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The hypothalamus in the mammalian brain is responsible for regulating 

functions associated with survival and reproduction representing a complex set 

of highly interconnected, yet anatomically and functionally distinct, sub-regions. 

It remains unclear what factors drive the spatial organization of sub-regions 

within the hypothalamus. One potential factor may be structural connectivity of 

the network that promotes e�cient function with well-connected sub-regions 

placed closer together geometrically, i.e., the strongest axonal signal transferred 

through the shortest geometrical distance. To empirically test for such e�ciency, 

we use hypothalamic data derived from the Allen Mouse Brain Connectivity Atlas, 

which provides a structural connectivity map of mouse brain regions derived 

from a series of viral tracing experiments. Using both cost function minimization 

and comparison with a weighted, sphere-packing ensemble, we demonstrate 

that the sum of the distances between hypothalamic sub-regions are not close 

to the minimum possible distance, consistent with prior whole brain studies. 

However, if such distances are weighted by the inverse of the magnitude of 

the connectivity, their sum is among the lowest possible values. Specifically, 

the hypothalamus appears within the top 94th percentile of neural e�ciencies 

of randomly packed configurations and within one standard deviation of the 

median e�ciency when packings are optimized for maximal neural e�ciency. 

Our results, therefore, indicate that a combination of geometrical and topological 

constraints help govern the structure of the hypothalamus.
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Introduction

�e mammalian brain is a complex network composed of functionally and anatomically 

distinct regions. As our ability to identify regions in the brain with distinct cell types and 

molecular markers increases, our understanding of how di�erent brain regions are organized 

spatially becomes vital if we hope to understand the impact of these regions in physiology and 

pathology as structure can be  strongly coupled to functionality (Maynard et  al., 2021). 
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Furthermore, the brain’s functionality appears to depend largely on 

the neuronal distribution between brain regions, commonly referred 

to as the connectome. �e connectome can be represented as a graph, 

where nodes represent brain regions and edges represent axonal 

projections between regions. Such a graph for the whole brain displays 

some universal characteristics such as modularity (Meunier et al., 

2010) and small-worldness (Watts and Strogatz, 1998; Bassett and 

Bullmore, 2006) which may have emerged to improve the 

communication quality of the neural network (Bullmore and Sporns, 

2012; Mišić et al., 2015). Such graphs exist independent of spatial 

orientation and physical packing (i.e., spatial embedding) of the 

individual nodes within the brain. However, spatial embedding is an 

important aspect underlying the neuronal connectome.

As brain regions are laid out in a manner constrained by their 

physical volume in three-dimensional space, spatial embedding may 

be driven by the advantages of an e�ciently organized network – 

measures that involve a combination of geometry and network 

topology. To be  precise, one possible driving factor may be  the 

minimization of the “wiring cost” de�ned as the total length of axonal 

projections between brain regions measuring the minimality in 

material usage of the neuronal network (Kaiser and Hilgetag, 2006; 

Bassett et al., 2010). Rubinov et al. explored the brain’s organization in 

terms of wiring cost and found that, if wiring cost is de�ned as either 

axonal distance between regions or the product of axonal distance and 

axonal bandwidth, the mouse connectome cannot be  explained 

entirely by the global minimization of wiring cost (Rubinov et al., 

2015). Given this �nding, they argued that there is a trade-o� between 

wiring cost and high-participation hubs to enhance connectome-

mediated communication between functionally distinct regions. �e 

e�ciency of such high-participation hubs (or connector hubs) are 

potentially measured directly by the small-world e�ciency index 

(Latora and Marchiori, 2001). Looking at 55 areas of the cat cortex, it 

was found to be 69% small-world e�cient as compared with 57% 

small world e�ciency in a random graph. However, more recent 

analysis suggests only weak small-world properties with some 

networks in the brain (Swanson et al., 2019), indicating the need for a 

more re�ned quantitative strategy to measure e�ciency. As the brain’s 

spatial structure and wiring together drive its organization, an 

e�ciency measure that simultaneously takes these factors into account 

is of interest. On the one hand, the wiring cost does not take the 

magnitude of the axonal projections (edges) by the connectome. On 

the other hand, the small-worldness does not take the spatial distances 

into account. �erefore, we  propose a complementary measure 

de�ned as “neural e�ciency” which is maximized when the axonal 

projections of the highest magnitude are sent through the shortest 

possible neuronal paths.

