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The neuroanatomical
organization of the hypothalamus
Is driven by spatial and
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The hypothalamus in the mammalian brain is responsible for regulating
functions associated with survival and reproduction representing a complex set
of highly interconnected, yet anatomically and functionally distinct, sub-regions.
It remains unclear what factors drive the spatial organization of sub-regions
within the hypothalamus. One potential factor may be structural connectivity of
the network that promotes efficient function with well-connected sub-regions
placed closer together geometrically, i.e., the strongest axonal signal transferred
through the shortest geometrical distance. To empirically test for such efficiency,
we use hypothalamic data derived from the Allen Mouse Brain Connectivity Atlas,
which provides a structural connectivity map of mouse brain regions derived
from a series of viral tracing experiments. Using both cost function minimization
and comparison with a weighted, sphere-packing ensemble, we demonstrate
that the sum of the distances between hypothalamic sub-regions are not close
to the minimum possible distance, consistent with prior whole brain studies.
However, if such distances are weighted by the inverse of the magnitude of
the connectivity, their sum is among the lowest possible values. Specifically,
the hypothalamus appears within the top 94th percentile of neural efficiencies
of randomly packed configurations and within one standard deviation of the
median efficiency when packings are optimized for maximal neural efficiency.
Ourresults, therefore, indicate that a combination of geometrical and topological
constraints help govern the structure of the hypothalamus.

KEYWORDS

Allen Brain Atlas, computational biology, connectome, connectivity, efficiency,
hypothalamus, graph theory - graph algorithms, Monte - Carlo simulation

Introduction

The mammalian brain is a complex network composed of functionally and anatomically
distinct regions. As our ability to identify regions in the brain with distinct cell types and
molecular markers increases, our understanding of how different brain regions are organized
spatially becomes vital if we hope to understand the impact of these regions in physiology and
pathology as structure can be strongly coupled to functionality (Maynard et al., 2021).
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Furthermore, the brain’s functionality appears to depend largely on
the neuronal distribution between brain regions, commonly referred
to as the connectome. The connectome can be represented as a graph,
where nodes represent brain regions and edges represent axonal
projections between regions. Such a graph for the whole brain displays
some universal characteristics such as modularity (Meunier et al.,
2010) and small-worldness (Watts and Strogatz, 1998; Bassett and
Bullmore, 2006) which may have emerged to improve the
communication quality of the neural network (Bullmore and Sporns,
20125 Misi¢ et al., 2015). Such graphs exist independent of spatial
orientation and physical packing (i.e., spatial embedding) of the
individual nodes within the brain. However, spatial embedding is an
important aspect underlying the neuronal connectome.

As brain regions are laid out in a manner constrained by their
physical volume in three-dimensional space, spatial embedding may
be driven by the advantages of an efficiently organized network —
measures that involve a combination of geometry and network
topology. To be precise, one possible driving factor may be the
minimization of the “wiring cost” defined as the total length of axonal
projections between brain regions measuring the minimality in
material usage of the neuronal network (Kaiser and Hilgetag, 20065
Bassett et al., 2010). Rubinov et al. explored the brain’s organization in
terms of wiring cost and found that, if wiring cost is defined as either
axonal distance between regions or the product of axonal distance and
axonal bandwidth, the mouse connectome cannot be explained
entirely by the global minimization of wiring cost (Rubinov et al.,
2015). Given this finding, they argued that there is a trade-off between
wiring cost and high-participation hubs to enhance connectome-
mediated communication between functionally distinct regions. The
efficiency of such high-participation hubs (or connector hubs) are
potentially measured directly by the small-world efficiency index
(Latora and Marchiori, 2001). Looking at 55 areas of the cat cortex, it
was found to be 69% small-world efficient as compared with 57%
small world efficiency in a random graph. However, more recent
analysis suggests only weak small-world properties with some
networks in the brain (Swanson et al., 2019), indicating the need for a
more refined quantitative strategy to measure efficiency. As the brain’s
spatial structure and wiring together drive its organization, an
efficiency measure that simultaneously takes these factors into account
is of interest. On the one hand, the wiring cost does not take the
magnitude of the axonal projections (edges) by the connectome. On
the other hand, the small-worldness does not take the spatial distances
into account. Therefore, we propose a complementary measure
defined as “neural efficiency” which is maximized when the axonal
projections of the highest magnitude are sent through the shortest
possible neuronal paths.

