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We investigate global solutions to the Euler-alignment system in d dimensions with unidirectional
flows and strongly singular communication protocols φ(x) = |x|−(d+α) for α ∈ (0, 2). Our paper
establishes global regularity results in both the subcritical regime 1 < α < 2 and the critical regime
α = 1. Notably,when α = 1, the system exhibits a critical scaling similar to the critical quasi-geostrophic
equation. To achieve global well-posedness, we employ a novel method based on propagating the
modulus of continuity. Our approach introduces the concept of simultaneously propagating multiple
moduli of continuity, which allows us to effectively handle the system of two equations with critical
scaling. Additionally, we improve the regularity criteria for solutions to this system in the supercritical
regime 0 < α < 1.

1 Introduction

In this paper, we consider the hydrodynamic Euler-alignment system described by the following
equations:

⎧
⎪«
⎪¬

∂tρ + div (ρu) = 0,

∂tu + u · ∇u =
∫

Rd

φ(x − y)(u(y) − u(x))ρ(y)dy,
(1.1)

for (x, t) ∈ R
d × R+, subject to the initial condition

(ρ,u)|t=0(x) = (ρ0,u0)(x).

Here, ρ and u = (u1(x, t), · · · ,ud(x, t)) represent the density and velocity vector field, respectively. The
second equation of (1.1) includes the alignment force, which is determined by the communication protocol

φ, that measures the strength of the alignment interactions and is assumed to be non-negative and
radially decreasing. The alignment force can be expressed as a commutator:

∫

Rd

φ(x − y)(u(y) − u(x))ρ(y)dy = −[Lφ ,u] ρ := −Lφ(ρu) + Lφ(ρ)u, (1.2)
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where

Lφ(f )(x) :=
∫

Rd

φ(x − y)(f (x) − f (y))dy.

The system (1.1) can be seen as amacroscopic representation of the well-known Cucker–Smale f locking

model [11]

⎧
⎪⎪⎪«
⎪⎪⎪¬

ẋi = vi,

v̇i =
1
N

N∑

j=1

φ(xi − xj)(vj − vi),
where

(
xi(t),vi(t)

)
∈ R

d × R
d, i = 1, · · · ,N,

which describes the collectivemotion ofN agents adjusting their velocities based on a weighted average
of their neighbors. For a detailed derivation of (1.1) and related discussions, we refer the readers to
[5, 14, 31] and the references therein.

Our main focus is on the global well-posedness and asymptotic behaviors of the Euler-alignment
system (1.1). Extensive progress has been made in recent years, revealing that different types of com-
munication protocols lead to different system behaviors. For bounded and Lipschitz communication
protocols, the alignment force (1.2) acts as a nonlocal damping mechanism. This results in a critical

threshold phenomenon: subcritical initial data lead to global well-posedness, while supercritical initial
data lead to the formation of finite-time singularities. See, for example, [6, 37]. A similar theory has
been established for weakly singular communication protocols, where φ is unbounded but integrable
at the origin. See, for example, [39].

Another type of communication protocol that is of particular interest to us is when φ is strongly

singular, meaning it is not integrable at the origin. A prototype example of such a protocol is given by

φ(z) = cα |z|−(d+α), cα =
2α�( d+α

2 )

π
d
2 �(− α

2 )
, α ∈ (0, 2),

when the operator Lφ is characterized by the fractional Laplacian:

Lφ(f )(x) = �αf (x) := cαp.v.
∫

Rd

f (x) − f (y)

|x − y|d+α
dy.

The singularity in the communication protocol induces dissipation (or ellipticity) in the alignment
force (1.2), resulting in a regularization effect on the solutions of (1.1). This phenomenon has been
the subject of extensive research, especially in the context of a one-dimensional periodic domain T.
Notably, studies conducted in [13, 32–34] have demonstrated that for any smooth non-vacuous initial
data, global smooth solutions arise. Furthermore, these results have been extended to encompass
general strongly singular communication protocols [18], as well as scenarios involving misalignment
in communications [28]. When the initial data contain a vacuum, the ellipticity becomes degenerate,
leading to the possibility of finite-time singularity formations [1, 38].

The remarkable success of the theory in one dimension can be largely attributed to the presence of
a conserved auxiliary quantity:

G = ∂xu − �αρ,

which satisfies the continuity equation

∂tG + ∂x(Gu) = 0.

The conservation of G plays a crucial role in the analysis and understanding of the system dynamics.
In particular, when the initial condition G0 is identically zero (G0 ≡ 0), it follows that G ≡ 0, and (1.1)
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reduces to the following advection-diffusion equation:

∂tρ + u∂xρ = −ρ�αρ, u = ∂−1
x �αρ = −∂x�

α−2ρ. (1.3)

This equation is recognized and extensively studied as a model for one-dimensional nonlinear porous
medium flowwith fractional potential pressure [2–4]. Furthermore, in the special case where α = 1, (1.3)
corresponds to a one-dimensional model of the two-dimensional critical quasi-geostrophic equation,
which has been investigated in [7].

However, extending the theory to higher dimensions has proven to be challenging and has not yielded
comparable success. A natural replacement for the auxiliary quantity in higher dimensions is given by

G := ∇ · u − �αρ,

which satisfies the equation:

∂tG + ∇ · (Gu) = (∇ · u)2 − Tr[(∇u)2].

However, this new formulation is no longer conservative, as the right-hand side is not necessarily zero.
The absence of a conserved quantity in higher dimensions poses a significant challenge in extending
the results obtained in one dimension. In the general multi-dimensional case, the global well-posedness
result remains incomplete and typically requires additional smallness assumptions on the initial data.
For instance, when the initial velocity amplitude is small relative to its higher-order norms, Shvydkoy
[30] established global existence and stability results for nearly aligned flocks. Additionally, Danchin
et al. [12] demonstrated global well-posedness for solutions to (1.1) within the critical Besov space
framework, under the assumption that the initial data (ρ0,u0) is sufficiently close to the constant state
(1,0) in terms of Besov space norms.

Recently, Lear and Shvydkoy introduced a class of uni-directional flows in their work [23]. This class
of flows is given by

u(x, t) = u(x, t)d, d ∈ S
d−1, u(x, t) : Rd × R+ → R. (1.4)

It can be observed that the structure (1.4) is preserved over time by the Euler-alignment system (1.1).
Moreover, under the uni-directional flow condition (1.4), the term (∇ ·u)2 −Tr[(∇u)2] in the equation for
G vanishes, leading to the conservation of G; see (1.6). This structure makes uni-directional flows more
tractable analytically compared to the general multi-dimensional case.

Without loss of generality, considering the rotational invariance of system (1.1), we can assume that
d = (1, 0, · · · , 0) corresponds to the x1 direction. This leads to the following system:

⎧
⎪⎪«
⎪⎪¬

∂tρ + ∂x1 (ρu) = 0,

∂tu + u ∂x1u = −�α
(
ρu

)
+ (�αρ)u =: Cα(u, ρ),

(ρ,u)|t=0(x) = (ρ0,u0)(x).

(1.5)

Although this system exhibits the characteristics of one-dimensional flow, it is important to note
that the spatial variable x still belongs to R

d, and the dissipation is in d dimensions. Thus, it differs
from the traditional one-dimensional Euler-alignment system. However, we recall the aforementioned
feature of system (1.5), namely the conservation of the auxiliary quantity:

G = ∂x1u − �αρ, ∂tG + ∂x1 (Gu) = 0. (1.6)

Based on this conservation property, it is reasonable to inquire whether the system (1.5) possesses a
similar global well-posedness theory as the one-dimensional system. However, this is not the case.

To illustrate this, consider the special case when G0 ≡ 0, resulting in G ≡ 0 throughout the system.
In this scenario, (1.5) reduces to the advection-diffusion equation:

∂tρ + u∂x1ρ = −ρ�αρ, u = ∂−1
x1

�αρ. (1.7)
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In contrast to the one-dimensional system (1.3), where the regularity of u can be controlled by the
regularity of ρ through their relationship, in (1.7), only ∂x1u can be controlled by the regularity of ρ.
There is no direct mechanism to control the other partial derivatives of u based on its relation to ρ.

Instead, one may approach the system (1.5) by focusing directly on the u equation in (1.5)2
and investigate the regularization effect of the alignment force Cα(u, ρ). By enforcing ρ ≡ 1, we
observe that

Cα(u, 1) = −�αu.

In this case, the equation (1.5)2 becomes the fractal Burgers equation

∂tu + u ∂x1u = −�αu, (1.8)

which has been extensively studied in [16]. The behavior of solutions depends on the value of α. When
α ∈ (1, 2), the dissipation dominates, resulting in globally well-posed solutions. However, when α ∈ (0, 1),
the dissipation is not strong enough, and finite-time singularity formations may occur. The critical case
arises when α = 1, and it is particularly subtle to analyze. Global well-posedness has been established
using a novel method based on the modulus of continuity. This approach was invented by Kiselev et al.
in their celebrated work on the critical quasi-geostrophic equations [17], and has been successfully used
to analyze many equations with critical scalings; see, for example, [15, 18, 19, 27, 28].

The uni-directional Euler-alignment system (1.5) has been thoroughly investigated by Lear and
Shvydkoy in their work [23] for the case of α ∈ (1, 2). They establish that the alignment force Cα(u, ρ),
which behaves similarly to the fractional Laplacian −�αu, dominates the Burgers nonlinearity, leading
to global well-posedness. Their approach builds upon the Hölder regularization results developed
in [29, 35].

However, in the critical case of α = 1, the intricate structure of C1(u, ρ) presents significant challenges
in extracting sufficient dissipation to counterbalance the nonlinear advection. To the best of our
knowledge, the only available result in the literature is provided by Lear in [20], where global well-
posedness is established for the specific case (1.7). For general equation (1.5), smallness assumptions
are required to obtain global smooth solutions.

Now, we present our first main result on the global well-posedness of the system (1.5) for 1 ≤ α < 2.

Theorem 1.1 (Global well-posedness). Let 1 ≤ α < 2 and (ρ0,u0) ∈ Hm+α(Td) × Hm+1(Td), where
m > d

2 + 1 and ρ0(x) > 0. Then there exists a global unique non-vacuous solution (ρ,u) to the
uni-directional Euler-alignment system (1.5) in the following class:

ρ ∈ Cw(R+;Hm+α(Td)), u ∈ Cw(R+;Hm+1(Td)) ∩ L2(R+; Ḣm+1+ α
2 (Td)).

We work on the periodic domain T
d for convenience in analysis. This setup guarantees a positive

lower bound on the density ρ, which plays a crucial role in ensuring dissipation in the alignment force.
It would be interesting to consider the question of global well-posedness in the whole space or within
a bounded domain with a smooth boundary.

When α ∈ (1, 2), our theorem recasts the results presented in [23], but through an alternative
approach based on the method of modulus of continuity.

The main contribution of this theorem lies in the critical case when α = 1. Our result establishes
global regularity without imposing any smallness assumptions. Overcoming this challenge requires
extracting sufficient dissipation from the alignment force C1(u, ρ). A major difficulty arises from the
system’s invariance under the critical scaling:

ρ(x, t) � ρ(λx, λt), u(x, t) � u(λx, λt), ∀ ∼ λ > 0. (1.9)

As a consequence, energy-based or scaling-based estimates alone are inadequate to ensure global
regularity. Instead, we employ the method of modulus of continuity, which draws inspiration from the
approach used in [16] on the critical fractal Burgers equation (1.8).
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Wewould like to emphasize an additionalmajor difficulty in the analysis. Unlike the linear fractional
dissipation term C1(u, 1) = −�u, the alignment force C1(u, ρ) is highly nonlinear and dependent on the
density ρ. In particular, themost dangerous term is the difference between C1(u, ρ) and ρ C1(u, 1), namely

C1(u, ρ) − ρ C1(u, 1) = cαp.v.
∫

Rd

(ρ(y) − ρ(x))(u(y) − u(x))

|x − y|d+1
dx, (1.10)

which cannot be solely controlled by the linear dissipation −�u. Additional a priori control on the
regularity of ρ is required. However, utilizing the relation

ρ = ∂x1�
−1u − �−1G (1.11)

does not provide a sufficient bound. The main obstacle is the lack of L∞ to L∞ bound for the Reisz
transform ∂x1�

−1. Consequently, standard approaches employed in [13, 16, 23] do not yield the desired
global well-posedness result.