Here, we  focus on the organizational e�ciencies of the 

hypothalamus. �e hypothalamus plays a key role in activities that are 

essential for the survival of the body (Swanson, 1986; Swanson, 1987; 

Swanson, 2000; Simerly, 2015). It maintains the body’s homeostasis by 

controlling factors such as temperature, hunger and satiety, and 

cardiovascular regulation. In addition to its vitality, the hypothalamus’ 

functionality is diverse (Swanson, 2000; Simerly, 2015), which can 

be  due to its topological and wiring complexities. �is brain’s 

sub-region holds the densest wiring of the whole central nervous 

system (Hahn and Swanson, 2010; Hahn and Swanson, 2012; Hahn 

and Swanson, 2015). Despite the important functionality of the 

hypothalamus, there has not been much focus on the organization of 

the hypothalamic neuronal network (Bedont et al., 2015; Hahn et al., 

2019). Recent network analysis for the human hypothalamus 

demonstrates that that there are two interconnected sub-networks 

each with their own sub-structures with possible implications for 

future hypothesis-driven work (Hahn et al., 2019). Here, we take a step 

back from such detailed, hypothalamic network analysis to look for 

more minimal principles of structural organization. Speci�cally, 

we draw data from a database of viral tracing experiments to construct 

a model representation of the wild-type mouse hypothalamus that 

re�ects its (i) neural connectivity (network con�guration), (ii) 

magnitude of the axonal projections (edges), and (iii) spatial position 

of hypothalamic subregions (nodes). We demonstrate that neither the 

unweighted small-world e�ciency nor the wiring cost of the network 

is in its highest optimal state in the mouse hypothalamus. However, 

our new de�nition of neural e�ciency, which accounts for all three 

aforementioned characteristics together, shows that the hypothalamic 

network is indeed organized e�ciently. �is new understanding 

demonstrates the anatomical properties which underlie the 

hypothalamic network and suggests new characteristics to study in the 

context of both neurological diseases and arti�cial networks.

Methods

�e Allen Mouse Brain Connectivity Atlas provides a structural 

connectivity map of the mouse brain regions derived from a series of 

499 viral tracing experiments comprising 157 brain regions in the 

wild-type mouse (Oh et al., 2014). We employed this connectivity data 

coupled with positional data also taken from the Atlas for 26 

individual brain sub-regions of the hypothalamus in the wild-

type model.

For each brain region listed in the Allen Brain Connectivity Atlas, 

the Atlas gives the region’s volume, injection position, and axonal 

projection volumes to target structures measured using viral tracing 

experiments. We utilized these data to generate a simple model of the 

complex mouse brain. We limited our analysis to brain regions that 

were the targets of injections, which would therefore have mapped 

axons arising from them. We assumed that, while axons do arise from 

these excluded regions, they are likely insu�ciently characterized by 

the Atlas for our analysis. For each brain region, the Atlas carries 

duplicate viral injection experiments. We arbitrarily chose to sample 

the experimental projections with the greatest intensity for each brain 

region since our preliminary analysis showed the injection experiment 

chosen did not signi�cantly impact results. Further, the authors of the 

Atlas found that the projection intensities of sets of duplicate injections 

di�ered only within one standard deviation (Oh et  al., 2014). 

Additionally, while brain region locations are well-mapped in the 

mouse brain, injection positions di�er slightly between experiments. 

To de�ne the experimental 3D position of a given brain region, 

we  took the geometric average of all injection positions from 

experiments for the region a�er preliminary analysis using di�erent, 

speci�c experiment injection coordinates yielded similar data.

�e Allen Brain Connectivity Atlas utilizes quality control steps 

to ensure inclusion of only axonal projection �uorescence in its 

anterograde projectome data. �e dendrites of AAV-infected neurons 

may contribute to overall projection intensity if not accounted for. To 

combat this, the Atlas created a polygonal exclusion zone surrounding 

the injection site to remove dendritic signal intensity for more accurate 
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informatics processing. �e inclusion areas were translated to the 

Allen Mouse Common Coordinate Framework and the areal 

proportion of each infected structure was obtained (Allen Institute for 

Brain Science, 2017).

To simplify the brain’s geometry, and thereby reduce the 

computational complexity, we  assumed that each region is 

approximately spherical and is represented in our model as a sphere 

of the region’s same volume. In Appendix B, we show whether brain 

regions are truly spherical bears no impact on the results or validity of 

our model. Additionally, we only addressed one hemisphere, assuming 

laterality plays a minimal role in e�ciency. With these assumptions in 

place, we modeled the brain’s layout as a set of spheres in locations 

approximately true to those derived from their viral injection sites. 

�e cost of this simpli�cation is that 34 out of 325 possible region 

pairs have undesired, but relatively negligible, overlaps. �e average of 

the overlaps is only 0.2 (mm) and the maximum overlap is 0.8 (mm). 

In addition to the spatial information, we  retrieved the axonal 

projection volumes and the connectivity map, i.e., the weighted 

adjacency matrix, of the mouse hypothalamus from the Allen 

Brain Atlas.

