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Normal routine electroencephalograms (EEGs) can cause delays in the diagnosis and treatment of 
epilepsy, especially in drug-resistant patients and those without structural abnormalities. There is a 
need for alternative quantitative approaches that can inform clinical decisions when traditional visual 
EEG review is inconclusive. We leverage a large population EEG database (N = 13,652 recordings, 
12,134 unique patients) and an independent cohort of patients with focal epilepsy (N = 121) to 
investigate whether normal EEG segments could support the diagnosis of focal epilepsy. We 
decomposed expertly graded normal EEGs (N = 6,242) using unsupervised tensor decomposition to 
extract the dominant spatio-spectral patterns present in a clinical population. We then, using the 
independent cohort of patients with focal epilepsy, evaluated whether pattern loadings of normal 
interictal EEG segments could classify focal epilepsy, the epileptogenic lobe, presence of lesions, and 
drug response. We obtained six physiological patterns of EEG spectral power and connectivity with 
distinct spatio-spectral signatures. Both pattern types together effectively differentiated patients with 
focal epilepsy from non-epileptic controls (mean AUC 0.78) but failed to classify the epileptogenic lobe. 
Spectral power-based patterns best classified drug-resistant epilepsy (mean AUC 0.73) and lesional 
epilepsy (mean AUC 0.67), albeit with high variability across patients. Our findings support that visibly 
normal patient EEGs contain subtle quantitative differences of clinical relevance. Further development 
may yield normal EEG-based computational biomarkers that can augment traditional EEG review and 
epilepsy care.
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Epilepsy is a neurological disease characterized by recurrent, unprovoked seizures and is estimated to 
affect ~ 50 million people worldwide1,2. A scalp electroencephalogram (EEG) non-invasively records the electrical 
activity of the brain, and its findings play a critical role in the clinical diagnosis and management of epilepsy3–5. 
The diagnostic yield of a short 20–40-minute routine EEG is determined by the presence of spontaneous transient 
interictal epileptiform discharges (IEDs)6–8. However, ~ 30–55% of routine EEGs of patients with epilepsy and 
9–10% of prolonged video EEGs show no evidence of IEDs and delay the diagnosis of epilepsy9–14.

In newly diagnosed epilepsy, anti-seizure medications (ASMs) are the first choice of therapy. However, 
despite a successful diagnosis, about half the patients do not respond to their first ASM, and about a third 
continue to have uncontrolled seizures despite multiple ASM trials15,16. Therefore, the determination of drug-
resistant epilepsy (DRE) can take several months or years, while the patients continue to experience seizures 
and comorbidities. Thus, the early identification of DRE is essential to reduce disease burden and to initiate 
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evaluations for additional therapies such as resective surgery and electrical brain stimulation. In focal epilepsy, 
magnetic resonance imaging (MRI) scans of the brain can help clarify the disease etiology by identifying 
structural abnormalities that lead to seizures17. In MRI negative, i.e., non-lesional, epilepsy patients, normal 
EEGs can cause further delays in identifying the epileptogenic brain regions for treatment. Broadly, the inability 
to identify interictal epileptiform activity during visual review of routine EEGs can delay the initiation of ASMs, 
increase healthcare costs, and put the patient at an increased risk of seizure-related injuries and comorbidities.

As such, there is a clear need for alternative approaches that can assist with early diagnosis and treatment 
planning when traditional routine EEG tests are inconclusive. This study aims to develop a quantitative 
approach to explore automatic analysis of normal interictal EEGs, which could provide early, objective, and 
inexpensive clinical decision support. Given that the current standard of clinical care relies on the presence of 
EEG abnormalities, recent quantitative EEG literature has focused primarily on detecting those abnormalities 
to augment traditional visual EEG review18–21. However, despite being frequently recorded in practice, normal 
interictal EEGs remain largely under-utilized in epilepsy classifications. In recent studies, normal or non-IED 
interictal EEGs have shown promise in detecting focal epilepsy, identifying the epileptic hemisphere, and 
prognosticating surgical outcomes22–29. However, their clinical value in challenging scenarios such as drug-
resistant and non-lesional epilepsy has not yet been fully explored, especially in comparison with non-epileptic 
neurological patients like those encountered in practice. In this study, we explore the quantitative analysis of 
normal EEGs and investigate finer classifications of epilepsy, including drug-resistant and non-lesional epilepsy, 
using a large clinical population database of patients with and without epilepsy. Our approach provides expert-
interpretable and patient-specific quantitative descriptors of normal EEG activity that could aid clinical decision-
making in the future.

Quantitative analyses of scalp EEGs have primarily used expert-defined time- and frequency- domain features 
such as Hjorth parameters30,31 zero-crossings32,33 relative power34 power ratios34 entropy35,36 and connectivity37. 
However, such features may be limited to pre-defined spectral bands or spatial locations and, therefore, fail to 
capture multivariate EEG patterns. Here, we adopt an unsupervised approach based on tensor decompositions 
to extract multivariate EEG patterns while fully utilizing the full spectral and spatial extent of scalp EEGs. Prior 
EEG tensor analyses have mostly focused on spectral power and lacked robustness due to arbitrary initialization 
conditions38–40. In addition, the rank of tensor decomposition, i.e., the number of factors recovered from the 
decomposition has largely been determined empirically by trial-and-error. Furthermore, the value of such 
analyses has not been explored in the context of improving epilepsy diagnosis using normal interictal EEGs. 
Our approach advances large-scale tensor-based EEG analysis by recovering spectral connectivity patterns in 
an unsupervised fashion and addresses prior limitations using a physiology-informed initialization that allows 
reproducible decomposition with a meaningfully predefined rank.

In this study, we retrospectively analyzed a large dataset of 13,652 routine EEGs from a diverse neurological 
population of 12,134 adults and a cohort of 121 adults with confirmed focal epilepsy. Patterns of power spectral 
density and phase-based connectivity in eyes-closed wakefulness were extracted from the 6,242 normal EEGs in 
the population dataset using canonical polyadic tensor decomposition. We examined the spatial and frequency 
distributions of these patterns and investigated their association with age and clinically assigned EEG grades. 
We then obtained loading scores for an unseen cohort of patients with focal epilepsy by projecting their EEG 
data onto the normal interictal EEG patterns identified using the population dataset. These loadings served as 
subject-specific quantitative descriptors (or features) of normal EEG activity in binary classification analyses 
focusing on focal epilepsy diagnosis and additional clinical classifications, including the epileptogenic lobe 
(temporal or frontal), drug resistance, and the presence of structural abnormalities.

