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The optimization of a system’s configuration options is crucial for determining its performance and func-

tionality, particularly in the case of autonomous driving software (ADS) systems because they possess a

multitude of such options. Research efforts in the domain of ADS have prioritized the development of au-

tomated testing methods to enhance the safety and security of self-driving cars. Presently, search-based

approaches are utilized to test ADS systems in a virtual environment, thereby simulating real-world scenarios.

However, such approaches rely on optimizing the waypoints of ego cars and obstacles to generate diverse

scenarios that trigger violations, and no prior techniques focus on optimizing the ADS from the perspective of

configuration. To address this challenge, we present a framework called ConfVE, which is the first automated

configuration testing framework for ADSes. ConfVE’s design focuses on the emergence of violations through

rerunning scenarios generated by different ADS testing approaches under different configurations, leveraging

9 test oracles to enable previous ADS testing approaches to find more types of violations without modifying

their designs or implementations and employing a novel technique to identify bug-revealing violations and

eliminate duplicate violations. Our evaluation results demonstrate that ConfVE can discover 1,818 unique

violations and reduce 74.19% of duplicate violations.

CCS Concepts: • Software and its engineering → Search-based software engineering; • Computer

systems organization → Embedded and cyber-physical systems.

Additional Key Words and Phrases: Autonomous driving systems, Software configuration

ACM Reference Format:

Yuntianyi Chen, Yuqi Huai, Shilong Li, Changnam Hong, and Joshua Garcia. 2024. Misconfiguration Software

Testing for Failure Emergence in Autonomous Driving Systems. Proc. ACM Softw. Eng. 1, FSE, Article 85

(July 2024), 24 pages. https://doi.org/10.1145/3660792

1 INTRODUCTION

Autonomous Vehicles (AVs), a.k.a. self-driving cars, are becoming a pervasive and ubiquitous part

of our daily life. More than 50 corporations are actively working on AVs, including large companies

such as Google’s parent company Alphabet, Tesla, Ford, GM, and Toyota [24, 25, 31, 33, 34]. Quite

a few of these companies are already commercially providing AV products running on public roads,

with notable examples of the robo-taxi services from Alphabet’s Waymo and GM [18, 24] and also

millions of Autopilot-equipped Teslas [34]. Experts forecast that AVs will drastically impact society,
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particularly by reducing accidents [41]. However, crashes caused by AVs indicate that achieving

this lofty goal remains an open challenge. Despite the fact that companies such as Tesla [29],

Waymo [31], or Uber [30] have released prototypes of AVs with a high level of autonomy, they

have caused injuries or even fatal accidents to pedestrians. For instance, an AV of Uber killed a

pedestrian in Arizona back in 2018 [26]. AVs with lower levels of autonomy have resulted in more

fatalities in recent years [4, 7–10, 17, 22, 26]. In October 2021, an AV operated by Pony.ai hit a street

sign on a median, i.e., the strip of land between the lanes of opposing traffic on a divided highway,

in Fremont, California, prompting California to suspend the company’s driverless testing permit.

Autonomous driving software (ADS) that operates these AVs are highly configurable systems.

More specifically, we have found open-source versions of high-autonomy (Level 4), production-

gradeADSes (i.e., Apollo [28] andAutoware [13]) have 1,943 and 2,475 runtime configuration options

in configuration files, respectively, resulting in an exponentially large number of configurations

to consider in order to assess and optimize an AV (e.g., to minimize the severity and frequency of

errors). ADS configurations can have substantial effects on ADS behaviors, such as altering the

functionalities (e.g., driving behavior) or non-functional properties (e.g., performance or passenger

comfort) of an ADS. The large number of configuration options of an ADS, along with the dearth of

documentation explaining them, prevents engineers from tuning ADS configurations for their own

custom needs (e.g., to maximize the performance of a particular AV). Compounding this problem, a

recent study of Apollo and Autoware revealed that incorrect configurations cause a large amount

of ADS bugs (27.25%) and account for many bug symptoms (e.g., crashes) [54]. Thus, determining

whether an ADS prevents improper or invalid values from causing the AV to misbehave, which we

refer to as ADS misconfigurations, is a highly challenging and safety-critical task. Although many

approaches aim to test an ADS by generating driving scenarios [53, 58, 59, 65, 67, 78, 79, 86], we

have not found any ADS configuration testing approaches in the existing literature. They have

all focused on improving test generation to augment the safety and security of AVs under default

configurations, ignoring the myriad of available configuration alternatives.