To overcome this difficulty, we propose a new concept of simultaneously propagating two moduli of

continuity. In addition to propagating the modulus of continuity on u, as done in [16], we simultaneously
propagate a modulus of continuity on ρ through the equation (1.5). The key lies in smartly choosing
a modulus of continuity for ρ that is stronger than what can be obtained solely through the relation
(1.11). This choice allows us to achieve sufficient control over the term (1.10).

We believe that this new approach represents an extension of the method of modulus of continuity
and opens up possibilities for studying systems of equations with critical scalings. By simultaneously
propagating multiple moduli of continuity, we can effectively handle the nonlinear interactions and
dependencies in the system, leading to the desired global well-posedness results. This innovative
approach may pave the way for further developments in the analysis of critical systems and their
regularity properties.

Our next result concerns the asymptotic f locking behavior of solutions to (1.5). This phenomenon has
been extensively studied in the general context of the Euler-alignment system (1.1) (see, e.g., [20, 21,
23–26, 33, 37]). In particular, the global solution tends to exhibit certain collective behavior. Specifically,
the velocity u converges to its average value ū, given by

ū :=
∫
T
(ρ0u0)(x)dx∫
T

ρ0(x)dx
, (1.12)

while the density profile tends to a traveling wave flocking state:

ρ(x, t) → ρ∞(x − ūt).

We establish the following result:

Theorem 1.2 (Asymptotic behavior). Let (ρ,u) be the global solution to (1.5) as guaranteed by
Theorem 1.1. Then we have

‖u(t) − ū‖W1,∞ ≤ Ce−c0 t, ∀ ∼ t > 0, (1.13)

where ū is defined as in (1.12), and the rate c0 > 0 depends only on α, d and ū. Moreover, there
exist ρ∞ ∈ Hm+α(Td) such that

‖ρ(·, t) − ρ∞(· − ūt)‖Cβ ≤ Ce−c0 t, ∀ ∼ t > 0, 0 < β < 1. (1.14)

The exponential decays observed in (1.13) and (1.14) are commonly referred to as strong flocking. This
result has already been established and documented in the literature, for instance in [20, 23].
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In our analysis, we introduce a time-dependent modulus of continuity on u, inspired by the approach
presented in [15]. This innovative technique enables us to derive the asymptotic behavior (1.13) as a
complementary result to the global well-posedness theorem.

Our final result focuses on the system (1.5) with α ∈ (0, 1). In the context of the fractional Burgers
equation (1.8), it is well known that the dissipation term Cα(u, 1) is not sufficiently strong to prevent the
formation of singularities within finite time. However, a remarkable discovery in [13] demonstrated
that the alignment force Cα(u, ρ), which incorporates the density ρ as a weight, actually enhances
the dissipation for the one-dimensional Euler-alignment system, yielding global regularity. The natural
question that arises is whether a similar phenomenon can be observed in multi-dimensional systems.
Specifically, for the uni-directional flow described by (1.5), it remains unclear whether the enhanced
dissipation effect occurs solely in the x1 direction, as suggested by (1.7).

Although it is uncertain whether the dissipation induced by Cα(u, ρ) can surpass that of Cα(u, 1), our
subsequent result demonstrates that they are at least comparable. The following theorem provides a
refined regularity criterion for the system (1.5) when α ∈ (0, 1).

Theorem 1.3 (Regularity criterion). Let 0 < α < 1. and (ρ0,u0) ∈ Hm+α(Td) × Hm+1(Td), where
m > d

2 + 1 and ρ0(x) > 0. Let T∗ > 0 be the maximum existence time of the smooth solution for
the uni-directional Euler-alignment system (1.5) constructed in Theorem 2.1. Then provided
that

sup
t∈[0,T∗)

‖u(t)‖Cσ (Td) < ∞, for some σ ∈ (1 − α, 1), (1.15)

we necessarily have T∗ = ∞. Moreover, we obtain the following Lipschitz bounds:

‖∇ρ(t)‖L∞ ≤ C
(
1 + ‖u‖

1
σ−1+α

L∞(R+ ;Cσ (Td))

)
, ∀t > 0, (1.16)

and

‖∇u(t)‖L∞ ≤ C
(
1 + ‖u‖

1
σ−1+α

L∞(R+ ;Cσ (Td))

)
e−c0t, ∀t > 0, (1.17)

where C > 0 depends only on α, d, and initial data (ρ0,u0); and the rate c0 > 0 is the same as in
Theorem 1.2.

A regularity criterion has been established in [23], which is stated in (2.1) and asserts that solutions
remain smooth if both ρ and u are Lipschitz continuous. In comparison, our regularity criterion (1.15)
imposes a less stringent condition by requiring only Hölder continuity of u. This represents a significant
improvement in terms of the regularity requirement.

We would like to emphasize that the system (1.5) exhibits an invariance property under the scaling
transformation

ρ(x, t) � ρ(λx, λαt), u(x, t) � λ−(1−α)u(λx, λαt), ∀ ∼ λ > 0. (1.18)

Consequently, the criterion (1.15) only necessitates that u belongs to a slightly smoother space compared
to the scale-invariant class L∞(R+;C1−α(Td)). Our result shares similarities with the works of Constantin
andWu [9] on the supercritical quasi-geostrophic equation and Silvestre [36] on the advection-diffusion
equation. We employ the same modulus of continuity method to obtain our result. However, we have
not attempted to extend our regularity criterion (1.15) to the case of u ∈ L∞(R+;C1−α(Td)). If this were the
case, one would expect that ρ becomes Hölder continuous [35]. Further regularization of the solution is
possible. See relevant discussion in Remark 6.1.

It is worth noting that the regularity criterion (1.15) is also expected to hold for the fractional Burgers
equation (1.8), as it satisfies the same scaling (1.18).Moreover, in [16], solutions were constructed in such
a way that the regularity criterion fails in finite time, resulting in the development of singularities.
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However, it remains unclear whether such blow-up phenomena occur in the context of the uni-
directional Euler-alignment system (1.5). This intriguing question will serve as the focus of future
investigations.

The outline of our paper is as follows. In Section 2, we present the local well-posedness result for
system (1.5) and establish some fundamental a priori bounds for the quantities (ρ,u) and the auxiliary
quantity G. Our general approach revolves around the method of modulus of continuity (MOC). In
Subsection 3.1, we set up a framework for simultaneously propagating the MOCs of ρ and u, while
also identifying potential breakdown scenarios that could violate their preservation. In Subsections 3.2
and 3.3, we demonstrate the general estimates for the evolution of the MOCs by density ρ and velocity
u, respectively, covering the entire range of 0 < α < 2 under possible breakdown scenarios. Then, in
Sections 4, 5, and 6, we respectively prove that the breakdown scenarios cannot occur in the subcritical
(1 < α < 2), critical (α = 1), and supercritical (0 < α < 1) regimes. For the critical regime, we carefully
select a pair of MOCs for ρ and u to avoid the occurrence of breakdown scenarios. The preservation
of MOCs implies the uniform Lipschitz regularity of (ρ,u), leading to the proofs of Theorems 1.1, 1.2,
and 1.3. Finally, we provide the proofs of two auxiliary lemmas in the appendix section.

Notations: For convenience, we sometimes use R
d instead of Td by periodically extending the domain

to the whole space. The constant C may be different from line to line, and the notation a � b means
a ≤ Cb.

2 Preliminaries

In this section, we state a collection of known results on the unidirectional Euler-alignment system (1.5)
in the existing literature. The 1D theory was established in [13, 32, 33], and the multi-dimensional case
was discussed in [23].

2.1 Local well-posedness
We begin with the local well-posedness result for smooth solutions to the Euler-alignment system (1.5).

Theorem 2.1 (Local well-posedness). Let 0 < α < 2. Suppose that m > d
2 + 1 and

(ρ0,u0) ∈ Hm+α(Td) × Hm+1(Td),

with ρ0(x) > 0. Then there exists a T0 > 0 such that the Euler-alignment system (1.5) with initial
data (ρ0,u0) has a unique non-vacuous solution (ρ,u) on interval [0,T0) in the class

ρ ∈ Cw([0,T0);Hm+α(Td)), u ∈ Cw([0,T0);Hm+1(Td)) ∩ L2([0,T0); Ḣm+1+ α
2 (Td)).

Moreover, let T∗ > 0 be the maximal existence time of the above constructed solution, then

if T∗ < ∞, 
⇒ sup
t∈[0,T∗)

(
‖∇ρ(t)‖L∞ + ‖∇u(t)‖L∞

)
= ∞. (2.1)

The proof of the theorem can be found in [23, Theorem 1.1]. We omit the details.
Throughout the remainder of this paper, we will use the notation T∗ to represent the maximal

existence time of the local smooth solution (ρ,u) constructed in Theorem 2.1 for the unidirectional
Euler-alignment system (1.5). This notation will be consistently employed in our subsequent analysis.

2.2 A priori bounds
We list some useful a priori bounds on the solution (ρ,u) and the auxiliary quantity G := ∂x1u − �αρ.

First, by integrating the continuity equation (1.5) with respect to x-variable, we have the conservation
of mass

∫

Td

ρ(x, t)dx =
∫

Td

ρ0(x)dx =: ρ̄0. (2.2)
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We also have the conservation of momentum:

∫

Td

(ρu)(x, t)dx =
∫

Td

(ρ0u0)(x)dx,

which can be deduced from the integration over Td of the momentum equation

∂t(ρu) + ∂x1 (ρu
2) = ρ Cα(u, ρ),

and using the fact

∫

Td

ρ(x)Cα(u, ρ)(x)dx =
∫

Td

∫

Td

φ(x − y)(u(y) − u(x))ρ(x)ρ(y)dxdy = 0.

Next, we define F := G
ρ
. Using the equation of G in (1.6), we find

∂tF + u ∂x1F = 0, F|t=0(x) = F0(x). (2.3)

It directly yields that

‖F(t)‖L∞(Td) ≤ ‖F0‖L∞(Td) =
∥∥∥

∂x1u0 − �αρ0

ρ0

∥∥∥
L∞
. (2.4)

From the relation ∂x1u = G + �αρ = Fρ + �αρ, we can write the continuity equation (1.5)1 as

∂tρ + u ∂x1ρ = −Fρ2 − ρ�αρ.

This leads to the following a priori bounds on ρ.

Proposition 2.2. There exist positive constants ρ and ρ, depending on α, ρ̄0 and ‖F0‖L∞ , such that

0 < ρ ≤ ρ(x, t) ≤ ρ < ∞, ∀ ∼ x ∈ T
d, t ∈ [0,T∗). (2.5)

The upper bound can be obtained by using the nonlinear maximum principle introduced by
Constantin and Vicol [8]. See, for example, [13, Theorem 2.1] for applications to the 1D Euler-alignment
system. A similar argument leads to a time-dependent lower bound ρ(t) � 1/t. A uniform lower bound
was first obtained in [33], making additional use of (2.2). We refer the detailed proof to [33, Lemma 3.1].