Data & methods
Clinical population dataset and expert EEG review
Our study utilized 13,652 routine clinical EEG recordings obtained from 12,134 adult patients (18 or older) at 
Mayo Clinic, Rochester, MN, USA between 2016 and 202241. This study and the experimental protocols were 
approved by the Mayo Clinic Institutional Review Board (IRB#: 15-006530) and were conducted in accordance 
with the Declaration of Helsinki. All patients and/or legal guardians provided informed consent. The EEGs were 
recorded using the XLTEK EMU40EX headbox manufactured by Natus Medical Incorporated, Oakville, Ontario, 
Canada. All EEGs followed the standard 10–20 electrode placement system42 and were sampled at 256  Hz. 
The patient population comprises individuals presenting with a diverse array of conditions including epilepsy, 
cognitive impairment, episodic migraines, syncope, and functional spells, among others. Overall, this dataset 
represents the patient population typically referred for routine EEG assessments at the Mayo Clinic in Rochester, 
MN, USA. All EEG records were visually reviewed by board-certified epileptologists and graded based on the 
Mayo Clinic internal EEG grading protocol. EEGs within normal limits and without visible abnormalities were 
graded as normal. EEGs with asymmetry, persistent delta frequency slowing, and intermittent abnormalities 
were classified either as Dysrhythmia 1 (mild, non-specific slowing or excess of fast activity), Dysrhythmia 2 
(moderate to severe intermittent slowing), or Dysrhythmia 3 (e.g. epileptiform abnormalities, triphasic waves, 
intermittent rhythmic delta frequency activity). A more detailed summary of this EEG grading protocol is 
provided in Supplementary Item 7. Normal EEGs comprise the population set used for tensor decompositions. 
Note that patients corresponding to these normal EEGs may present with the aforementioned conditions 
including epilepsy.

Focal epilepsy cohort and matched control subjects without epilepsy
Figure  1 depicts the process flow for constructing the epilepsy and control cohorts. Patients with EEGs 
containing focal epileptiform abnormalities (i.e., Dysrhythmia grade 3) were used to triage focal epilepsy cases 
in the overall patient population. Based on further review of the electronic health records of those patients 

Scientific Reports |        (2025) 15:25147 2| https://doi.org/10.1038/s41598-025-08871-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


including neuroimaging tests, patient seizure diaries, and other clinical evidence, we identified a total of 121 
focal epilepsy patients (frontal = 21; temporal = 100; 125 EEGs) who had a confirmed diagnosis of frontal or 
temporal lobe epilepsy and had no prior history of any cranial surgery. The drug response status was determined 
by whether two adequate anti-seizure drug trials resulted in a > 50% reduction in baseline seizure frequency 
within a year of their EEG assessment. Lesional findings of patients with temporal lobe epilepsy were determined 
by reviewing diagnostic MRI reports available within a year of their EEG assessments. Cases where clinical 
evidence was either not available or insufficient were excluded from clinical sub-group classifications. Patients 
with frontal lobe epilepsy were not considered for these sub-group classifications due to low sample size. An 
age- and sex-matched control cohort of 76 subjects with normal EEGs and without diagnosis of epilepsy or other 
major neurological disorder was selected for comparisons from the overall set of normal EEGs. Data of patients 
in focal epilepsy and matched control sets were excluded from the population set during subsequent analyses to 
prevent statistical data leakage.

The complete analytical workflow of this study from processing of raw EEGs to results is illustrated in Fig. 2. 
Below we describe the methods used in this workflow.

EEG preprocessing and epochs selection
All routine EEGs were preprocessed as follows: (1) selection and ordering of the 19 EEG channels arranged 
according to the 10–20 system (i.e., Fp1, F3, F7, C3, T7, P3, P7, O1, Fp2, F4, F8, C4, T8, P4, P8, O2, Fz, Cz, and 
Pz), (2) resampling to ensure a sampling rate of 256 Hz, (3) band-pass filtering between 0.1 and 45 Hz, and (4) 
transformation to common average reference. Artifact rejection was not performed in this pipeline as we hoped 
to recover population patterns specific to artifacts in a data-driven manner using tensor decompositions. Next, 
we applied a heuristic algorithm24 to select a maximum of six 10-second EEG epochs from the full recording 
representing eyes-closed wakefulness. The algorithm relies on sleep staging43eye blinks, sample entropy, and 
occipital alpha power to select candidate epochs. These selected epochs are not guaranteed to be contiguous. 
After preprocessing, all EEG recordings were represented by at most six EEG epochs representing eyes-closed 
resting-state wakefulness. Preprocessing was done using the numpy44 and MNE45 Python libraries. Epochs 
selection used the MNE-features46 and YASA43 libraries.

Additional review of EEG epochs extracted from focal epilepsy and control patients
From the extracted EEG epochs of focal epilepsy patients, a board-certified epileptologist visually reviewed and 
selected ones containing normal interictal activity. Abnormal epochs containing seizures, epileptiform spikes, 
epileptiform sharp waves, temporal intermittent rhythmic delta activity (TIRDA), and excessive artifacts were 
excluded from the study. Polymorphic, intermittent delta and theta frequency slowing (0.1 - <8  Hz) events, 
however, could not be excluded due to their pervasive presence in some EEGs. Similarly, epochs from non-
epileptic controls with excessive artifacts were also excluded. We note that this additional review of epochs 
extracted using the automated algorithm was conducted only for epilepsy and control EEGs.