To test ADSes under varying configurations, a testing approach can execute pre-existing driving

scenarios in simulation for every ADS configuration. However, as per discussions among ADS

developers and contributors, there are practical challenges associated with speeding up simulations,

such as potential inaccuracies or oscillating controls [35]. For this reason, executing driving scenar-

ios is expensive for an ADS since scenario execution time is supposed to be equivalent to the time

required to test the scenario in the physical world to obtain realistic simulation results. For example,

a driving scenario that takes 30 seconds in the physical world still takes 30 seconds in simulation.

Scenario re-execution per configuration and the thousands of configuration options to consider

make ADS configuration testing practically impossible to conduct exhaustively. To address this

combinatorial problem of testing ADS configurations and re-executing driving scenarios, such test-

ing must minimize the time spent on rerunning scenarios for each alternative configuration tested.

To that end, it is particularly critical to ensure that generating such configurations (1) prevents

the identification of one failure from masking other failures, which we refer to as failure masking,
and (2) minimizes the identification of duplicate failures. To prevent masking failures in testing

ADS configurations, a testing approach can significantly benefit from determining the ranges of

configuration values likely to exhibit a failure. Unfortunately, the valid ranges for options are

undocumented and, often, may not be handled by an ADS under test. To minimize the identification

of duplicate failures in ADS configuration testing, a testing approach must be able to find unique

failures that emerge during testing, which we refer to as emerged failures.
To overcome the aforementioned challenges, we introduce ConfVE (Configuration Violation

Emerger), a novel framework for ADS configuration testing that leverages a genetic algorithm to

produce alternative ADS configurations in a manner that reduces the large configuration space to
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identify configuration options and values that can lead to the discovery of bugs not identifiable

using the ADS’ default configuration and, thus, may not be detected until engineers customize the

ADS (e.g., for a particular AV or when customizing the ADS for operation in the physical world).

ConfVE could help developers to identify optimal configurations, fix problematic ones, and analyze

specific configuration ranges and combinations. For example, by narrowing down the valid range

for each option according to the testing results, such a range can help users tailor their needs while

avoiding system failures. The main contributions of this work are as follows:

• We propose ConfVE, the first configuration testing approach in the ADS domain, which serves as

a testing framework that utilizes scenarios from pre-existing ADS scenario-generation techniques

and a genetic algorithm to produce alternative configurations to identify emerged failures in

an ADS by preventing the masking of failures and maximizing the possibility of producing

bug-revealing violations.

• We design 3 novel module-level oracles that detect bug-revealing violations in ADS scenarios

that occur frequently in our ADS configuration-testing experiments.

• We introduce a duplicate elimination process to minimize duplicate failure generation and

identify emerged failures, which works by checking the similarity of traffic violations using

an unsupervised clustering technique and representing those violations as the key features of

driving scenarios with respect to each different violation type.

• We evaluate ConfVE on two open-source versions of production-grade ADSes and discovered

1,818 unique violations from 9 violation types.

2 BACKGROUND

2.1 Autonomous Driving So�ware

An ADS aims to achieve high automation levels for vehicles to automatically run on roads. The

autonomy levels for self-driving cars depend on various features, including adaptive navigation

control, environmental detection, and other driver assistance systems. The Society of Automotive

Engineers (SAE) defines six levels of autonomous driving from Level 0, with no assistance systems,

to Level 5, which represents fully autonomous driving [73]. An ADS is used to achieve high

automation (Level 4) or full automation (Level 5). Baidu Apollo [28] and Autoware [13] achieve high

automation, specifically, Level 4 [23], which means they are capable of automatically controlling the

vehicle in most potential circumstances and performing all types of driving tasks in different traffic

scenarios and is capable of handling the majority of driving situations without any input from a

human driver, leaving a limited number of cases where a human driver may need to intervene. An

ADS is a large software system consisting of different modules with varying functionalities: HD

Map includes lane geometries and locations of traffic control devices, which may be used by other

modules; Routing generates high-level navigation information based on routing requests and

tells the autonomous vehicle which routes to take to reach its destination; Localization provides

location, heading, velocity, and acceleration information of the AV; Perception identifies the

physical world surrounding the self-driving car by integrating multiple sensors (e.g., camera, radar,

and LiDAR) to recognize obstacles; Prediction receives the obstacle information including position,

velocity, and acceleration detected by Perception and predicts the future motion of the obstacles;

Planning makes decisions for the autonomous vehicle to execute, such as cruising or stopping.

