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We investigate global solutions to the Euler-alignment system in d dimensions with unidirectional
flows and strongly singular communication protocols ¢(x) = [|x|~@+® for « € (0,2). Our paper
establishes global regularity results in both the subcritical regime 1 < o« < 2 and the critical regime
a = 1.Notably, when o = 1, the system exhibits a critical scaling similar to the critical quasi-geostrophic
equation. To achieve global well-posedness, we employ a novel method based on propagating the
modulus of continuity. Our approach introduces the concept of simultaneously propagating multiple
moduli of continuity, which allows us to effectively handle the system of two equations with critical
scaling. Additionally, we improve the regularity criteria for solutions to this system in the supercritical
regime 0 <o < 1.

1 Introduction

In this paper, we consider the hydrodynamic Euler-alignment system described by the following
equations:

dp 4 div (pu) =0,

du+u-vu= /Rd d(x —y)uy) —uX)pdy, D
for (x,t) € R x R, subject to the initial condition
(0, Wl=0(X) = (po, Uo)(X).
Here, p and u = (u(x,1),--- ,ud(x, t)) represent the density and velocity vector field, respectively. The

second equation of (1.1) includes the alignment force, which is determined by the communication protocol
¢, that measures the strength of the alignment interactions and is assumed to be non-negative and
radially decreasing. The alignment force can be expressed as a commutator:

/Rd dx =Yy —u)p(dy = —[Lg,u] p = —Ly(pw) + Ly(p)U, (1.2)
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where
Ly(H(X) = /Rd X =Y —fyndy.

The system (1.1) can be seen as a macroscopic representation of the well-known Cucker-Smale flocking
model [11]

X =V,
o1 where (x;(0),vi()) e R x RY, i=1,... N,
Vi=3 Z¢(Xi = X)) (Vj — Vi),

j=1

which describes the collective motion of N agents adjusting their velocities based on a weighted average
of their neighbors. For a detailed derivation of (1.1) and related discussions, we refer the readers to
[5, 14, 31] and the references therein.

Our main focus is on the global well-posedness and asymptotic behaviors of the Euler-alignment
system (1.1). Extensive progress has been made in recent years, revealing that different types of com-
munication protocols lead to different system behaviors. For bounded and Lipschitz communication
protocols, the alignment force (1.2) acts as a nonlocal damping mechanism. This results in a critical
threshold phenomenon: subcritical initial data lead to global well-posedness, while supercritical initial
data lead to the formation of finite-time singularities. See, for example, [6, 37]. A similar theory has
been established for weakly singular communication protocols, where ¢ is unbounded but integrable
at the origin. See, for example, [39].

Another type of communication protocol that is of particular interest to us is when ¢ is strongly
singular, meaning it is not integrable at the origin. A prototype example of such a protocol is given by

_2T(H)

$(@) = Colz| "+, ¢, = =
720(=%)

, a€(0,2),

when the operator £, is characterized by the fractional Laplacian:

f) —f dy.

|x _y|d+a

LX) = AF(X) = cp.v. /R d

The singularity in the communication protocol induces dissipation (or ellipticity) in the alignment
force (1.2), resulting in a regularization effect on the solutions of (1.1). This phenomenon has been
the subject of extensive research, especially in the context of a one-dimensional periodic domain T.
Notably, studies conducted in [13, 32-34] have demonstrated that for any smooth non-vacuous initial
data, global smooth solutions arise. Furthermore, these results have been extended to encompass
general strongly singular communication protocols [18], as well as scenarios involving misalignment
in communications [28]. When the initial data contain a vacuum, the ellipticity becomes degenerate,
leading to the possibility of finite-time singularity formations [1, 38].

The remarkable success of the theory in one dimension can be largely attributed to the presence of
a conserved auxiliary quantity:

G = du— A%p,
which satisfies the continuity equation
3G + 9x(Gu) = 0.

The conservation of G plays a crucial role in the analysis and understanding of the system dynamics.
In particular, when the initial condition G, is identically zero (Go = 0), it follows that G = 0, and (1.1)
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reduces to the following advection-diffusion equation:
Bp +UBp = —pA®p, U= A% = —8 A %p. (1.3)

This equation is recognized and extensively studied as a model for one-dimensional nonlinear porous
medium flow with fractional potential pressure [2-4]. Furthermore, in the special case wherea = 1, (1.3)
corresponds to a one-dimensional model of the two-dimensional critical quasi-geostrophic equation,
which has been investigated in [7].

However, extending the theory to higher dimensions has proven to be challenging and has not yielded
comparable success. A natural replacement for the auxiliary quantity in higher dimensions is given by

G:=V-u— A%,
which satisfies the equation:
%G+ V- (Gu) = (V- u)? — Tr[(Vw)?].

However, this new formulation is no longer conservative, as the right-hand side is not necessarily zero.
The absence of a conserved quantity in higher dimensions poses a significant challenge in extending
the results obtained in one dimension. In the general multi-dimensional case, the global well-posedness
result remains incomplete and typically requires additional smallness assumptions on the initial data.
For instance, when the initial velocity amplitude is small relative to its higher-order norms, Shvydkoy
[30] established global existence and stability results for nearly aligned flocks. Additionally, Danchin
et al. [12] demonstrated global well-posedness for solutions to (1.1) within the critical Besov space
framework, under the assumption that the initial data (eo, Up) is sufficiently close to the constant state
(1,0) in terms of Besov space norms.

Recently, Lear and Shvydkoy introduced a class of uni-directional flows in their work [23]. This class
of flows is given by

ux,h=uxtd, des ux bt RIxR, - R (1.4)

It can be observed that the structure (1.4) is preserved over time by the Euler-alignment system (1.1).
Moreover, under the uni-directional flow condition (1.4), the term (V-u)? — Tr[(Vu)?] in the equation for
G vanishes, leading to the conservation of G; see (1.6). This structure makes uni-directional flows more
tractable analytically compared to the general multi-dimensional case.

Without loss of generality, considering the rotational invariance of system (1.1), we can assume that
d=(1,0,---,0) corresponds to the x; direction. This leads to the following system:

dp + 9%, (pu) = 0,
QU+ Ud U = —A(pU) + (A*p)u =: Co (U, p), (1.5)
(P, Wlt=0(X) = (po, Uo)(X).

Although this system exhibits the characteristics of one-dimensional flow, it is important to note
that the spatial variable x still belongs to R%, and the dissipation is in d dimensions. Thus, it differs
from the traditional one-dimensional Euler-alignment system. However, we recall the aforementioned
feature of system (1.5), namely the conservation of the auxiliary quantity:

G =dx,u— A%, 3G + 9%, (Gu) = 0. (1.6)
Based on this conservation property, it is reasonable to inquire whether the system (1.5) possesses a
similar global well-posedness theory as the one-dimensional system. However, this is not the case.

To illustrate this, consider the special case when Gy = 0, resulting in G = 0 throughout the system.
In this scenario, (1.5) reduces to the advection-diffusion equation:

Bp +Udx, p = —pA%p, U= A%. (1.7)
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In contrast to the one-dimensional system (1.3), where the regularity of u can be controlled by the
regularity of p through their relationship, in (1.7), only dx,u can be controlled by the regularity of p.
There is no direct mechanism to control the other partial derivatives of u based on its relation to p.

Instead, one may approach the system (1.5) by focusing directly on the u equation in (1.5),
and investigate the regularization effect of the alignment force C,(u, p). By enforcing p = 1, we
observe that

Co(u,1) = —A%u.
In this case, the equation (1.5), becomes the fractal Burgers equation
OU + U By, U = —A“U, (1.8)

which has been extensively studied in [16]. The behavior of solutions depends on the value of «. When
« € (1,2), the dissipation dominates, resulting in globally well-posed solutions. However, when « € (0, 1),
the dissipation is not strong enough, and finite-time singularity formations may occur. The critical case
arises when o = 1, and it is particularly subtle to analyze. Global well-posedness has been established
using a novel method based on the modulus of continuity. This approach was invented by Kiselev et al.
in their celebrated work on the critical quasi-geostrophic equations [17], and has been successfully used
to analyze many equations with critical scalings; see, for example, [15, 18, 19, 27, 28].

The uni-directional Euler-alignment system (1.5) has been thoroughly investigated by Lear and
Shvydkoy in their work [23] for the case of @ € (1,2). They establish that the alignment force C,(u, p),
which behaves similarly to the fractional Laplacian —A*u, dominates the Burgers nonlinearity, leading
to global well-posedness. Their approach builds upon the Hoélder regularization results developed
in [29, 35].

However, in the critical case of & = 1, the intricate structure of C: (u, p) presents significant challenges
in extracting sufficient dissipation to counterbalance the nonlinear advection. To the best of our
knowledge, the only available result in the literature is provided by Lear in [20], where global well-
posedness is established for the specific case (1.7). For general equation (1.5), smallness assumptions
are required to obtain global smooth solutions.

Now, we present our first main result on the global well-posedness of the system (1.5) for 1 <« < 2.