Constructing tensors of spectral power
Power spectral density (PSD) of EEG data was estimated for all 19 EEG channels using Welch’s algorithm47 
yielding log-power values at all integer frequencies between 1 and 45 Hz. We then averaged the PSD measures 

Fig. 1.  Cohort selection process flow starting from the overall clinical population dataset. Patients with 
focal epilepsy and controls without epilepsy were triaged using clinically assigned EEG grades, electronic 
health record notes/reports, and case reviews. Epochs extracted from their EEGs were reviewed for interictal 
abnormalities and excessive artifacts. Clinically graded normal EEGs comprise the population set for tensor 
decomposition.
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of each EEG recording across all the identified epochs to obtain a single PSD vector for each channel. The 
PSD measures of each EEG recording can now be represented as a matrix with shape 19 × 45 (19 channels 
and 45 frequencies). Stacking this average PSD matrix across recordings produces a 3-d power-spectral tensor 
(“PSD-tensor”) of the form: N recordings x 19 channels x 45 frequencies. The population PSD-tensor is globally 
min-max scaled between [0, 1] to maintain non-negativity for subsequent tensor decomposition. Focal epilepsy 
and control PSD-tensors are scaled similarly but are stacked together first to preserve group differences for 
downstream analyses. A global scaling scheme, using min-max values computed considering all tensor 
dimensions, was applied to preserve the variability between channels within the same recording as well as the 
variability across multiple subjects/recordings.

Constructing tensors of phase-based connectivity
An estimate of phase-based connectivity (PC) between a pair of channels (i, j) is computed using the weighted 
Phase Lag Index48 (wPLI) measure defined as:

	
wP LI (i, j) = |E [I (Xij)]|

E [|I (Xij)|] = |E [|I (Xij)| sgn (I (Xij))]|
E [|I (Xij)|]

where Xi,j  denotes the cross-spectral density of channels i and j, I(.) is the imaginary part of the cross-
spectrum, sgn(.) is the sign function, and E[.] represents a mean over the selected eyes-closed epochs. wPLI 
values range between [0, 1]. A positive value reflects an imbalance between leading and lagging relationships, 
with 1 indicating a perfect lead or lag relationship. At each integer frequency between 1 and 45 Hz, wPLI provides 
a connectivity value for each of the 171 unique channel pairs. Thus, we obtain a 3-d phase-based connectivity 
tensor (“PC-tensor”) of the form: N recordings x 171 channel pairs x 45 frequencies.

Fig. 2.  Overall analytic workflow of the study. (A) Multiple eyes-closed awake interictal epochs from each 
EEG recording are identified for data analysis. The average power spectral density (PSD) and phase-based 
connectivity (PC) between each channel pair are computed and stacked across recordings to obtain 3-d PSD 
and PC tensors (recordings x channels or channel pairs x frequencies). (B) PSD and PC population tensors are 
decomposed separately in an unsupervised fashion to obtain multiple interpretable spatio-spectral patterns 
(i.e., factors). (C) Normal interictal EEG data from focal epilepsy patients are projected on each population-
level factor to obtain patient-specific factor loadings. Differences in drug-resistant and non-lesional MRI focal 
epilepsy are investigated by using these loadings in statistical group/sub-group comparisons and predictive 
analyses.

 

Scientific Reports |        (2025) 15:25147 4| https://doi.org/10.1038/s41598-025-08871-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Representing the normal EEGs as 3-d population tensors
We utilized the clinically graded normal EEGs in the overall population dataset (N = 6,242 out of 13,652) to 
extract population-level EEG patterns. We estimated the PSD and PC measures for these normal EEGs using their 
automatically extracted epochs and formed the population PSD-tensor and PC-tensor of shape (6,242 × 19 × 45) 
and (6,242 × 171 × 45), respectively.

Decomposition of 3-d tensors into factors
The canonical polyadic (CP) decomposition49,50 (also known as the PARAFAC decomposition51) approximates 
a given tensor as a sum of R rank-1 tensors, where R is the decomposition rank, i.e., the resulting number of 
factors obtained from decomposing the tensor. The CP decomposition of a 3-dimensional tensor T  with rank 
R is defined as:

	
T ≈

∑ R

r=1
Ar ⊗ Br ⊗ Cr

where ⊗  denotes an outer product and Ar , Br , and Cr  are vectors with shapes matching each of the three 
dimensions of T ( recording, channel, frequency). Each term in the summation, i.e., a combination of Ar , Br,
and Cr , is a rank-1 tensor and is referred to as a factor. The A, B, and C  factor matrices (containing Ar , Br,
and Cr vectors as columns, respectively) are optimized with a non-negativity constraint using the hierarchical 
alternating least squares51,52 approach.

Determining the initialization and rank for CP decomposition
We provided a physiologically meaningful initialization and rank derived from PSD characteristics of healthy 
subjects to initialize the decomposition of the PSD-tensor. For this, we fit a parametric model of the EEG PSD, 
named FOOOF53 (“fitting oscillations and one over f ”), to the eyes-closed trials in the MPI Leipzig Mind-Brain-
Body dataset54 (N = 207, 8 trials per subject, 60s trial duration). The FOOOF model segments the observed 
morphology of an EEG PSD into superimposed aperiodic ( L) and oscillatory components ( Gn):

	
P SD = L +

∑ 5

n=1
Gn

Each Gn is a Gaussian peak corresponds putatively to a canonical brain oscillation (delta, theta, alpha, beta, or 
gamma) and is parameterized by height, mean or center frequency, and a standard deviation. L is a function of 
the form L (F ) = 10b* 1

(k+Fχ )  whose parameters b, k, and X  capture aperiodic 1/f-like nature of the P SD. 
We refer readers to Donoghue et al. (2020) for additional model details. We fit this six-component model to 
healthy PSDs in the MPI-Leipzig dataset. The fitted versions of Gn and L formed the frequency initializations 
Br of the decomposition solution and informed the choice of rank R = 6. These initializations are shown in 
Supplementary Figure S1.

Decomposing the population tensors
Factor matrix B( containing Br vectors as columns) was initialized with the six spectral “priors” described 
above. CP decomposition with non-negativity constraints and R=6 was applied on the min-max scaled 
population PSD-tensor. The resultant B was then used as an immutable initialization for the subsequent CP 
decomposition of the population PC-tensor. In other words, only factor matrices A and C  were optimized 
in the PC-tensor decomposition. The use of B, i.e., frequency patterns extracted from the PSD-tensor, in PC 
factors ensured that the frequency dependence of resting-state brain networks55,56 was captured in a data-driven 
manner and that factor interpretations were aligned across both decompositions. Tensor analyses were done 
using the tensortools57 Python library.