2.2 Scenario-generation Approaches

State-of-the-art scenario-generation approaches [58, 59, 65, 67, 86] focus on generating scenarios

that can expose ADSes to various violations. These approaches initialize the ADS at a location on the

map and send the destination location to the ADS so that it can plan to complete its task; in addition,
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such testing approaches also manipulate maneuvers of the obstacles so that complex scenarios

involving interactions between the ADS and other road traffic participants can be generated. AV-

Fuzzer [65] and AutoFuzz [86] use a number of manually specified variables to represent obstacle

positions as well as the initial and final location of the ADS, resulting in generating scenarios

where the AV always starts at the same location and drives toward the same destination along with

similar obstacles across different scenarios. The required manual specification of these approaches

limits the diversity of the scenarios, inspiring fully automated approaches (e.g., scenoRITA [58],

DoppelTest [59], DeepCollision [67]). All these aforementioned approaches focus on generating

scenarios only under the default configuration but not alternative configurations that may trigger

violations or bugs.

2.3 Configuration Testing

Existing configuration testing techniques build upon regression testing and can handle a number of

configurable options ranging from tens to thousands [56, 83, 84]. Even the state-of-the-art robotics

debugging technique, Swarmbug [61], which conducts experiments on 4 Swarm algorithms, focuses

on 6-14 configuration variables, which is much smaller than the 1,943 runtime configuration options

in Apollo. Swarmbug takes 25.2 (for Adaptive Swarm), 2.8 (for Swarmlab), 0.4 (for Fly-by-logic),

and 0.3 (for Howard’s) hours to run 100 tests for this scale of configurable systems under known

ranges for each option. Unlike traditional configuration testing techniques where a result of a test

case can be obtained instantaneously, ADS test cases usually require executing the simulation of

vehicle driving scenarios in real-time (e.g., a single test case can take 30 to 60 seconds).

A large number of options in a software system would result in the problem of combinatorial
explosion for all possible configurations because every test would ideally be rerun for every con-

figuration change. Even rerunning or recompiling the system for every configuration change to

take effect incurs significant time costs. Furthermore, virtual scenario-based ADS testing is already

highly expensive because simulations are running in real-time (e.g., 30 minutes of simulation

testing is equivalent to 30 minutes of testing in the physical world). Therefore, we cannot test all

configuration combinations. For virtual testing of ADS, we leverage the insight that we do not need

to fully run every module if testing is not intended to be end-to-end. For instance, prior works

[58, 59] replace the perception module with ground truth obstacle information to focus testing on

the routing, prediction, and planning modules. This can reduce the need to test all 1,943 or 2,475

configuration options in Apollo or Autoware by focusing on Planning or core modules of a Level-4

ADS, such as Routing and Prediction, because they are the most bug-ridden [54].

2.4 Motivating Example

Prior work [54] conducted a comprehensive study of ADS bugs in 2 open-source ADS repositories

(i.e., Apollo [28] and Autoware [13]) and discovered incorrect configurations are the root cause of

27.25% of bugs. Incorrect configuration is also responsible for 97.5% of build failures that may prevent

the compilation or building of the ADS. Although previous ADS testing approaches combined have

a diverse set of oracles that can detect safety, motion sickness, and traffic law violations, none of

them considered different configurations of the ADS and only used the default configuration.

As an example, consider the following bug-revealing violation found by ConfVE but not by

previous approaches: In the context of trajectory optimization in the planning module of Baidu

Apollo, the accel_penalty parameter plays a vital role in ensuring smooth and comfortable driving

experiences for passengers. Engineers adjust this parameter to strike a balance between comfort

and efficiency based on the specific driving scenario. In a scenario where an AV needs to change

lanes on a highway to avoid an obstacle, setting the accel_penalty configuration option too high

may result in Planning generating trajectories with overly gentle acceleration profiles, leading to
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slow and conservative driving. This behavior can increase travel time and reduce efficiency, while

also posing safety risks if the vehicle is driving too slowly relative to other traffic. By setting the

accel_penalty from 1.0 to a large value (e.g., 8988.8), the AV runs at an extremely slow speed

when changing lanes, resulting in an unsafe lane-change violation, i.e., the AV spends an excessive

amount of time driving on lane boundaries.

3 SPECIFICATION OF STATE SPACE

To clarify configuration testing and how it differs from scenario-generation approaches, we present

a formal specification of the state space in the form of scenarios. ConfVE uses this formal speci-

fication of the state space, along with the search operators in the genetic algorithm, to generate

configurations for testing scenarios from previous scenario-generation approaches.

Definition 1. A Scenario �푆 = ⟨�퐸,�푉 , �퐷,O⟩ is a tuple where:

• �퐸 represents the ego car (i.e., the autonomous vehicle).

• �푉 = {�푣1, �푣2, · · · , �푣 |�푉 | } is a set of violations occurring in the scenario. Each violation �푣 ∈ �푉 has a

violation type �푣 .�푡~�푝�푒 and �푉 .�푡~�푝�푒�푠 = {�푣 .�푡~�푝�푒 | �푣 ∈ �푉 } is the set of all violation types in �푉 .