Theorem 1.1 (Global well-posedness). Let 1 < « < 2 and (po, up) € H™(T%) x H™(T%), where
m > % + 1and po(x) > 0. Then there exists a global unique non-vacuous solution (p, u) to the
uni-directional Euler-alignment system (1.5) in the following class:

p € Cy®e; H™(Th), u e Cu(Ry; H™H(TY) NL2 Ry ™5 (T%).

We work on the periodic domain T¢ for convenience in analysis. This setup guarantees a positive
lower bound on the density p, which plays a crucial role in ensuring dissipation in the alignment force.
It would be interesting to consider the question of global well-posedness in the whole space or within
a bounded domain with a smooth boundary.

When « € (1,2), our theorem recasts the results presented in [23], but through an alternative
approach based on the method of modulus of continuity.

The main contribution of this theorem lies in the critical case when « = 1. Our result establishes
global regularity without imposing any smallness assumptions. Overcoming this challenge requires
extracting sufficient dissipation from the alignment force Ci(u, p). A major difficulty arises from the
system’s invariance under the critical scaling:

p(X, 1) ~ p(AX, At), UX,t) ~ U(AX,At), V~Ai>0. (1.9)

As a consequence, energy-based or scaling-based estimates alone are inadequate to ensure global
regularity. Instead, we employ the method of modulus of continuity, which draws inspiration from the
approach used in [16] on the critical fractal Burgers equation (1.8).
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We would like to emphasize an additional major difficulty in the analysis. Unlike the linear fractional
dissipation term C1(u, 1) = —Au, the alignment force C1(u, p) is highly nonlinear and dependent on the
density p. In particular, the most dangerous term is the difference between Ci (u, p) and p C1(u, 1), namely

P(X)UY) — u) dx
|x — y|d+1

Ci(U, p) — pCr(u, 1) :Cup.v./Rd (@) = , (1.10)

which cannot be solely controlled by the linear dissipation —Au. Additional a priori control on the
regularity of p is required. However, utilizing the relation

o=, A"lu—A"IG (1.11)

does not provide a sufficient bound. The main obstacle is the lack of L* to L* bound for the Reisz
transform 8, A~*. Consequently, standard approaches employed in [13, 16, 23] do not yield the desired
global well-posedness result.

To overcome this difficulty, we propose a new concept of simultaneously propagating two moduli of
continuity. In addition to propagating the modulus of continuity on u, as done in [16], we simultaneously
propagate a modulus of continuity on p through the equation (1.5). The key lies in smartly choosing
a modulus of continuity for p that is stronger than what can be obtained solely through the relation
(1.11). This choice allows us to achieve sufficient control over the term (1.10).

We believe that this new approach represents an extension of the method of modulus of continuity
and opens up possibilities for studying systems of equations with critical scalings. By simultaneously
propagating multiple moduli of continuity, we can effectively handle the nonlinear interactions and
dependencies in the system, leading to the desired global well-posedness results. This innovative
approach may pave the way for further developments in the analysis of critical systems and their
regularity properties.

Our next result concerns the asymptotic flocking behavior of solutions to (1.5). This phenomenon has
been extensively studied in the general context of the Euler-alignment system (1.1) (see, e.g., [20, 21,
23-26, 33, 37]). In particular, the global solution tends to exhibit certain collective behavior. Specifically,
the velocity u converges to its average value i, given by

_ Jr(pouo)(x)dx
T (1.12)

while the density profile tends to a traveling wave flocking state:
P(X, 1) = poo(X — UL).

We establish the following result:

Theorem 1.2 (Asymptotic behavior). Let (p, u) be the global solution to (1.5) as guaranteed by
Theorem 1.1. Then we have

u(t) — tllwr~ < Ce™®', V~t>0, (1.13)

where U is defined as in (1.12), and the rate ¢y > 0 depends only on «, d and .. Moreover, there
exist ps € H™e(T%) such that

1P D) — poo (- — Tit)|lcs < Ce™®F, ¥~t>0, 0<p <1 (1.14)

The exponential decays observed in (1.13) and (1.14) are commonly referred to as strong flocking. This
result has already been established and documented in the literature, for instance in [20, 23].
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In our analysis, we introduce a time-dependent modulus of continuity on u, inspired by the approach
presented in [15]. This innovative technique enables us to derive the asymptotic behavior (1.13) as a
complementary result to the global well-posedness theorem.

Our final result focuses on the system (1.5) with « € (0,1). In the context of the fractional Burgers
equation (1.8), it is well known that the dissipation term C, (u, 1) is not sufficiently strong to prevent the
formation of singularities within finite time. However, a remarkable discovery in [13] demonstrated
that the alignment force C,(u, p), which incorporates the density p as a weight, actually enhances
the dissipation for the one-dimensional Euler-alignment system, yielding global regularity. The natural
question that arises is whether a similar phenomenon can be observed in multi-dimensional systems.
Specifically, for the uni-directional flow described by (1.5), it remains unclear whether the enhanced
dissipation effect occurs solely in the x; direction, as suggested by (1.7).

Although it is uncertain whether the dissipation induced by C,(u, p) can surpass that of C, (u, 1), our
subsequent result demonstrates that they are at least comparable. The following theorem provides a
refined regularity criterion for the system (1.5) when « € (0, 1).

Theorem 1.3 (Regularity criterion). Let 0 < « < 1. and (oo, Uo) € H™*(T?%) x H™(T%), where
m > % + 1 and pp(x) > 0. Let T* > 0 be the maximum existence time of the smooth solution for
the uni-directional Euler-alignment system (1.5) constructed in Theorem 2.1. Then provided
that

sup [u(d)llcoepey < 00, forsomeo € (1—a,1), (1.15)
te[0,T*)

we necessarily have T* = co. Moreover, we obtain the following Lipschitz bounds:

1
IVl = C(1+ IUIEE oy )s ¥E> 0, (1.16)

and

a1
IVu®lle < C(l + Hu||f;t]]+§a+;c”(w)))e*mt’ vt > 0, (1.17)

where C > 0 depends only on «, d, and initial data (po, Up); and the rate ¢y > 0 is the same as in
Theorem 1.2.

A regularity criterion has been established in [23], which is stated in (2.1) and asserts that solutions
remain smooth if both p and u are Lipschitz continuous. In comparison, our regularity criterion (1.15)
imposes a less stringent condition by requiring only Holder continuity of u. This represents a significant
improvement in terms of the regularity requirement.

We would like to emphasize that the system (1.5) exhibits an invariance property under the scaling
transformation

p(X, 1) ~ p(AX, M%), U, t) ~ A~ TDu0x, %), V~i>0. (1.18)

Consequently, the criterion (1.15) only necessitates that u belongs to a slightly smoother space compared
to the scale-invariant class L®(R,; C1=%(T%)). Our result shares similarities with the works of Constantin
and Wu [9] on the supercritical quasi-geostrophic equation and Silvestre [36] on the advection-diffusion
equation. We employ the same modulus of continuity method to obtain our result. However, we have
not attempted to extend our regularity criterion (1.15) to the case of u € L® (R, ; C*~*(T%)). If this were the
case, one would expect that p becomes Holder continuous [35]. Further regularization of the solution is
possible. See relevant discussion in Remark 6.1.

Itis worth noting that the regularity criterion (1.15) is also expected to hold for the fractional Burgers
equation (1.8), as it satisfies the same scaling (1.18). Moreover, in [16], solutions were constructed in such
a way that the regularity criterion fails in finite time, resulting in the development of singularities.
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However, it remains unclear whether such blow-up phenomena occur in the context of the uni-
directional Euler-alignment system (1.5). This intriguing question will serve as the focus of future
investigations.

The outline of our paper is as follows. In Section 2, we present the local well-posedness result for
system (1.5) and establish some fundamental a priori bounds for the quantities (p, u) and the auxiliary
quantity G. Our general approach revolves around the method of modulus of continuity (MOC). In
Subsection 3.1, we set up a framework for simultaneously propagating the MOCs of p and u, while
also identifying potential breakdown scenarios that could violate their preservation. In Subsections 3.2
and 3.3, we demonstrate the general estimates for the evolution of the MOCs by density p and velocity
u, respectively, covering the entire range of 0 < @ < 2 under possible breakdown scenarios. Then, in
Sections 4, 5, and 6, we respectively prove that the breakdown scenarios cannot occur in the subcritical
(1 < a < 2), critical (@ = 1), and supercritical (0 < & < 1) regimes. For the critical regime, we carefully
select a pair of MOCs for p and u to avoid the occurrence of breakdown scenarios. The preservation
of MOCs implies the uniform Lipschitz regularity of (p,u), leading to the proofs of Theorems 1.1, 1.2,
and 1.3. Finally, we provide the proofs of two auxiliary lemmas in the appendix section.

Notations: For convenience, we sometimes use R? instead of T¢ by periodically extending the domain
to the whole space. The constant C may be different from line to line, and the notation a < b means
a < Cb.

2 Preliminaries

In this section, we state a collection of known results on the unidirectional Euler-alignment system (1.5)
in the existing literature. The 1D theory was established in [13, 32, 33], and the multi-dimensional case
was discussed in [23].