In combination with (2.4), we also get that for every t ∈ [0,T∗),

‖G(t)‖L∞(Td) ≤ ‖Fρ(t)‖L∞(Td) ≤ ρ ‖F0‖L∞(Td). (2.6)

Finally, for the velocity u, let us recall

∂tu + u ∂x1u = cα p.v.
∫

Rd

u(y) − u(x)

|x − y|d+α
ρ(y)dy. (2.7)

The standard maximum principle yields the uniform bound (see, e.g., [10, Theorem 4.1])

‖u(t)‖L∞(Td) ≤ ‖u0‖L∞(Td), ∀ ∼ t ∈ [0,T∗).

Moreover, we recall the following exponential decay estimate of u (see [37, Theorem 2.2]).
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Lemma 2.3. Let α ∈ (0, 2). Assume that u(x, t) is a smooth solution solving equation (2.7) on [0,T∗).
Denote by

V(t) := sup
x,y∈supp ρ(·,t)

|u(x, t) − u(y, t)|.

Then there exists a constant c0 > 0 depending only on α, d such that for every t ∈ [0,T∗),

V(t) ≤ V0 e
−c0t. (2.8)

Note that in our periodic-domain setting with non-vacuous density as in Proposition 2.2, we in fact
have V(t) = supx,y∈Td |u(x, t) − u(y, t)| and V0 = supx,y∈Td |u0(x) − u0(y)|.

3 General Estimates on the Evolution of the Modulus of Continuity

Our primary analytical tool for studying the global well-posedness of the system is the innovative
modulus of continuity method. This method was initially developed by Kiselev et al. in [17] for the critical
quasi-geostrophic equation. It has proven effective in tackling various fluid equations with critical
scalings and establishing global well-posedness results. Notably, the method has been successfully
applied to the 1D Euler-alignment system in [13, 18, 28], where global well-posedness is demonstrated
for 0 < α < 2.

In this section, we establish the framework of the modulus of continuity method for our system (1.5)
and derive the necessary estimates to establish global well-posedness.

3.1 The modulus of continuity
A function ω(ξ) : (0,∞) → (0,∞) is called a modulus of continuity (MOC) if ω(ξ) is continuous,
nondecreasing, concave, and piecewise C2 with one-sided derivatives defined at every point in (0,∞). In
our application below, we always set ω(0+) = limξ→0+ ω(ξ) = 0. We say a function f obeys the modulus
of continuity ω if

|f (x) − f (y)| < ω(|x − y|), for all x �= y ∈ R
d.

We start with the following modulus of continuity

ω̄δ,μ(ξ) :=
{

δ
(
ξ − 1

4 ξ1+μ
)
, for 0 < ξ ≤ 1;

3
4 δ + δ

2 log ξ , for ξ > 1,

where μ ∈ (0,min{α, 1}) is fixed later and δ > 0 is a sufficiently small parameter to be chosen later.
Consider a family of MOC via scaling

ω
δ,μ
λ (ξ) := ω̄δ,μ(

ξ

λ
) =

{
δλ−1ξ − 1

4 δλ−1−μξ1+μ, for 0 < ξ ≤ λ;
3
4 δ + 1

2 δ log ξ

λ
, for ξ > λ.

(3.1)

The following lemma states that any bounded Lipschitz function obeys a MOC in this family. The proof
can be found in [28, Lemma 4.1].

Lemma 3.1. For any function f ∈ W1,∞(Rd) and for every λ satisfying

0 < λ ≤
2‖f‖L∞

‖∇f‖L∞
e−4δ−1‖f‖L∞ ,

we have that f obeys the MOC ω
δ,μ
λ defined in (3.1).
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As ρ0 and u0 are Lipschitz functions, for any given parameters δ and μ, we may pick a small enough
λ such that they both obey ω

δ,μ
λ . We choose the following MOC for the density

ω1(ξ) := ω
δ1 ,μ
λ (ξ) (3.2)

with some 0 < δ1,μ, λ < 1 chosen later. Our goal is to demonstrate that the density ρ(t) obeys ω1 for all
time. This result implies the desired Lipschitz bound:

‖∇ρ(t)‖L∞ ≤ ω′
1(0

+) = δλ−1 < ∞, ∀ ∼ t ∈ [0,T∗). (3.3)

As discussed in the introduction, our approach involves simultaneously propagating the MOCs on
the density and velocity. For this purpose, we introduce the MOC on the velocity:

ω2(ξ) := ω
δ2 ,μ
λ (ξ), (3.4)

with 0 < δ2,μ, λ < 1 chosen later, and our aim is to show that u(t) satisfies the MOC ω2 for all time. In
most cases, we can choose δ1 = δ2, but we keep the flexibility of selecting different parameters δ1 and
δ2. This flexibility will play a crucial role in the critical case when α = 1 (see Remark 3.8).

Furthermore, to obtain the decay estimate (1.13), we consider a time-dependent MOC on u:

ω2(ξ , t) := e−c0 tω2(ξ), (3.5)

where c0 > 0 is a constant appearing in Lemma 2.3. If u(t) satisfies the MOC ω2(ξ , t), then we obtain

‖∇u(t)‖L∞ ≤ e−c0tω′
2(0

+) = e−c0 tδ2λ
−1, ∀t ∈ [0,T∗), (3.6)

where the Lipschitz norm decays exponentially in time.
The following lemma characterizes the only possible breakthrough scenario when the two MOCs are

not satisfied simultaneously. We refer the reader to [15, 17] for the proof.

Lemma 3.2 (Breakthrough scenarios). Let ρ(x, t), u(x, t) be smooth functions on T
d × [0,T∗).

Assume that ρ0(x) and u0(x) obey the MOCs ω1(ξ) and ω2(ξ), defined in (3.2) and (3.4)
respectively. Let t = t1 ∈ (0,T∗) be the first time that either ρ(x, t) violates the MOC ω1(ξ) given
by (3.2) or u(x, t) violates the MOC ω2(ξ , t) given by (3.5). Then there exist two distinct points
x �= y ∈ T

d such that either

ρ(x, t1) − ρ(y, t1) = ω1(ξ) with ξ = |x − y|, (3.7)

or

u(x, t1) − u(y, t1) = ω2(ξ , t1), (3.8)

and also for any x̃, ỹ ∈ T
d and t ∈ [0, t1],

|ρ(x̃, t) − ρ(ỹ, t)| ≤ ω1(|x̃ − ỹ|), |u(x̃, t) − u(ỹ, t)| ≤ ω2(|x̃ − ỹ|, t). (3.9)

Hence, in order to show that for all time t ∈ (0,T∗) the solution ρ(x, t) obeys the MOC ω1(ξ) and
simultaneously u(x, t) obeys the MOC ω2(ξ , t), we only need to consider two cases:

(i) No breakthrough for the MOC of ρ: under the scenario (3.7), (3.9), it suffices to show that

∂t
(
ρ(x, t) − ρ(y, t)

)∣∣
t=t1

< 0; (3.10)
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(ii) No breakthrough for the MOC of u: under the scenario (3.8)-(3.9), it suffices to show that

∂t

(
u(x, t) − u(y, t)

ω2(ξ , t)

)∣∣∣∣
t=t1

< 0,

or equivalently,

∂t
(
u(x, t) − u(y, t)

)
|t=t1 + c0 ω2(ξ , t1) < 0. (3.11)

If these estimates (3.10)–(3.11) are proven, it leads to a contradiction and thus implies that the
breakthrough scenario in Lemma 3.2 cannot occur at any time.

Let us provide further comments on the two cases mentioned above. In the case (i), if ξ > ω−1
1 (ρ), we

recall (2.5) and find that

ρ(x, t1) − ρ(y, t1) ≤ ρ < ω1(ξ).

Therefore, scenario (3.7) cannot occur. Thus, we only need to establish (3.10) for

0 < ξ ≤ �1 := ω−1
1 (ρ) = λe2δ−1

1 ρ− 3
2 . (3.12)

Similarly, in the case (ii), if ξ > ω−1
2 (V0), we recall (2.8) and find that

u(x, t1) − u(y, t1) ≤ V(t1) ≤ V0 e
−c0t1 < ω2(ξ)e−c0t1 = ω2(ξ , t1).

Therefore, scenario (3.8) cannot occur. Thus, we only need to establish (3.11) for

0 < ξ ≤ �2 := ω−1
2 (V0) = λe2δ−1

2 V0− 3
2 . (3.13)

We may further choose λ to be sufficiently small as

λ ≤ 1
2 e

−
(
2δ−1

1 ρ+2δ−1
2 V0

)
,

to ensure �1,�2 ≤ 1
2 .

Before we proceed, let us introduce some notational conventions for the sake of convenience. Since
there are several quantities related to both ρ and u that have similar expressions,we will use a subscript
i to denote the common representation. Specifically, we will use i = 1 and i = 2 to refer to the quantities
related to ρ and u, respectively.

3.2 Evolution of the MOC on ρ

We begin by presenting general estimates that lead to (3.10) under the scenario (3.7), (3.9). The analysis
for the 1D Euler-alignment system has been conducted in [13], and we follow a similar procedure.
However, it is important to note that additional difficulties arise due to the higher dimension d > 1.

Below we drop the dependence on the variable t1 for simplicity. Taking advantage of the equation
(1.5)1 and the relations ∂x1u = �αρ + G, G = Fρ (recalling (1.6) and (2.3)), we see that

∂tρ = −∂x1 (u ρ) = −ρ�αρ − ρ2F − u ∂x1ρ,

and thus

∂tρ(x) − ∂tρ(y) = −ρ(y)
(
�αρ(x) − �αρ(y)

)
−

(
ρ(x) − ρ(y)

)
∂x1u(x)

− ρ(y)F(x)
(
ρ(x) − ρ(y)

)
− ρ2(y)

(
F(x) − F(y)

)
−

(
(u∂x1ρ)(x) − (u∂x1ρ)(y)

)

=: N1 + N2 + N3 + N4 + N5. (3.14)
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The first term N1 in the estimate encodes the dissipation. Indeed, along the lines of [15, 17], we have

�αρ(x) − �αρ(y) = cα p.v.
∫

Rd

ω1(ξ) − ρ(x + z) + ρ(y + z)

|z|d+α
dz ≥ Dα,1(ξ) > 0, (3.15)

where we denote

Dα,i(ξ) := C1

( ∫ ξ

2

0

2ωi(ξ) − ωi(ξ + 2η) − ωi(ξ − 2η)

η1+α
dη

+
∫ ∞

ξ

2

2ωi(ξ) − ωi(2η + ξ) + ωi(2η − ξ)

η1+α
dη

) (3.16)

with the constant C1 > 0 that depends only on α and d. Note that Dα,i(ξ) is strictly positive as ωi is
concave. Clearly, (3.15) implies

N1 ≤ −ρ Dα,1(ξ). (3.17)

Next, for the term N2, it follows from ∂x1u = �αρ + ρF and (2.4) that

N2 ≤ −ω1(ξ)�αρ(x) + ρ ‖F0‖L∞ ω1(ξ). (3.18)

Following [13], we obtain the following bound on −�αρ(x),

− �αρ(x) = cα p.v.
∫

Rd

(
ρ(x − z) − ρ(y)

)
−

(
ρ(x) − ρ(y)

)

|z|d+α
dz ≤ Aα,1(ξ), (3.19)

where

Aα,i(ξ) := cα p.v.
∫

Rd

ωi(|ξe1 − z|) − ωi(ξ)

|z|d+α
dz, (3.20)

and e1 := (1, 0, . . . , 0). Here, due to the rotation and translation invariance, we may assume without loss
of generality that

x =
(

ξ

2 , 0, . . . , 0
)
, y =

(
− ξ

2 , 0, . . . , 0
)
,

so that x − y = ξe1.
The term N3 can be easily controlled by

|N3| ≤ ρ ‖F0‖L∞ ω1(ξ), (3.21)

using (2.5) and (2.4).
For the term N4, we have

|F(x) − F(y)| ≤ ‖∇F‖L∞ ξ .