We hypothesize that the hypothalamus is developed such that the 

highest magnitude of axonal signaling is transmitted between its 

sub-regions over the shortest distance possible. In other words, the 

minimization of spatial distances between the sub-regions of 

hypothalamus competes with the maximization of the magnitude of 

the axonal signals transmitted between the sub-regions such that 

neither of the two factors is highly optimal alone. �erefore, 

we postulate that the following measure of e�ciency is maximized in 

the hypothalamus:

 

S
I

d
ij

ij

ij

=∑
 

(1)

Where i and j enumerate all the possible pairs of the sub-regions, 

dij is the Euclidean distance between the two regions i and j and Iij is 

the axonal projection volume between regions i and j. �is value 

obtained from the Allen Brain Atlas is in units of (mm3). Given the 

asymmetric nature of the Iij matrix, the wiring in the hypothalamus 

is represented by a directed graph. Inserting the data from the Atlas 

into Eq. (1) returns an e�ciency value of 24.2 (mm2). Note that for the 

densely connected hypothalamus, Euclidean distance is a reasonable 

metric since the neuronal pathways are not curved.

To determine whether the mouse hypothalamus is laid out 

e�ciently according to our de�nition, we  used computational 

methods to derive a model hypothalamus to maximize e�ciency to 

compare to the Atlas-derived hypothalamus. We  kept the wiring 

con�guration, i.e., the weighted adjacency matrix Iij , constant, 

generated an array of 26 random positions each of the spherical 

regions, and minimized the inverse of Eq. (1) (thereby maximizing the 

e�ciency, S), using the Minimize method of the Optimize class in the 

SciPy library for the Python programming language. �e optimizer 

starts with the random packing and explores the 26 3×  dimensional 

phase-space to �nd a set of (x, y, z) positions for each of the 26 regions 

that maximizes Eq. (1). Since the brain regions occupy a certain 

volume in the physical space, the minimization is under the constraint 

that only a negligible overlap, equivalent or less than the overlaps of 

the spheres in Figure 1, is allowed. Among the possible minimization 

methods that are implemented in SciPy (Virtanen et al., 2020), we use 

SLSQP (Kra�, 1988), which can accommodate the constraints. �e (x, 

y, z) variables are bound to move between 0 and 15 (mm). We report 

that the outcome is independent of the perturbations in the upper 

limit, and independent of upper limits greater than 15 (mm). �is 

process is repeated 104 times to obtain an ensemble of 

hypothalamus packings.

To complement the optimization study, we also conducted an 

independent random-packing investigation. �is study explores the 

phase-space of possible positions for the hypothalamus sub-regions 

and quanti�es how the e�ciency of the true con�guration of 

hypothalamus compares to e�ciencies on a relevant region of this 

phase space. To facilitate the building of a suitable ensemble of 

possible con�gurations, we �rst reduced the phase space dimensions 

to 23 3×  by considering only the sub-network in the bulk of the 

hypothalamus, removing from the network the three distinct outer 

regions as seen in Figure 1B.1 �e volumes of the remaining regions, 

modeled as spheres, are the same as the true ones in the hypothalamus. 

Moreover, as in the optimization study, in all the random packings, 

the adjacency matrix Iij  is constant (although, with the three nodes 

and their connections removed, the relevant elements of Iij  now 

belong to a 23 23×  submatrix).

Suitable random packings of these regions are generated using the 

Numpy library’s random number generator and the following 

algorithm which is summarized in Figure 2:

 i A random con�guration is �rst proposed by generating 23 

coordinates within a 3D box with dimensions that would barely 

�t the bulk of the hypothalamus.

 ii �e con�guration is compared to the bulk real hypothalamus 

by evaluating numerical measures of overlaps and gaps. �e 

di�erence between the center-to-center distance and the sum 

of radii of two edges is called an overlap if it has a negative 

value, and a gap if it has a positive value. �e following six 

quantities are evaluated on the proposed random packing: (a) 

total length of overlaps across all edges, (b) average length of 

overlap on the overlapping edges, (c) the maximum 

overlap length, (d) the total length of gaps across all edges (e) 

average length of gaps on non-overlapping edges, (f) the 

maximum gap length on such edges.

 iii If all the above quantities are within 5 percent of their 

numerical values in the real bulk of the hypothalamus, this 

con�guration is retained; otherwise, another random packing 

is proposed. �e dependence of our results on the 5 percent 

threshold were checked (see Appendix C).

�is procedure was used to generate an ensemble of 48,300 

random con�gurations, e�ectively sampling the region of the phase 

space of con�gurations where the packing of subregions is comparable 

to the tight but somewhat elongated packing of the real hypothalamus 

bulk, as seen in Figure 1B.

Finally, we also investigate the network of Euclidian distances 

among the sub-regions of hypothalamus to �nd out whether the 

1 The e�ciency of the subnetwork contained in this bulk of the hypothalamus 

is 23.5 or about 3% less than the e�ciency of the entire hypothalamus network.
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regions are organized such that the sum of distances is minimal. 