2.1 Local well-posedness

We begin with the local well-posedness result for smooth solutions to the Euler-alignment system (1.5).

Theorem 2.1 (Local well-posedness). Let 0 < « < 2. Suppose that m > % +1and
(po, Uo) € H™*(T%) x H™ (T,

with po(x) > 0. Then there exists a Tp > 0 such that the Euler-alignment system (1.5) with initial
data (po, Uo) has a unique non-vacuous solution (p, u) on interval [0, To) in the class

p € Cu([0, To); H™*(T),  u e Cy([0, To); H™(Th) N L2 ([0, To); H™ % (T7)).
Moreover, let T* > 0 be the maximal existence time of the above constructed solution, then

if T" <00, = sup (IVo® I~ + IVu®) =) = oo. (2.1)
te[0,T*)

The proof of the theorem can be found in [23, Theorem 1.1]. We omit the details.

Throughout the remainder of this paper, we will use the notation T* to represent the maximal
existence time of the local smooth solution (p, u) constructed in Theorem 2.1 for the unidirectional
Euler-alignment system (1.5). This notation will be consistently employed in our subsequent analysis.

2.2 A priori bounds

We list some useful a priori bounds on the solution (p, u) and the auxiliary quantity G := 8,,u — A%p.
First, by integrating the continuity equation (1.5) with respect to x-variable, we have the conservation
of mass

/w p(x, tdx = /T po()dx =: fo. (2.2)
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We also have the conservation of momentum:
/W (pw)(x, hdx = /Td (potio)(x)dx,
which can be deduced from the integration over T¢ of the momentum equation

3(pW) + By, (pU”) = p Co (U, p),

and using the fact

[ peocawmeodz= [ [ o=y - utpcopmdxdy =o.
Td Td JTd

Next, we define F := %. Using the equation of G in (1.6), we find

0F+ud,F=0, FlmoX)=Fo(x). 2.3)
It directly yields that

Ox, Uo — A% po ”
P0 L=’

IEO N~ = IFoliq) = |

From the relation dy,u = G+ A%p = Fp + A%p, we can write the continuity equation (1.5); as
3o+ Uds, p = —Fp? — pA%p.
This leads to the following a priori bounds on p.
Proposition 2.2. There exist positive constants p and p, depending on «, pp and ||Fol|r~, such that

0<p<pixt)<p<oo, V~xeT! tel0,T. (2.5)

The upper bound can be obtained by using the nonlinear maximum principle introduced by
Constantin and Vicol [8]. See, for example, [13, Theorem 2.1] for applications to the 1D Euler-alignment
system. A similar argument leads to a time-dependent lower bound p(t) 2 1/t. A uniform lower bound
was first obtained in [33], making additional use of (2.2). We refer the detailed proof to [33, Lemma 3.1].

In combination with (2.4), we also get that for every t € [0, T*),

GO N (rty < IFp @ llzeerey < 0 IFollie(ray- (2.6)

Finally, for the velocity u, let us recall

U+ Ud U =Cy p.v./ M,@(y)dy. (2.7)

Rd X — y|d+a
The standard maximum principle yields the uniform bound (see, e.g., [10, Theorem 4.1])
U lzeo(ray < Nuollzes (ray, v~tel0,T.

Moreover, we recall the following exponential decay estimate of u (see [37, Theorem 2.2]).
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Lemma 2.3. Leta € (0, 2). Assume that u(x, t) is a smooth solution solving equation (2.7) on [0, T*).
Denote by

V(t) = sup [u(x, t) — u(y, vl.
X,yesupp p(-,t)

Then there exists a constant ¢ > 0 depending only on «, d such that for every t € [0, T*),

V(t) < Voe @t (2.8)

Note that in our periodic-domain setting with non-vacuous density as in Proposition 2.2, we in fact
have V(t) = sup, yeqa [U(x, t) — u(y, )| and Vo = sup, yeqa [Uo(X) — Uo (|-

3 General Estimates on the Evolution of the Modulus of Continuity

Our primary analytical tool for studying the global well-posedness of the system is the innovative
modulus of continuity method. This method was initially developed by Kiselev et al. in [17] for the critical
quasi-geostrophic equation. It has proven effective in tackling various fluid equations with critical
scalings and establishing global well-posedness results. Notably, the method has been successfully
applied to the 1D Euler-alignment system in [13, 18, 28], where global well-posedness is demonstrated
forO<a <2

In this section, we establish the framework of the modulus of continuity method for our system (1.5)
and derive the necessary estimates to establish global well-posedness.

3.1 The modulus of continuity

A function w(¢) : (0,00) — (0,00) is called a modulus of continuity (MOC) if w(§) is continuous,
nondecreasing, concave, and piecewise C? with one-sided derivatives defined at every point in (0, o0). In
our application below, we always set w(0") = lim;_,o+ w(§) = 0. We say a function f obeys the modulus
of continuity e if

f) —fl <w(x -y, forallx#yeR:
We start with the following modulus of continuity

s (g — 2811, for0 <& <1;
o™ (§) = 35481
76 + 5 logé, for& > 1,
where p € (0, min{e, 1}) is fixed later and é§ > 0 is a sufficiently small parameter to be chosen later.
Consider a family of MOC via scaling

sa7le — ToaTtugle for 0 <& < A;

35+ 1slogs, for &€ > . (.1

@) =" () = <

The following lemma states that any bounded Lipschitz function obeys a MOC in this family. The proof
can be found in [28, Lemma 4.1].

Lemma 3.1. For any function f € W»*(R%) and for every A satisfying

0 << Wl sy
V£l

we have that f obeys the MOC w!* defined in (3.1).
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As pp and ug are Lipschitz functions, for any given parameters § and u, we may pick a small enough
2 such that they both obey w’*. We choose the following MOC for the density

w1(§) 1= o) (§) (3.2)

with some O < 81, 4, 2 < 1 chosen later. Our goal is to demonstrate that the density p(t) obeys w; for all
time. This result implies the desired Lipschitz bound:

IVe®lx < 0} (0Y) =627 <00, V~te[0,TY. (3.3)

As discussed in the introduction, our approach involves simultaneously propagating the MOCs on
the density and velocity. For this purpose, we introduce the MOC on the velocity:

w(§) 1= )" (8), (3.4)
with O < 8, u, A < 1 chosen later, and our aim is to show that u(t) satisfies the MOC w, for all time. In
most cases, we can choose §; = §,, but we keep the flexibility of selecting different parameters §; and

8,. This flexibility will play a crucial role in the critical case when « = 1 (see Remark 3.8).
Furthermore, to obtain the decay estimate (1.13), we consider a time-dependent MOC on u:

(&, 1) 1=elwy(§), (3.5)
where ¢y > 0 is a constant appearing in Lemma 2.3. If u(t) satisfies the MOC w5 (&, t), then we obtain
IVu®) I~ < e, (07) = e™@t5171,  vte [0, T, (3.6)

where the Lipschitz norm decays exponentially in time.
The following lemma characterizes the only possible breakthrough scenario when the two MOCs are
not satisfied simultaneously. We refer the reader to [15, 17] for the proof.
Lemma 3.2 (Breakthrough scenarios). Let p(x,t), u(x,t) be smooth functions on T¢ x [0, T*).
Assume that po(x) and up(x) obey the MOCs wi(§) and w,(§), defined in (3.2) and (3.4)
respectively. Let t = t; € (0, T*) be the first time that either p(x,t) violates the MOC w1 (§) given

by (3.2) or u(x,t) violates the MOC w; (&, t) given by (3.5). Then there exist two distinct points
x #y € T such that either

P, 1) = p(y, 1) = w1(§) With & =[x -y, (3.7)
or
u, ty) —u(y, ty) = w2(§, t), (3.8)
and also for any &, € T? and t € [0, t1],

o, —pF Dl < 01X =FD), [UE D —u@, bl < w2(X =71, 0. (3.9)

Hence, in order to show that for all time t € (0, T*) the solution p(x,t) obeys the MOC w1 (¢) and
simultaneously u(x, t) obeys the MOC ws (£, t), we only need to consider two cases:

(i) No breakthrough for the MOC of p: under the scenario (3.7), (3.9), it suffices to show that

d(px, 0 = p, D), <O (3.10)
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(ii) No breakthrough for the MOC of u: under the scenario (3.8)-(3.9), it suffices to show that

at(u(x, t) — u(y, t)) <0,
C‘)Z(é‘ t) t=ty
or equivalently,
(U, t) — Uy, H)liet, + cowa(&,t1) < 0. (3.17)

If these estimates (3.10)—(3.11) are proven, it leads to a contradiction and thus implies that the
breakthrough scenario in Lemma 3.2 cannot occur at any time.

Let us provide further comments on the two cases mentioned above. In the case (i), if £ > w]'(p), we
recall (2.5) and find that

p(X,t1) — p(y, 1) =P < w1(8).
Therefore, scenario (3.7) cannot occur. Thus, we only need to establish (3.10) for

0<& <& =0 (p) =12 77 (3.12)

Similarly, in the case (i), if £ > ;" (Vo), we recall (2.8) and find that
U, t1) — Uy, t1) < V(t1) < Voe @ < wp(§)e™®" = wy (&, t).
Therefore, scenario (3.8) cannot occur. Thus, we only need to establish (3.11) for
0 <& <8y =w; (Vo) = re? Vo= (3.13)
We may further choose A to be sufficiently small as

% < Lo (urtmran),

to ensure &, B, < 1.

