 3/2$ 227 ground state.²⁴ Factors including coordination number, 228 symmetry, and ligand field strength limit direct comparison 229 of **5** to other iron(1) complexes, but the foregoing literature 230 evidence clearly supports our conclusion that **5** is anisotropic. 231

The zero-field ^{57}Fe Mössbauer spectrum at 273 K reveals an 232 asymmetric doublet at $\delta = 0.75$ mm/s ($\Delta E_Q = 2.50$ mm/s). 233 The positive isomer shift is consistent with high spin Fe(I), 234 with the asymmetry indicative of a noninteger spin complex. 235 The isomer shift is distinct from that for the $S = 3/2$ iron(III) 236 disulfide complex PhB(AdIm)₃Fe(κ^2 -S₂) ($\delta = 0.42$, $\Delta E_Q = 2.54$ 237 mm/s), further supporting the low-valent oxidation state 238 assignment.⁵ DFT calculations (B3LYP/def2-TZVP) repro- 239 duce the observed $S = 3/2$ ground spin state, with the $S = 1/2$ 240 state higher in energy by 8.7 kcal/mol (Table S3). In addition, 241 the DFT-computed ^{57}Fe Mössbauer spectral parameters for 242 the $S = 3/2$ state ($\delta = 0.61$ mm/s, $\Delta E_Q = -2.08$ mm/s) are in 243 reasonable agreement with those observed experimentally. 244

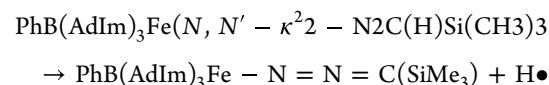
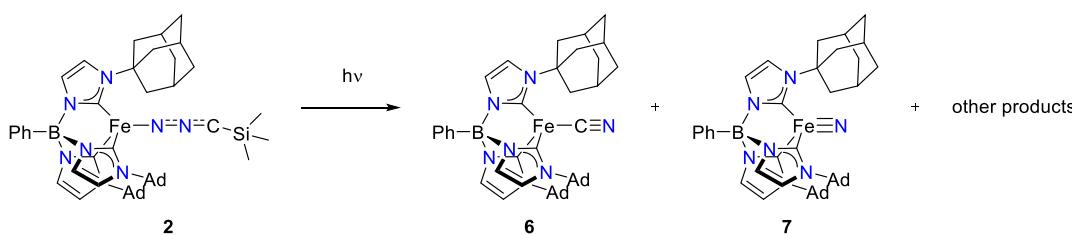

Figure 3. (Left) Variable-temperature dc susceptibility ($\chi_M T$) data for **5** collected under an applied magnetic field of 0.1 T. The solid black line is a fit generated using PHI to extract spin Hamiltonian parameters $g_{\text{iso}} = 2.30$, $D = -12.88 \text{ cm}^{-1}$. (Right) Variable-field, variable-temperature $\chi_M T$ data collected at 0.1, 0.5, and 1 T magnetic fields. Solid lines are best simulations of the data with $g_{\text{iso}} = 2.27$ and $|D| = 9.95 \text{ cm}^{-1}$ for 0.5 T and $g_{\text{iso}} = 2.27$ and $|D| = 10.13 \text{ cm}^{-1}$ for 1 T.

Figure 4. Reduced magnetization (M) data for **5** under applied magnetic fields (B) of 1–7 T and temperature range of 4–10 K. Solid black lines are fits generated using PHI to extract spin Hamiltonian parameters $g_{\text{iso}} = 2.62$, $D = -43$, and $|E| = 0.03 \text{ cm}^{-1}$.

245 The ^1H NMR spectrum of **5** reveals seven paramagnetically
246 shifted resonances, indicating a three-fold symmetric structure
247 and suggesting that the five-coordinate complex is fluxional in
248 solution. A broad resonance at $\delta = 9$ ppm can be uniquely
249 assigned to the protons of the trimethylsilyl group. The
250 trimethylsilyldiazomethane ligand is also observed by vibra-
251 tional spectroscopy ($\nu_{\text{N}=\text{N}} = 2059 \text{ cm}^{-1}$), where the stretching
252 frequency occurs at lower frequency than that of free
253 diazomethane ($\nu_{\text{N}=\text{N}} = 2070 \text{ cm}^{-1}$). Complex **5** has
254 remarkable thermal stability, being persistent in benzene- d_6
255 at 80 °C for at least 3 days, and with no evidence for
256 decomposition after months in the solid state at room
257 temperature. There is no evidence for N_2 extrusion under
258 these conditions.

It is notable that complexes **5** and **2/3** differ by a single 259 hydrogen atom, suggesting that they could be interconverted 260 by formal hydrogen atom transfer reactions. This hypothesis is 261 supported by DFT calculations, which provide an estimate for 262 the gas phase C–H BDFE (B3LYP/def2-TZVP) 263



This prediction is borne out experimentally, where we 264 observe that complex **5** reacts with both Gomberg's dimer (a 265 source of the triphenylmethyl radical) and TEMPO to provide 266 2, along with the triphenylmethane (C–H BDFE = 75.7 kcal/ 267 mol) and TEMPO-H (O–H BDFE = 65.5 kcal/mol), 268 respectively.²⁵ The unusual weakness of the C–H bond in **5** 269 is notable,²⁵ being significantly less than the weak C–H bond 270 in 1,3-cyclohexadiene (BDFE = 67.8 kcal/mol).²⁶ This value is 271 comparable with those observed for some weak metal–hydride 272 bonds, e.g., $\text{CpCr}(\text{CO})_3\text{H}$ (BDFE = 54.9 kcal/mol)²⁷ and 273 $(\text{dppm})\text{V}(\text{CO})_4\text{H}$ (BDFE = 51.1 kcal/mol).²⁸

Photochemical Transformations. As noted above,²⁷⁵ complexes **2**, **3**, and **5** have high thermal stability and attempts²⁷⁶ to thermally promote N_2 loss have been unsuccessful. Inspired²⁷⁷ by observations for low-coordinate nickel complexes,¹ we²⁷⁸ investigated irradiation as a strategy to facilitate N_2 extrusion in²⁷⁹ the creation of iron–carbon multiple bonds.²⁸⁰

Photolysis of iron(II) N -nitrilimido complex **2** with an 800²⁸¹ W XeHg broadband lamp converts the initial golden yellow²⁸² solution to a brilliant salmon color. Analysis of the reaction²⁸³ products by ^1H NMR spectroscopy reveals the formation of²⁸⁴ the iron(II) cyanide complex **6** and iron(IV) nitrido²⁸⁵ **7** in²⁸⁶ **3**

Scheme 3

286 approximately 1:1 ratio (Scheme 3). While these complexes
287 could not be physically separated, they could be independently
288 synthesized, allowing for their complete characterization,
289 including by single-crystal X-ray diffraction. We have been
290 unable to determine the other product(s) of the reaction.