To control ∂x1F, we introduce H := ∂x1 F

ρ
, which satisfies

∂tH + u∂x1H = 0, with H0 = ∂x1 F0
ρ0

= 1
ρ0

∂x1

(
∂x1 u0−�αρ0

ρ0

)
,

which immediately implies, for every t ∈ [0,T∗),

‖H(t)‖L∞ ≤ ‖H0‖L∞ , and ‖∂x1F(t)‖L∞ ≤ ρ ‖H0‖L∞ .
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For d ≥ 2, additional control on the full gradient ∇F is required. To obtain this control, we use (2.3) and
compute

∂t∇F + u ∂x1∇F = −∇u ∂x1F, with ∇F0 = ∇
(

∂x1 u0−�αρ0

ρ0

)
.

This yields

‖∇F(t)‖L∞ ≤ ‖∇F0‖L∞ +
∫ t

0
‖∇u(τ )‖L∞ ‖∂x1F(τ )‖L∞dτ

≤ ‖∇F0‖L∞ + ρ ‖H0‖L∞

∫ t

0
‖∇u(τ )‖L∞dτ .

Given the scenario (3.9), u(t) satisfies ω2(ξ , t) as defined in (3.5). Thus,

‖∇u(t)‖L∞ ≤ e−c0 tω′
2(0

+) = e−c0 tδ2λ
−1, ∀ t ∈ [0, t1].

By integrating over time, we obtain

∫ t1

0
‖∇u(τ )‖L∞dτ ≤ δ2λ

−1
∫ t1

0
e−c0 tdt ≤

δ2

c0λ
.

Hence, the term N4 can be estimated as follows:

|N4| ≤ ρ2‖∇F(t1)‖L∞ ξ ≤ ρ2
(
‖∇F0‖L∞ + ρ

c0
‖H0‖L∞ δ2λ

−1
)
ξ . (3.22)

Finally, for the advection term N5, we find (e.g., see [17])

|N5| ≤ |u(x) − u(y)|ω′
1(ξ). (3.23)

Remark 3.3. In one dimension, one can take advantage of the relation

u = ∂−1
x (�αρ + G) = −∂x�

α−2ρ + ∂−1
x G,

and use ω1 to control the MOC of u (see [13, Lemma 4.4]). However, in higher dimensions, we
cannot expect that the MOC of u can be controlled by ω1 since the relation only involves the
partial derivative of u in the e1 direction. Therefore, we will separately show that u(t) obeys
ω2(ξ , t) as defined in (3.5). It is worth noting that when α ∈ (0, 1), the term ω2(ξ , t)ω′

1(ξ) cannot
be controlled by the dissipation. We need additional assistance from the regularity condition
(1.15). Detailed calculations to establish these estimates will be provided in the subsequent
sections.

Combining the estimates (3.14), (3.17), (3.18), (3.19), (3.21), (3.22), and (3.23), we can deduce that for
every 0 < α < 2 and ξ > 0,

∂tρ(x, t1) − ∂tρ(y, t1) ≤ −ρ Dα,1(ξ) + ω1(ξ)
(
Aα,1(ξ) + 2ρ‖F0‖L∞

)

+ ρ2
(
‖∇F0‖L∞ + ρ

c0
‖H0‖L∞ δ2λ

−1
)
ξ + |u(x) − u(y)|ω′

1(ξ).
(3.24)

Now we further estimate the terms on the right-hand side of (3.24). The goal is to use the first term
to control all the rest. We start with a lower bound on the dissipative term Dα,1.
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Lemma 3.4 (Dissipation bound). Let ωi(ξ) be the modulus of continuity given by (3.2) or (3.4).
Then for every α ∈ (0, 2) and for any ξ > 0, we have

Dα,i(ξ) ≥

⎧
«
¬

C1μ(μ+1)2α−1

4(2−α)
δiλ

−1−μξ1+μ−α , for 0 < ξ ≤ λ,
C12α−1

α
ωi(ξ)ξ−α , for ξ > λ.

(3.25)

The dissipation bound was originally derived in [17]. We include a proof under our notations in the
Appendix for self-consistency.

The next lemma provides a bound on the term Aα,1. In the case when d = 1, this bound was derived
in [13, Lemma 4.5]. However, in the multi-dimensional case, a significant enhancement is required
specifically for the directions orthogonal to e1.

Lemma 3.5. Let ωi(ξ) be the modulus of continuity given by (3.2) or (3.4). Then for every α ∈ (0, 2)

and for any ξ > 0, we have

Aα,i(ξ) ≤

⎧
«
¬
C2δiλ

−μξμ−α , for 0 < ξ ≤ λ,

C2δiξ
−α , for ξ ≥ λ,

(3.26)

where C2 > 0 depends only on α, d and μ.

Proof of Lemma 3.5. Let us denote z = (z1, zh) with zh = (z2, · · · , zd). We split Aα,i(ξ) given by (3.20) as
follows:

Aα,i(ξ) = cα p.v.
∫

|z1 |≤2ξ

∫

Rd−1

ωi(|ξ − z1|) − ωi(ξ)

|z|d+α
dzhdz1

+ cα p.v.
∫

|z1 |≤2ξ

∫

Rd−1

ωi(|ξe1 − z|) − ωi(|ξ − z1|)
|z|d+α

dzhdz1

+ cα p.v.
∫

|z1 |≥2ξ

∫

Rd−1

−ωi(ξ) + ωi(|ξe1 − z|)
|z|d+α

dzhdz1

=: Ii,1 + Ii,2 + Ii,3. (3.27)

For Ii,1, using symmetry, we get

Ii,1 = cα p.v.
∫ ξ

0

∫

Rd−1

−2ωi(ξ) + ωi(ξ − z1) + ωi(ξ + z1)

|z|d+α
dzhdz1

+ cα p.v.
∫ 2ξ

ξ

∫

Rd−1

ωi(z1 − ξ) − ωi(ξ)

|z|d+α
dzhdz1

+ cα p.v.
∫ 2ξ

ξ

∫

Rd−1

ωi(ξ + z1) − ωi(ξ)

|z|d+α
dzhdz1, (3.28)

and the first two integrals on the right-hand side of the above formula are both negative due to the
concavity of ωi (i = 1, 2), which gives

Ii,1 ≤ cα

∫ 2ξ

ξ

∫

Rd−1

ωi(ξ + z1) − ωi(ξ)

|z|d+α
dzhdz1 ≤ cαCd,α

∫ 2ξ

ξ

ωi(ξ + z1) − ωi(ξ)

z1+α
1

dz1,

with Cd,α =
∫
Rd−1

1

(1+|zh |2)
d+α
2

dzh < ∞. Arguing as the estimation in [28, Lemma 4.4] (with γ = δi
2 ), we get

Ii,1 ≤

⎧
«
¬
cαCd,αδiMα(ξ , λ), for 0 < ξ ≤ λ,
cαCd,α

α
δiξ

−α , for ξ ≥ λ,
(3.29)
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where

Mα(ξ , λ) :=

⎧
⎪⎪«
⎪⎪¬

1
α2(1−α)

λ−α , for 0 < α < 1,

λ−1
(
log λ

ξ
+ 5

4

)
, for α = 1,

( 1
α−1 + 5

4

)
λ−1ξ1−α , for 1 < α < 2.

In order to compare with the dissipation contribution, we state the following inequality, where we only
use the fact that ξ

λ
∈ (0, 1] and μ ∈ (0,min{1,α}),

Mα(ξ , λ) ≤ Cα,μλ−μξμ−α , with Cα,μ :=

⎧
⎪⎪⎪«
⎪⎪⎪¬

1
α2(1−α)

, for 0 < α < 1,
5
4 + sup

r≥1

log r
r1−μ , for α = 1,

1
α−1 + 5

4 , for 1 < α < 2.

(3.30)

For Ii,2 given by (3.27), we separately consider two cases: for every 0 < ξ ≤ 2λ, noting that

√
(ξ − z1)2 + |zh|2 − |ξ − z1| = |zh |2√

|ξ−z1 |2+|zh |2+|ξ−z1 |
, (3.31)

and using the fact that ω′
i(η) ≤ ω′

i(0
+) = δiλ

−1 for all η ∈ R+, we get

Ii,2 ≤ cα p.v.
∫

|z1 |≤2ξ

∫

Rd−1

δiλ
−1

|z|d+α

|zh|2√
|ξ − z1|2 + |zh|2 + |ξ − z1|

dzhdz1

≤ cα p.v.
∫

|z1 |≤ ξ

2

∫

|zh |≤ξ

δiλ
−1

|z|d+α

|zh|2

ξ/2
dzhdz1 + cα p.v.

∫

|z1 |≤2ξ

∫

|zh |≥ξ

δiλ
−1

|z|d+α
|zh|dzhdz1

+ cα p.v.
∫

ξ

2 ≤|z1 |≤2ξ

∫

|zh |≤ξ

δiλ
−1

|z|d+α
|zh|dzhdz1

≤ C0cαδiλ
−1

(
ξ−1

∫

|z|≤3ξ

1
|z|d−2+α

dz + ξ

∫

|zh |≥ξ

1
|zh|d−1+α

dzh + σd−2ξ
1−α

)

≤ C0cα
σd−1 + σd−2

α(2 − α)
δiλ

−1ξ1−α , (3.32)

with σn denoting the area of n-dimensional sphere for n ≥ 1 (setting σ0 = 1); whereas for every ξ ≥ 2λ,
noting that |ξe1 − z| = |(ξ − z1, zh)| (we will use this notation in the following), we have

Ii,2 = cα p.v.
∫

|z1 |≤2ξ

∫

|zh |≥ξ

ωi(|(ξ − z1, zh)|) − ωi(|ξ − z1|)
|z|d+α

dzhdz1

+ cα p.v.
∫

|z1 |≤ ξ

2

∫

|zh |≤ξ

ωi(|(ξ − z1, zh)|) − ωi(|ξ − z1|)
|z|d+α

dzhdz1

+ cα p.v.
∫

{ ξ

2 ≤|z1 |≤2ξ}∩{|z1−ξ |≥λ}

∫

|zh |≤ξ

ωi(|(ξ − z1, zh)|) − ωi(|ξ − z1|)
|z|d+α

dzhdz1

+ cα p.v.
∫

|z1−ξ |≤λ

∫

|zh |≤ξ

ωi(|(ξ − z1, zh)|) − ωi(|ξ − z1|)
|z|d+α

dzhdz1

=: Ii,2,1 + Ii,2,2 + Ii,2,3 + Ii,2,4. (3.33)
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By using (3.1), (3.31), and the following fact that supr∈[1/2,∞) r
− 1

2 log
√
1 + r2 ≤ C0, we find

Ii,2,1 = cα p.v.
∫

{|z1 |≤2ξ}∩{|z1−ξ |≥λ}

∫

|zh |≥ξ

ωi(|(ξ − z1, zh)|) − ωi(|ξ − z1|)
|z|d+α

dzhdz1

+ cα p.v.
∫

|z1−ξ |≤λ

∫

|zh |≥ξ

ωi(|(ξ − z1, zh)|) − ωi(|ξ − z1|)
|z|d+α

dzhdz1

≤ cα p.v.
∫

|z1 |≤2ξ

∫

|zh |≥ξ

δi
2 log

√
1 + |zh |2

|ξ−z1 |2

|z|d+α
dzhdz1

+ cα p.v.
∫

|z1−ξ |≤λ

∫

|zh |≥ξ

δiλ
−1

|z|d+α

|zh|2√
|ξ − z1|2 + |zh|2 + |ξ − z1|

dzhdz1

≤ C0cαδi

∫

|z1 |≤2ξ

∫

|zh |≥ξ

1
|zh|d+α

|zh|1/2

|ξ − z1|1/2
dzhdz1 + C0cαδi

∫

|zh |≥ξ

1
|zh|d+α

|zh|dzh

≤ C0cασd−2δi

(
ξ− 1

2 −α

∫

|z1 |≤2ξ

|ξ − z1|−
1
2 dz1 +

1
α

ξ−α

)
≤

C0cασd−2

α
δiξ

−α . (3.34)

By virtue of (3.1), (3.31), and the fact that

log |(η, zh)| − log |η| ≤ |η|−1(|(η, zh)| − |η|
)
, ∀|η| > 0, zh ∈ R

d−1,

we estimate Ii,2,2 as follows for every ξ ≥ 2λ:

Ii,2,2 = cα p.v.
∫

|z1 |≤ ξ

2

∫

|zh |≤ξ

δi
(
log |(ξ − z1, zh)| − log |ξ − z1|

)

2|z|d+α
dzhdz1

≤ cα p.v.
∫

|z1 |≤ ξ

2

∫

|zh |≤ξ

δi|ξ − z1|−1

2|z|d+α

|zh|2√
|ξ − z1|2 + |zh|2 + |ξ − z1|

dzhdz1

≤ C0cαδiξ
−2

∫

|z|≤2ξ

1
|z|d−2+α

dz ≤
C0cασd−1

2 − α
δiξ

−α .