Before we proceed, let us introduce some notational conventions for the sake of convenience. Since
there are several quantities related to both p and u that have similar expressions, we will use a subscript
i to denote the common representation. Specifically, we will use i = 1 and i = 2 to refer to the quantities

related to p and u, respectively.

3.2 Evolution of the MOC on p

We begin by presenting general estimates that lead to (3.10) under the scenario (3.7), (3.9). The analysis
for the 1D Euler-alignment system has been conducted in [13], and we follow a similar procedure.
However, it is important to note that additional difficulties arise due to the higher dimension d > 1.

Below we drop the dependence on the variable t; for simplicity. Taking advantage of the equation
(1.5)1 and the relations a,,u = A%p + G, G = Fp (recalling (1.6) and (2.3)), we see that

dp = —d,(Up) = —pA®p — p°F —udy, p,
and thus

Bp(X) — 0p(y) = —p M) (A“p(X) — A% (¥)) — (p(X) — p(¥))dx, UX)
— pPMEX) (p(x) — p(¥)) — o (FE) — F(Y)) — ((Udx, p)(X) — (Udy, )(Y))
=: N7 + Ny + N3 + N4 + Ns. (314)
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The first term N, in the estimate encodes the dissipation. Indeed, along the lines of [15, 17], we have

016) —pX+2)+p(y+72)
|Z|d+°‘

Ap(x) — A%p(y) = Cq p.v./ dz > D,1(§) > 0, (3.15)

RA

where we denote

% . N N B
D, () :=cl(/O 20i6) — o6 +2m) — il = 20) 4

1
77+o(

(3.16)

+/°° 20i(§) —wi2n+§) + wi@n—§) dn)

& n1+a

2

with the constant C; > 0 that depends only on « and d. Note that D, ;(§) is strictly positive as w; is
concave. Clearly, (3.15) implies

Ny < —pDg1(8). (3.17)
Next, for the term Ny, it follows from dy,u = A%p + pF and (2.4) that
Ny < —01(5)A*p(X) + 0 [[FollLxw1(§). (3.18)

Following [13], we obtain the following bound on —A%p(x),

A = ¢ p'v_/Rd (p(x—2) _p(ﬁgz; (P — p) dz < Ay (E), (3.19)
where
(&) = wi(lger —2)) — wi§)
Agi(§) = CaD.V. /Rd 2t dz, (3.20)

and ey := (1,0,...,0). Here, due to the rotation and translation invariance, we may assume without loss
of generality that

sothatx —y = ge;.
The term N3 can be easily controlled by

IN3| <P IFolli~w1(8), (3.21)

using (2.5) and (2.4).
For the term N4, we have

[FX) —FWI < IVE[~é.

3, F
P

To control d, F, we introduce H := =~ which satisfies

dH+udH=0, with Ho= 21D = %%(W)y

which immediately implies, for every t € [0, T*),

IH®O N~ < [Hollie, and |18, F® i~ <2 [Hollr~.
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For d > 2, additional control on the full gradient VF is required. To obtain this control, we use (2.3) and
compute

VF+ud, VF = —Vua, F, with VF,= V(W)
This yields
ot
IVE® Il < [IVFollLe +/ IVu(t) |z 18%, F(z) 1 dT
0
t
< VFollL~ +ﬁIIHoHLw/ IVu(r)lli~dr.
0
Given the scenario (3.9), u(t) satisfies wy (&, t) as defined in (3.5). Thus,
VU@ I~ < e~@twh(0T) = e~ @511, Ve [0,t].

By integrating over time, we obtain

th t1 8o
/ IVUu(r)fr~dr < azrl/ e~oldt < — .
0 0 Coh
Hence, the term N4 can be estimated as follows:
INa| < 2| VE(tD)lli=€ < ﬁz(nVFouLw +2 \|HOHL°°32)»_1)E~ (3.22)
Finally, for the advection term Ns, we find (e.g., see [17])
INs| < Ju() — u)| @} (). (3.23)

Remark 3.3. In one dimension, one can take advantage of the relation
U= (A% +G) = —8: A% 2p + 871G,

and use w; to control the MOC of u (see [13, Lemma 4.4]). However, in higher dimensions, we
cannot expect that the MOC of u can be controlled by w; since the relation only involves the
partial derivative of u in the e; direction. Therefore, we will separately show that u(t) obeys
wy(§,1) as defined in (3.5). It is worth noting that when « € (0, 1), the term w, (§, )} (§) cannot
be controlled by the dissipation. We need additional assistance from the regularity condition
(1.15). Detailed calculations to establish these estimates will be provided in the subsequent
sections.

Combining the estimates (3.14), (3.17), (3.18), (3.19), (3.21), (3.22), and (3.23), we can deduce that for
every 0 <a <2andé > 0,

(X, t1) — dp(Y, t1) < —pDa1(§) + w1(6) (Aa,1(8) + 20| Foll<)
- (3.24)
+ 7 (1VFoli + Z1Holli8:2"")€ + [uC0) — ()| @} §).

Now we further estimate the terms on the right-hand side of (3.24). The goal is to use the first term
to control all the rest. We start with a lower bound on the dissipative term Dy ;.
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Lemma 3.4 (Dissipation bound). Let wi(§) be the modulus of continuity given by (3.2) or (3.4).
Then for every a € (0,2) and for any ¢ > 0, we have

Clp@AD2 o5 ~T—pgltp—a for O <Ai
Dai(s) - fo"") i S , < S =4 (3.25)
S mE)E for &>

The dissipation bound was originally derived in [17]. We include a proof under our notations in the
Appendix for self-consistency.

The next lemma provides a bound on the term A, ;. In the case when d = 1, this bound was derived
n [13, Lemma 4.5]. However, in the multi-dimensional case, a significant enhancement is required
specifically for the directions orthogonal to e.

Lemma 3.5. Let w;(§) be the modulus of continuity given by (3.2) or (3.4). Then for every « € (0, 2)
and for any ¢ > 0, we have

© < [Cgairugu-ﬂ, for 0 <& <2, (3.26)

Codig™, for & > A,

where C; > 0 depends only on «, d and pu.

Proof of Lemma 3.5. Let us denote z = (z1,zp) with z, = (22, ---,zq4). We split A, ;(§) given by (3.20) as
follows:

wi(1§ = z1]) — wi(§)
Ay i) =cypV. ——————~dzpdz
i(§) =ca P - /Rd LT e emdA
wi(l§e1 —z|) — wi(I§ —21))
+Cqy p.v/lzw25 /wH 2T dzpdz,
_wx(s) +w1(|ge1
+ Co p.v./lmz?s /RH 27 dz dzy
=tLip+ Lo +1is. (3.27)

For I;;, using symmetry, we get

I-lzcap.v./g/ —20i(§) + (6 —21) + wi(§ +21)
Ri-1

‘Z|d+a

% wi(z1 — §) — wi(§)
+capv/ /Rd ) IZI‘”“‘ dz,dz,

28
+capv// @l +z) — i)y, g, (3.28)
Ré-1

|Z|d+a

dzpdzq

and the first two integrals on the right-hand side of the above formula are both negative due to the
concavity of w; (i = 1, 2), which gives

28 2 )
1 < Cq / / wi(§ +271) — wi(§) Qs 72D 708 5, dzy < CO,C[M/ M
Ré-1 .

T zi o
with Cgq = [ge ﬁdzh < oo. Arguing as the estimation in [28, Lemma 4.4] (with y = %), we get
Atz 2

(3.29)

Cacdasiﬂa(s,)")v for 0 < S <X
Ihi=y.c
“LEsET for &>,
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where

1 —a
Za=ar " for O<a <1,

M = |io(log2 +5), fora=1
(G +3)atete, for l<a<2.

In order to compare with the dissipation contribution, we state the following inequality, where we only
use the fact that £ € (0,1] and p € (0, min{1, a}),

1 for O<a <1,

a?(1-a)’

_ _ R 1

Mo (E,3) < Copd 647, with Ca, = |7+ sup e, for a=1, (3.30)
alj—&-%, for 1 <a <2.