291 Complex **6** can be prepared by a similar strategy as our
292 previously reported synthetic route for $\text{PhB}(\text{BuIm})_3\text{FeCN}$.
293 Thus, reaction of equimolar anhydrous Me_4NF with $\text{PhB}(\text{AdIm})_3\text{FeCl}$ affords the corresponding iron(II) fluoride
294 complex $\text{PhB}(\text{AdIm})_3\text{FeF}$, which has been structurally and
295 spectroscopically characterized. The fluoride complex reacts in
296 turn with stoichiometric trimethylsilyl cyanide to form the high
297 spin ($S = 2$) complex $\text{PhB}(\text{AdIm})_3\text{Fe}-\text{C}\equiv\text{N}$ (**6**). This
298 complex shows similar structural and spectroscopic character-
299 istics to $\text{PhB}(\text{BuIm})_3\text{Fe}-\text{C}\equiv\text{N}$ (Figure 5),²⁹ with the cyanide
300 ligand observed by IR spectroscopy ($\nu_{\text{CN}} = 2051 \text{ cm}^{-1}$).
301

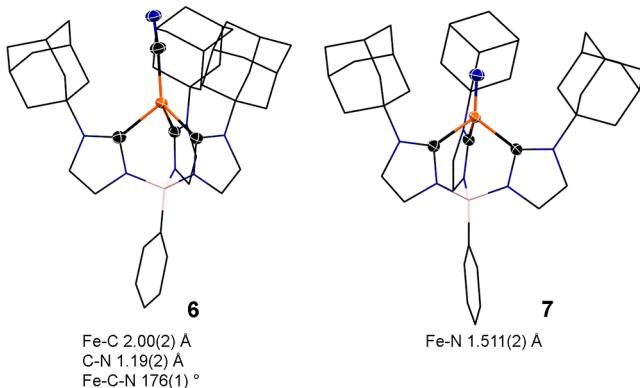


Figure 5. X-ray crystal structures of **6** and **7**. Thermal ellipsoids are at 50% probability; most of the hydrogen atoms omitted and most of the tris(carbene)borate ligand shown as wireframe for clarity. Black, orange, and blue ellipsoids represent carbon, iron, and nitrogen atoms, respectively.

302 Complex **7** is also prepared following our previously
303 reported synthetic route. Here, treatment of $\text{PhB}(\text{AdIm})_3\text{FeCl}$
304 with an excess of sodium azide affords the iron(II) complex
305 $\text{PhB}(\text{AdIm})_3\text{FeN}_3$ ($\nu_{\text{NNN}} = 2068 \text{ cm}^{-1}$), which is photochemi-
306 cally converted to the diamagnetic iron(IV) nitride. The
307 molecular structure of **6** shows similar metrics to those of
308 previously reported iron(IV) tris(carbene)borate nitrides,
309 along with spectroscopic properties that are also in line with
310 this class of complex.⁸

311 It is interesting to compare the reactivity of **2** with that of
312 the related *N*-nitrilimido complex $[(\text{TIMEN}^{\text{mes}})\text{Fe}-$
313 $(\text{N}_2\text{CSiMe}_3)]^+$.⁹ For the latter complex, the nitrilimido ligand
314 is desilylated by NBu_4F to afford the corresponding iron(IV)
315 nitride, with concomitant formation of Me_3SiF and NBu_4CN .
316 The nitride complex is not formed through irradiation. By
317 contrast, while irradiation of **2** provides the iron(IV) nitride
318 product, reaction with anhydrous NBu_4F gives an intractable
319 mixture of paramagnetic products. While the precise factor(s)
320 leading to these differences are not clear, it does highlight the
321 dramatic impact of the supporting tris(carbene) ligand on the
322 reactivity of the *N*-nitrilimine ligand.

323 Similar irradiation of the iron(II) isocyanoamido complex **3**
324 also provides iron(II) cyanide **6**, along with unidentified
325 paramagnetic complex(es). In this case, the iron(IV) nitride
326 complex **7** is not observed. The same products are formed
327 when **3** is heated, although the rate of reaction is slower than

328 under photochemical conditions. Complexes **6** and **7** are also
329 formed when the iron(I) azomethane complex **5** is irradiated.
330 In contrast to the iron(II) complexes, this complex reacts
331 cleanly with Me_4NF , again yielding complexes **6** and **7**.
332

CONCLUSIONS

333 In this work, we demonstrated multiple coordination modes
334 for trimethylsilyldiazomethane-derived ligands at an iron
335 tris(carbene)borate fragment. Notably, the denticity of the
336 ligand is dictated by the oxidation state of the metal ion.
337 Monodentate binding modes are observed for the iron(II)
338 complexes **2** and **3**, whereas a side-bound $\kappa^2\text{-N,N}'$ bidentate
339 mode is observed for complex **5**. The latter binding mode can
340 be attributed to the superior π -backbonding abilities of the
341 low-valent metal ion, which favors interaction of the $\text{N}=\text{N}$ π^*
342 orbital. It is also interesting that the *N*-bound trimethylsilyla-
343 zomethyl ligand in **2** is converted to the thermodynamically
344 favored C-bound form in **3** through the addition of a second
345 equivalent of LiTMSD.
346

As stated in the introduction, trimethylsilyldiazomethane is
347 an intriguing reagent for creating metal–carbon multiple
348 bonds because a number of strategies can be envisioned,
349 including stepwise C–H and C–F bond cleavage, or through
350 direct N_2 extrusion. In contrast to tris(carbene)amine
351 complexes, thermal routes toward disassembly of the diazo-
352 methane ligand in tris(carbene)borate complex **2** are
353 unproductive as by photolysis in $\text{N}=\text{N}$ bond cleavage is
354 only observed. Similar results are obtained for **3** and the
355 iron(I) complex **5**, although both thermal and photochemical
356 conditions are productive. Subtle steric and electronic
357 differences between the two tris(carbene) ligands appear to
358 have dramatic consequences on the reactivity of azomethane
359 ligand. While we have been able to leverage the deprotonation
360 and desilylation chemistry of trimethylsilyldiazomethane, it is
361 surprising that thermodynamically favorable N_2 extrusion is
362 not observed. Instead, the only tractable products are the
363 corresponding iron(IV) nitride and iron(II) cyanide com-
364 plexes, both of which require $\text{N}=\text{N}$ bond cleavage.
365