Arguing as (3.34) gives

Ii,2,3 = cα p.v.
∫

{ ξ

2 ≤|z1 |≤2ξ}∩{|z1−ξ |≥λ}

∫

|zh |≤ξ

δi
(
log |(ξ − z1, zh)| − log |ξ − z1|

)

2|z|d+α
dzhdz1

≤ cα

∫

ξ

2 ≤|z1 |≤2ξ

∫

|zh |≤ξ

δi log
√
1 + ξ2

|ξ−z1 |2

2(ξ/2)d+α
dzhdz1

≤ C0cασd−2δiξ
−1−α

∫

ξ

2 ≤|z1 |≤2ξ

ξ1/2

|ξ − z1|1/2
dz1 ≤ C0cασd−2δiξ

−α .

Noting that |z| ≥ |z1| ≥ ξ

2 for every ξ ≥ 2λ and |z1 − ξ | ≤ λ, we directly have

Ii,2,4 ≤ cα p.v.
∫

|z1−ξ |≤λ

∫

|zh |≤ξ

δiλ
−1

|z|d+α

|zh|2√
|ξ − z1|2 + |zh|2 + |ξ − z1|

dzhdz1

≤ cα

∫

|z1−ξ |≤λ

∫

|zh |≤ξ

δiλ
−1

(ξ/2)d+α
|zh|dzhdz1 ≤ C02dcασd−2δiξ

−α .
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Gathering (3.32), (3.33), and the above estimates on Ii,2,1 - Ii,2,4 leads to that

Ii,2 ≤

⎧
«
¬
Cδiλ

−1ξ1−α , for 0 < ξ ≤ λ,

Cδiξ
−α , for ξ ≥ λ,

(3.35)

with C > 0 depending only on α, d.
For Ii,3 given by (3.27), we in fact can control a larger quantity Ĩi,3 given by

Ĩi,3 := cα

∫

|z|≥2ξ

ωi(|ξe1 − z|) − ωi(ξ)

|z|d+α
dz. (3.36)

Noting that from concavity ωi(|ξe1−z|)−ωi(ξ) ≤ ωi(ξ +|z|)−ωi(ξ) ≤ ωi(|z|), and exactly arguing as [28,(5.8)]
and (3.30), we have that for every 0 < ξ ≤ λ,

Ii,3 ≤ Ĩi,3 ≤ cα p.v.
∫

|z|≥2ξ

ωi(|z|)
|z|d+α

dz ≤ cα σd−1

∫ ∞

ξ

ωi(η)

η1+α
dη ≤ cασd−1Cα,μδiλ

−μξμ−α ,

with Cα,μ the constant appearing in (3.30); while for every ξ > λ, by using (3.1) and the change of
variables, we infer that

Ii,3 ≤ Ĩi,3 = cα p.v.
∫

|z|≥2ξ

δi
(
log |ξe1 − z| − log ξ

)

2|z|d+α
dzhdz1 ≤ cαC̃α,dδiξ

−α ,

where (noting that |e1 − z| ≤ 2|z|)

C̃α,d :=p.v.
∫

|z|≥2

log |e1 − z|
2|z|d+α

dzhdz1

≤p.v.
∫

|z|≥2

log(2|z|)
2|z|d+α

dz = σd−1 p.v.
∫ ∞

2

log(2r)
2r1+α

dr < +∞.

Thus, combining the above two estimates yields

Ii,3 ≤ Ĩi,3 ≤

⎧
«
¬
cασd−1Cα,μ δiλ

−μξμ−α , for 0 < ξ ≤ λ,

cαC̃α,d δiξ
−α , for ξ ≥ λ.

(3.37)

Collecting (3.27), (3.29), (3.30), (3.35), and (3.37) yields the desired estimate (3.26). �

3.3 Evolution of the MOC on u
Next,we provide general estimates that lead to (3.11) under the scenario (3.8)–(3.9). From equation (1.5)2,
we observe that

∂t
(
u(x) − u(y)

)
= −

(
u∂x1u(x) − u∂x1u(y)

)
+

(
Cα(u, ρ)(x) − Cα(u, ρ)(y)

)
. (3.38)

The first term on the right-hand side of (3.38) represents the advection term, which can be estimated
similarly to (3.23) as

∣∣u∂x1u(x) − u∂x1u(y)
∣∣ ≤ |u(x) − u(y)| ∂ξ ω2(ξ , t1) = e−c0 t1 |u(x) − u(y)|ω′

2(ξ). (3.39)

We will apply different estimates to |u(x) − u(y)| in different cases, as mentioned in Remark 3.3.
Our main focus is on the latter term of (3.38). Without loss of generality, we can again assume that

x =
(

ξ

2 , 0, . . . , 0
)
, y =

(
− ξ

2 , 0, . . . , 0
)
.
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We split the term as follows:

Cα(u, ρ)(x) − Cα(u, ρ)(y)

= cα p.v.
∫

Rd

ρ(x + z)
(
u(x + z) − u(x)

)
− ρ(y + z)

(
u(y + z) − u(y)

)

|z|d+α
dz

= cα

∫

{z:ρ(x+z)≤ρ(y+z)}

ρ(x + z)[(u(x + z) − u(y + z)) − (u(x) − u(y))]
|z|d+α

dz

+ cα

∫

{z:ρ(x+z)≤ρ(y+z)}

(
ρ(x + z) − ρ(y + z)

)(
u(y + z) − u(y)

)

|z|d+α
dz

+ cα

∫

{z:ρ(x+z)>ρ(y+z)}

ρ(y + z)[(u(x + z) − u(y + z)) − (u(x) − u(y))]
|z|d+α

dz

+ cα

∫

{z:ρ(x+z)>ρ(y+z)}

(
ρ(x + z) − ρ(y + z)

)(
u(x + z) − u(x)

)

|z|d+α
dz

=: J1 + J2 + J3 + J4. (3.40)

For terms J1 and J3, using the scenario (3.8)–(3.9) and (2.5), we have

J1 + J3 ≤ −ρ cα p.v.
∫

Rd

ω2(ξ , t1) − u(x + z) + u(y + z)

|z|d+α
dz,

and similar to the treatment of Dα,1(ξ) in (3.15) above, we can infer that

J1 + J3 ≤ −ρ e−c0t1 Dα,2(ξ), (3.41)

where Dα,2(ξ) is defined in (3.16) and satisfies (3.25).
For the terms J2 and J4, using the scenario (3.8)–(3.9), we have

J2 + J4 = cα

∫

{z:ρ(x+z)≤ρ(y+z)}

(
ρ(y + z) − ρ(x + z)

)u(x) − u(y + z) − ω2(ξ , t1)
|z|d+α

dz

+ cα

∫

{z:ρ(x+z)>ρ(y+z)}

(
ρ(x + z) − ρ(y + z)

)u(x + z) − u(y) − ω2(ξ , t1)
|z|d+α

dz

≤ cα

∫

{z:ρ(x+z)≤ρ(y+z)}
|ρ(x + z) − ρ(y + z)|

ω2(|ξe1 − z|, t1) − ω2(ξ , t1)
|z|d+α

dz

+ cα

∫

{z:ρ(x+z)>ρ(y+z)}
|ρ(x + z) − ρ(y + z)|

ω2(|ξe1 + z|, t1) − ω2(ξ , t1)
|z|d+α

dz

≤ cα e
−c0t1

∫

Rd

|ρ(x + z) − ρ(y + z)|
ω2(|ξe1 − z|) − ω2(ξ)

|z|d+α
dz =: J . (3.42)

Remark 3.6. Let us compare the alignment force Cα(u, ρ) and the linear fractional dissipation
Cα(u, 1). We can repeat the calculation in (3.40) to estimate Cα(u, 1)(x) − Cα(u, 1)(y) by setting
ρ ≡ 1. In this case, the terms J1 + J3 still represent the dissipation, and we have the estimate
(3.41).However, for Cα(u, 1), we find that J2+J4 = 0.Hence, the difference between the alignment
force Cα(u, ρ) and the linear fractional dissipation Cα(u, 1) is reflected in the term J . It is crucial
to control this term using the dissipation.

The integrand in J exhibits a similar structure to Aα,2(ξ), which was defined in (3.20). One might
expect that it can be controlled by ω1(ξ)Aα,2(ξ). However, this is not the case. To illustrate this point, we
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decompose J in a similar manner as (3.27), obtaining the following decomposition:

J = cα e
−c0t1

∫

|z|≥2ξ

|ρ(x + z) − ρ(y + z)|
ω2(|ξe1 − z|) − ω2(ξ)

|z|d+α
dz

+ cα e
−c0t1

∫

|z|≤2ξ

|ρ(x + z) − ρ(y + z)|
ω2(|ξe1 − z|) − ω2(|ξ − z1|)

|z|d+α
dz

+ cα e
−c0t1 |ρ(x) − ρ(y)|

∫

|z|≤2ξ

ω2(|ξ − z1|) − ω2(ξ)

|z|d+α
dz

+ cα e
−c0t1

∫

|z|≤2ξ

(
|ρ(x + z) − ρ(y + z)| − |ρ(x) − ρ(y)|

)ω2(|ξ − z1|) − ω2(ξ)

|z|d+α
dz

=: J5 + J6 + J7 + J8. (3.43)

For J5, J6, and J7, we extract ω1(ξ) and treat the remaining terms using similar estimates as for Aα,2(ξ).
Specifically, for J5, we observe that ω2(|ξe1 − z|) − ω2(ξ) > 0 for every |z| ≥ 2ξ . Utilizing (3.9) and (3.36),
we deduce that

J5 ≤ cα e
−c0t1ω1(ξ)

∫

|z|≥2ξ

ω2(|ξe1 − z|) − ω2(ξ)

|z|d+α
dz ≤ e−c0t1ω1(ξ )̃I2,3, (3.44)

where Ĩ2,3 satisfies (3.37). For J6, we recall that I2,2 is given by (3.27), and using (3.9), we have

J6 ≤ e−c0t1ω1(ξ)I2,2, (3.45)

where I2,2 satisfies (3.35). Regarding J7, the estimate is similar to that of Ii,1, and by discarding the negative
contributions in the estimate of Ii,1, we obtain

J7 ≤ e−c0t1ω1(ξ) ×

⎧
«
¬
cαCd,αCα,μδ2λ

−μξμ−α , for 0 < ξ ≤ λ,
cαCd,α

α
δ2ξ

−α , for ξ ≥ λ.
(3.46)