For I;, given by (3.27), we separately consider two cases: for every 0 < & < 24, noting that

[(€ — 7.)2 2 1 — | — |zn|? ]
(€ —2z1)* +1zpl* — |§ — 24 Nt (3.31)

and using the fact that /() < {(0%) = sx~tforall n e Ry, we get

Siat Zn|?
lip ¢ pAv./ / z 2] dzydz,
11226 Jr 121 J1E — 292 + |zp |2 + & — 24

5.)\—1
llm |zn|dzndzy

Sial |z
<Cy p.v./ : ﬂdzhdzl +c,pv. /
lza1<§ J) 211228 Jiziz¢ |2

st 1219 /2

siat
+Cy PV o o |z |dzpdzy
§ <iza1=2 Jizai=s 121

1 1
< coc(,svxl(sfl/ —— _dz+ g/ ——  dzp+ ad_QsH)
i 21 <3¢ |Z‘d_2+a zn|2¢ ‘Zhld_“'"’

04-1+ 042

q-lel—a
e (3.32)

=< COCa

with o, denoting the area of n-dimensional sphere for n > 1 (setting oo = 1); whereas for every & > 2,
noting that |§e1 — z| = [(§ — z1,2x)| (We will use this notation in the following), we have

|Z\‘”‘1

‘e p.vA/ / wi(|(§ — 21, Zp)|) — wi (1§ — 21]) dzydzs
1z11<% Jlznl<g

|Z|d+°‘

— p.v./ / (1 —71,Zn)]) — wi(1§ - le)dzhdzl
l211=2¢ 120128

oi(|(€ — 21, Zp)|) — wi(|E — 2
‘e p.vA/ / (16 — 21 h)lli)w (1§ — 210) dzndzy
(5 <lz0 12610121 —€ 122 |23 <6 |z

+Cq p.vA/ / L = E 2P 2 e _le)dzhdh
la—é1=h J 20l <¢

|Z|d+°‘

=lio1+1Iipo+1in3+1in4. (3.33)
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By using (3.1), (3.31), and the following fact that sup (/s , r=2log/1I+ 1 < Co, we find

wi(|(§ = 21,20)]) — wi(|€ — 2
lios = Ca p.vA/ / (16 — 24 h)L)M i(1& — 21]) dzpdz,
(1211<26)0 (121 ~§ =0} 123 =€ 12|

te, p.v./ / wi(1¢6 —21,2n)]) — wi(1§ — le)dzhdzl
lz1—¢1=2 J [z 28

|Z|d+°‘

8 / 2n]?
<c pv/ / 7108 1-i_{szllzd ndzy
l211<2¢ J iz /25

|Z|d+a

siat |zn|?
+Co PV Tra = = dzpdz,
¢l Jizni=g 12177 J1E — 207 + |27 + |& — 2]

< CoCyd / / 22 ———dzpdz; + Coc,é / 71 |zn|dz
0Ca hUz1 0Ca 01 h h
|z11<2§ Jlzp|=§ |Zh‘d+a 13 _21|1/2 |zn|=& |z e

CoCe0d—2

1 _
< COCaod—Zsi(S_%_u/ & — 21| 7dzs + *E_") < /&% (3.34)
|211<2¢ o «

By virtue of (3.1), (3.31), and the fact that

log |(n,zw)| —log|n| < InI~" (I, zi)| — Inl),  VInl > 0,2, € R*T,

we estimate I;, , as follows for every & > 2x:

i(log|(6 — z1,2p)| — log |& — z1])
=CyP.V. dzpdz
fiz2 s /|21|<f /\zn\<s 2|z|d+e e

copuf [ de=ar 201 o1
— o .V
i<t Jise 2121 /1 —zi2 + |znl? + 1€ — 74

B 1 CoCa0d-1  , _
< CoCudiE™2 < 8E7
= Lo 1§ <28 |Z|d’2+°‘ 2 _ 15
Arguing as (3.34) gives
8i(log (€ — z1,2zp)| —log|é — z1]
Ii,2_3 = Cqy pV/ / 1( g Tt g ) thdZ1
1£ <lz1I=26 01z —8120 J 2] <8 2|z|

Slog 1+
/ / dj 1|2 dzndzy
£ <i211<2¢ J1zy1<¢ 2(§/2)

2=

%-1/2

< CoCaGdfsziS_l_a/ 172

————dz; < CoCaoq_28iE"
S<imi=2s 1§ — 721

Noting that |z| > |z1] > % for every &€ > 21 and |z, — &| < A, we directly have

siat Zn|?
lins <Co pAv./ / P . il . dzpdzy
lzi—1< Jjzyl<e 121 |€ = z11% 4 |Zn]? + 1§ — 21]

Siat
=G |Zh|d2hd21 < Cozdcaad,QBEﬂ‘
/m a1 Jiaize €/2)T i
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Gathering (3.32), (3.33), and the above estimates on i, ; - ;54 leads to that

Céin~tgl~, for 0 A
L, < | dor 0=8 4 (3.35)
Csig™, for & >4,
with C > 0 depending only on «, d.
For I; 5 given by (3.27), we in fact can control a larger quantity T; ; given by
= wi(l§e1 — z|) — wi(§)
lis:= ca/ ——"dz. 3.36
b |z|>2¢ |z| &+ ( )

Noting that from concavity wi(|§e1 —z|) — ;i (§) < wi(§+|z]) —wi(§) < wi(|z]), and exactly arguing as [28,(5.8)]
and (3.30), we have that for every 0 < § < 2,

= () * wi(n) = o ppua
iz <liz <capw. -/|Z\22§ 7] T dz <y 041 . i dn = Ca04-1Co,u 8 "E" T,

with C,, the constant appearing in (3.30); while for every £ > , by using (3.1) and the change of
variables, we infer that

5i(logléer — z| —logé) dzndzy < coCuabiE ™
— o o, 1 ’

li5<Ts=copv. /

2122 2|z|d+e
where (noting that |e; — z| < 2|z|)

logles —z|
|z|>2 2|Z|d+a

<p v./ IOg(ﬂdz =041 p,v./ log@n) dr < +o0.
2

- 212 2|Z|d+°‘ orl+a

and =Dp.V. dz,dzq

Thus, combining the above two estimates yields

C R Ep—a
Ly <Ts < Coz‘id—lcoz,n §ir~hgrTe, for 0 <& =<2, (3.37)
CoCod 6iE7, for £ > A.
Collecting (3.27), (3.29), (3.30), (3.35), and (3.37) yields the desired estimate (3.26). |

3.3 Evolution of the MOC on u

Next, we provide general estimates that lead to (3.11) under the scenario (3.8)—(3.9). From equation (1.5),,
we observe that

3 (UG — U)) = — (Udx, UX) — Ud, UW)) + (Ca (U, P)(X) = CalU, PI)). (3.39)

The first term on the right-hand side of (3.38) represents the advection term, which can be estimated
similarly to (3.23) as

Uy, U(X) — Ud UY)| < [UX) — UWY)] Fpwa (€, t1) = €™ uX) — U)| wh(E). (3.39)

We will apply different estimates to |u(x) — u(y)| in different cases, as mentioned in Remark 3.3.
Our main focus is on the latter term of (3.38). Without loss of generality, we can again assume that

X:(%,O,...,O), y:(—%,O,,O)
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We split the term as follows:

Co (U, )(X) = Ca (U, p)(¥)

e, p'v/ pX+2) (UK +2) —UX) — p(y + 2) (U + 2) — UQy)) dz
R |Z|d+a
e / pX+2)[(UX +2) —uy +2)) — (UX) — uy))] dz
* Jiparn=pyo) |z]d+
+ Co / (p(X - Z) - p(y s i)ga(u(y - Z) — M(Y)) dZ
(Z:p(x4+2)<p(y+2)} |zl
+e, / p(y +2)[(ux +2) — u(dy +2)) — (ux) —uy)] dz
(Z:p(x42)>p(+2)) |zt
e / (px+2)—p(y+ i)ga(u(x +2) — ux)) dz
{zp(x+2)>p(y+2)} IZ‘
=1+]2+]3+ s (3.40)
For terms J; and Js, using the scenario (3.8)-(3.9) and (2.5), we have
Tit)s < —pey p.v./ w(§,t1) —UuX +2) +uly +2) dz,
- R |z|d+
and similar to the treatment of D, 1(¢) in (3.15) above, we can infer that
Ji+J3 < —pe ©1 Dy (&), (3.41)

where D, »(§) is defined in (3.16) and satisfies (3.25).
For the terms J, and J4, using the scenario (3.8)—(3.9), we have

ux) —uly+2z) — t
Jo+Js=cy / (P +2) — p(x+2) ) (y d+)a 2 1)dZ
Jz:p(x+2)<p(y+2)}) ]
UX +2) — uy) — ,t
+Ca/ (,O(X+Z)*,0(y+z)) ( ) (31)& (UZ(E 1)dz
(Z:p(x+2)>p(y+2)} |z|
—z|,t1) — t
§Ca/ |p(x+z)—p(y+z)|w2(‘sel Z|’d1+) (&, Ddz
(Zp (4D <p(y+2)) |zZ|%e
t) — t
+ca/ |p(X+Z)—p(y+Z)\w2(|$el +z|,d2¥ (&, 1)dz
{Z:p(X+2)>p(y+2)} |Z|

wy(§er — zZ|) — wy(§) dz

|Z|d+a

< e ool /Rd lo(X+2) — p(y +2)| =J. (3.42)

Remark 3.6. Let us compare the alignment force C,(u, p) and the linear fractional dissipation
Co(u,1). We can repeat the calculation in (3.40) to estimate C, (U, 1)(x) — Co (U, 1)(y) by setting
p = 1. In this case, the terms J; + Js still represent the dissipation, and we have the estimate
(3.41). However, for C,(u, 1), we find thatJ,+J4 = 0. Hence, the difference between the alignment
force Cy (U, p) and the linear fractional dissipation C, (u, 1) is reflected in the term 7. It is crucial
to control this term using the dissipation.