EXPERIMENTAL SECTION

No Uncommon Hazards are Noted. General Considerations. All manipulations involving air- or moisture-sensitive compounds and their preparation were performed under an inert atmosphere of dry N_2 by standard Schlenk techniques or in an M. Braun glovebox. The glassware used was oven-dried for at least 12 h at 140 °C before use. Celite was oven-dried for 12 h at 140 °C. All solvents were purchased from Sigma-Aldrich and used after being dried using alumina and Q_5 drying columns. Trimethylsilyldiazomethane (2 M in hexanes) was purchased from Alfa and was used as received. The compounds $\text{PhB}(\text{AdIm})_3\text{FeCl}$, $\text{PhB}(\text{AdIm})_3\text{FeN}_2$,¹⁹ Gomberg's dimer,³⁰ and lithium(trimethylsilyl)diazomethane³¹ were prepared according to literature procedures. Deuterated solvents were purchased from Cambridge isotope laboratories. C_6D_6 and THF-d_8 were degassed and stored over molecular sieves for at least 1 day before use. All other compounds purchased from commercial vendors and used as received.
366

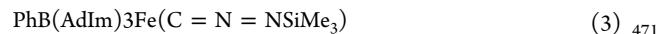
¹H NMR spectroscopic measurements of air- and moisture- sensitive compounds were made in J-Young NMR tubes, with the spectroscopic data recorded on Varian 400 MHz NMR and 500 MHz NMR spectrometers at 25 °C. UV–visible spectra were recorded with an Agilent Cary 60 UV–visible spectrometer. IR spectra were recorded with a PerkinElmer IR Spectrometer. Mass spectra were recorded using negative/positive electrospray ionization on a Thermo Electron Corp MAT-95XP spectrometer.
367

390 Samples for ^{57}Fe Mössbauer spectroscopy were prepared by 391 suspending approximately 50 mg of the sample in Paratone N 392 cryoprotectant oil and loaded under liquid N_2 . Spectra were obtained 393 using a See Co. (Minneapolis, MN) constant-acceleration spectrom- 394 eter equipped with a Janis SHI-4 cryostat. Isomer shifts (δ) are 395 reported relative to a 25 μm thick sample of α -Fe foil at 298 K. Data 396 processing and fitting routines were performed using the WMOSS-4F 397 software package.³²

398 **Magnetic Measurements and Analyses.** Magnetic data were 399 collected on a Quantum Design MPMS3 SQUID magnetometer at 400 the Analytical Resources Core at Colorado State University. 401 Measurements were obtained with microcrystalline powder restrained 402 in frozen eicosane within polycarbonate capsules wrapped in Kapton 403 tape and secured in a straw. The prepared straw sample was 404 transported under N_2 in a jar sealed with Teflon (PTFE) tape and 405 electrical tape until quickly transferred into the magnetometer. 406 Magnetic data were collected in the magnetic fields ranging from 0 to 407 7 T and temperatures from 2 to 300 K. Variable-field magnetization 408 data collected from 0 to 3 T at 100 K revealed a linear field 409 dependence, precluding ferromagnetic impurities for this highly air- 410 sensitive iron-containing compound (Figure S18). Susceptibility data 411 were corrected for complex and eicosane diamagnetism.³³ Suscept- 412 ibility and magnetization data were analyzed with PHI v3.1.6.³⁴

413 **Computational Details.** All DFT calculations were performed as 414 implemented in the ORCA 5.0.4 computational software package.³⁵ 415 The structures of **2**, **3**, and **4** were optimized in the gas phase with the 416 B3LYP functional, def2-SVP³⁶ basis set, and D3BJ dispersion 417 corrections.³⁷ Auxiliary basis sets were automatically generated.³⁸ 418 All structures were verified to be minima on the potential energy 419 surface by frequency calculations. Reevaluation of the electronic 420 energies (single point energy corrections) was done with the triple- ζ 421 basis set def2-TZVP.² The ^{57}Fe Mössbauer spectroscopic parameters 422 were calculated using DFT (B3LYP/def2-TZVP) with the CP(PPP) 423 basis set for Fe and calibrated according to the method of Neese.³⁹ 424 **Synthesis of Complexes.** $\text{PhB}(\text{AdIm})_3\text{FeNH}_2$. A 20 mL 425 scintillation vial was charged with $\text{PhB}(\text{AdIm})_3\text{FeCl}$ (72 mg, 0.07 426 mmol) and THF (10 mL). A suspension of sodium amide (14 mg, 427 0.21 mmol) in THF was added to the solution and the mixture stirred 428 overnight. The solvent was removed from the off-white reaction 429 mixture in *vacuo*, and the resulting residue extracted into toluene and 430 filtered through Celite. The toluene was removed under *vacuo* to 431 afford an off-white solid that was used without further purification 432 (92% yield). ^1H NMR (C_6D_6 , 400 MHz): δ 76 (3H, Im-H), 69 (3H, 433 Im-H), 51 (2H, $\text{B}(\text{C}_6\text{H}_5)$ *o*/*m*-H), 25 (2H, $\text{B}(\text{C}_6\text{H}_5)$ *o*/*m*-H), 21 434 (1H, $\text{B}(\text{C}_6\text{H}_5)$ *p*-H), -55 (Ad, 18H); MS: *m/z* [M+2H]⁺ Calculated 435 for $\text{C}_{45}\text{H}_{58}\text{N}_7\text{BFe}$ 765.4215; found 765.4111. $\mu_{\text{eff}} = 4.9(0)$ μ_{B} .

437 **Method 1:** In a 20 mL scintillation vial, $\text{PhB}(\text{AdIm})_3\text{FeCl}$ (22 mg, 438 0.02 mmol) was dissolved in THF (5 mL). A solution of 439 lithium(trimethylsilyl)diazomethane (3 mg, 0.02 mmol) in THF 440 was slowly added dropwise at room temperature. The colorless 441 solution quickly becomes golden in color. After 1 h, the volatiles were 442 removed under *vacuo*, yielding a golden solid. Crystals suitable for 443 single crystal X-ray diffraction were grown by room temperature vapor 444 diffusion of THF into toluene.