Gathering (3.44), (3.45), and (3.46) yields

J5 + J6 + J7 ≤ e−c0t1ω1(ξ) ×

⎧
«
¬
C2δ2λ

−μξμ−α , for 0 < ξ ≤ λ,

C2δ2ξ
−α , for ξ ≥ λ,

(3.47)

where C2 > 0 is the constant appearing in Lemma 3.5.
The most challenging term is J8, which is related to the dangerous singular integral (1.10) near y = x

(or z = 0). We notice that in the estimate (3.28) for the corresponding term Ii,1 in Aα,i, by symmetrizing
z1 around 0 and utilizing the concavity of ωi, we can obtain a favorable negative sign for the first term
in (3.28). However, this is no longer the case with the prefactor |ρ(x + z) − ρ(y + z)| − |ρ(x) − ρ(y)| in J8,
which does not have a specific sign. Therefore, we can only establish bounds on this term. Using the
triangle inequality, we have

J8 ≤ cα e
−c0t1

∫

|z|≤2ξ

∣∣ρ(x + z) − ρ(x) − (ρ(y + z) − ρ(y))
∣∣
∣∣ω2(|ξ − z1|) − ω2(ξ)

∣∣
|z|d+α

dz =: K. (3.48)

The following Lemma provides estimates on the bound K.
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Lemma 3.7. Let α ∈ (0, 2) and ωi(ξ) (i = 1, 2) be the modulus of continuity given by (3.2) and
(3.4). There exists a positive constant C3 that depends only on α and d such that for every
0 < ξ ≤ λ,

K ≤ C3e
−c0t1δ1δ2λ

−2ξ2−α , (3.49)

and for every λ < ξ ≤ �2,

K ≤ e−c0t1 ×

⎧
«
¬
C3

(
δ2(λ

−1ξ)α−1 + V0
)
ω1(ξ)ξ−α , for 1 < α < 2,

C3(δ2 + V0) ω1(ξ)ξ−α , for 0 < α ≤ 1.
(3.50)

Remark 3.8. In the estimate (3.50), the term K is controlled by

K � ω1(ξ)ξ−α ,

with a potentially large constant coefficient. On the other hand, the dissipation (3.41) has a
lower bound, as shown in (3.25),

J1 + J3 � −ω2(ξ)ξ−α .

To ensure thatK is controlled by the dissipation, we choose δ1 to be much smaller than δ2. This
choice allows us to control K effectively through the dissipation term.

This idea of choosing different values for δ1 and δ2 seems to play a critical role in controlling K,
particularly in the critical case when α = 1.

Proof of Lemma 3.7. For every 0 < ξ ≤ 2λ, noting that ωi(η) ≤ ω′
i(0

+)η = δiλ
−1η for every η > 0, we

see that

K ≤ 2cαe−c0t1

∫

|z|≤2ξ

ω1(|z|)
ω2(|z|)
|z|d+α

dz

≤ 2cαe−c0t1δ1δ2λ
−2

∫

|z|≤2ξ

|z|−d−α+2dz ≤ e−c0t1 8cασd−1
2−α

δ1δ2λ
−2ξ2−α .

In particular, by virtue of the fact that ω1(ξ) ≥ ω1(λ) = 3
4 δ1 for every ξ ≥ λ, the above estimate gives that

for every λ < ξ ≤ 2λ,

K ≤ e−c0t1 64cασd−1
2−α

δ2ω1(ξ)ξ−α .

For every 2λ ≤ ξ ≤ �2 (with no loss of generality assuming that �2 > 2λ), we have the following
splitting:

K ≤ 2cαe−c0t1

∫

{z:|z|≤2ξ ,|z1 |≤ ξ

2 }
ω1(|z|)

∣∣ω2(|ξ − z1|) − ω2(ξ)
∣∣

|z|d+α
dz

+ 2cαe−c0t1

∫

{z:|z|≤2ξ ,|z1 |≥ ξ

2 }
ω1(|z|)

∣∣ω2(|ξ − z1|) − ω2(ξ)
∣∣

|z|d+α
dz =: K1 + K2.
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Noting that |ξ − z1| ≥ ξ

2 ≥ λ for every |z1| ≤ ξ

2 and ξ ≥ 2λ, and by using (3.2), (3.4), and the change of
variables, we infer that for every 2λ ≤ ξ ≤ �2,

K1 = 2cαe−c0t1

∫

{z:|z|≤2ξ ,|z1 |≤ ξ

2 }
ω1(|z|)

δ2
∣∣ log |1 − z1

ξ
|
∣∣

2|z|d+α
dz

≤ cαe
−c0t1δ2ξ

−1
∫

|z|≤2ξ

ω1(|z|)
|z|d−1+α

dz

≤ e−c0t1 cασd−1δ2ξ
−1

∫ 2ξ

0

ω1(η)

ηα
dη

≤ e−c0t1 cασd−1δ2ξ
−1

( ∫ λ

0

δ1λ
−1η

ηα
dη + ω1(2ξ)

∫ 2ξ

λ

1
ηα

dη
)

≤ e−c0t1 cασd−1δ2ξ
−1 ×

⎧
⎪⎪«
⎪⎪¬

1
2−α

δ1λ
1−α + 2

α−1ω1(ξ)λ1−α , for 1 < α < 2,

δ1 + 2ω1(ξ) log 2ξ

λ
, for α = 1,

1
2−α

δ1λ
1−α + 2

1−α
ω1(ξ)(2ξ)1−α , for 0 < α < 1,

≤ e−c0t1 cασd−1 ×

⎧
⎪⎪«
⎪⎪¬

2
(2−α)(α−1)

δ2ω1(ξ)ξ−1λ1−α , for 1 < α < 2,

4
(
δ2 + V0

)
ω1(ξ)ξ−1, for α = 1,

6
1−α

δ2ω1(ξ)ξ−α , for 0 < α < 1,

where in the last inequality we have used the facts that δ1 ≤ 4
3ω1(ξ), and in particular for α = 1

(using (3.13))

log 2ξ

λ
≤ log 2 + log �2

λ
≤ 1 + 2δ−1

2 V0.

For K2, in view of the fact |z| ≥ |z1| ≥ ξ

2 and the concavity of ωi(ξ) (i = 1, 2), we have

K2 ≤ 2cαe−c0t1

∫

{z:|z|≤2ξ ,|z1 |≥ ξ

2 }
ω1(|z|)

ω2(|z|)
(ξ/2)d+α

dz

≤ e−c0t122d+1+αcασd−1ω1(2ξ)ω2(2ξ)ξ−α

≤ e−c0t122d+3+αcασd−1V0 ω1(ξ)ξ−α ,

where in the last line we have used that ω2(ξ) ≤ ω2(�2) = V0. Collecting the above estimates on K1 and
K2 leads to the inequality (3.50) in the case 2λ ≤ ξ ≤ �2, as desired. �

When α ∈ (1, 2), the estimate in (3.50) is not ideal, as λ−1ξ can be very big in the region ξ � λ. To
overcome this difficulty, we derive a refined MOC for ρ, replacing ω1 in the estimate. This refinement
utilizes the relation (1.11), which we recall here:

ρ = ∂x1�
−αu − �−αG. (3.51)

We state the following lemma, which demonstrates that the MOC of ρ can be controlled by the MOCs
of u and G. The proof follows the approach in [13, Lemma 4.4], and it will be provided in the Appendix.

Lemma 3.9. Let 1 < α < 2. Suppose u(t) obeys ω2(ξ , t) defined in (3.5). Then, for any x̃, ỹ ∈ R
d with

ξ̃ = |x̃ − ỹ|, we have

|ρ(x̃, t1) − ρ(ỹ, t1)| ≤ C̃4

(∫ ξ̃

0

ω2(η, t)
η2−α

dη + ξ̃

∫ ∞

ξ̃

ω2(η, t)
η3−α

dη

)
+ C0ρ‖F0‖L∞ ξ̃ , (3.52)
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where C̃4 > 0 depends only on α, d and C0 > 0 an absolute constant. In particular, for every
ξ̃ > λ,

|ρ(x̃, t1) − ρ(ỹ, t1)| ≤ 2C̃4
(α−1)(2−α)

ω2(ξ̃ )ξ̃α−1 + C0ρ‖F0‖L∞ ξ̃ . (3.53)

By utilizing (3.53) to replace ω1 in the estimate (3.50), we obtain an improved estimate for K.

Lemma 3.10. Let 1 < α < 2 and ω2(ξ , t) be the modulus of continuity given by (3.4). There exists
a constant C4 > 0 depending only on α and d such that for every λ < ξ ≤ �2,

K ≤ e−c0t1C4

(
ρ‖F0‖L∞ ω2(ξ)λ1−α + V0 ω2(ξ)λ−1

)
. (3.54)

Proof of Lemma 3.10. The proof of this lemma mainly relies on the following result, which states that
other than the MOC ω1(·), one can obtain an additional control on the quantity |ρ(x̃, t)−ρ(ỹ, t)| for every
x̃, ỹ ∈ R

d.
Now we can use (3.53) to replace the estimate of

∣∣(ρ(x+ z) − ρ(x)) − (ρ(y+ z) − ρ(y))
∣∣ in K, so that for

every λ < ξ ≤ �2,

K ≤ 2e−c0t1 cαp.v.
∫

|z|≤2ξ

(
C0ρ‖F0‖L∞ |z| + 2C̃4

(α−1)(2−α)
ω2(|z|)|z|α−1

)ω2(|z|)
|z|d+α

dz

≤ 2e−c0t1 cασd−1

(
C0ρ‖F0‖L∞

∫ 2ξ

0

ω2(η)

ηα
dη + 2C̃4

(α−1)(2−α)

∫ 2ξ

0
ω2(η)

ω2(η)

η2
dη

)

≤ 2e−c0t1 cασd−1C0ρ‖F0‖L∞

( ∫ λ

0
δ2λ

−1η1−αdη + ω2(2ξ)

∫ 2ξ

λ

η−αdη

)

+ 2e−c0t1 cασd−1
2C̃4

(α−1)(2−α)

(∫ λ

0
δ22λ

−2dη + ω2
2(2ξ)

∫ 2ξ

λ

1
η2

dη

)

≤ 2e−c0t1 cασd−1C0ρ̄‖F0‖L∞

(
1

2−α
δ2λ

1−α + 2ω2(ξ) 1
α−1λ1−α

)

+ e−c0t1 4C̃4cασd−1
(α−1)(2−α)

(
δ22λ

−1 + 4ω2
2(ξ)λ−1

)

≤ e−c0t1 32cασd−1
(α−1)(2−α)

(
C0ρ‖F0‖L∞ ω2(ξ)λ1−α + C̃4V0 ω2(ξ)λ−1

)
,

where in the last line we have used the facts that δ2 ≤ 4
3ω2(ξ) and ω2(ξ) ≤ ω2(�2) = V0. �

Therefore, collecting (3.11), (3.38), (3.39), (3.41), (3.42), (3.43), (3.47), and (3.48) leads to that for every
α ∈ (0, 2) and 0 < ξ ≤ �2,

∂t
(
u(x, t) − u(y, t)

)
|t=t1 + c0 ω2(ξ , t1)

≤ e−c0 t1
(

− ρDα,2(ξ) + |u(x) − u(y)|ω′
2(ξ) + c0 ω2(ξ) + K

)

+ e−c0t1 ×

⎧
«
¬
C2δ2ω1(ξ)λ−μξμ−α , for 0 < ξ ≤ λ,

C2δ2ω1(ξ)ξ−α , for ξ ≥ λ,

(3.55)

where Dα,2(ξ) satisfies (3.25) and K given by (3.48) satisfies the estimates in Lemmas 3.7 and 3.10.
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4 The Subcritical Regime: Global Well-Posedness and Asymptotic
Behavior
In this section, we finalize the application of the MOC method and provide a proof of Theorems 1.1
and 1.2 for the subcritical regime when α ∈ (1, 2). The same result has been previously established in
[23], and here we present an alternative proof employing a different analytical approach.