The integrand in J exhibits a similar structure to A, (§), which was defined in (3.20). One might
expect that it can be controlled by w1 (§)Aq2(§). However, this is not the case. To illustrate this point, we
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decompose J in a similar manner as (3.27), obtaining the following decomposition:

wy(l5e1 —z[) — w2 ()

|Z|d+a

J=cae*C°tl/ N lp(xX+2) = p(y +2)| dz
z|=

wy(|§e1 —z|) — wa(|§ — Zl‘)dz
|Z|d+"‘

+ g e / lo(xX+2) — p(y +2)|
|z|<2&

@ (|& — 21]) — w2(§) dz

—Cot:
+Ca e p(X) — p(M)] Z]+

lz|=2¢

(1§ — Z1]) — w2(§)

|Z|d+°‘

+ Co €_Cut1/ (|p(X+Z)—p(y+Z)I - \p(X)—p(y)l) dz
|z|<2¢&

=Js+Js+J7 +Js. (3.43)

For Js,Je, and J;, we extract w1 (§) and treat the remaining terms using similar estimates as for A, »(§).
Specifically, for Js, we observe that wy(|§e1 — z|) — w2(§) > O for every |z| > 2¢. Utilizing (3.9) and (3.36),
we deduce that

(|51 — Z|) — wa(§)

2 dz < e "y (£)3, (3.44)

Js < ey (§)
Jz|=2¢

where T, satisfies (3.37). For Js, we recall that I, is given by (3.27), and using (3.9), we have
Jo < e " w1(6)lo, (3.45)

where I, satisfies (3.35). RegardingJ;, the estimate is similar to that of [; ;, and by discarding the negative
contributions in the estimate of [;;, we obtain

wCaoCa nor ™M  for O <,
Jy < et ) x | ST CondATHETE, HOT 0 <8 < (3.46)
“7“525*"‘, for £ > A.
Gathering (3.44), (3.45), and (3.46) yields
Copr—ren—  for O <A,
Jo+Js 47 < e han (@) x | 22 =5 (3.47)
Cadr§7", for £ 22,

where C; > 01s the constant appearing in Lemma 3.5.

The most challenging term is Jg, which is related to the dangerous singular integral (1.10) near y = x
(or z = 0). We notice that in the estimate (3.28) for the corresponding term I;; in A, ;, by symmetrizing
z1 around O and utilizing the concavity of w;, we can obtain a favorable negative sign for the first term
in (3.28). However, this is no longer the case with the prefactor |p(x +2) — p(y + 2)| — |[p(X) — p(¥)| in Js5,
which does not have a specific sign. Therefore, we can only establish bounds on this term. Using the
triangle inequality, we have

|\wz(\s —ah-e®|,

P K. (3.48)

Js <c e /H N o +2)— p(x) = (p(y +2) — p(¥))

The following Lemma provides estimates on the bound K.
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Lemma 3.7. Let ¢ € (0,2) and w;(§) (i = 1,2) be the modulus of continuity given by (3.2) and
(3.4). There exists a positive constant Cs that depends only on « and d such that for every
0<é=4

K < Cge®ts15,1 726279, (3.49)
and forevery A < & < By,

C3(8,(A71E) L+ Vo) w1 ()6, for 1l<a <2,
C3(82 + Vo) w1 ()7, for O0<a<1.

K <eot x (3.50)

Remark 3.8. In the estimate (3.50), the term K is controlled by
K< aon)E™,

with a potentially large constant coefficient. On the other hand, the dissipation (3.41) has a
lower bound, as shown in (3.25),

J1+]s S —oa(§)E7.

To ensure that K is controlled by the dissipation, we choose §; to be much smaller than §,. This
choice allows us to control K effectively through the dissipation term.

This idea of choosing different values for §; and §, seems to play a critical role in controlling I,
particularly in the critical case when o = 1.

Proof of Lemma 3.7. For every 0 < & < 2A, noting that () < w/(0*)n = §1~'n for every n > 0, we
see that

@7 (|2])
|Z|d+a

dz

K < 2cae’f°“/ w1(|z])
|z|<2¢

< 20,e7°1 818,077 / |z| o *2dz < et B0t 5, 5,022
Jzl<2¢

In particular, by virtue of the fact that wi(§) > w1 (1) = %81 for every & > A, the above estimate gives that
forevery » <& <2,

K < e 85 50, (§)5 .

For every 2. < & < E, (with no loss of generality assuming that E, > 21), we have the following
splitting:

|w2(1& = Z1]) — w2(&)| dz

|Z|d+°‘

K< 2Ca€’c°tl/ w1(]Z])

{z:l2]<2¢ |21 1< 5)

— Z p—
+ 2¢ 0k / w1()z]) o218 1d|+) 028)| dz =: K1 + K.
{zlz)<2¢ |21 1> §) |z|d+e
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Noting that | — z1| > § > A for every |z1| < § and £ > 22, and by using (3.2), (3.4), and the change of
variables, we infer that for every 21 < & < By,

82| log|1 — 2|
Ky = 2c,e™%h / wr(z) ——
(zl2l<26 71 1< §) 22|

w1(|z))

< cae 1 5E
lz1<0¢ |Z|d—1+a

601(77)

<e e 09186 /

A
< efcothaUdfltSzf*l(/ o ndn + w1(2$)/ *dﬂ
0

ﬁél)\l"" + fjwl(é)kl’“, for 1<a<?2,
< e OMc,09186 7 x 81 + Zwi(s)log%, for a=1,
Fsal e+ 2w (§)(26), for O<a <1,

o ho ®E A, for 1<a <2,
< e 9c001 x {4(8; + Vo)w1 (§)67, for a=1,
=801 (6)E, for O<a <1,

where in the last inequality we have used the facts that §; < %wl(’;'), and in particular for ¢ = 1
(using (3.13))

log % <log2+1log £ < 1+ 26,Vo.

o
For K», in view of the fact |z| > |z1| > % and the concavity of w;(¢) (i = 1,2), we have

) (I2)
o < 2c,e Con/ o1z oo
2 {Z121<2 211> £} S ey
< gm0t 2+ la ooy (28)wy (26)E

< et Q23 ag Vo (£)E,

where in the last line we have used that w,(§) < w2(E2) = Vo. Collecting the above estimates on K; and
K, leads to the inequality (3.50) in the case 2A < & < E,, as desired. |

When « € (1,2), the estimate in (3.50) is not ideal, as A~*¢ can be very big in the region £ » . To

overcome this difficulty, we derive a refined MOC for p, replacing w1 in the estimate. This refinement
utilizes the relation (1.11), which we recall here:

p =y AU~ AG. (3.51)

We state the following lemma, which demonstrates that the MOC of p can be controlled by the MOCs
of u and G. The proof follows the approach in [13, Lemma 4.4], and it will be provided in the Appendix.

Lemma 3.9. Let 1 < o < 2. Suppose u(t) obeys w, (¢, t) defined in (3.5). Then, for any &, j € R? with
& = |X — |, we have

- - ~ t , _ ~
|p<x,t1>—p(y,t1)|sc4(/o @200 4 s/ w2001 )+COPHFO||L°°§, (3.52)
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where C; > 0 depends only on «,d and Co > 0 an absolute constant. In particular, for every
£>4,

oG 1) — G 1] < =2os— wr BIET ™ + CopllFolli~E. (3.53)

By utilizing (3.53) to replace w; in the estimate (3.50), we obtain an improved estimate for K.

Lemma 3.10. Let 1 < @ < 2 and wy(§,t) be the modulus of continuity given by (3.4). There exists
a constant C; > 0 depending only on « and d such that for every A < ¢ < B,

K < e Ca (PIFollimwr (31 + Vo wr(£)277). (3.59)

Proof of Lemma 3.10. The proof of this lemma mainly relies on the following result, which states that
other than the MOC w1 (), one can obtain an additional control on the quantity |p(X, t) — p(¥, t)| for every
%7 e RY.