445 **Method 2:** In a 20 mL scintillation vial, $\text{PhB}(\text{AdIm})_3\text{FeNH}_2$ (45 446 mg, 0.05 mmol) was dissolved in THF (10 mL). Trimethylsilyldiazo- 447 methane (29 μL , 0.05 mmol, 2 M solution in hexanes) is added via a 448 syringe with stirring. The colorless solution gradually turns golden 449 yellow. After 20 min, the reaction was briefly exposed to *vacuo* to 450 remove the ammonia byproduct. The reaction was stirred for 1 h and 451 periodically exposed to *vacuo*. The solvent was slowly removed 452 under *vacuo* to yield a golden-yellow solid. Crystals suitable for 453 single crystal X-ray diffraction were grown by room temperature vapor 454 diffusion of THF into toluene.

455 **Method 3:** A J-Young tube was charged with $\text{PhB}(\text{AdIm})_3\text{Fe}(\text{N},\text{N}'-\text{k}^2\text{N}_2\text{CSi}(\text{CH}_3)_3)$ (10 mg, 0.01 mmol) and C_6D_6 (0.5 mL). A 456 solution of Gomberg's dimer (5 mg, 0.01 mmol) in minimal C_6D_6 was 457 added to the tube. Over the course of 10 min, the red solution

458 gradually becomes golden-yellow, with the product characterized by 459 ^1H NMR spectroscopy. This transformation can also be accomplished 460 by stoichiometric reaction with TEMPO.

461 ^1H NMR (C_6D_6 , 400 MHz) δ 74 (3H, Im-H), 69 (3H, Im-H), 47 462 (2H, $\text{B}(\text{C}_6\text{H}_5)$ *o*/*m*-H), 34 (9H, $\text{Si}(\text{CH}_3)_3$), 23 (2H, $\text{B}(\text{C}_6\text{H}_5)$ *o*/*m*- 463 H), 20 (1H, $\text{B}(\text{C}_6\text{H}_5)$ *p*-H), 3 (Ad, 18H), -38 (Ad, 18H). ESI-MS: 464 *m/z* [M]⁺ Calculated for $\text{C}_{49}\text{H}_{66}\text{N}_8\text{BFeSi}$ 860.4538; found 860.4521. 465 $\mu_{\text{eff}} = 5.0(2)$ μ_{B} IR (KBr): $\nu_{\text{N}=\text{N}} = 2047$ cm^{-1} .

466 Due to the light sensitivity of this complex, its ^1H NMR spectra 467 often show resonances from **6** and **7** impurities. In addition, 468 resonances from **3** are usually observed due to the reaction of **2** 469 with additional LiTMSD.

472 **Method 1:** In a 20 mL scintillation vial, $\text{PhB}(\text{AdIm})_3\text{FeCl}$ (68 mg, 473 0.05 mmol) is dissolved in THF with stirring. Lithium(trimethylsilyl)- 474 diazomethane (21 mg, 0.11 mmol) in minimal THF was slowly added 475 dropwise to form a golden yellow solution. The reaction darkened 476 slightly after 24 h stirring. The volatiles were removed under *vacuo* 477 to afford a yellow solid. Fine yellow crystals suitable for single crystal 478 X-ray diffraction were afforded by reverse vapor diffusion of THF 479 solution of the product into a bath of toluene (66% yield).

480 **Method 2:** A J-Young tube was charged with **2** (9 mg, 0.01 mmol) 481 and THF-*d*₈ (0.5 mL) followed by a solution of lithium- 482 (trimethylsilyl)diazomethane (\sim 1 mg, 0.01 mmol) in minimal 483 THF-*d*₈. The reaction was monitored by ^1H NMR spectroscopy, 484 with isomerization to $\text{PhB}(\text{AdIm})_3\text{Fe}(\text{CN}_2\text{-SiMe}_3)$ occurring over- 485 night.

486 ^1H NMR (C_6D_6 , 400 MHz) δ 71 (3H, Im-H), 52 (3H, Im-H), 32 487 (2H, $\text{B}(\text{C}_6\text{H}_5)$ *o*/*m*-H), 17 (2H, $\text{B}(\text{C}_6\text{H}_5)$ *o*/*m*-H), 16 (9H, 488 $\text{Si}(\text{CH}_3)_3$), 15 (1H, $\text{B}(\text{C}_6\text{H}_5)$ *p*-H), 3 (Ad, 18H), -19 (Ad, 18H). 489 ESI-MS: *m/z* [M]⁺ Calculated for $\text{C}_{49}\text{H}_{66}\text{N}_8\text{BFeSi}$ 861.4617; found 489 861.4629. $\mu_{\text{eff}} = 4.9(9)$ μ_{B} , IR (KBr): $\nu_{\text{N}=\text{N}} = 2062$ cm^{-1} .

490 **PhB(AdIm)₃Fe(N,N'-k²-N=N=CHSi(CH₃)₃) (5).** In a 20 mL 491 scintillation vial, $\text{PhB}(\text{AdIm})_3\text{FeN}_2$ (54 mg, 0.06 mmol) was dissolved 492 in THF (10 mL). Trimethylsilyldiazomethane (35 μL , 0.06 mmol; 2 493 M in hexanes) was added via a syringe with stirring. The solution 494 darkened from green to dark red with effervescence. Following 1 h 495 stirring, the solution was dried under *vacuo* to afford a brown solid, 496 which was washed with pentane. Small brown crystals suitable for 497 single crystal X-ray diffraction were grown by slow evaporation of 498 benzene at room temperature ^1H NMR (C_6D_6 , 400 MHz) δ 50 (3H, 499 Im-H), 39 (3H, Im-H), 26 (2H, $\text{B}(\text{C}_6\text{H}_5)$ *o*/*m*-H), 14 (2H, $\text{B}(\text{C}_6\text{H}_5)$ 500 *o*/*m*-H), 13 (2H, $\text{B}(\text{C}_6\text{H}_5)$ *p*-H), 9 (9H, $\text{Si}(\text{CH}_3)_3$), 3 (Ad, 18H), 501 -13 (Ad, 18H). IR (KBr): $\nu_{\text{N}=\text{N}} = 2059$ cm^{-1} . The air sensitivity of 502 this product has hindered efforts to obtain high resolution mass 503 spectrometry data.