Our objective is to demonstrate that both ρ(t) and u(t) satisfy theMOCs ω1(ξ) and ω2(ξ , t), respectively,
as defined in (3.2) and (3.5). By leveraging Lemma 3.2, our task reduces to proving the validity of (3.10)
and (3.11). For the sake of simplicity, we assume δ1 = δ2 =: δ, resulting in ω1(ξ) = ω2(ξ) =: ω(ξ).

We will now proceed to establish the validity of (3.10) for any x �= y ∈ T
d with ξ = |x − y| ∈ (0,�1]

(recalling �1 is given by (3.12)). The proof can be divided into two parts.
• For every 0 < ξ ≤ λ, we apply (3.1), (3.25), and (3.26) to (3.24), resulting in the following estimate:

∂tρ(x, t1) − ∂tρ(y, t1) ≤ δλ−1−μξ1+μ−α
(

− C1μρ

4 + C2δ + ρ‖F0‖L∞ λμξα−μ+

+ ρ2‖∇F0‖L∞ δ−1λ1+μξα−μ + ρ3

c0
‖H0‖L∞ λμξα−μ + δλ−1+μξα−μ

)
. (4.1)

Note that for the last term of (3.24), we have used

|u(x, t1) − u(y, t1)| ≤ ω2(ξ , t1) ≤ ω2(ξ). (4.2)

The right-hand side of (4.1) can be made to be strictly negative by choosing δ and λ small enough. Set
μ = α

2 . First, we choose δ such that C2δ <
C1αρ

16 . All the rest terms are scaling subcritical and can be made
small by choosing λ small enough. Indeed, we have

λ
α
2 ξ

α
2 + δ−1λ1+ α

2 ξ
α
2 + δλ−1+ α

2 ξ
α
2 ≤ λα−1(1 + δ−1).

Taking a small λ, depending on δ,α, and C1, ρ, ρ, ‖F0‖L∞ , ‖∇F0‖L∞ , ‖H0‖L∞ , the rest terms can be made

smaller than
C1αρ

16 .
• For every λ < ξ ≤ �1 = λe2δ−1ρ− 3

2 , we apply (3.1), (3.25), (3.26), and (4.2) to (3.24) and use the facts
that 3

4 δ ≤ ω(ξ). It yields

∂tρ(x, t1) − ∂tρ(y, t1) ≤ ω(ξ)

ξα

(
− C1ρ

2 + C2δ + ρ‖F0‖L∞ ξα+

+ 4
3ρ2‖∇F0‖L∞ δ−1ξ1+α + 4

3
ρ3

c0
‖H0‖L∞ λ−1ξ1+α + δ

2 ξα−1
)
. (4.3)

The right-hand side of (4.3) can be made to be strictly negative by choosing δ and λ small enough. First,
we choose δ such that C2δ <

C1ρ

4 . All the rest terms are scaling subcritical and can be made small by
choosing λ small enough. Indeed, we have

ξα + δ−1ξ1+α + λ−1ξ1+α + ξα−1 ≤ λα−1(1 + e4δ−1ρ−3(1 + δ−1)
)
.

Taking a small λ, depending on δ,α, ρ, and C1, ρ, ‖F0‖L∞ , ‖∇F0‖L∞ , ‖H0‖L∞ , the rest terms can be made

smaller than
C1ρ

4 .
Next we justify that (3.11) holds for any x �= y ∈ T

d with ξ = |x − y| ∈ (0,�2] (recalling �2 is given by
(3.13)). We also consider two cases.

• For every 0 < ξ ≤ λ, by using (3.1), (3.25), (3.49), (3.55), and (4.2), we have the following:

∂t
(
u(x, t) − u(y, t)

)
|t=t1 + c0 ω2(ξ , t1)

≤ e−c0t1
(

− C1μρ

4 δλ−1−μξ1+μ−α + δ2λ−2ξ + c0δλ
−1ξ + C3δ

2λ−2ξ2−α + C2δ
2λ−1−μξ1+μ−α

)

≤ e−c0 t1δλ−1− α
2 ξ1− α

2

(
− C1αρ

8 + δλ−1+ α
2 ξ

α
2 + c0λ

α
2 ξ

α
2 + C3δλ

−1+ α
2 ξ1− α

2 + C2δ
)
, (4.4)
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where in the last inequality, we take μ = α
2 . The right-hand side of (4.4) can be made to be strictly

negative by choosing δ and λ small enough. First, we choose δ such that

C3δλ
−1+ α

2 ξ1− α
2 + C2δ ≤ (C2 + C3)δ <

C1αρ

16 .

The remaining two terms are scaling subcritical, we may pick λ small such that

δλ−1+ α
2 ξ

α
2 + c0λ

α
2 ξ

α
2 ≤ δλα−1 + c0λ

α <
C1αρ

16 .

• For every λ < ξ ≤ �2 = λe2δ−1
1 V0− 3

2 , using (3.1), (3.25), (3.54), (3.55), and (4.2), we have the following:

∂t
(
u(x, t) − u(y, t)

)
|t=t1 + c0 ω2(ξ , t1)

≤ e−c0t1 ω(ξ)

ξα

(
− C1ρ

2 + δ
2 ξα−1 + c0ξ

α + C4

(
ρ‖F0‖L∞ λ1−α + V0 λ−1

)
ξα + C2δ

)
. (4.5)

The right-hand side of (4.5) can be made to be strictly negative by choosing δ and λ small enough. First,
we choose δ such that C2δ <

C1ρ

4 . All the rest terms are scaling subcritical and can be made small by
choosing λ small enough. Indeed, we have

δξα−1 + ξα + (λ1−α + λ−1)ξα ≤ λα−1(1 + e4δ−1V0−3).

Taking a small λ, depending on δ,α,V0, and C1, ρ, ρ, ‖F0‖L∞ , the rest terms can be made smaller than
C1ρ

4 .
Collecting all the estimates above and applying Lemma 3.2, we obtain the desired Lipschitz bounds

(3.3) and (3.6). In combination with the blowup criterion (2.1), we conclude the global well-posedness of
smooth solution for the system (1.5) in the subcritical regime 1 < α < 2.

Moreover, the estimate (3.6), together with Lemma 2.3 directly implies the exponential decay of the
velocity (1.13). The strong flocking estimate (1.14) follows; see, for example, [23,p. 827].

5 The Critical Regime: Global Well-Posedness and Asymptotic
Behavior
In this section,we delve into the critical regime characterized by α = 1. Given the critical scaling (1.9) for
both ρ and u, the task of establishing a global well-posedness theory becomes notably more challenging
compared to the subcritical regime.

It is worth addressing a key challenge in applying the framework presented in Section 4. With α = 1,
certain terms in the estimates, such as those in equations (4.1), (4.3), (4.4), and (4.5), transition from
subcritical to critical. For instance, the last term in (4.1) becomes δ, which can not be made small by
choosing a small λ. Nonetheless, we may still control the term by choosing δ small.

However, there is one critical term that does not become small through diminutive δ and λ values.
It is the penultimate term in (4.5): C4V0λ

−1ξ , coming from the term K. To compound the challenge,
estimate (3.54) is inapplicable in the case of α = 1 due to the coefficient C4 growing infinitely large as α

approaches 1. In fact, it is well-known that the Reisz transform ∂x1�
−1 does not preserve the MOC ω2(ξ),

thereby precluding the validity of (3.54) for the case of α = 1.
Our main idea is to simultaneously propagate the MOCs of ρ and u. To control the term K, we may

use the fact that ρ obeys the MOC ω1, that is preserved in time. This leads to a stronger bound (3.50). The
aforementioned penultimate term in (4.5) becomes C3V0 (with a finite C3, in oppose to an infinite C4).
However, it is still not guaranteed that this term can be controlled by the dissipation

C1ρ

2 , for arbitrary
initial data.

In light of this, as elaborated in Remark 3.8, we introduce the relation:

δ1 = κδ2, with some κ ∈ (0, 1) chosen later. (5.1)

Thus, ω1(ξ) = κ ω2(ξ), where ω1(ξ) and ω2(ξ) are given by (3.2) and (3.4). By taking a small auxiliary
parameter κ, we are able to control the aforesaid term by the dissipation, for any smooth initial data.

Let us repeat the estimates in Section 4, using (5.1).
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We first prove that (3.10) holds for any x �= y ∈ T
d with ξ = |x− y| ∈ (0,�1]. Similarly as (4.1) and (4.3),

we set μ = 1
2 and get the following:

• For every 0 < ξ ≤ λ,

∂tρ(x, t1) − ∂tρ(y, t1) ≤ δ1λ
− 3

2 ξ
1
2

(
− C1ρ

8 + C2δ1 + ρ‖F0‖L∞ λ
1
2 ξ

1
2 +

+ ρ2‖∇F0‖L∞ δ−1
1 λ

3
2 ξ

1
2 + ρ3

c0
‖H0‖L∞ λ

1
2 ξ

1
2 + δ2λ

− 1
2 ξ

1
2

)
; (5.2)

• For every λ < ξ ≤ �1 = λe2δ−1
1 ρ− 3

2 ,

∂tρ(x, t1) − ∂tρ(y, t1) ≤ ω1(ξ)

ξ

(
− C1ρ

2 + C2δ1 + ρ‖F0‖L∞ ξ+

+ 4
3ρ2‖∇F0‖L∞ δ−1

1 ξ2 + 4
3

ρ3

c0
‖H0‖L∞ λ−1ξ2 + δ2

2

)
. (5.3)

Note that the last terms in (5.2) and (5.3) are scaling critical, but can bemade small as long as δ2 is small.
Following the same procedure as in Section 4, we may take δ2, κ and then λ small enough to make sure
the right-hand side of (5.2) and (5.3) are negative, finishing the proof of (3.10).

Next we prove that (3.11) holds for any x �= y ∈ T
d with ξ = |x − y| ∈ (0,�2].

• For every 0 < ξ ≤ λ, arguing as (4.4), we have

∂t
(
u(x, t) − u(y, t)

)
|t=t1 + c0 ω2(ξ , t1)

≤ e−c0 t1δ2λ
− 3

2 ξ
1
2

(
− C1ρ

8 + δ2λ
− 1

2 ξ
1
2 + c0λ

1
2 ξ

1
2 + C3δ1λ

− 1
2 ξ

1
2 + C2δ1

)
. (5.4)

There are three terms δ2λ
− 1

2 ξ
1
2 ,C3δ1λ

− 1
2 ξ

1
2 and C2δ1 that are critical, all of which can be made small by

choosing δ2 and κ small enough. The remain subcritical term can be made small by choosing λ small
enough.

• For every λ < ξ ≤ �2 = λe2δ−1
2 V0− 3

2 , we follow (4.5) but replace the estimate on K by (3.50). This
leads to

∂t
(
u(x, t) − u(y, t)

)
|t=t1 + c0 ω2(ξ , t1)

≤ e−c0t1
(

− C1ρ

2
ω2(ξ)

ξ
+ δ2

2ξ
ω2(ξ) + c0ω2(ξ) + C3

(
δ2 + V0

)
ω1(ξ)

ξ
+ C2δ2

ω1(ξ)

ξ

)

≤ e−c0t1 ω2(ξ)

ξ

(
− C1ρ

2 + δ2
2 + c0ξ + C3

(
δ2 + V0

)
κ + C2δ2κ

)
. (5.5)

Notably, the most dangerous term C3V0κ can be made small by choosing a small enough parameter κ.
The rest of the terms can be controlled by the dissipation by taking δ2 and λ small enough, similarly as
before.