Now we can use (3.53) to replace the estimate of }(p(x +2z)—pX)—(p(y+2)— p(y))| in K, so that for
every A < & < By,

wy(|z]) dz

|Z|d+oz

K < 2e%h cap.v./

_ 2C -1
(CoPIFolli~ 2] + = wazDlzI* )
|z|<2¢

% w () ¢ % w2 (1)
< 2e*C°“caod4(CoﬁnFouLoo / ; dn+ =% / wy (1) dn)
0 0

@ 772
X 2
< 27" cu09-1Cop | Folli (/ 827 ' dn + ) (28) / nfadn)
JO Jr

. A 2% 9
+2e—cumcagd71%(/o sg,\—zdn+w§(2s)/ ?dn)
A
< 2¢ " c0-1CopllFole (582417 + 202(6) 727277%)

ool Aot (sﬁrl + 402 (& )rl)

< e 2o (CopFollim @21 + CaVowa @),

where in the last line we have used the facts that 8, < $w,(€) and wy(§) < wy(85) = Vo. [ |

Therefore, collecting (3.11), (3.38), (3.39), (3.41), (3.42), (3.43), (3.47), and (3.48) leads to that for every
ae€(0,2)and0 < & < By,

3 (UX, ) — Uy, D)le=t, + Cow2(§,t1)

<Gt ( — pDe2(8) + [U(X) — u(y)|wy (§) 4 co w2(§) + lC) 3.5

Codowr (§)AHgH~, for O <& <,
Cadrwr1(§)E7, for & > 2,

+ e ot %

where D, »(§) satisfies (3.25) and K given by (3.48) satisfies the estimates in Lemmas 3.7 and 3.10.
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4 The Subcritical Regime: Global Well-Posedness and Asymptotic
Behavior

In this section, we finalize the application of the MOC method and provide a proof of Theorems 1.1
and 1.2 for the subcritical regime when « € (1,2). The same result has been previously established in
[23], and here we present an alternative proof employing a different analytical approach.

Our objective is to demonstrate that both p(t) and u(t) satisfy the MOCs w1 (§) and w; (¢, t), respectively,
as defined in (3.2) and (3.5). By leveraging Lemma 3.2, our task reduces to proving the validity of (3.10)
and (3.11). For the sake of simplicity, we assume §; = §, =: §, resulting in w1 (§) = w2 (§) =: w(§).

We will now proceed to establish the validity of (3.10) for any x # y € T¢ with & = |x — y| € (0, &1]
(recalling &1 is given by (3.12)). The proof can be divided into two parts.

e For every 0 < § < A, we apply (3.1), (3.25), and (3.26) to (3.24), resulting in the following estimate:

dp(x,t1) — dip(y, tr) < SA~ITHgIHTE ( — G2 4 o8+ PlIFollim At E
+ 77| VFollie 8™ A 5 4 £ |[Ho i AME 4+ 827 THAge ). (4.1)
Note that for the last term of (3.24), we have used
[ux, ty) —u(y, t)l < wa(§,t1) < wa(%). (4.2)

The right-hand side of (4.1) can be made to be strictly negative by choosing § and A small enough. Set
n = §. First, we choose é such that C»8 < Cigﬁ. All the rest terms are scaling subcritical and can be made
small by choosing A small enough. Indeed, we have

AIET 4 8TIAMIET 4T IET <N+ 8.

Taking a small , depending on §,«, and Ci,, p, [Follix, I VFo 1=, [Holli~, the rest terms can be made
smaller than Cizﬁ.
eForevery A < £ < 8; = Ae%7-% we apply (3.1), (3.25), (3.26), and (4.2) to (3.24) and use the facts

that 28 < w(&). It yields

w C - o
0p(x,11) = dp(y, 1) < %2 (= S + Cod + DlFolieg+

-3
+ 472 VFolli~8 7161 + £ [Hollie A g1 4 6771). (43)

The right-hand side of (4.3) can be made to be strictly negative by choosing § and A small enough. First,
we choose § such that C,8 < %. All the rest terms are scaling subcritical and can be made small by

choosing A small enough. Indeed, we have
sa +8—1§1+a +)L—1§1+a _,’_Sozfl < )La—l(l +€4571573(1+871)).

Taking a small 1, depending on §,«,p, and Cq, p, [|Follr=, IVFollr~, [[Holl.~, the rest terms can be made
smaller than %ﬁ.

Next we justify that (3.11) holds for any x # y € T¢ with £ = |x — y| € (0, 8] (recalling &, is given by
(3.13)). We also consider two cases.

e For every 0 < & < A, by using (3.1), (3.25), (3.49), (3.55), and (4.2), we have the following:

3 (UX, ) — Uy, D)le=t, + Cow2(§,t1)
< oot ( — Sl gy omg b 4 5237 4 cosn N + Ca67h 267 + CQ(SQ)L_l_MSH'M_U‘)

< e—COtlax—l—%El—%(i % + oA HEET fgrTET 4 Caoa It agL S +C25), (4.4)
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where in the last inequality, we take u = §. The right-hand side of (4.4) can be made to be strictly
negative by choosing § and A small enough. First, we choose § such that

Ca8a 6% 4 Co8 < (Co+ C3)8 < S22,

The remaining two terms are scaling subcritical, we may pick A small such that

SATIHEET 4 eonTET < sA 4 oA < ng

e Forevery A < £ < B, = 2e%1 Vo~3 using (3.1), (3.25), (3.54), (3.55), and (4.2), we have the following:

3 (U, ) = uy, H)le=t, + o @2(§, t1)

< e 0l %( - % + 3607 4ot + Cy (ﬁnFo e A1 + Vo rl)g‘* + C28)4 (4.5)

The right-hand side of (4.5) can be made to be strictly negative by choosing § and A small enough. First,
we choose § such that C,8 < ¥‘ All the rest terms are scaling subcritical and can be made small by

choosing A small enough. Indeed, we have

6501—1 _’_éa + (}Ll—a +}L—1)§a < )Loz—l (1 + e45’1V0—3)'
Taking a small &, depending on §, «, Vo, and Cy, p, 7, | FollL~, the rest terms can be made smaller than %.
Collecting all the estimates above and applying Lemma 3.2, we obtain the desired Lipschitz bounds
(3.3) and (3.6). In combination with the blowup criterion (2.1), we conclude the global well-posedness of
smooth solution for the system (1.5) in the subcritical regime 1 < a < 2.
Moreover, the estimate (3.6), together with Lemma 2.3 directly implies the exponential decay of the
velocity (1.13). The strong flocking estimate (1.14) follows; see, for example, [23,p. 827].

5 The Critical Regime: Global Well-Posedness and Asymptotic
Behavior

In this section, we delve into the critical regime characterized by « = 1. Given the critical scaling (1.9) for
both p and u, the task of establishing a global well-posedness theory becomes notably more challenging
compared to the subcritical regime.

It is worth addressing a key challenge in applying the framework presented in Section 4. With & = 1,
certain terms in the estimates, such as those in equations (4.1), (4.3), (4¢.4), and (4.5), transition from
subcritical to critical. For instance, the last term in (4.1) becomes §, which can not be made small by
choosing a small A. Nonetheless, we may still control the term by choosing § small.

However, there is one critical term that does not become small through diminutive § and a values.
It is the penultimate term in (4.5): C4VoA &, coming from the term K. To compound the challenge,
estimate (3.54) is inapplicable in the case of & = 1 due to the coefficient C4 growing infinitely large as «
approaches 1. In fact, it is well-known that the Reisz transform dx, A~! does not preserve the MOC w; (&),
thereby precluding the validity of (3.54) for the case of & = 1.

Our main idea is to simultaneously propagate the MOCs of p and u. To control the term K, we may
use the fact that p obeys the MOC w1, that is preserved in time. This leads to a stronger bound (3.50). The
aforementioned penultimate term in (4.5) becomes C3V, (with a finite Cs, in oppose to an infinite Cy).
However, it is still not guaranteed that this term can be controlled by the dissipation %ﬁ, for arbitrary
initial data.

In light of this, as elaborated in Remark 3.8, we introduce the relation:

81 =«8,, with some « € (0,1) chosen later. (5.1)
Thus, w1(§) = k wy(§), where w1(§) and w(§) are given by (3.2) and (3.4). By taking a small auxiliary

parameter «, we are able to control the aforesaid term by the dissipation, for any smooth initial data.
Let us repeat the estimates in Section 4, using (5.1).
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We first prove that (3.10) holds for any x # y € T¢ with & = |x—y| € (0, E1]. Similarly as (4.1) and (4.3),
we set u = £ and get the following:
eForevery 0 <& <4,

_3.1 C — 1.1
dp(x,t) = dp(y, 1) < 812 PE 7 (= G+ Cody + DIFolA 6+
+ P2 IVFolli~T AR R + Z [ Holled 26 + 822757 (5.2)

13
eForevery » <& < 8y = re? 777,

w C p—
0o, 1) = dp(y, t1) < P& (= S + Cody + DlIFolleé+

+ $72IVFol87 ' + 3 2 |Hollh 6% + 3 ). (53)
Note that the last terms in (5.2) and (5.3) are scaling critical, but can be made small as long as §, is small.
Following the same procedure as in Section 4, we may take §,, « and then A small enough to make sure
the right-hand side of (5.2) and (5.3) are negative, finishing the proof of (3.10).

Next we prove that (3.11) holds for any x # y € T? with £ = |x — y| € (0, E].

e For every O < & < A, arguing as (4.4), we have

B (U, ) — Uy, t)le=t, + Co w2 (&, 1)
Se@ten it (= S o TE oortEl £ Cabi T TET + o). (5.4)
There are three terms 52)»_%§%,C331)\._%§% and C,é, that are critical, all of which can be made small by
choosing 8, and « small enough. The remain subcritical term can be made small by choosing 1 small
enough.

e For every » < & < B, = re2% Vo—3 we follow (4.5) but replace the estimate on K by (3.50). This
leads to

B (U, t) — Uy, D) lt=t, + Co w2 (£, t1)

— C :
< e (= G2 20 4 B 0p(§) + comn (€) + Ca (82 + Vo) 42 + Co8, 42 )

<eote® ( — S 4% 4ok + Ca (80 + Vo) + Czszx) (5.5)

Notably, the most dangerous term C3Vox can be made small by choosing a small enough parameter «.
The rest of the terms can be controlled by the dissipation by taking §, and A small enough, similarly as
before.