Here, we focus on the organizational efficiencies of the
hypothalamus. The hypothalamus plays a key role in activities that are
essential for the survival of the body (Swanson, 1986; Swanson, 1987;
Swanson, 2000; Simerly, 2015). It maintains the body’s homeostasis by
controlling factors such as temperature, hunger and satiety, and
cardiovascular regulation. In addition to its vitality, the hypothalamus’
functionality is diverse (Swanson, 2000; Simerly, 2015), which can
be due to its topological and wiring complexities. This brain’s
sub-region holds the densest wiring of the whole central nervous
system (Hahn and Swanson, 2010; Hahn and Swanson, 2012; Hahn
and Swanson, 2015). Despite the important functionality of the
hypothalamus, there has not been much focus on the organization of
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the hypothalamic neuronal network (Bedont et al., 2015; Hahn et al.,
2019). Recent network analysis for the human hypothalamus
demonstrates that that there are two interconnected sub-networks
each with their own sub-structures with possible implications for
future hypothesis-driven work (Hahn et al., 2019). Here, we take a step
back from such detailed, hypothalamic network analysis to look for
more minimal principles of structural organization. Specifically,
we draw data from a database of viral tracing experiments to construct
a model representation of the wild-type mouse hypothalamus that
reflects its (i) neural connectivity (network configuration), (ii)
magnitude of the axonal projections (edges), and (iii) spatial position
of hypothalamic subregions (nodes). We demonstrate that neither the
unweighted small-world efficiency nor the wiring cost of the network
is in its highest optimal state in the mouse hypothalamus. However,
our new definition of neural efficiency, which accounts for all three
aforementioned characteristics together, shows that the hypothalamic
network is indeed organized efficiently. This new understanding
demonstrates the anatomical properties which underlie the
hypothalamic network and suggests new characteristics to study in the
context of both neurological diseases and artificial networks.

Methods

The Allen Mouse Brain Connectivity Atlas provides a structural
connectivity map of the mouse brain regions derived from a series of
499 viral tracing experiments comprising 157 brain regions in the
wild-type mouse (Oh et al., 2014). We employed this connectivity data
coupled with positional data also taken from the Atlas for 26
individual brain sub-regions of the hypothalamus in the wild-
type model.

For each brain region listed in the Allen Brain Connectivity Atlas,
the Atlas gives the region’s volume, injection position, and axonal
projection volumes to target structures measured using viral tracing
experiments. We utilized these data to generate a simple model of the
complex mouse brain. We limited our analysis to brain regions that
were the targets of injections, which would therefore have mapped
axons arising from them. We assumed that, while axons do arise from
these excluded regions, they are likely insufficiently characterized by
the Atlas for our analysis. For each brain region, the Atlas carries
duplicate viral injection experiments. We arbitrarily chose to sample
the experimental projections with the greatest intensity for each brain
region since our preliminary analysis showed the injection experiment
chosen did not significantly impact results. Further, the authors of the
Atlas found that the projection intensities of sets of duplicate injections
differed only within one standard deviation (Oh et al, 2014).
Additionally, while brain region locations are well-mapped in the
mouse brain, injection positions differ slightly between experiments.
To define the experimental 3D position of a given brain region,
we took the geometric average of all injection positions from
experiments for the region after preliminary analysis using different,
specific experiment injection coordinates yielded similar data.

The Allen Brain Connectivity Atlas utilizes quality control steps
to ensure inclusion of only axonal projection fluorescence in its
anterograde projectome data. The dendrites of AAV-infected neurons
may contribute to overall projection intensity if not accounted for. To
combat this, the Atlas created a polygonal exclusion zone surrounding
the injection site to remove dendritic signal intensity for more accurate
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informatics processing. The inclusion areas were translated to the
Allen Mouse Common Coordinate Framework and the areal
proportion of each infected structure was obtained (Allen Institute for
Brain Science, 2017).