Thus, by choosing δ2, κ and λ, the right-hand side of (5.4) and (5.5) can be made negative, finishing
the proof of (3.11).

Now we apply Lemma 3.2 to obtain Lipschitz bounds on ρ and u. Global well-posedness and
asymptotic strong flocking behavior follows from the same argument in Section 4. This completes the
proof of Theorems 1.1 and 1.2.

6 The Supercritical Regime: Refined Regularity Criterion

In this section, our focus is on proving Theorem 1.3, which concerns the refined regularity criterion for
the system (1.5) in the supercritical regime 0 < α < 1.

The main challenge in establishing a global well-posedness theory lies in controlling the advection
term. It has a supercritical scaling under our framework. We impose an additional regularity criterion
(1.15) that allows us to obtain enough control to the advection term. Notably, our criterion (1.15) only
requires a certain Hölder regularity on u, which represents a significant improvement over existing
criteria such as (2.1).
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We utilize the criterion (1.15) to obtain an improved bound

|u(x) − u(y)| ≤ ‖u‖Cσ ξσ . (6.1)

for any x, y ∈ T
d and ξ = |x − y|. The bound (6.1) replaces (4.2) in controlling the advection term.

In the following, we will verify (3.10) and (3.11). We make use of (6.1) to handle the advection term,
andwe claim that the rest of the terms can be treated through the same procedure as the critical regime
in Section 5.

Recalling that ω1(ξ) and ω2(ξ , t) are given by (3.2) and (3.5) respectively, we also assume that (5.1)
holds and thus ω1(ξ) = κ ω2(ξ) with a small parameter κ ∈ (0, 1) to be chosen later.

We first prove (3.10) holds for any x �= y ∈ T
d with ξ = |x − y| ∈ (0,�1].

• For every 0 < ξ ≤ λ, similar to (4.1), we have

∂tρ(x, t1) − ∂tρ(y, t1) ≤ δ1λ
−1−μξ1+μ−α

(
− C1μρ

4 + C2δ1 + ρ‖F0‖L∞ λμξα−μ+ (6.2)

+ ρ2‖∇F0‖L∞ δ−1
1 λ1+μξα−μ + ρ3

c0
‖H0‖L∞ λμξα−μ + ‖u(t1)‖Cα λμξσ−(1−α)−μ

)
,

where we have used (6.1) for the last term. Under the regularity assumption (1.15), σ > 1 − α. We set
μ = σ−(1−α)

2 > 0. Then the last term in (6.2)

‖u(t1)‖Cα λμξσ−(1−α)−μ ≤ ‖u(t1)‖Cα λσ−(1−α) (6.3)

is subcritical and can bemade small by taking λ sufficiently small. All other terms in (6.2) can be treated
the same as (4.1).

• For λ < ξ ≤ �1 = λe2δ−1
1 ρ− 3

2 , we follow (4.3) and use (6.1) to get

∂tρ(x, t1) − ∂tρ(y, t1) ≤ ω1(ξ)

ξα

(
− C1ρ

2 + C2δ1 + ρ‖F0‖L∞ ξα+

+ 4
3ρ2‖∇F0‖L∞ δ−1

1 ξ1+α + 4
3

ρ3

c0
‖H0‖L∞ λ−1ξ1+α

)
+ ‖u(t1)‖Cα

δ1
2 ξσ−1. (6.4)

To control the last term, we use the fact ωi(ξ) ≥ ωi(λ) = 3
4 δi and obtain

‖u(t1)‖Cα
δi
2 ξσ−1 ≤ ωi(ξ)

ξα · 4
3δi

· ‖u(t1)‖Cα
δi
2 ξσ−(1−α) ≤ ωi(ξ)

ξα · 2
3 ‖u(t1)‖Cα e2δ−1

i
ρ− 3

2 · λσ−(1−α). (6.5)

Taking i = 1, we deduce that the last term in (6.5) is scaling subcritical, and can be controlled by the
dissipation term by choosing λ small enough. All other terms in (6.4) can be treated the same as (4.3).

Next we show that (3.11) holds for any x �= y ∈ T
d with ξ = |x − y| ∈ (0,�2].

• For every 0 < ξ ≤ λ, arguing similarly as (4.4) and using (6.1), we obtain

∂t
(
u(x, t) − u(y, t)

)
|t=t1 + c0 ω2(ξ , t1)

≤ e−c0 t1δ2λ
−1−μξ1+μ−α

(
− C1μρ

16 + ‖u(t1)‖Cσ λμξσ−(1−α)−μ+

+ c0λ
μξα−μ + C3δ1λ

−1+ α
2 ξ1− α

2 + C2δ1

)
. (6.6)

Taking μ = σ−(1−α)

2 and applying (6.3), we know the advection term can be controlled by the dissipation
by choosing a small λ. The remaining terms in (6.6) can be treated same as (4.4).

• For every λ < ξ ≤ �2 = λe2δ−1
2 V0− 3

2 , analogous to (5.5), we apply (3.50) to the term K and use (6.1) for
the advection term. It yields

∂t
(
u(x, t) − u(y, t)

)
|t=t1 + c0 ω2(ξ , t1)

≤ e−c0t1 ω2(ξ)

ξα

(
− C1ρ

2 + c0ξ
α + C3

(
δ2 + V0

)
κ + C2δ2κ

)
+ e−c0t1‖u(t1)‖Cσ

δ2
2 ξσ−1. (6.7)
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Applying (6.5) with i = 2, we see that the last term in (6.7) is subcritical, and can be controlled by the
dissipation term by choosing λ small enough. All other terms in (6.7) can be treated similar as (5.5), by
taking sufficiently small δ2, κ and λ.

Now we apply Lemma 3.2 and deduce Lipschitz bounds on ρ and u, which then lead to global well-
posedness and asymptotic strong flocking behavior.

We would like to emphasize that the parameters δi are independent of the a priori bound in (1.15).
But λ depends on ‖u‖L∞(R+ ;Cσ (Td)). Moreover, from (6.3) and (6.5), we see the relation ‖u(t1)‖Cσ λσ−(1−α) � 1.
Hence, we pick

λ ∼ ‖u‖
− 1

σ−(1−α)

L∞(R+ ;Cσ (Td))
.

Together with (3.3) and (3.6), we conclude with the Lipschitz bounds (1.16) and (1.17). This completes
the proof of Theorem 1.3.

Remark 6.1. If we extend our regularity criterion (1.15) to encompass the scale-invariant class

sup
t∈[0,T∗)

‖u(t)‖C1−α (Td) < ∞, (6.8)

namely σ = 1−α, we unearth a distinct challenge. In this context, the advection terms in (6.2),
(6.4), (6.6), and (6.7) become critical. Consequently, they can not be made small by choosing λ

sufficiently small. Furthermore, our earlier choice of μ = σ−(1−α)

2 = 0 loses its relevance. Should
we adopt any μ > 0, the last term in (6.2) that reads ‖u(t1)‖Cα λμξ−μ becomes unbounded when
ξ → 0. Therefore, our existing framework falls short of encapsulating the global well-posedness
scenario under the assumption delineated in (6.8).

The implications of whether (6.8) could potentially propel global well-posedness, or whether
global well-posedness might be attainable without any a priori regularity criterion, constitute
intriguing questions that warrant dedicated exploration in the realm of future investigations.

A notable special case worth mentioning is that of “parallel shear flocks”, which was examined
in [22, Section 4.1]. In this context, we consider shear velocities represented by

ρ = ρ(x2, · · · , xd, t), u = u(x2, · · · , xd, t)

in the system (1.5). Consequently, ∂tρ = 0, causing the advection term in equation (1.15)2 to
vanish. Since the regularity assumption (1.15) is exclusively utilized to address the advection
terms in (1.5), our framework assures global regularity and asymptotic strong flocking for
parallel shear flocks in the full range of 0 < α < 2, including the supercritical regime, without
any a priori regularity criterion.

7 Appendix: Proof of Lemmas 3.4 and 3.9

We first present the proof of Lemmas 3.4.

Proof of Lemma 3.4. Below we sketch the proof of (3.25). For every 0 < ξ ≤ λ, due to the concavity of
ωi(ξ) given by (3.2) or (3.4), we have ωi(ξ +2η)+ωi(ξ −2η)−2ωi(ξ) ≤ 2ω′′

i (ξ)η2, and we use the first integral
term in (3.16) to get that

Dα,i(ξ) ≥ −C1

∫ ξ

2

0

2ω′′
i (ξ)η2

η1+α
dη = −C1

2α−1

2 − α
ω′′
i (ξ)ξ2−α = C1

μ(μ + 1)2α−1

4(2 − α)
δiλ

−1−μξ1−α+μ.

For every ξ > λ, we keep the second integral term in (3.16), and using the fact 3
4 δi ≤ ωi(ξ), we have

∀η ≥ ξ

2 , ωi(2η + ξ) − ωi(2η − ξ) ≤ ωi(2ξ) = ωi(ξ) + δi
2 log 2 ≤ 3

2ωi(ξ),
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and thus

Dα,i(ξ) ≥ C1

∫ ∞

ξ

2

ωi(ξ)

2η1+α
dη =

C12α−1

α
ωi(ξ)ξ−α ,

as expected. �

Next we turn to the proof of Lemma 3.9.

Proof of Lemma 3.9. By the relation (3.51), we have

ρ(x̃) − ρ(ỹ) =
(
∂x1�

−αu(x̃) − ∂x1�
−αu(ỹ)

)
−

(
�−αG(x̃) − �−αG(ỹ)

)
. (7.1)

Noting that (see, e.g., [27, Proposition 3.1])

∂x1�
−αu(x) = cα,d p.v.

∫

Rd

z1
|z|d+2−α

u(x − z)dz,

with cα,d = �( d+2−α
2 )

2α−1πd/2�( α
2 )
, and by exactly arguing as [27, Lemma 3.2] (for the case α = 1 see also [17]), we get

|∂x1�−αu(x̃) − ∂x1�
−αu(ỹ)| ≤ C̃4

(∫ ξ̃

0

ω2(η, t1)
η2−α

dη + ξ̃

∫ ∞

ξ̃

ω2(η, t1)
η3−α

dη

)
, (7.2)

where C̃4 depends only on α and d. For the second term on the right-hand side of (7.1), in view of the
L∞-estimate of G in (2.6), we obtain that for α ∈ (1, 2),

|�−αG(x̃) − �−αG(ỹ)| ≤ ‖�−αG‖Ẇ1,∞(Td)|x̃ − ỹ| ≤ C0‖G‖L∞(Td) ξ̃ ≤ C0ρ‖F0‖L∞ ξ̃ .

Combining the above two estimates yields the desired inequality (3.52).
Next, we explicitly calculate the integral in (7.2) for every ξ̃ > λ. Direct calculation gives that

∫ ξ̃

0

ω2(η, t1)
η2−α

dη ≤
∫ λ

0

δ2λ
−1

η1−α
dη +

∫ ξ̃

λ

ω2(η)

η2−α
dη ≤

1
α

δ2λ
α−1 +

1
α − 1

ω2(ξ̃ )ξ̃α−1 ≤
2

α − 1
ω2(ξ̃ )ξ̃α−1,

and

ξ̃

∫ ∞

ξ̃

ω2(η, t1)
η3−α

dη ≤ ξ̃

(
1

2 − α
ω2(ξ̃ )ξ̃α−2 +

∫ ∞

ξ̃

δ2

2η3−α
dη

)
≤

2
2 − α

ω2(ξ̃ )ξ̃α−1,

where in the above we have used the fact that δ2 ≤ 4
3ω2(ξ̃ ). Collecting the above inequalities gives the

desired estimate (3.53). �
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