We de�ne the wiring cost as:

 

W d

ij

ij=∑
 

(2)

Which assumes equal cross-sectional area for all the axonal 

connections. It should be  noted that even though 
I

d

ij

ij
 has the 

dimensions of the cross-sectional area, its asymmetric nature indicates 

that it does not represent the material’s cross-sectional area. To 

understand whether Eq. (2) is minimized in mouse hypothalamus, 

we follow the same procedure as in the study of Eq. (1): we use the 

same 104 random packings of the 26 spheres as the starting points and 

use the same minimizer function of the SciPy with the same method, 

SLSQP, and apply the same overlap constraints.

Results

We observe that the hypothalamus as reported in the Allen Atlas 

does not minimize the wiring cost as de�ned in Eq. (2). �e conclusion 

is reached a�er investigating the minimal value of the wiring cost by 

minimizing Eq. (2) with 10,000 di�erent initial conditions. Figure 3 

shows the resulting histogram of 104 packings that minimize the 

wiring cost, and the vertical red line shows the wiring cost of the true 

hypothalamus. �e di�erence between the true wiring cost and the 

theoretical minimal wiring cost shows that the hypothalamus is likely 

not organized to minimize distances between its sub-regions. 

Furthermore, a sub-analysis of the network properties of the 

hypothalamus in Appendix C con�rms that network communication 

e�ciency is not optimized in the hypothalamus, but the network does 

display small-world characteristics.

On the contrary, we observe that the spatial and axonal structure 

of the mouse hypothalamus is extremely e�cient but not unique in 

terms of the de�nition in Eq. (1). To reach this conclusion, we used 

the optimizer class in SciPy library to maximize Eq. (1). Since the 

optimizer requires a starting point in the phase-space, we repeated the 

maximization process 104 times, each with a random spatial 

distribution of 26 spheres as the starting points. Figure 4 shows a 

histogram of the optimal solutions with the red line representing the 

e�ciency of the true hypothalamus organization. As can be seen from 

the �gure, all 104 trials lead to maximum e�ciency values comparable 

FIGURE 1

(A) The spatial structure of the 26 sub-regions of hypothalamus derived from the Allen Brain Atlas. The outlier regions, PVH, ADP, and SBPV, are 

removed. (B) The spherical model of the sub-regions of the hypothalamus. For a list of sub-region abbreviations, see Appendix A. (C) Graphical 

representation of the hypothalamic network. Each node represents a brain region and each arrow an axonal projection. The width of the arrows 

represents the axonal volume. (D) 3D projection of the spatial structure of the hypothalamus. See Appendix A for a list of abbreviations.



Smith et al. 10.3389/fnsys.2024.1417346

Frontiers in Systems Neuroscience 05 frontiersin.org

to that of the true model. �e �gure also indicates that the e�ciency 

measure of Eq. (1) has multiple local maxima in the 26 3×  dimensional 

phase-space.

Additionally, we observe that the e�ciency of the hypothalamus 

is larger than what would be expected from random packings of the 

regions. �is observation is the result of investigating the e�ciency 

of 48,300 randomly repacked con�gurations of regions in the bulk 

of the hypothalamus, with the conditions that (i) they have the same 

physical volume as the true model (ii) the neuronal connectivity 

and the magnitude of the projection signals, i.e., the weighted 

adjacency matrix Iij , is the same as in the true model. Furthermore, 

we  only consider the spherical packings where overlap and gap 

measures between the edges are comparable to the same quantities 

in the true model. Figure 2B shows the histogram of the e�ciencies 

of such random packings. �e vertical line representing the 

e�ciency of the true bulk of the hypothalamus, is at a 94th 

percentile on the sample of e�ciencies, and about 1.6 standard 

deviations above the mean on the sample; suggesting that increased 

e�ciency may be a driving factor behind the choice of con�guration 

in the real hypothalamus.

Discussion

Dating back to Ramón y Cajal, those studying the nervous system 

have argued that organizational principles include conserving 

material, time, and space (Ramon y Cajal, 1995; Laughlin and 

Sejnowski, 2003; Kaiser and Hilgetag, 2006; Budd and Kisvárday, 

2012). Some works have investigated conserving connection costs, 

deriving principles such as wiring cost or activity-based map 

formation (Rubinov et al., 2015; Imam and Finlay, 2020). Others have 

emphasized topological properties of organization, such as topological 

e�ciency and robustness (Achard and Bullmore, 2007; Lynall et al., 

2010). Overall, however, it appears that the brain’s connectome is 

optimized neither to minimize connection cost nor maximize 

topological properties; instead, it is con�gured as a result of 

organizational tradeo�s between physical network costs and adaptive 

topological advantages (Bullmore and Sporns, 2012).