To simplify the brain’s geometry, and thereby reduce the
computational complexity, we assumed that each region is
approximately spherical and is represented in our model as a sphere
of the region’s same volume. In Appendix B, we show whether brain
regions are truly spherical bears no impact on the results or validity of
our model. Additionally, we only addressed one hemisphere, assuming
laterality plays a minimal role in efficiency. With these assumptions in
place, we modeled the brain’s layout as a set of spheres in locations
approximately true to those derived from their viral injection sites.
The cost of this simplification is that 34 out of 325 possible region
pairs have undesired, but relatively negligible, overlaps. The average of
the overlaps is only 0.2 (mm) and the maximum overlap is 0.8 (mm).
In addition to the spatial information, we retrieved the axonal
projection volumes and the connectivity map, i.e., the weighted
adjacency matrix, of the mouse hypothalamus from the Allen
Brain Atlas.

We hypothesize that the hypothalamus is developed such that the
highest magnitude of axonal signaling is transmitted between its
sub-regions over the shortest distance possible. In other words, the
minimization of spatial distances between the sub-regions of
hypothalamus competes with the maximization of the magnitude of
the axonal signals transmitted between the sub-regions such that
neither of the two factors is highly optimal alone. Therefore,
we postulate that the following measure of efficiency is maximized in
the hypothalamus:

s=y 1 (1)

i

Where i and j enumerate all the possible pairs of the sub-regions,
d; is the Euclidean distance between the two regions i and j and /j; is
the axonal projection volume between regions i and j. This value
obtained from the Allen Brain Atlas is in units of (mm?). Given the
asymmetric nature of the /;; matrix, the wiring in the hypothalamus
is represented by a directed graph. Inserting the data from the Atlas
into Eq. (1) returns an efficiency value of 24.2 (mm?). Note that for the
densely connected hypothalamus, Euclidean distance is a reasonable
metric since the neuronal pathways are not curved.

To determine whether the mouse hypothalamus is laid out
efficiently according to our definition, we used computational
methods to derive a model hypothalamus to maximize efficiency to
compare to the Atlas-derived hypothalamus. We kept the wiring
configuration, i.e., the weighted adjacency matrix 7, jj> constant,
generated an array of 26 random positions each of the spherical
regions, and minimized the inverse of Eq. (1) (thereby maximizing the
efficiency, S), using the Minimize method of the Optimize class in the
SciPy library for the Python programming language. The optimizer
starts with the random packing and explores the 26 x 3 dimensional
phase-space to find a set of (x, y, z) positions for each of the 26 regions
that maximizes Eq. (1). Since the brain regions occupy a certain
volume in the physical space, the minimization is under the constraint
that only a negligible overlap, equivalent or less than the overlaps of
the spheres in Figure 1, is allowed. Among the possible minimization
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methods that are implemented in SciPy (Virtanen et al., 2020), we use
SLSQP (Kraft, 1988), which can accommodate the constraints. The (x,
¥, z) variables are bound to move between 0 and 15 (mm). We report
that the outcome is independent of the perturbations in the upper
limit, and independent of upper limits greater than 15 (mm). This
process is repeated 10" times to obtain an ensemble of
hypothalamus packings.

To complement the optimization study, we also conducted an
independent random-packing investigation. This study explores the
phase-space of possible positions for the hypothalamus sub-regions
and quantifies how the efficiency of the true configuration of
hypothalamus compares to efficiencies on a relevant region of this
phase space. To facilitate the building of a suitable ensemble of
possible configurations, we first reduced the phase space dimensions
to 23x3 by considering only the sub-network in the bulk of the
hypothalamus, removing from the network the three distinct outer
regions as seen in Figure 1B." The volumes of the remaining regions,
modeled as spheres, are the same as the true ones in the hypothalamus.
Moreover, as in the optimization study, in all the random packings,
the adjacency matrix /j; is constant (although, with the three nodes
and their connections removed, the relevant elements of Ijj now
belong to a 23 x 23 submatrix).

Suitable random packings of these regions are generated using the
Numpy library’s random number generator and the following
algorithm which is summarized in Figure 2:

i A random configuration is first proposed by generating 23
coordinates within a 3D box with dimensions that would barely
fit the bulk of the hypothalamus.

ii The configuration is compared to the bulk real hypothalamus
by evaluating numerical measures of overlaps and gaps. The
difference between the center-to-center distance and the sum
of radii of two edges is called an overlap if it has a negative
value, and a gap if it has a positive value. The following six
quantities are evaluated on the proposed random packing: (a)
total length of overlaps across all edges, (b) average length of
overlap on the overlapping edges, (c) the maximum
overlap length, (d) the total length of gaps across all edges (e)
average length of gaps on non-overlapping edges, (f) the
maximum gap length on such edges.