Visualization of factors derived from the normal EEG population
The Ar , Br , and Cr  vectors resulting from both CP decompositions represent semantically coherent 
components: Ar  contains factor’s loadings per recording, Br  holds the factor’s frequency activations, and 
Cr  holds the factor’s channel or channel-pair activations. The recording loadings are visualized as histograms, 
frequency activations as power spectral profiles, and channel activations as topographical distributions over the 
scalp. Note that we obtain Ar  and Cr  separately from the PSD-tensor and PC-tensor decompositions, while 
Br is shared between both as described above. We refer to values in Ar  as “PSD loadings” or “PC loadings” 
depending on the tensor they are associated with. Factor visualizations with channel and channel-pair values 
scaled to a consistent range can be found in Supplementary Figure S3.

Computing factor loadings for the focal epilepsy cohort
We computed population factor loadings for the focal epilepsy cohort using a projection operation40,41. Consider 
the basis matrix P  containing vectorized versions of the spatio-spectral factors Br  ⊗  Cr . Thus, matrix P has 
R rows and C* F  columns, where C  and F  is the length of the channel dimension and frequency dimension 
of the tensor, respectively. Then, for a new EEG recording xnew ∈ RC× F , its loadings are computed by 
P + × vectorized (xnew), where P + is the pseudo-inverse of P . This operation provides R weights or 
loadings that represent how strongly each population factor is expressed in the new EEG recording. Note that 
this operation does not guarantee non-negative loadings.
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Associations and statistical testing
Pearson’s correlation coefficient and Spearman’s rank correlation coefficient were used to quantify associations of 
factor loadings with patient age and ranked degree of slowing, respectively. The corresponding p-values test the 
null hypothesis that the distributions underlying the samples are uncorrelated. The Mann-Whitney-Wilcoxon 
two-sided test58 was used for group-level comparisons with Bonferroni correction59 for multiple comparisons. 
The test was performed using the stat-annot60 Python library.

Predictive modeling
Patient-specific loadings were robustly scaled (subtract median, scale by interquartile range) and used as 
features in a logistic regression binary classifier. We explored three sets of features: PSD loadings, PC loadings, 
and both concatenated together. Nested k-fold cross-validation (CV) was done to assess variability of model 
performance on different held-out sets (outer CV loop, 10-fold) and to tune the ElasticNet regularization 
strength61 hyperparameter for each training set (inner CV loop, 5-fold). Grid for the hyperparameter search 
ranged between [0, 1] with increments of 0.1. Both CV loops used disjoint patient splits with target stratification. 
Loss values were weighted using target class proportions to handle class imbalance. For each outer CV fold, 
a classifier was trained using the best hyperparameter setting found by the inner CV loop and evaluated on 
the corresponding outer test fold. We used the area under receiver operating characteristic curve (AUC) to 
evaluate model performance across the outer CV folds. Predictive modeling was performed using the scikit-
learn62 Python library.

Results
Characteristics of the neurological population, focal epilepsy cohort, and controls
Table  1 provides an overview of the population-level routine EEG dataset. This dataset included 13,652 
recordings from 12,134 unique patients. Most routine EEG sessions in this dataset were ~ 50–60  min long 
(mean: 53.81 (± 9.02) minutes; range: 5.68–119.40 min). Expert visual review of these EEG recordings based on 
the Mayo Clinic grading criteria resulted in 45.7% (N = 6,242) normal EEGs, 24.9% (N = 3,395) EEGs with mild 
slowing (Dysrhythmia grade 1), 13.2% (N = 1,800) EEGs with moderate to severe slowing (Dysrhythmia grade 
2), and 16.2% (N = 2,215) EEGs with epileptiform abnormalities (Dysrhythmia grade 3). From the population of 
Dysrhythmia grade 3 EEGs, we identified 121 focal epilepsy patients with clinically confirmed epilepsy in either 

Study Cohort Summary Statistics

Temporal Lobe Epilepsy (TLE)

Unique records: 100
Unique participants: 100
Age: 52.5 (19.9)
Sex: 50 (50%) Female
Drug response status:
44 Drug-resistant
28 Drug-responsive
28 Unknown
MRI status:
36 Non-lesional
43 Lesional
21 Unknown

Frontal Lobe Epilepsy (FLE)
Unique records: 25
Unique participants: 21
Age: 37.6 (13.6)
Sex: 12 (57.1%) Female

Non-epileptic Controls (CTL)
Unique records: 76
Unique participants: 76
Age: 49.2 (19.3)
Sex: 41 (53.9%) Female

Table 2.  Characteristics of epilepsy cohort and controls used in this study.

 

Data Property Summary Statistics

Routine EEG recordings Total recordings: 13,652
Unique patients: 12,134

Age

Range: 18-103.7
Mean: 50.9 (± 19.4)
Age groups:
18–30: 2,639
30–50: 3,785
50–70: 4,563
> 70: 2,665

Sex Female = 6,464 (53.3%)

EEG Grade (based on expert visual review)
Normal: 6,242 (45.7%)
Dysrhythmia 1: 3,395 (24.9%)
Dysrhythmia 2: 1,800 (13.2%)
Dysrhythmia 3: 2,215 (16.2%)

Table 1.  Characteristics of the overall neurologic clinical population.
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the frontal (N = 21) or temporal (N = 100) region. In addition, a set of 76 matched non-epileptic controls with 
normal EEGs and without a diagnosis of any neurological disease were identified for group comparisons. Table 2 
summarizes the characteristics of the confirmed epilepsy patients and controls.

Fig. 3.  Data-driven population-level patterns of eyes-closed awake EEG data extracted from 6,242 normal 
EEGs. Three-dimensional tensors containing spatio-spectral information were decomposed using non-negative 
Canonical Polyadic Decomposition to yield six factors. Each row corresponds to a combination of a power 
spectral and connectivity-based factors, which is defined by the common spectral profile, the spatial power 
distribution over the 19 channels, the pair-wise channel connectivity, and loadings of EEG recordings in the 
PSD-tensor and PC-tensor. Recording loadings are visualized as histograms, spatial activations are visualized 
as scalp topographical distributions, and spectral activations are visualized as power spectral density. Note 
that the PSD-tensor was decomposed first, and the resulting frequency factors were kept frozen during the 
decomposition of the PC-tensor to align interpretation of the factors (a.u. refers to absolute units.)
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Tensor decomposition extracts interpretable spatio-spectral patterns from normal EEGs
Figure 3 shows the factors obtained by decomposing the normal EEGs in the population dataset, i.e., the 
population PSD-tensor and PC-tensor. The frequency profiles are largely distinct, except in the case of factors 2 
and 6, where their spatial distributions uniquely characterize the overall pattern.