In particular, spatial embedding may represent an important 

physiological feature driving organizational principles of the brain’s 

connectome. By constructing a simpli�ed, volume-based model of the 

hypothalamus, our organizational principle integrated both spatial 

packing between regions and weighted structural connectivity to 

derive a new metric by which to measure hypothalamic e�ciency. �is 

approach di�ers from previous works which focus on connection cost 

solely and further integrates the constraints given projection intensity 

as a possible measure of axonal metabolism to build a more complete 

FIGURE 2

A visual summary of the random packing algorithm used to generate theoretical hypothalamic configurations to compare to the true configuration of 

the hypothalamus.

FIGURE 3

The wiring cost, defined in Eq. (2), is minimized for 104 di�erent 

starting points in the 26 3×  dimensional phase-space. The 

histogram shows the optimal wiring costs. The vertical red line 

represents the wiring cost of true hypothalamus.
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model which can be seen as an extension of Bullmore and Sporns’ 

conclusions on the economy of brain network organization (Bullmore 

and Sporns, 2012).

We found that there is a signi�cant relationship between the 

hypothalamic regions’ spatial orientation, axonal projection strength, 

and functionally e�cient organization. In a model de�ned by 

simpli�ed spherical hypothalamic structures, the hypothalamus’ 

organization is driven by its structural e�ciency. �e hypothalamus 

in its true con�guration yielded the highest structural e�ciency from 

our model. We observe that the hypothalamus is assembled in part 

due to a function of the axonal projection strength and distance 

between pairs of brain regions. Additionally, we  observe that the 

wiring cost is not minimized as seen in Figure 3. However, if the 

distances are weighted by the magnitude of the signals that pass 

through them, the sum is among the lowest minimum values. 

Nevertheless, the hypothalamus is not in an entirely unique state that 

optimizes the e�ciency as we have de�ned it as; Figure 3 shows that 

multiple theoretical hypothalamus con�gurations lead to similar or 

greater e�ciencies than the true con�guration of the hypothalamus 

and its sub-regions. We surmise that the reason is the existence of 

other competing factors than the two that we have considered. �ese 

factors might be  known drivers of network organization such as 

network modularity (Zamani Esfahlani et al., 2021), or hub structure 

(van den Heuvel and Sporns, 2013), or it could be some collection of 

unknown factors to be discovered. Together, these �ndings may help 

drive hypothalamic development (Swanson, 1986), physiology, 

and pathology.

In the adult rodent brain, brain regions with similar gene 

expression profiles have similar connectivity profiles, and brain 

regions which are connected have similar expression patterns 

(French and Pavlidis, 2011). The spatial range of connections is 

likely limited suggesting that topology is biased toward 

neighborhoods of similarly connected regions. Thus, clustering 

and modularity of the brain in a spatial sense also harmonizes 

with a minimized wiring cost (Bullmore and Sporns, 2012). This 

would also explain why wiring cost is not globally minimized 

since these anatomical neighborhoods exist which must 

communicate with other modules elsewhere in the brain. Long-

distance connections between hubs are costly in terms of wiring 

cost, but such “streets between neighborhoods” likely reduce 

overall energy consumption. If one applies this thinking to the 

organization of the entire brain, it is understandable why distinct 

FIGURE 4

(A) A histogram of maximized e�ciencies as defined in Eq. (1) for 10,000 random initial guesses. The vertical red line represents the e�ciency of the 

mouse hypothalamus using the measurements derived from the Allen Brain Atlas. This figure indicates that the hypothalamus is organized such that 

Eq. (1) is among the highest values that are possible although it is not the unique e�cient packing. The configurations on the left and right show 

example configurations from di�erent low- and high-e�ciency bins. Two di�erent hypothalamus sub-regions are highlighted in green and red to 

show their changes in position. (B) The histogram of e�ciencies of 48,300 randomly packed hypothalamus sub-regions superimposed upon 

histogram from panel (A). These configurations are randomly generated and not optimized for e�ciency. Comparing the two histograms shows that 

the true network is among the most e�cient of optimized networks, which together are more e�cient than an ensemble of randomly configured 

theoretical hypothalamic networks.
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anatomical regions, such as the hypothalamus, occur with a 

composition of neurons with similar connectivity and thus similar 

function. If one extends this thinking to the hypothalamus and its 

substructures, as in this investigation, then it stands to reason that 

the hypothalamus is organized similarly. Within the hypothalamus, 

itself a compartmentalized portion of the brain, sub-regions of 

neuronal populations with similar functions and similar 

connectivity are organized in topological neighborhoods with 

minimized wiring cost to adjacent neighborhoods. Thus, if the 

hypothalamus’ sub-regions are constrained by geometric volume 

to reduce energy costs, and then places sub-regions which 

communicate frequently close together, our study shows that this 

results in an efficient hypothalamus similar to the true rat 

hypothalamus (Figure 4).