=

iii If all the above quantities are within 5 percent of their
numerical values in the real bulk of the hypothalamus, this
configuration is retained; otherwise, another random packing
is proposed. The dependence of our results on the 5 percent

threshold were checked (see Appendix C).

This procedure was used to generate an ensemble of 48,300
random configurations, effectively sampling the region of the phase
space of configurations where the packing of subregions is comparable
to the tight but somewhat elongated packing of the real hypothalamus
bulk, as seen in Figure 1B.

Finally, we also investigate the network of Euclidian distances
among the sub-regions of hypothalamus to find out whether the

1 The efficiency of the subnetwork contained in this bulk of the hypothalamus

is 23.5 or about 3% less than the efficiency of the entire hypothalamus network
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FIGURE 1
(A) The spatial structure of the 26 sub-regions of hypothalamus derived from the Allen Brain Atlas. The outlier regions, PVH, ADP, and SBPV, are
removed. (B) The spherical model of the sub-regions of the hypothalamus. For a list of sub-region abbreviations, see Appendix A. (C) Graphical
representation of the hypothalamic network. Each node represents a brain region and each arrow an axonal projection. The width of the arrows
represents the axonal volume. (D) 3D projection of the spatial structure of the hypothalamus. See Appendix A for a list of abbreviations

regions are organized such that the sum of distances is minimal.
We define the wiring cost as:

W=>d; (2)
i

Which assumes equal cross-sectional area for all the axonal
connections. It should be noted that even though i has the
dimensions of the cross-sectional area, its asymmetric natute indicates
that it does not represent the material’s cross-sectional area. To
understand whether Eq. (2) is minimized in mouse hypothalamus,
we follow the same procedure as in the study of Eq. (1): we use the
same 10* random packings of the 26 spheres as the starting points and
use the same minimizer function of the SciPy with the same method,

SLSQP, and apply the same overlap constraints.

Results

We observe that the hypothalamus as reported in the Allen Atlas
does not minimize the wiring cost as defined in Eq. (2). The conclusion
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is reached after investigating the minimal value of the wiring cost by
minimizing Eq. (2) with 10,000 different initial conditions. Figure 3
shows the resulting histogram of 10* packings that minimize the
wiring cost, and the vertical red line shows the wiring cost of the true
hypothalamus. The difference between the true wiring cost and the
theoretical minimal wiring cost shows that the hypothalamus is likely
not organized to minimize distances between its sub-regions.
Furthermore, a sub-analysis of the network properties of the
hypothalamus in Appendix C confirms that network communication
efficiency is not optimized in the hypothalamus, but the network does
display small-world characteristics.

On the contrary, we observe that the spatial and axonal structure
of the mouse hypothalamus is extremely efficient but not unique in
terms of the definition in Eq. (1). To reach this conclusion, we used
the optimizer class in SciPy library to maximize Eq. (1). Since the
optimizer requires a starting point in the phase-space, we repeated the
maximization process 10* times, each with a random spatial
distribution of 26 spheres as the starting points. Figure 4 shows a
histogram of the optimal solutions with the red line representing the
efficiency of the true hypothalamus organization. As can be seen from
the figure, all 10* trials lead to maximum efficiency values comparable

frontiersin.org



Smith et al.

10.3389/fnsys.2024.1417346

Input:
1. Radii of the 23 sub-regions

4. Tolerance value for percentage differences

2. Overlap and gap measures for these sub-regions in the real hypothalamus
3. Dimensions (L*W*H) of the volume containing these sub-regions in the real hypothalamus

{

Generate 23 triples of random numbers in a box of dimensions
L*W*H to represent a test packing of the 23 subregions

Reject
configuration

Y

Do overlap and

Using the radii data, evaluate overlap
and gap measures for the test packing

gap measures agree with the
real hypothalamus within
tolerance value?

FIGURE 2

the hypothalamus.