Factor 1 shows the characteristic 1/f frequency profile with minor deviations around the oscillatory bands and 
spatial activations in the fronto-temporal and posterior regions, characterizing the background non-oscillatory 
(i.e., aperiodic) brain activity. Factor 2 shows high frequency activations (> 25  Hz) in the prefrontal region, 
suggesting eye-movement-related artifacts. Factor 3 predominantly contains high-theta/low-alpha activity 
(6–9 Hz) in fronto-parietal regions, possibly indicating the high theta rhythm or slow alpha rhythm. Factor 
4 shows occipital activations in 8–13 Hz, resembling the characteristic posterior dominant rhythm. Factor 5 
shows centro-parietal activations in 13–25 Hz, capturing the Rolandic beta activity. Lastly, factor 6 shows high-
frequency activations (> 25 Hz) in the temporal regions, which may represent muscle artifacts. The analyses and 
findings presented in the remaining text focus on the four putatively physiologic factors (1, 3, 4, and 5).

Patient loadings show sensitivity to aging and EEG dysrhythmia grades
Figure 4 shows the associations between the loadings of population EEGs for factors 1, 3, 4, and 5 against patient 
age and expert-assigned EEG grades.

Trends with patient age (Fig. 4A): Factor 3 is positively correlated with age (p < 1e-4), while factors 1 (PSD: 
p < 1e-4, PC: p < 0.01) and 4 (p < 1e-4) are negatively correlated. Although the correlation strength varies between 
the PSD and PC loadings of the same factor, they are directionally consistent. Correlations of factor 5 are either 
marginally significant (PSD: p < 0.05) or not significant (PC).

Fig. 4.  Associations of PSD and PC loadings of the four putatively physiologic factors (1, 3, 4, and 5) with 
physiological (aging) and pathological (slowing, epileptiform activity) variables. Factor numbers correspond 
to those in Fig. 3. Loadings describe activity found in eyes-closed awake EEG segments selected from expertly 
graded routine EEGs in the population-level dataset. (A) Correlations of PSD and PC loadings of normal 
EEGs with patient age. (B) Correlations of PSD and PC recording loadings with expert-assigned severity of 
slowing. The ranked severity levels are 0 (normal EEG, no slowing), 1 (Dysrhythmia 1 EEG, mild slowing), 
and 2 (Dysrhythmia 2 EEG, moderate to severe slowing (C) Correlations of PSD and PC recording loadings 
with the presence of epileptiform activity (Dysrhythmia 3 EEGs abbreviated as “Dys3”). Significance levels 
correspond to the Mann-Whitney-Wilcoxon test. Loading values along y-axes are in arbitrary units. * indicates 
a significant correlation with p < 0.05 and **** indicates a significant correlation with p < 1e-4.
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Trends with expert-ranked degree of slowing (Fig. 4B): Factor 1 is positively correlated with severity of slowing 
(p < 1e-4), while factor 4 is negatively correlated (p < 1e-4). Correlation of factor 3 is either low (PSD: p < 0.05) 
or not significant (PC). The correlation of factor 5, although significant (p < 1e-4), is directionally divergent 
between the PSD and PC loadings.

Differences in presence of epileptiform activity (Fig. 4C): Here, loadings of EEGs with epileptiform activity 
were compared against those of normal EEGs. PSD loadings of factor 1 increase under presence of epileptiform 
activity, while those of factors 4 and 5 decrease (p < 1e-4 in every case). Factor 3 PSD loadings show no significant 
change. PC loadings of factors 1 and 4 show trends consistent with corresponding PSD loadings (p < 1e-4 in both 
cases). However, the PC loadings of factors 3 and 5 show slight increases (p < 1e-4).

Quantitative analysis of normal interictal EEG reveals differences in focal epilepsy
Figure 5 shows results for group differences and binary classifications between non-epileptic controls and the 
focal epilepsy cohort using patient-specific PSD and PC loadings of the physiologic factors. We find focal epilepsy 
patients to have elevated factor 1 (p < 0.001) and factor 3 (p < 0.05). in both PSD and PC comparisons (Fig. 5A-B). 
In addition, we find PC loadings for factor 5 (p < 0.05) significantly different in focal epilepsy relative to non-
epileptic controls. Factor 4 loadings do not show significant differences in either the PSD or PC comparisons.

Figure 5C shows classification of focal epilepsy vs. non-epileptic patients is possible above chance levels, 
with PC loadings providing the largest contribution to the average classification performance (AUC = 0.76). 
This performance is marginally improved by using a combination of PSD and PC loadings (AUC = 0.78). 
Supplementary Figure S4 shows the relative contribution of the PSD and PC loadings towards the classification. 
All feature sets show high variability in performance across the held-out folds (0.09–0.13). Figure 5D-E show 
results for the classification of frontal (FLE) and temporal lobe epilepsy (TLE) against non-epileptic controls. 
TLE is better differentiated from non-epileptic patients than FLE (top mean AUC = 0.8 vs. 0.7). TLE is best 
differentiated by combined PSD and PC loadings (AUC = 0.80), with PC loadings contributing the most to 
classifier performance (AUC = 0.77). FLE is best differentiated using PC loadings alone (AUC = 0.70), and the 
addition of PSD loadings slightly worsens the performance (AUC = 0.68). Variability in AUC performance 

Fig. 5.  Differentiation of focal epilepsy and epileptogenic. (A-B) PSD and PC loadings of focal epilepsy 
patients (FOCAL-EPI) are compared to those of non-epileptic controls (CTL) across the four physiologic 
population factors. Loading values along y-axes are in arbitrary units. * indicates a significant difference with 
p < 0.05 and **** indicates a significant difference with p < 1e-4 in the Mann-Whitney-Wilcoxon test. (C) 
PSD and PC loadings are used as features to classify focal epilepsy vs. non-epileptic controls within a binary 
classification framework. (D-E) The same classification is broken down by temporal (TLE) and frontal (FLE) 
sub-types of focal epilepsy. (F) Differential diagnosis of the epileptogenic lobe, i.e., TLE vs. FLE, within the 
focal epilepsy cohort. Note that all classifications used only the four putative physiologic factors (1, 3, 4, and 5) 
and were conducted with three sets of features/loadings - only those of PSD factors (“PSD only”), only those of 
PC factors (“PC only”), or both concatenated (“PSD + PC”).
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across folds ranges from 0.05 to 0.19. Lastly, Fig. 5F shows the classification of TLE vs. FLE based on factor 
loadings derived from normal interictal epochs. Results indicate that none of the feature sets can differentiate 
the epileptogenic lobe (i.e., temporal vs. frontal) in focal epilepsy above chance levels (AUCs range between 0.47 
and 0.55) based on normal interictal epochs.