While this application of large mouse connectivity datasets 

strives to explore novel concepts founded on prior work while 

remaining computationally viable in its objective, we acknowledge 

several limitations of our study. Much of our data relies on the 

Allen Brain Connectivity Atlas which in its formation 

implemented several quality control measures to ensure sound, 

yet high throughput, connectivity data. Still, the Atlas cannot 

guarantee that signal projections are segmented accurately with 

its algorithmic approach, and, among other inaccuracies, some 

passing fibers may be mistaken for terminal zones, biasing our 

data (Kuan et  al., 2015). Additionally, the Atlas’ resolution is 

limited by its number of injection experiments. We chose only to 

include regions which were injection targets in our analysis 

because other regions are likely not mapped with significant 

resolution to be useful in our analysis; unfortunately, this meant 

sacrificing interesting regions, such as the median eminence, in 

our model. Our model also greatly simplifies the topological 

structure of the mouse brain by approximating regions as a 

spherical construction of their volume rather than their true 

geometry in order for our analysis to remain computationally 

feasible. This may over- or underestimate distance between 

projection sites, affecting our computation of efficiency. 

Penultimately, our analysis of the Connectivity Atlas is limited by 

the techniques used to gather the connectome data; specifically, 

although significant steps were taken by the Atlas authors to limit 

viral vector mapping to axons only, we cannot rule out that some 

data presented is based on dendritic projection data. Lastly, our 

study limits its analysis to the hypothalamus, and conclusions 

herein may not extend to the rest of the brain. Nevertheless, 

together these data support the hypothesis that spatial and 

topological efficiency contribute to the overall structure and 

organization of the hypothalamus.

Connectivity in the mouse brain has already been applied to 

animal models of human behavior through functional MRI and, 

in some cases, has detected alterations consistent with those 

detected in humans (Xu et al., 2022). Comparisons of the human 

and mouse connectome suggest similarities in inhibitory-to-

excitatory balance and total synaptic input despite millions of 

years of evolutionary divergence, differing mostly in network size 

and interneuronal network complexity (Loomba et al., 2022). In 

direct studies of human disease, the connectome’s importance is 

highlighted by prior work which not only implicated specific cell 

types in autism spectrum disorder and schizophrenia, but also 

revealed differences in neuronal and synaptic structure spatially 

localized to specific cortical layers (Lynall et al., 2010; Sweet et al., 

2010; Major Depressive Disorder Working Group of the 

Psychiatric Genomics Consortium et al., 2018; Velmeshev et al., 

2019; Maynard et al., 2021). While translational research continues 

in this field, unwrapping network properties and enhancing our 

understanding of the mouse connectome lays a promising 

groundwork for understanding human neurological function and 

disease in the future.

Ultimately, neurological or psychiatric disease may 

be accounted for by inefficient brain organization that impacts the 

costliest components of processing or behavior, in terms of axonal 

projection strength or distance. Our findings have identified the 

efficiency of the hypothalamus to be an important organizer of its 

spatial and topological structure, and our results provide the 

framework for future studies to interrogate this network in the 

context of neurological and psychiatric disorders.

Data availability statement

�e data presented in the study are deposited in the GitHub 

repository hellothisisnathan/brain-e�ciency, DOI: 10.5281/zenodo. 

12803299.

Author contributions

NS: Conceptualization, Data curation, Formal analysis, Funding 

acquisition, Investigation, Methodology, Project administration, 

Resources, So�ware, Supervision, Validation, Visualization, Writing – 

original dra�, Writing – review & editing. SA: Conceptualization, Data 

curation, Formal analysis, Funding acquisition, Investigation, 

Methodology, Project administration, Resources, So�ware, Supervision, 

Validation, Visualization, Writing – original dra�, Writing – review & 

editing. SM: Conceptualization, Methodology, Validation, Visualization, 

Writing – original dra�, Writing – review & editing. JK: Conceptualization, 

Methodology, Resources, Supervision, Validation, Writing – review & 

editing. JS: Conceptualization, Investigation, Resources, Supervision, 

Writing – review & editing. JH: Conceptualization, Investigation, 

Methodology, Project administration, Supervision, Visualization, Writing 

– original dra�, Writing – review & editing. AB: Conceptualization, 

Investigation, Project administration, So�ware, Supervision, Writing – 

original dra�, Writing – review & editing.

Funding

�e author(s) declare that no �nancial support was received for 

the research, authorship, and/or publication of this article.

Acknowledgments

SM appreciates the assistance of the TL1TR001440, Clinical and 

Translational Science Award NRSA (TL1) Training Core grant. JS also 

appreciates the support of the NSF-DMR-CMMT-2204312 grant.