A visual summary of the random packing algorithm used to generate theoretical hypothalamic configurations to compare to the true configuration of

Yes

A/

Store the random
packing

2000 - True

g Network
35 15001

[e}

"

ﬁ

£ 1000

0.

o

=

o

#* 5001

800 900 1000 1100 1200 1300 1400
wiring cost

FIGURE 3

The wiring cost, defined in Eq. (2), is minimized for 10* different
starting points in the 26 x3 dimensional phase-space. The
histogram shows the optimal wiring costs. The vertical red line
represents the wiring cost of true hypothalamus.

to that of the true model. The figure also indicates that the efficiency
measure of Eq. (1) has multiple local maxima in the 26 x 3 dimensional
phase-space.

Additionally, we observe that the efficiency of the hypothalamus
is larger than what would be expected from random packings of the
regions. This observation is the result of investigating the efficiency
of 48,300 randomly repacked configurations of regions in the bulk
of the hypothalamus, with the conditions that (i) they have the same
physical volume as the true model (ii) the neuronal connectivity
and the magnitude of the projection signals, i.e., the weighted
adjacency matrix /, ij» is the same as in the true model. Furthermore,
we only consider the spherical packings where overlap and gap
measures between the edges are comparable to the same quantities

Frontiers in Systems Neuroscience

in the true model. Figure 2B shows the histogram of the efficiencies
of such random packings. The vertical line representing the
efficiency of the true bulk of the hypothalamus, is at a 94th
percentile on the sample of efficiencies, and about 1.6 standard
deviations above the mean on the sample; suggesting that increased
efficiency may be a driving factor behind the choice of configuration
in the real hypothalamus.

Discussion

Dating back to Ramon y Cajal, those studying the nervous system
have argued that organizational principles include conserving
material, time, and space (Ramon y Cajal, 1995; Laughlin and
Sejnowski, 2003; Kaiser and Hilgetag, 2006; Budd and Kisvarday,
2012). Some works have investigated conserving connection costs,
deriving principles such as wiring cost or activity-based map
formation (Rubinov et al., 2015; Imam and Finlay, 2020). Others have
emphasized topological properties of organization, such as topological
efficiency and robustness (Achard and Bullmore, 2007; Lynall et al.,
2010). Overall, however, it appears that the brain’s connectome is
optimized neither to minimize connection cost nor maximize
topological properties; instead, it is configured as a result of
organizational tradeoffs between physical network costs and adaptive
topological advantages (Bullmore and Sporns, 2012).

In particular, spatial embedding may represent an important
physiological feature driving organizational principles of the brain’s
connectome. By constructing a simplified, volume-based model of the
hypothalamus, our organizational principle integrated both spatial
packing between regions and weighted structural connectivity to
derive a new metric by which to measure hypothalamic efficiency. This
approach differs from previous works which focus on connection cost
solely and further integrates the constraints given projection intensity
as a possible measure of axonal metabolism to build a more complete
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model which can be seen as an extension of Bullmore and Sporns’
conclusions on the economy of brain network organization (Bullmore
and Sporns, 2012).

We found that there is a significant relationship between the
hypothalamic regions’ spatial orientation, axonal projection strength,
and functionally efficient organization. In a model defined by
simplified spherical hypothalamic structures, the hypothalamus’
organization is driven by its structural efficiency. The hypothalamus
in its true configuration yielded the highest structural efficiency from
our model. We observe that the hypothalamus is assembled in part
due to a function of the axonal projection strength and distance
between pairs of brain regions. Additionally, we observe that the
wiring cost is not minimized as seen in Figure 3. However, if the
distances are weighted by the magnitude of the signals that pass
through them, the sum is among the lowest minimum values.
Nevertheless, the hypothalamus is not in an entirely unique state that
optimizes the efficiency as we have defined it as; Figure 3 shows that
multiple theoretical hypothalamus configurations lead to similar or
greater efficiencies than the true configuration of the hypothalamus
and its sub-regions. We surmise that the reason is the existence of
other competing factors than the two that we have considered. These
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factors might be known drivers of network organization such as
network modularity (Zamani Esfahlani et al., 2021), or hub structure
(van den Heuvel and Sporns, 2013), or it could be some collection of
unknown factors to be discovered. Together, these findings may help
drive hypothalamic development (Swanson, 1986), physiology,
and pathology.