504 **PhB(AdIm)₃FeF.** A 20 mL scintillation vial was charged with 505 $\text{PhB}(\text{AdIm})_3\text{FeCl}$ (57 mg, 0.07 mmol) and THF (10 mL). A slurry of 506 tetramethylammonium fluoride (14 mg, 0.21 mmol) in THF (\sim 10 507 mL) was added, and the mixture was stirred overnight. The solvent 508 was removed from resulting pale-yellow slurry in *vacuo*, and the 509 residue was extracted with toluene and filtered through Celite. The 510 toluene was removed under *vacuo* to afford a pale yellow solid. 511 Crystals suitable for X-ray diffraction were produced by the reverse 512 vapor diffusion of a concentrated THF solution of the resulting 513 material into a bath of toluene. ^1H NMR (C_6D_6 , 400 MHz) δ 74 (3H, 514 Im-H), 71 (3H, Im-H), 49 (2H, $\text{B}(\text{C}_6\text{H}_5)$ *o*/*m*-H), 24 (2H, $\text{B}(\text{C}_6\text{H}_5)$ 515 *o*/*m*-H), 20 (2H, $\text{B}(\text{C}_6\text{H}_5)$ *p*-H), -44 (Ad, 18H). $\mu_{\text{eff}} = 4.9(9)$ μ_{B} 516 ESI-MS: *m/z* [M]⁺ Calculated for $\text{C}_{45}\text{H}_{57}\text{N}_6\text{BFFe}$ 767.4066; found 517 767.4041.

518 **PhB(AdIm)₃Fe-C≡N (6).** A 20 mL scintillation vial was charged 519 with $\text{PhB}(\text{AdIm})_3\text{FeF}$ (20 mg, 0.07 mmol) and THF (10 mL). A 520 solution of trimethylsilyl cyanide (5 μL , 0.21 mmol) in THF (2 mL) 521 was added, and the reaction was stirred for 10 min. The volatiles were 522 removed from the salmon-colored solution in *vacuo*. ^1H NMR (C_6D_6 , 523 400 MHz) δ 77 (3H, Im-H), 72 (3H, Im-H), 49 (2H, $\text{B}(\text{C}_6\text{H}_5)$ *o*/*m*- 524 H), 16 (2H, $\text{B}(\text{C}_6\text{H}_5)$ *o*/*m*-H), 14 (1H, $\text{B}(\text{C}_6\text{H}_5)$ *p*-H), -14 (Ad, 525 18H). MS: *m/z* [M]⁺ Calculated for $\text{C}_{45}\text{H}_{58}\text{N}_6\text{BFe}$ 761.4034; found 526

527 761.4051. $\mu_{\text{eff}} = 4.8(9)$ μ_{B} IR (KBr): $\nu_{\text{CN}} = 2051$ cm^{-1} . The
528 trimethylsilylfluoride byproduct was observed in a separate NMR
529 scale experiment. ^{19}F NMR (C_6D_6) $\delta = -158$ (s).

530 $\text{PhB}(\text{AdIm})_3\text{FeN}_3$. A 20 mL scintillation vial was charged with
531 $\text{PhB}(\text{AdIm})_3\text{FeCl}$ (57 mg, 0.07 mmol) and THF (10 mL). A
532 suspension of sodium azide (14 mg, 0.21 mmol) in THF (10 mL) was
533 then added. The mixture was stirred for 2 d to yield an off-white
534 reaction mixture. The solvent was evaporated in *vacuo*, and the
535 resulting residue was extracted into toluene and filtered through
536 Celite. The toluene was removed under vacuum to afford an off-white
537 solid. ^1H NMR (C_6D_6 , 400 MHz) δ 73 (3H, Im-H), 63 (3H, Im-H),
538 43 (2H, B(C_6H_5) *o*/m-H), 21 (2H, B(C_6H_5) *o*/m-H), 18 (2H,
539 B(C_6H_5) *p*-H), -32 (Ad, 18H). IR (KBr): $\nu_{\text{N}=\text{N}=\text{N}} = 2068$ cm^{-1} .
540 The compound was used without further purification.

541 $\text{PhB}(\text{AdIm})_3\text{Fe}\equiv\text{N}$ (7). A 250 mL quartz round-bottom flask was
542 charged with $\text{PhB}(\text{AdIm})_3\text{FeN}_3$ (40 mg) and THF (20 mL) with
543 stirring. The flask was sealed with a vacuum adaptor, removed from
544 the glovebox, and photolyzed with stirring for 1.5 h. During this time,
545 the solution changed from colorless to bright red. The volatiles were
546 removed under vacuum to afford a red solid. Crystals suitable for X-
547 ray diffraction were produced by reverse vapor diffusion of THF from
548 a solution of the red material into a toluene bath at room temperature.
549 ^1H NMR (C_6D_6 , 400 MHz) δ 7.96 (d, 2H, B(C_6H_5) *o*-H), 7.29 (m,
550 3H, B(C_6H_5) *p*/m-H), 7.00 (s, 3H, Im-H), 6.71 (s, 3H, Im-H), 2.66
551 (s, 18H Ad), 2.03 (d, 9H, Ad), 1.68 (d, 9H, Ad), 1.50 (d, 9H, Ad).
552 UV-vis (THF, 25 $^{\circ}\text{C}$) $\lambda_{\text{max}} = 480$ nm MS: m/Z [M]⁺ Calculated for
553 $\text{C}_{45}\text{H}_{56}\text{N}_2\text{BFe}$ 761.4034; found 761.4051.

554 **Photochemical Transformations. Photolysis of 2.** A J-Young
555 tube was charged with 2 (12 mg) and C_6D_6 (0.5 mL). The solution
556 was photolyzed with a XeHg broadband lamp (800 W) for 30 min at
557 25 $^{\circ}\text{C}$, during which time the golden yellow solution turned a brilliant
558 salmon color. ^1H NMR spectra were collected periodically during this
559 time, revealing the formation of 6 and 7 (Figure S8).

560 **Photolysis of 3.** A J-Young tube was charged with 3 (14 mg) and
561 C_6D_6 (0.5 mL). The solution was photolyzed with a XeHg broadband
562 lamp (800 W) at 25 $^{\circ}\text{C}$. Full consumption of the starting complex
563 occurred within 5 min with the golden-yellow solution evolving to a
564 pale-off-white color. ^1H NMR spectroscopy reveals the formation of 6
565 and an unidentified paramagnetic species having 3-fold symmetry.

566 **Photolysis of 5.** A J-Young tube was charged with 5 (10 mg) and
567 C_6D_6 (0.5 mL) and photolyzed with a XeHg broadband lamp (800 W
568 for 90 min at 25 $^{\circ}\text{C}$). ^1H NMR spectra were collected periodically
569 during this time, revealing the formation of 6 and 7 (Figure S9).