Quantitative loadings of normal interictal EEG exhibit capacity for differentiation in drug-
resistant and non-lesional epilepsy
Figure 6A shows differences in loadings of non-epileptic controls (CTL), drug-responsive (TLE-respon), and 
drug-resistant (TLE-resis) temporal epilepsy patients. Only the PSD loadings for factor 5 show differences 
between the two sub-groups (p < 0.05), while the others show differences only relative to controls. None of the 
PC loadings show significant differences between the two sub-groups. PC loadings other than those of factor 
1 show no differences between non-epileptic controls and both sub-groups. Figure 6B shows the classification 
performance of different sets of factor loadings in classifying drug resistance. PSD loadings provided the best 
average performance (AUC = 0.73) while PC loadings performed marginally better than chance (AUC = 0.58). 
Variability in model performance ranged from 0.07 to 0.13 AUC points.

Figure 6C shows differences in normal interictal EEG loadings between non-epileptic controls (CTL), non-
lesional (TLE-nonles), and lesional (TLE-les) temporal lobe epilepsy. While PSD loadings of factors 1, 3, and 4 
show significant differences relative to non-epileptic controls for both groups, only factor 4 shows a significant 
difference between non-lesional and lesional patients (p < 0.05). Trends seen in factors 1 and 3 are similar between 
the PSD and PC loadings. However, none of the PC loadings differed significantly between the MRI sub-groups. 
Figure 6D shows the classification between lesional and non-lesional patients. PSD loadings best differentiate 
the two groups of patients with an AUC of 0.67. PC loadings, either alone or in addition to PSD loadings, 
significantly worsened the average classification performance. However, all models exhibited high variability in 
AUC performance (0.11–0.22 AUC points). Supplementary Figure S4 shows the relative contribution of PSD 
loadings towards these classifications.

Discussion
The goal of this study was to explore whether normal interictal EEGs of people with focal epilepsy contain 
subtle signals that could be used to augment epilepsy diagnosis and treatment planning, especially in patients 

Fig. 6.  Differentiation of drug-resistant and non-lesional temporal lobe epilepsy (TLE) patients using four 
physiologic pattern loadings (factors 1, 3, 4, and 5). (A) Loadings are compared between non-epileptic controls 
(CTL), TLE patients that are drug resistant (TLE-resis) and those that are drug responsive (TLE-respon). 
(B) Binary classifications of drug resistant vs. responsive patients using the same feature sets as Fig. 5. (C-D) 
Analyses similar to (A) and (B) are conducted for lesional (TLE-les) and non-lesional (TLE-nonles) TLE sub-
groups. Loading values in (A) and (C) along y-axes are in arbitrary units. * indicates a significant difference 
with p < 0.05 and **** indicates a significant difference with p < 1e-4 in the Mann-Whitney-Wilcoxon test with 
Bonferroni correction.
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with drug-resistant and MRI normal epilepsy. We proposed a scalable, physiology-informed, and data-driven 
tensor decomposition approach that extracts spatio-spectral patterns from a large population of normal routine 
EEGs. Each pattern had a distinct signature in the EEG channel (spatial) and frequency (spectral) dimensions. 
We obtained patient-specific pattern loadings or “features” that allowed us to study group differences through 
statistical comparisons and binary classifications. Our findings suggest that quantitative description and analysis 
of visually reviewed normal routine EEGs has the potential to provide additional value to clinical decision-
making in epilepsy.

Tensor decomposition with spectral priors recovers interpretable patterns
This study hypothesized that the information content of normal EEGs can be explained by a parsimonious 
number of latent patterns. To test this hypothesis, we decomposed the spectral and connectivity contents of a 
population of normal routine EEGs into several meaningful patterns (i.e., factors) using a canonical polyadic 
tensor decomposition. In general, determining the appropriate number of factors, i.e., the presumed rank of 
the population tensor, is challenging and involves trial-and-error63. An entirely computational choice of rank 
and initialization can lead to dataset-dependent factors and hinder reproducibility. In Supplementary Fig. S2, 
we inspected the mean-squared reconstruction error for varying ranks as a proxy for variance explained by 
the corresponding rank-1 factors. We found that there was no optimal decomposition rank value that could be 
analytically chosen. Prior work has demonstrated that the morphological content of the scalp EEG PSD can be 
sufficiently explained by six physiological components, namely one aperiodic 1/f pattern and five oscillatory 
bands53. We used this spectral parameterization model to construct six corresponding frequency priors that, 
in turn, provided a meaningful initialization as well as an appropriate rank (R = 6) for the decomposition. 
Supplementary Figure S6 shows the reproducibility of the PSD-tensor factors using a publicly available dataset of 
healthy subjects54. An analysis of the impact of different rank choices on the classification of focal epilepsy found 
that rank R = 6, coincidentally, performed the best (see Supplementary Figure S2). Furthermore, we advanced 
the tensor analysis of resting-state EEG by decomposing connectivity information in the PC-tensor in a manner 
semantically consistent with power spectral patterns extracted from the PSD-tensor.

Several prior works have explored data-driven or unsupervised recovery of spatial, spectral, or temporal 
profiles of oscillatory sources and background patterns comprising spontaneous EEG activity38,64–67. In this 
study, we presented an approach that quantifies spatio-spectral EEG power and connectivity patterns with the 
goal of decision support when clinical EEGs are normal on expert visual review. Beyond the use of spectral-
prior-based initialization, our approach did not place any assumptions on the statistical nature or morphology 
of the latent EEG patterns and can be applied without sophisticated artifact removal.