In the adult rodent brain, brain regions with similar gene
expression profiles have similar connectivity profiles, and brain
regions which are connected have similar expression patterns
(French and Pavlidis, 2011). The spatial range of connections is
likely limited suggesting that topology is biased toward
neighborhoods of similarly connected regions. Thus, clustering
and modularity of the brain in a spatial sense also harmonizes
with a minimized wiring cost (Bullmore and Sporns, 2012). This
would also explain why wiring cost is not globally minimized
since these anatomical neighborhoods exist which must
communicate with other modules elsewhere in the brain. Long-
distance connections between hubs are costly in terms of wiring
cost, but such “streets between neighborhoods” likely reduce
overall energy consumption. If one applies this thinking to the
organization of the entire brain, it is understandable why distinct
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anatomical regions, such as the hypothalamus, occur with a
composition of neurons with similar connectivity and thus similar
function. If one extends this thinking to the hypothalamus and its
substructures, as in this investigation, then it stands to reason that
the hypothalamus is organized similarly. Within the hypothalamus,
itself a compartmentalized portion of the brain, sub-regions of
neuronal populations with similar functions and similar
connectivity are organized in topological neighborhoods with
minimized wiring cost to adjacent neighborhoods. Thus, if the
hypothalamus’ sub-regions are constrained by geometric volume
to reduce energy costs, and then places sub-regions which
communicate frequently close together, our study shows that this
results in an efficient hypothalamus similar to the true rat
hypothalamus (Figure 4).

While this application of large mouse connectivity datasets
strives to explore novel concepts founded on prior work while
remaining computationally viable in its objective, we acknowledge
several limitations of our study. Much of our data relies on the
Allen Brain Connectivity Atlas which in its formation
implemented several quality control measures to ensure sound,
yet high throughput, connectivity data. Still, the Atlas cannot
guarantee that signal projections are segmented accurately with
its algorithmic approach, and, among other inaccuracies, some
passing fibers may be mistaken for terminal zones, biasing our
data (Kuan et al., 2015). Additionally, the Atlas’ resolution is
limited by its number of injection experiments. We chose only to
include regions which were injection targets in our analysis
because other regions are likely not mapped with significant
resolution to be useful in our analysis; unfortunately, this meant
sacrificing interesting regions, such as the median eminence, in
our model. Our model also greatly simplifies the topological
structure of the mouse brain by approximating regions as a
spherical construction of their volume rather than their true
geometry in order for our analysis to remain computationally
feasible. This may over- or underestimate distance between
projection sites, affecting our computation of efficiency.
Penultimately, our analysis of the Connectivity Atlas is limited by
the techniques used to gather the connectome data; specifically,
although significant steps were taken by the Atlas authors to limit
viral vector mapping to axons only, we cannot rule out that some
data presented is based on dendritic projection data. Lastly, our
study limits its analysis to the hypothalamus, and conclusions
herein may not extend to the rest of the brain. Nevertheless,
together these data support the hypothesis that spatial and
topological efficiency contribute to the overall structure and
organization of the hypothalamus.

Connectivity in the mouse brain has already been applied to
animal models of human behavior through functional MRI and,
in some cases, has detected alterations consistent with those
detected in humans (Xu et al., 2022). Comparisons of the human
and mouse connectome suggest similarities in inhibitory-to-
excitatory balance and total synaptic input despite millions of
years of evolutionary divergence, differing mostly in network size
and interneuronal network complexity (Loomba et al., 2022). In
direct studies of human disease, the connectome’s importance is
highlighted by prior work which not only implicated specific cell
types in autism spectrum disorder and schizophrenia, but also
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revealed differences in neuronal and synaptic structure spatially
localized to specific cortical layers (Lynall et al., 2010; Sweet et al.,
2010; Major Depressive Disorder Working Group of the
Psychiatric Genomics Consortium et al., 2018; Velmeshev et al.,
2019; Maynard et al., 2021). While translational research continues
in this field, unwrapping network properties and enhancing our
understanding of the mouse connectome lays a promising
groundwork for understanding human neurological function and
disease in the future.

Ultimately, neurological or psychiatric disease may
be accounted for by inefficient brain organization that impacts the
costliest components of processing or behavior, in terms of axonal
projection strength or distance. Our findings have identified the
efficiency of the hypothalamus to be an important organizer of its
spatial and topological structure, and our results provide the
framework for future studies to interrogate this network in the

context of neurological and psychiatric disorders.
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