570 The reaction was also conducted on synthetic scale. A 50 mL side
571 arm Schlenk flask was charged with a stir-bar, 5 (50 mg, 0.05 mmol)
572 and THF (15 mL). The reaction was photolyzed with a XeHg
573 broadband lamp (800 W for 130 min at 25 $^{\circ}\text{C}$). The solution was
574 dried under *vacuo*, and the resulting red solid was washed with
575 pentane until the washings ran clear. The solid was then dissolved in
576 minimal THF and crystallized by reverse vapor diffusion into a
577 toluene bath at room temperature yielding crystals of disordered 6
578 and 7.

579 ■ ASSOCIATED CONTENT

580 ■ Supporting Information

581 The Supporting Information is available free of charge at
582 <https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c00604>.

583 Additional experimental and computational details;
584 tables with crystallographic parameters; and ^1H NMR
585 and mass spectrometry spectra of complexes (PDF)

586 DFT-optimized coordinates (XYZ)

587 Accession Codes

588 CCDC 2331643 and 2331954–2331958 contain the supple-
589 mentary crystallographic data for this paper. These data can be
590 obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by

592 contacting The Cambridge Crystallographic Data Centre, 12
593 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

594 ■ AUTHOR INFORMATION

595 Corresponding Author

596 Jeremy M. Smith – Department of Chemistry, 800 E.

597 Kirkwood Ave, Indiana University, Bloomington, Indiana

598 47405, United States; orcid.org/0000-0002-3206-4725;

599 Email: smith962@indiana.edu

600 Authors

601 Austin D. Chivington – Department of Chemistry, 800 E.

602 Kirkwood Ave, Indiana University, Bloomington, Indiana

603 47405, United States

604 Sammie Squire – Department of Chemistry, 800 E. Kirkwood

605 Ave, Indiana University, Bloomington, Indiana 47405,

606 United States

607 Nobuyuki Yamamoto – Department of Chemistry, 800 E.

608 Kirkwood Ave, Indiana University, Bloomington, Indiana

609 47405, United States

610 Maren Pink – Department of Chemistry, 800 E. Kirkwood

611 Ave, Indiana University, Bloomington, Indiana 47405,

612 United States; orcid.org/0000-0001-9049-4574

613 Morgan D. Griffith – Department of Chemistry, Colorado

614 State University, Fort Collins, Colorado 80523, United

615 States; Department of Chemistry and Biochemistry, The Ohio

616 State University, Columbus, Ohio 43210, United States

617 Jess Fletcher – Department of Chemistry and Biochemistry,

618 The Ohio State University, Columbus, Ohio 43210, United

619 States

620 Yafei Gao – Department of Chemistry, 800 E. Kirkwood Ave,

621 Indiana University, Bloomington, Indiana 47405, United

622 States; orcid.org/0000-0001-7970-8535

623 Joseph M. Zadrozny – Department of Chemistry, Colorado

624 State University, Fort Collins, Colorado 80523, United

625 States; Department of Chemistry and Biochemistry, The Ohio

626 State University, Columbus, Ohio 43210, United States;

627 orcid.org/0000-0002-1309-6545

628 Complete contact information is available at:

629 <https://pubs.acs.org/10.1021/acs.inorgchem.4c00604>

630 Notes

631 The authors declare no competing financial interest.

632 ■ ACKNOWLEDGMENTS

633 Funding from the NSF is gratefully acknowledged by A.D.C.,
634 S.S., and J.M.S. (CHE-1900020). J.M.Z. and M.D.G. acknowl-
635 edge the NIH (1R35GM150894) for support.

636 ■ REFERENCES

- (1) (a) Mindiola, D. J.; Hillhouse, G. L. Synthesis, Structure, and Reactions of a Three-Coordinate Nickel-Carbene Complex, {1,2-
637 Bis(*di-tert*-butylphosphino)ethane}Ni = CPh₂. *J. Am. Chem. Soc.* **2002**, *124*, 9976–9977. (b) Iluc, V. M.; Hillhouse, G. L. Three-
638 Coordinate Nickel Carbene Complexes and Their One-Electron Oxidation Products. *J. Am. Chem. Soc.* **2014**, *136*, 6479–6488.
- (2) Dartiguenave, M.; Menu, M. J.; Deydier, E.; Dartiguenave, Y.; Siebald, H. Crystal and Molecular Structures of Transition Metal Complexes with N- and C-bonded Diazoalkane Ligands. *Coord. Chem. Rev.* **1998**, *178*–180, 623–663.
- (3) Regitz, M.; Maas, G. Structure and Spectroscopic Properties. In *Diazo Compounds*; Academic Press, 1986; pp 3–64.
- (4) (a) Cowley, R. E.; Bontchev, R. P.; Sorrell, J.; Sarracino, O.; Feng, Y.; Wang, H.; Smith, J. M. Formation of a Cobalt(III) Imido