Thus, by choosing 8, « and 2, the right-hand side of (5.4) and (5.5) can be made negative, finishing
the proof of (3.11).

Now we apply Lemma 3.2 to obtain Lipschitz bounds on p and u. Global well-posedness and
asymptotic strong flocking behavior follows from the same argument in Section 4. This completes the
proof of Theorems 1.1 and 1.2.

6 The Supercritical Regime: Refined Regularity Criterion

In this section, our focus is on proving Theorem 1.3, which concerns the refined regularity criterion for
the system (1.5) in the supercritical regime 0 < o < 1.

The main challenge in establishing a global well-posedness theory lies in controlling the advection
term. It has a supercritical scaling under our framework. We impose an additional regularity criterion
(1.15) that allows us to obtain enough control to the advection term. Notably, our criterion (1.15) only
requires a certain Hoélder regularity on u, which represents a significant improvement over existing
criteria such as (2.1).
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We utilize the criterion (1.15) to obtain an improved bound
[u@) — uml < llullc-&°. (6.1)
for any x,y € T and & = |x — y|. The bound (6.1) replaces (4.2) in controlling the advection term.

In the following, we will verify (3.10) and (3.11). We make use of (6.1) to handle the advection term,
and we claim that the rest of the terms can be treated through the same procedure as the critical regime
in Section 5.

Recalling that w1(§) and wy(&,t) are given by (3.2) and (3.5) respectively, we also assume that (5.1)
holds and thus w1 (§) = « w,(¢) with a small parameter « € (0, 1) to be chosen later.

We first prove (3.10) holds for any x # y € T¢ with & = |x — y| € (0, &1].
e For every 0 < § < A, similar to (4.1), we have

—1— —a C —_ L g0l —,
Bp(x, ) = dep(y, ) < 8un " g (— S 4 oy + BlFolli A (6-2)
53
+ P VFolliw 87 A6 4 E [ Hollie 6™ + u(ty) oo 0§70,

where we have used (6.1) for the last term. Under the regularity assumption (1.15), 0 > 1 — a. We set
u=2"0=% > 0. Then the last term in (6.2)

lu(tn) e APET =071 < Jluty) e r” = (6.3)

is subcritical and can be made small by taking A sufficiently small. All other terms in (6.2) can be treated
the same as (4.1).
e FOr A < & < 81 = 22173 we follow (4.3) and use (6.1) to get

B 1) = 8ep(y, 1) < B (= S + Coby + BlIFolle 7+
+ P2 IVEo =87 61 + £ 2 [Holli=AT16 M7 ) + futtlle- 5677 6.4)

To control the last term, we use the fact wi(§) > wi(A) = %81 and obtain
Mt llee 36771 < 29 - 2 jucty) e §£77070 < 2D 2ty o™ P a0, (6.5)

Taking i = 1, we deduce that the last term in (6.5) is scaling subcritical, and can be controlled by the
dissipation term by choosing A small enough. All other terms in (6.4) can be treated the same as (4.3).
Next we show that (3.11) holds for any x # y € T¢ with & = |x — y| € (0, &,].
e For every 0 < & < A, arguing similarly as (4.4) and using (6.1), we obtain

B (U, t) — Uy, t)le=t, + Co w2 (&, t1)

— —1- — C —(l—a)—
< e otga o ng e (= S fugt) oo Mg 070

+ CoAHETH + C331K71+%§17% + C281). (646)
Taking u = 22~ and applying (6.3), we know the advection term can be controlled by the dissipation
by choosing a small 1. The remaining terms in (6.6) can be treated same as (4.4).

o For every A < & < E, = A¢2 Yo-2 analogous to (5.5), we apply (3.50) to the term K and use (6.1) for
the advection term. It yields

B (U, ) = uy, H)le=t, + o 2(§, t1)

w: c o — o—
< e O (S8 o 4 G5, + Vo)k + Codor) + €% u(ty) oo 5677 6.7)
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Applying (6.5) with 1 = 2, we see that the last term in (6.7) is subcritical, and can be controlled by the
dissipation term by choosing A small enough. All other terms in (6.7) can be treated similar as (5.5), by
taking sufficiently small §,,« and A.

Now we apply Lemma 3.2 and deduce Lipschitz bounds on p and u, which then lead to global well-
posedness and asymptotic strong flocking behavior.

We would like to emphasize that the parameters §; are independent of the a priori bound in (1.15).
But A depends on ||ull~, co (rt))- Moreover, from (6.3) and (6.5), we see the relation |ju(t1)llc- A7~ < 1.
Hence, we pick

-1
A~ IIUIILJ@’;&(M)-
Together with (3.3) and (3.6), we conclude with the Lipschitz bounds (1.16) and (1.17). This completes
the proof of Theorem 1.3.

Remark 6.1. If we extend our regularity criterion (1.15) to encompass the scale-invariant class

sup u()llcr«(s < 00, (6.8)
te[0,T*)

namely o = 1 —o, we unearth a distinct challenge. In this context, the advection terms in (6.2),
(6.4), (6.6), and (6.7) become critical. Consequently, they can not be made small by choosing A
sufficiently small. Furthermore, our earlier choice of u = %1“” = Oloses its relevance. Should
we adopt any x> 0, the last term in (6.2) that reads [Ju(t1)||c« A& ~* becomes unbounded when
& — 0. Therefore, our existing framework falls short of encapsulating the global well-posedness
scenario under the assumption delineated in (6.8).

The implications of whether (6.8) could potentially propel global well-posedness, or whether
global well-posedness might be attainable without any a priori regularity criterion, constitute
intriguing questions that warrant dedicated exploration in the realm of future investigations.

A notable special case worth mentioning is that of “parallel shear flocks”, which was examined
in [22, Section 4.1]. In this context, we consider shear velocities represented by

p=pXy,---,X,), U=uXy,---,Xq,1)

in the system (1.5). Consequently, d:p = 0, causing the advection term in equation (1.15); to
vanish. Since the regularity assumption (1.15) is exclusively utilized to address the advection
terms in (1.5), our framework assures global regularity and asymptotic strong flocking for
parallel shear flocks in the full range of 0 < « < 2, including the supercritical regime, without
any a priori regularity criterion.

7 Appendix: Proof of Lemmas 3.4 and 3.9

We first present the proof of Lemmas 3.4.

Proof of Lemma 3.4. Below we sketch the proof of (3.25). For every O < & < A, due to the concavity of
wi(§) given by (3.2) or (3.4), we have o;(€ +2n) + i (€ — 2n) — 2w;(§) < 20! (§)n?, and we use the first integral
term in (3.16) to get that

* 20/ ) 2t
Dm®zfﬁ/‘—L—1®=7Q2
0 -

n1+a

wlu + 120t

5')»717“ 17€1+/L.
42 —a) 5

W (§)ET =Cy

For every & > A, we keep the second integral term in (3.16), and using the fact 28; < w;(&), we have

V=5, oi@n+E) —wi(2n—§) < 0i(26) = wi(§) + 3 log2 < wi(®),
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and thus

o) ; C2a 1
Da_i@)zclﬁ 0®) g, - G2 e,

2n1+:1

as expected. |
Next we turn to the proof of Lemma 3.9.

Proof of Lemma 3.9. By the relation (3.51), we have
PR = ) = (3, A UR) — B, A™UG)) — (AGR) — A“G()). (7.)
Noting that (see, e.g., [27, Proposition 3.1])
0 ATURX) = Cog pv/ Ziliu(x —7)dz,
i |zZ]T+2—a

I'( d+%—u)

with ¢, 4 = TR

and by exactly arguing as [27, Lemma 3.2] (for the case @ = 1 see also [17]), we get

|amA—°'u<>"<>—ax]A‘“u@>|564(/ @200 5) 4 s/ 0.t g ) 7.2)
0

where C, depends only on « and d. For the second term on the right-hand side of (7.1), in view of the
L>®-estimate of G in (2.6), we obtain that for @ € (1, 2),

IA™GE) — A™*GE)| < 1A Gl () |X — JI < CollGlip(rtyé < CoplIFoll~E.

Combining the above two estimates yields the desired inequality (3.52).
Next, we explicitly calculate the integral in (7.2) for every & > i. Direct calculation gives that

€ wo(n, t) 4 /‘* S /5 w2 () 1,1, 1
< dn + dn < =A%+
./o n?-« dn < o 7 P =% a—1

-~ 2 .
@ @F T = ——w®E,

and

2 ..
wr (B)E* L,
—

5/ a)z(n t1)d <€( wg(%‘)%’“ 24 /&, T adﬁ)

where in the above we have used the fact that §, < %wz(é). Collecting the above inequalities gives the

desired estimate (3.53). |
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