The population patterns (Fig. 3) can be loosely interpreted to reflect dominant and overlapping physiological 
processes whose linear superposition (summation) yields the original EEG trace. We then interpreted the 
identified patterns based on clinical domain knowledge. The putative interpretations of these patterns are 
supported by their sensitivity to patient age and severity of pathology (Fig. 4).

Augmenting epilepsy diagnosis and treatment planning
Scalp EEG is an indispensable tool in epilepsy that can non-invasively record brain electrical activity with 
excellent temporal resolution. Due to this unique resolution, scalp EEG tests can capture transient interictal 
epileptiform discharges (IEDs) such as epileptiform spikes or sharp waves associated with epilepsy68. In current 
clinical practice, the expert identification and characterization of IEDs on routine scalp EEG is crucial for 
epilepsy diagnosis. Routine EEGs are also useful in measuring the efficacy of ongoing ASM trials69. In the case 
of drug-resistant epilepsy, the distribution of IEDs identified on scalp EEGs can help localize the seizure onset 
zone, especially in patients with no visible lesion on MRI. Thus, the identification of IEDs is central to the clinical 
value of scalp EEGs in current practice.

Recent studies have shown significant interest in the automated identification of IEDs to augment expert 
visual review18,70,71. However, the diagnostic yield of a single routine scalp EEG is limited, with only 29–55% of 
them capturing epileptiform abnormalities11. Multiple EEGs may increase epileptiform yield up to ~ 75%72,73, 
but the expected gain sharply drops after the third normal EEG. As such, normal interictal EEGs can cause 
treatment delays in multiple stages of epilepsy care. Previous studies that explored biomarkers of interictal 
non-epileptiform EEG support the possibility of augmenting decision support in epilepsy using spectral and 
connectivity-based EEG features22–24,26,27,74–77. However, most studies focused on epilepsy detection and 
used healthy controls, thus limiting the translational relevance of their findings. Here, we explored finer and 
challenging epilepsy classifications using data-driven recovery of normal EEG spectral features and comparisons 
with non-epileptic neurological patients.

Figure 7 highlights the potential clinical relevance of the data-driven factors/features. In Fig. 7A, we extend 
the analysis presented in Fig. 5D and differentiate non-lesional TLE from non-epileptic controls. We find that 
normal interictal EEG-derived PSD/PC loadings can indicate the presence of TLE even when no diagnostic 
information is available on MRI. Figure 7B shows an analysis with 27 patients with drug-resistant TLE in which 
we examine associations between their PSD loadings and epilepsy duration. We find a strong association for 
Factor 3, albeit with a potential age confound (see Supplementary Fig. S7 for remaining results). Further work is 
needed to control confounding variables (e.g., patient age) and assess correlations with other clinically relevant 
variables (e.g., seizure frequency).

Our findings in Figs. 5 and 6 suggest that normal interictal EEG activity of focal epilepsy patients contains 
significant differences in putative physiologic oscillations (factors 3, 4, and 5) as well as aperiodic 1/f(Hz) activity 
(factor 1). In clinical classifications, PC factors were most effective in detecting epilepsy relative to non-epileptic 
controls (Fig. 5C-E) while PSD factors helped classify sub-groups within the epilepsy cohort (Fig. 6B and D). The 
detection of potentially finer connectivity differences within these sub-groups may require higher-density EEGs 
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or connectivity analyses in the source space. Increases in expression of 1/f and theta frequency activity, coupled 
with a decrease in alpha frequency may represent general intermittent slowing of the EEG background. Although 
we identified differences in factor 5, the differences in beta frequency rhythm may arise due to the presence of 
ASMs. The factors exhibited relatively lower performance in detecting FLE (Fig. 5E) and in differentiating FLE 
vs. TLE (Fig. 5F). We believe that this may be due to either the lower sample size of the FLE cohort compared 
to the TLE cohort (Fig. 5D) or the global/symmetric nature of the population patterns. Determining the extent 
to which these symmetric PSD/PC patterns can support spatial characterization of epilepsy requires further 
investigation (see Supplementary Fig. S5).

Understanding subtle variation in visibly normal EEGs through their quantitative descriptors
Our results (Fig. 5) indicate that factor loadings extracted from normal EEG segments have the potential to 
classify focal epilepsy above chance levels (best mean AUC = 0.78). We analyzed the changes in actual power 
spectral and timeseries data corresponding to the changes in factor loadings to further illuminate the factor 
interpretations.

Figure  8A shows the full power spectra of normal EEG segments whose loadings fall in the bottom 
10-percentile (low), between 40-60-percentile (medium) and top 10-percentile (high) of a particular physiologic 
oscillatory factor. We find that EEGs that score high in factors 3, 4, and 5 have higher power in high-theta/low-
alpha, alpha, and beta bands, respectively.

Effects of the phase-lag-based connectivity (i.e., wPLI) at a particular frequency can be observed by leading/
lagging relationships in the time-domain EEG signal filtered at that frequency. Figure 8B focuses on factor 3 
whose spectral power peaks at 8 Hz, with the weakest edge connecting Fp1 and Fp2, and the strongest edge 
connecting P4 and P8 (shown in Fig. 3). We visualize the phase relationships using an example EEG segment 
whose loading value was in the top 10-percentile for factor 3 after filtering its EEG trace around 8-Hz. We find 
that the strongest channel pair (Fig. 8B, bottom) has a consistent non-zero phase difference, while the weakest 
channel pair (Fig. 8B, top) has no phase difference. These phase differences can be quantified by the time lag that 
maximizes timeseries correlation within the channel pair and are visualized in polar coordinates (Fig. 8B, right).

These illustrations highlight that the quantitative loading values provided by this tensor-based framework are 
interpretable based on physiologically relevant concepts such as signal power and phase and offer sensitivity to 
subtle changes in the EEG signal. These subtle changes in normal EEGs are likely to be missed during traditional 
expert visual review, which focuses mostly on transient abnormalities in the time domain.