651 from a Cobalt(II) Amido Complex. Evidence for Proton-Coupled
652 Electron Transfer. *J. Am. Chem. Soc.* **2007**, *129*, 2424–2425. (b) Ding,
653 M.; Cutsail, G. E., III; Aravena, D.; Amoza, M.; Rouzières, M.;
654 Dechambenoit, P.; Losovj, Y.; Pink, M.; Ruiz, E.; Clérac, R.; Smith, J.
655 M. A Low Spin Manganese(IV) Nitride Single Molecule Magnet.
656 *Chem. Sci.* **2016**, *7*, 6132–6140. (c) Goetz, M. K.; Hill, E. A.; Filatov,
657 A. S.; Anderson, J. S. Isolation of a Terminal Co(III)-Oxo Complex. *J.*
658 *Am. Chem. Soc.* **2018**, *140*, 13176–13180. (d) Goetz, M. K.;
659 Schneider, J. E.; Filatov, A. S.; Jesse, K. A.; Anderson, J. S. Enzyme-
660 Like Hydroxylation of Aliphatic C–H Bonds From an Isolable Co-
661 Oxo Complex. *J. Am. Chem. Soc.* **2021**, *143*, 20849–20862.
662 (5) Valdez-Moreira, J. A.; Beagan, D. M.; Yang, H.; Telser, J.;
663 Hoffman, B. M.; Pink, M.; Carta, V.; Smith, J. M. Hydrocarbon
664 Oxidation by an Exposed, Multiply Bonded Iron(III) Oxo Complex.
665 *ACS Cent. Sci.* **2021**, *7*, 1751–1755.
666 (6) Nieto, I.; Ding, F.; Bontchev, R. P.; Wang, H.; Smith, J. M.
667 Thermodynamics of Hydrogen Atom Transfer to a High Valen Iron
668 Imido Complex. *J. Am. Chem. Soc.* **2008**, *130*, 2716–2717.
669 (7) Valdez-Moreira, J. A.; Wannipurage, D. C.; Pink, M.; Carta, V.;
670 Moënne-Loccoz, P.; Telser, J.; Smith, J. M. Hydrogen Atom
671 Abstraction by a High-Spin $[\text{Fe}^{\text{III}}=\text{S}]$ Complex. *Chem.* **2023**, *9*,
672 2601–2609.
673 (8) (a) Scepaniak, J. J.; Fulton, M. D.; Bontchev, R. P.; Duesler, E.
674 N.; Kirk, M. L.; Smith, J. M. Structural and Spectroscopic
675 Characterization of an Electrophilic Iron Nitrido Complex. *J. Am.*
676 *Chem. Soc.* **2008**, *130*, 10515–10517. (b) Scepaniak, J. J.; Young, J.
677 A.; Bontchev, R. P.; Smith, J. M. Formation of Ammonia from an Iron
678 Nitrido Complex. *Angew. Chem., Int. Ed.* **2009**, *48*, 3158–3160.
679 (c) Scepaniak, J. J.; Vogel, C. S.; Khusniyarov, M. M.; Heinemann, F.
680 W.; Meyer, K.; Smith, J. M. Synthesis, Structure, and Reactivity of an
681 Iron(V) Nitride. *Science* **2011**, *331*, 1049–1052. (d) Smith, J. M.;
682 Subedi, D. The Structure and Reactivity of Iron Nitride Complexes.
683 *Dalton Trans.* **2012**, *41*, 1423–1429. (e) Martinez, J. L.; Lin, H.-J.;
684 Lee, W.-T.; Pink, M.; Chen, C.-H.; Gao, X.; Dickie, D. A.; Smith, J. M.
685 Cyanide Ligand Assembly by Carbon Atom Transfer to an Iron
686 Nitride. *J. Am. Chem. Soc.* **2017**, *139*, 14037–14040.
687 (9) Reesbeck, M. E.; Grubel, K.; Kim, D.; Brennessel, W. W.;
688 Mercado, B. Q.; Holland, P. L. Diazoalkanes in Low-Coordinate Iron
689 Chemistry: Bimetallic Diazoalkyl and Alkylidene Complexes of
690 Iron(II). *Inorg. Chem.* **2017**, *56*, 1019–1022.
691 (10) Bart, S. C.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. Iron
692 Diazoalkane Chemistry: N–N Bond Hydrogenation and Intra-
693 molecular C–H Activation. *J. Am. Chem. Soc.* **2007**, *129*, 7212–7213.
694 (11) Aghazada, S.; Miehlich, M.; Messelberger, J.; Heinemann, F.
695 W.; Munz, D.; Meyer, K. A Terminal Iron Nitrilimine Complex:
696 Accessing the Terminal Nitride through Diazo N–N Bond Cleavage.
697 *Angew. Chem., Int. Ed.* **2019**, *58*, 18547–18551.
698 (12) (a) Boche, G.; Harms, K.; Marsch, M.; Schubert, F. {6
699 Lithio(trimethylsilyl)diazomethane· 2 Lithio[4,5-bis(trimethylsilyl)-
700 triazene]- 7 Diethyl Ether}: The First X-Ray Structure Analysis of a
701 Lithiated Diazoalkane. *Chem. Ber.* **1994**, *127*, 2193–2195. (b) Arm-
702 strong, D. R.; Davies, R. P.; Haigh, R.; Hendy, M. A.; Raithby, P. R.;
703 Snaith, R.; Wheatley, A. E. H. A Solid-State, Solution, and Theoretical
704 Structural Study of Kinetic and Thermodynamic Lithiated Derivatives
705 of a Simple Diazomethane and Their Reactivities Towards Aryl
706 Isothiocyanates. *Eur. J. Inorg. Chem.* **2003**, *2003*, 3363–3375.
707 (13) The carbon and nitrogen atom assignments for the
708 trimethylsilylazomethane-derived ligand in structures 2 and 3 were
709 based on the electron densities found in the diffraction measurements.
710 The crystal structures resulted in an agreement between the structural
711 model and the data, evidenced by the lowest possible refinement
712 values achieved.
713 (14) Mawhinney, R. C.; Muchall, H. M.; Peslherbe, G. H. The
714 electronic structure of nitrilimines revisited. *Chem. Commun.* **2004**,
715 1862–1863.
716 (15) Aghazada, S.; Fehn, D.; Heinemann, F. W.; Munz, D.; Meyer,
717 K. Cobalt Diazo-Compounds: From Nitrilimide to Isocyanamide via
718 a Diazomethanediide Fleeting Intermediate. *Angew. Chem., Int. Ed.*
719 **2021**, *60*, 11138–11142.