Smith et al. 10.3389/fnsys.2024.1417346

Frontiers in Systems Neuroscience 08 frontiersin.org

Conflict of interest

�e authors declare that the research was conducted in the 

absence of any commercial or �nancial relationships that could 

be construed as a potential con�ict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 

and do not necessarily represent those of their a�liated 

organizations, or those of the publisher, the editors and the 

reviewers. Any product that may be evaluated in this article, or claim 

that may be made by its manufacturer, is not guaranteed or endorsed 

by the publisher.

Supplementary material

�e Supplementary material for this article can be found online 

at: https://www.frontiersin.org/articles/10.3389/fnsys.2024.1417346/

full#supplementary-material

References

Achard, S., and Bullmore, E. (2007). E�ciency and cost of economical brain functional 
networks. PLoS Comput. Biol. 3:e17. doi: 10.1371/journal.pcbi.0030017

Allen Institute for Brain Science. Allen Mouse Brain Connectivity Atlas Technical 
White Paper: Overview. (2017). Available at: http://help.brain-map.org/download/
attachments/2818171/Connectivity_Overview.pdf?version=2&modificationDat
e=1489022310670&api=v2

Bassett, D. S., and Bullmore, E. (2006). Small-world brain networks. Neuroscientist 12, 
512–523. doi: 10.1177/1073858406293182

Bassett, D. S., Green�eld, D. L., Meyer-Lindenberg, A., Weinberger, D. R., Moore, S. W., 
and Bullmore, E. T. (2010). E�cient physical embedding of topologically complex 
information processing networks in brains and computer circuits. PLoS Comput. Biol. 
6:e1000748. doi: 10.1371/journal.pcbi.1000748

Bedont, J. L., Newman, E. A., and Blackshaw, S. (2015). Patterning, speci�cation, and 
di�erentiation in the developing hypothalamus. WIREs Dev. Biol. 4, 445–468. doi: 
10.1002/wdev.187

Budd, J. M. L., and Kisvárday, Z. F. (2012). Communication and wiring in the cortical 
connectome. Front. Neuroanat. 6:42. doi: 10.3389/fnana.2012.00042

Bullmore, E., and Sporns, O. (2012). �e economy of brain network organization. Nat. 
Rev. Neurosci. 13, 336–349. doi: 10.1038/nrn3214

French, L., and Pavlidis, P. (2011). Relationships between gene expression and brain 
wiring in the adult rodent brain. PLoS Comput. Biol. 7:e1001049. doi: 10.1371/journal.
pcbi.1001049

Hahn, J. D., Sporns, O., Watts, A. G., and Swanson, L. W. (2019). Macroscale intrinsic 
network architecture of the hypothalamus. Proc. Natl. Acad. Sci. 116, 8018–8027. doi: 
10.1073/pnas.1819448116

Hahn, J. D., and Swanson, L. W. (2010). Distinct patterns of neuronal inputs and 
outputs of the juxtaparaventricular and suprafornical regions of the lateral hypothalamic 
area in the male rat. Brain Res. Rev. 64, 14–103. doi: 10.1016/j.brainresrev.2010.02.002

Hahn, J. D., and Swanson, L. W. (2012). Connections of the lateral hypothalamic area 
juxtadorsomedial region in the male rat. J. Comp. Neurol. 520, 1831–1890. doi: 10.1002/
cne.23064

Hahn, J. D., and Swanson, L. W. (2015). Connections of the juxtaventromedial region 
of the lateral hypothalamic area in the male rat. Front. Syst. Neurosci. 9:9. doi: 10.3389/
fnsys.2015.00066

Imam, N., and Finlay, B. (2020). Self-organization of cortical areas in the development 
and evolution of neocortex. Proc. Natl. Acad. Sci. 117, 29212–29220. doi: 10.1073/
pnas.2011724117

Kaiser, M., and Hilgetag, C. C. (2006). Nonoptimal component placement, but short 
processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 
2:e95. doi: 10.1371/journal.pcbi.0020095

Kra�, D. (1988). A so�ware package for sequential quadratic programming: German 
Aerospace Center - Institute for Flight Mechanics.

Kuan, L., Li, Y., Lau, C., Feng, D., Bernard, A., Sunkin, S. M., et al. (2015). 
Neuroinformatics of the Allen mouse brain connectivity atlas. Methods 73, 4–17. doi: 
10.1016/j.ymeth.2014.12.013

Latora, V., and Marchiori, M. (2001). E�cient behavior of small-world networks. Phys. 
Rev. Lett. 87:198701. doi: 10.1103/PhysRevLett.87.198701

Laughlin, S. B., and Sejnowski, T. J. (2003). Communication in neuronal networks. 
Science 301, 1870–1874. doi: 10.1126/science.1089662

Loomba, S., Straehle, J., Gangadharan, V., Heike, N., Khalifa, A., Motta, A., et al. 
(2022). Connectomic comparison of mouse and human cortex. Science 377:eabo0924. 
doi: 10.1126/science.abo0924

Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., 
et al. (2010). Functional connectivity and brain networks in schizophrenia. J. Neurosci. 
30, 9477–9487. doi: 10.1523/JNEUROSCI.0333-10.2010

Major Depressive Disorder Working Group of the Psychiatric Genomics 
ConsortiumSkene, N. G., Bryois, J., Bakken, T. E., Breen, G., Crowley, J. J., et al. (2018). 
Genetic identi�cation of brain cell types underlying schizophrenia. Nat. Genet. 50, 
825–833. doi: 10.1038/s41588-018-0129-5

Maynard, K. R., Collado-Torres, L., Weber, L. M., Uytingco, C., Barry, B. K., Williams, S. R., 
et al. (2021). Transcriptome-scale spatial gene expression in the human dorsolateral 
prefrontal cortex. Nat. Neurosci. 24, 425–436. doi: 10.1038/s41593-020-00787-0

Meunier, D., Lambiotte, R., and Bullmore, E. T. (2010). Modular and hierarchically 
modular Organization of Brain Networks. Front. Neurosci. 4:200. doi: 10.3389/
fnins.2010.00200

Mišić, B., Betzel, R. F., Nematzadeh, A., Goñi, J., Gri�a, A., Hagmann, P., et al. (2015). 
Cooperative and competitive spreading dynamics on the human connectome. Neuron 
86, 1518–1529. doi: 10.1016/j.neuron.2015.05.035

Oh, S. W., Harris, J. A., Ng, L., Winslow, B., Cain, N., Mihalas, S., et al. (2014). A 
mesoscale connectome of the mouse brain. Nature 508, 207–214. doi: 10.1038/
nature13186

Ramon y Cajal, S. (1995). Histology of the nervous system of man and vertebrates. 
Oxford: Oxford University Press.

Rubinov, M., Ypma, R. J. F., Watson, C., and Bullmore, E. T. (2015). Wiring cost and 
topological participation of the mouse brain connectome. Proc. Natl. Acad. Sci. 112, 
10032–10037. doi: 10.1073/pnas.1420315112

Simerly, R. B. (2015). “Organization of the Hypothalamus” in �e rat nervous system 
(fourth edition). ed. G. Paxinos (Amsterdam: Academic Press), 267–294.

Swanson, L. W. (1986). “Organization of mammalian neuroendocrine system.” in 
Handbook of physiology, the nervous system. ed. F. E. Bloom (Baltimore: Waverly 
Press), 4, 317–363.

Swanson, L. W. (1987). “�e hypothalamus” in Handbook of chemical neuroanatomy, 
vol. 5 (Amsterda: Elsevier), 1–124.

Swanson, L. W. (2000). Cerebral hemisphere regulation of motivated 
behavior11Published on the world wide web on 2 November 2000. Brain Res. 886, 
113–164. doi: 10.1016/S0006-8993(00)02905-X

Swanson, L. W., Sporns, O., and Hahn, J. D. (2019). �e network architecture of rat 
intrinsic interbrain (diencephalic) macroconnections. Proc. Natl. Acad. Sci. 116, 
26991–27000. doi: 10.1073/pnas.1915446116

Sweet, R. A., Fish, K. N., and Lewis, D. A. (2010). Mapping synaptic pathology within 
cerebral cortical circuits in subjects with schizophrenia. Front. Hum. Neurosci. 4:4. doi: 
10.3389/fnhum.2010.00044

van den Heuvel, M. P., and Sporns, O. (2013). Network hubs in the human brain. 
Trends Cogn. Sci. 17, 683–696. doi: 10.1016/j.tics.2013.09.012

Velmeshev, D., Schirmer, L., Jung, D., Haeussler, M., Perez, Y., Mayer, S., et al. (2019). 
Single-cell genomics identi�es cell type–speci�c molecular changes in autism. Science 
364, 685–689. doi: 10.1126/science.aav8130

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., 
et al. (2020). SciPy 1.0: fundamental algorithms for scienti�c computing in Python. Nat. 
Methods 17, 261–272. doi: 10.1038/s41592-019-0686-2

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. 
Nature 393, 440–442. doi: 10.1038/30918

Xu, N., LaGrow, T. J., Anumba, N., Lee, A., Zhang, X., Youse�, B., et al. (2022). 
Functional connectivity of the brain across rodents and humans. Front. Neurosci. 
16:816331. doi: 10.3389/fnins.2022.816331

Zamani Esfahlani, F., Jo, Y., Puxeddu, M. G., Merritt, H., Tanner, J. C., Greenwell, S., 
et al. (2021). Modularity maximization as a �exible and generic framework for brain 
network exploratory analysis. NeuroImage 244:118607. doi: 10.1016/j.
neuroimage.2021.118607