Influence of sample size and selected EEG epochs on study findings
The routine EEG protocol contained diverse patient states (eyes-closed, eyes-open, awake, drowsy, asleep) and 
provocative maneuvers78 (photic stimulation, hyperventilation, sleep deprivation), making it necessary to select 
EEG epochs corresponding to a fixed patient state for data analysis. Our preliminary analyses indicated that 
epochs representing eyes-closed wakefulness were not abundant in our EEG recordings. Nonetheless, six epochs 
free of excessive artifacts could be reliably extracted from most recordings. A lower epoch count was undesirable 
as it could bias the average estimate of spectral power and connectivity (average is computed across epochs). 
Such data selection may introduce bias in our findings since we selected only a maximum of six EEG epochs 
from each recording for our analyses.

To evaluate whether a bias exists, we repeated the controls vs. TLE classification (result in Fig. 5D) with two 
bootstrapping strategies, whose results are shown in Fig. 9. In strategy A (Fig. 9A), we considered TLE patients 
(N = 41) with exactly six normal interictal EEG epochs and showed differences in classification performance 
depending on which 50% data are used for classification (i.e., first three epochs or last three epochs). Mean 

Fig. 7.  Comparisons highlighting the clinical relevance of the normal interictal EEG-derived PSD/PC factor 
loadings. (A) ROC curve for the classification of patients with non-lesional TLE (N = 36) against non-epileptic 
controls using the same feature sets as Fig. 5. (B) Association of Factor 3 PSD loadings with epilepsy duration 
and patient age in a cohort of patients with drug-resistant TLE (N = 27).
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performance was higher when the first 3 epochs were used (AUC = 0.65) than last 3 epochs (AUC = 0.59). In 
strategy B (Fig. 9B), we maintained the sample size of the original TLE cohort (N = 100) but used at most three 
randomly picked EEG epochs per recording to perform classification. For patients with > 3 epochs available, 3 
epochs were randomly chosen and for those patients with < = 3 epochs, all epochs were chosen. Our results did 
not show any significant differences between those two sampling approaches and the overall performance closely 
matched that using all available epochs.

These results suggest that: (1) our findings may be sensitive to low cohort size but are less likely to be biased 
by the algorithmic selection of EEG epochs within a recording, and (2) even as few as three normal interictal 
EEG epochs (30 s) are sufficient to derive a pretest measure of TLE.

Study limitations
Our goal in this study was to evaluate whether a quantitative analysis of normal EEG segments of epilepsy 
patients can indicate the possible presence of focal epilepsy. To test this hypothesis, we analyzed non-epileptiform 
interictal segments identified by a board-certified epileptologist within EEG recordings containing epileptiform 

Fig. 9.  Repeated CTL vs. TLE classifications using two bootstraps to evaluate bias introduced by the dataset 
selection process. Strategy A (left) uses either the first or last three of the six EEG epochs from a subset of TLE 
patients (N = 41). Strategy B (right) uses at most 3 epochs that are randomly chosen but uses all available TLE 
patients (N = 100).

 

Fig. 8.  Variability in EEG power and phase characteristics based on factor loading values. (A) Variability in the 
power spectra of EEGs whose PSD loadings score in the bottom 10-percentile (low), between 40-60-percentile 
(medium), and top 10-percentile (high). Examples are shown for factors 3, 4, and 5. (B) 8-Hz-filtered EEG 
traces of the weakest (top) and strongest (bottom) channel pairs for an example EEG that scored in the 
top 10-percentile for factor 3 (whose spectral power peaks at 8 Hz). Overlapping EEG traces reveal phase 
relationships, i.e., time lags that maximize correlation within the channel pairs. These lags or phase differences 
are visualized in polar coordinates (right).
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abnormalities at other times (i.e., Dysrhythmia grade 3). However, an analysis using entirely normal EEGs 
of epilepsy patients will be necessary to evaluate the true potential of our results. However, identification of 
such EEGs requires extensive review of patient records, which we hope to accomplish in a follow-up study. 
Furthermore, eyes-closed wakefulness was determined by a heuristic algorithm validated in previous studies24,41. 
Events markers or comments added by EEG technologists79 during the EEG study could help to identify the 
patient’s behavioral state more reliably. Extension of our analysis to different sleep states will be pursued in future 
studies.

The estimation of connectivity could benefit from EEG source modeling to avoid volume conduction and 
active reference effects on the scalp80,81. However, the lower spatial density of clinical EEGs prevented source/
inverse modeling efforts, as previous studies have shown that EEG source modeling with fewer than 64 channels 
is highly error-prone82–84. Phase-based connectivity, and wPLI in particular, was chosen to suppress spurious 
zero-lag correlations and partially alleviate the effects of volume conduction48,85. Due to absence of patient-
specific head models, average referencing was chosen to mitigate reference-related effects on connectivity better 
than alternatives like Cz and linked mastoids80.

Our classification analyses demonstrated a high level of variance between cross-validation folds (Figs.  5 
and 6). Such variance could be a result of low sample size and the potential effects of comorbidities86,87 and 
medications88. The effects of these confounders may be mitigated either by comprehensive patient review to 
identify a clinically homogeneous set of focal epilepsy patients or with the use of larger epilepsy and matched 
control cohorts. Given that the EEG background patterns identified in this study are not specific to epilepsy, 
apparent differences in factor loadings must be interpreted within the appropriate clinical context. Additionally, 
validations using normal interictal EEGs from an external site are needed to assess the generalizability of the 
presented findings.

Conclusion
Normal interictal EEGs recorded from epilepsy patients can lead to delays in neurological care, especially in 
patients with drug-resistant and normal MRI epilepsy. This study explored the value of quantitative analysis 
of normal interictal EEGs in supporting a focal epilepsy diagnosis. Application of this unsupervised learning 
approach could benefit treatment planning in the future. We presented a scalable, interpretable, data-driven 
approach based on canonical polyadic decomposition that recovered physiologically meaningful spectral 
power and phase-based connectivity patterns from a population-scale dataset of normal EEGs and provided 
patient-specific loadings for each pattern. These loadings demonstrated value in classifying focal epilepsy and, in 
temporal lobe epilepsy, drug resistance and absence of lesions. These findings suggest that normal routine EEGs 
may contain subtle abnormalities that can be captured using a quantitative approach and be potentially used to 
augment decision-making in clinically challenging scenarios.

Data availability
Raw clinical EEGs cannot be made publicly available due to legal restrictions. Summary data that supports the 
reproduction of reported findings and analysis code can be made available by the corresponding authors upon 
reasonable request.
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