(16) (a) Polse, J. L.; Andersen, R. A.; Bergman, R. G. Synthesis, 720 Structure, and Reactivity Studies of an $\eta^2\text{-N}_2$ -Titanium Diazoalkane 721 Complex. Generation and Trapping of a Carbene Complex 722 Intermediate. *J. Am. Chem. Soc.* **1996**, *118*, 8737–8738. (b) Polse, 723 J. L.; Kaplan, A. W.; Andersen, R. A.; Bergman, R. G. Synthesis of an 724 $\eta^2\text{-N}_2$ -Titanium Diazoalkane Complex with Both Imido- and Metal 725 Carbene-Like Reactivity Patterns. *J. Am. Chem. Soc.* **1998**, *120*, 6316– 726 6328. 727
(17) Rheingold, R. L.; Theopold, K. H. CCDC 1963923: 728 *Experimental Crystal Structure Determination*, 2019. 729
(18) Russell, S. K.; Hoyt, J. M.; Bart, S. C.; Milsmann, C.; Stieber, S. 730 C. E.; Semproni, S. P.; DeBeer, S.; Chirik, P. J. Synthesis, Electronic 731 Structure and Reactivity of Bis(imino)pyridine Iron Carbene 732 Complexes: Evidence for a Carbene Radical. *Chem. Sci.* **2014**, *5*, 733 1168–1174. 734
(19) Fan, Y.; Cheng, J.; Gao, Y.; Shi, M.; Deng, L. Iron Dinitrogen 735 Complexes Supported by Tris(NHC)borate Ligand: Synthesis, 736 Characterization, and Reactivity Study. *Huaxue Xuebao* **2018**, *76*, 737 445–452. 738
(20) Chilton, N. F.; Anderson, R. P.; Turner, L. D.; Soncini, A.; 739 Murray, K. S. PHI: A powerful new program for the analysis of 740 anisotropic monomeric and exchange-coupled polynuclear *d*- and *f*- 741 block complexes. *J. Comput. Chem.* **2013**, *34*, 1164–1175. 742
(21) (a) Hooper, R. X.; Mercado, B. Q.; Holland, P. L. 743 Desulfurization and N₂ Binding at an Iron Complex Derived from 744 the C–S Activation of Benzothiophene. *Organometallics* **2023**, *42*, 745 2019–2027. (b) MacLeod, K. C.; Vinyard, D. J.; Holland, P. L. A 746 Multi-Iron System Capable of Rapid N₂ Formation and N₂ Cleavage. 747 *J. Am. Chem. Soc.* **2014**, *136*, 10226–10229. (c) Pecak, J.; Stöger, B.; 748 Mastalir, M.; Veiro, L. F.; Ferreira, L. P.; Pignitter, M.; Linert, W.; 749 Kirchner, K. Five-Coordinate Low-Spin {FeNO}⁷ PNP Pincer 750 Complexes. *Inorg. Chem.* **2019**, *58*, 4641–4646. 751
(22) Horitani, M.; Grubel, K.; McWilliams, S. F.; Stubbert, B. D.; 752 Mercado, B. Q.; Yu, Y.; Gurubasavaraj, P. M.; Lees, N. S.; Holland, P. 753 L.; Hoffman, B. M. ENDOR Characterization of an Iron–Alkene 754 Complex Provides Insight into a Corresponding Organometallic 755 Intermediate of Nitrogenase. *Chem. Sci.* **2017**, *8*, 5941–5948. 756
(23) Hendrich, M. P.; Gunderson, W.; Behan, R. K.; Green, M. T.; 757 Mehn, M. P.; Betley, T. A.; Lu, C. C.; Peters, J. C. On the Feasibility 758 of N₂ Fixation via a Single-Site Fe^I/Fe^{IV} Cycle: Spectroscopic Studies 759 of Fe^I(N₂)Fe^I, Fe^{IV}N, and Related Species. *Proc. Natl. Acad. Sci. U.S.A.* **2006**, *103*, 17107–17112. 761
(24) Speelman, A. L.; Čorić, I.; Van Stappen, C.; DeBeer, S.; 762 Mercado, B. Q.; Holland, P. L. Nitrogenase-Relevant Reactivity of a 763 Synthetic Iron–Sulfur–Carbon Site. *J. Am. Chem. Soc.* **2019**, *141*, 764 13148–13157. 765
(25) Agarwal, R.; Coste, S. C.; Groff, B. D.; Heuer, A. M.; Noh, H.; 766 Parada, G. A.; Wise, C. F.; Nichols, E. M.; Warren, J. J.; Mayer, J. M. 767 Free Energies of Proton-Coupled Electron Transfer Reagents and 768 Their Applications. *Chem. Rev.* **2022**, *122*, 1–49. 769
(26) Tsang, W. Thermodynamic and kinetic properties of the 770 cyclohexadienyl radical. *J. Phys. Chem.* **1986**, *90*, 1152–1155. 771
(27) Tilset, M.; Parker, V. D. Solution homolytic bond dissociation 772 energies of organotransition-metal hydrides. *J. Am. Chem. Soc.* **1989**, 773 *111*, 6711–6717. 774
(28) Choi, J.; Pulling, M. E.; Smith, D. M.; Norton, J. R. Unusually 775 Weak Metal–Hydrogen Bonds in HV(CO)₄(P–P) and Their 776 Effectiveness as H• Donors. *J. Am. Chem. Soc.* **2008**, *130*, 4250–4252. 777
(29) Valdez-Moreira, J. A.; Thorarinsdottir, A. E.; DeGayner, J. A.; 778 Lutz, S. A.; Chen, C.-H.; Losovj, Y.; Pink, M.; Harris, T. D.; Smith, J. 779 M. Strong π -Backbonding Enables Record Magnetic Exchange 780 Coupling Through Cyanide. *J. Am. Chem. Soc.* **2019**, *141*, 17092– 781 17097. 782
(30) Rosenthal, A. J.; Devillard, M.; Miqueu, K.; Bouhadir, G.; 783 Bourissou, D. A Phosphine-Coordinated Boron-Centered Gomberg- 784 Type Radical. *Angew. Chem., Int. Ed.* **2015**, *54*, 9198–9202. 785
(31) Evans, W. J.; Montalvo, E.; Champagne, T. M.; Ziller, J. W.; 786 DiPasquale, A. G.; Rheingold, A. L. Organolanthanide-Based 787

788 Synthesis of 1,2,3-Triazoles from Nitriles and Diazo Compounds. *J. Am. Chem. Soc.* **2008**, *130*, 16–17.

789 (32) Ion Prisecaru, “WMOSS4Mössbauer Spectral Analysis Software, www.wmoss.org, 2009–2016.

790 (33) Bain, G. A.; Berry, J. F. Diamagnetic Corrections and Pascal's Constants. *J. Chem. Educ.* **2008**, *85*, 532–536.

791 (34) Chilton, N. F.; Anderson, R. P.; Turner, L. D.; Soncini, A.; Murray, K. S. PHI: A Powerful New Program for the Analysis of Anisotropic Monomeric and Exchange-Coupled Polynuclear d- and f-block Complexes. *J. Comput. Chem.* **2013**, *34*, 1164–1175.

792 (35) Neese, F. Software update: The ORCA program system- Version 5.0. *WIREs Comp. Mol. Sci.* **2022**, *12*, No. e1606.

793 (36) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297–3305.

794 (37) (a) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. *J. Comput. Chem.* **2011**, *32*, 1456–1465. (b) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. A Consistent and Accurate *ab initio* Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H–Pu. *Chem. Phys.* **2010**, *132*, 154104.

795 (38) Stoychev, G. L.; Auer, A. A.; Neese, F. Automatic Generation of Auxiliary Basis Sets. *J. Chem. Theory Comput.* **2017**, *13*, 554–562.

796 (39) Bjornsson, R.; Neese, F.; DeBeer, S. Revisiting the Mössbauer Isomer Shifts of the FeMoco Cluster of Nitrogenase and the Cofactor Charge. *Inorg. Chem.* **2017**, *56*, 1470–1477.