• �퐷 = {�푑1, �푑2, · · · , �푑 |�퐷 | } is a set of planning decisions produced by the Planning module.

• O is a finite, non-empty set of obstacles (i.e. non-player characters).

Definition 2. A Test Case �푇�퐶 = ⟨S,�퐶,�푂�푟�푎�푐�푙�푒�푠⟩ is a tuple where:

• S = {�푆1, �푆2, · · · , �푆�푘 } is a set of �푘 scenarios to be tested.

• �퐶 = ⟨�표1, �표2, · · · , �표 |�퐶 |⟩ is a tuple of configuration options representing a configuration, where

�표�푖 ∈ �퐶 is a configuration option. We use �퐶�푑 to denote the default configuration of the ADS (i.e.,

the set of values for each configuration option selected by developers for the ADS release under

test) and �푆�푑 to represent a scenario tested under the default configuration.

• �푂�푟�푎�푐�푙�푒�푠 is a finite, non-empty set of ADS oracles that are used to measure various violations that

occurred in the scenario.

4 APPROACH

Figure 1 shows an overview of ConfVE, a novel ADS configuration testing framework. The main

goal of ConfVE is to test ADS under different driving scenarios with different configurations to

expose ADS failures and violations. ConfVE achieves this goal as follows:

Fig. 1. Overview of ConfVE

Scenario Generator reuses existing ADS

scenario-generation approaches to produce

test cases, i.e., initial scenarios for ConfVE,
each of which contains the information neces-

sary to reproduce a scenario. These scenarios

are then sorted based on the criteria we dis-

cuss in Section 4.1.3, and used as input to

ConfVE based on the ordering. Configurator
analyzes the target configuration file in terms

of the option types and uses a genetic algo-

rithm to produce alternative configurations. The genetic algorithm evolves the ADS configurations

with the aim of finding configurations that trigger emerged violations, i.e., violations that can be

found using an alternative configuration but cannot be found using the default configuration of an

ADS. Given an alternative configuration�퐶�푎 generated by Configurator, Scenario Player tests scenar-
ios by reproducing them using the routing request, obstacle perception, and traffic signal perception

under �퐶�푎 . Duplicate Violation Eliminator evaluates scenarios under alternative configurations and
checks the violations arising from each configuration by comparing them with existing violations
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to determine if they are emerged violations. For each generation, Duplicate Violation Eliminator
inspects all accumulated emerged violations to eliminate any duplicate violations, resulting in a set

of unique, emerged violations. A dynamic Range Analyzer determines value ranges for configuration

options to prevent the masking of violations from recurring and reduce duplicate violations.

ConfVE incorporates unique procedures like duplicate elimination among driving scenarios

and range analysis, especially concerning options with large potential ranges, e.g., floating-point

features, which are common in ADSes and cyber-physical systems but occur less often in configura-

tion systems for other domains. These challenges together exacerbate the need to test configuration

options by making testing time longer and the combinatorial search space larger than traditional

systems from non-ADS or non-cyber-physical domains. Unlike pre-existing techniques described in

Section 7, there is a severe lack of known configuration option ranges to use for testing, requiring

a dynamic range analysis like that offered by our approach. We further use domain-specific fitness,

such as the score functions of planning decisions and the sinuosity of trajectories, to guide the

genetic algorithm in selecting offspring individuals for better alternative configurations.

4.1 Scenario Generator

The objective of ConfVE is to perform comprehensive testing of an ADS across a variety of

configurations. Scenario Generator serves as a pre-processing step that generates diverse initial

scenarios utilizing existing scenario-generation approaches before we start the configuration testing.

To prevent redundant testing of the same scenarios across multiple configurations, which tend to

produce similar violations, a scenario ranking mechanism has been implemented. This mechanism

prioritizes scenarios based on their potential to reveal new or unique violations and selects them

for testing in a specific order.

4.1.1 Initial Scenarios Generation. ADS scenario-generation approaches aim to create realistic and

effective driving scenarios that expose the ADS to safety and comfort violations [58, 59, 65, 67, 86].

These scenarios typically involve (1) routing requests sent to the ADS, which can be used to extract

the initial location of the AV and its destination; (2) obstacle trajectories, which can be used to

extract the location, speed, and heading of every obstacle at every timestamp during a scenario;

and (3) traffic signal status, which is used to indicate right-of-way status. These approaches use a

genetic algorithm to maximize a defined set of fitness functions (representing safety and comfort

violations) to guide the search for problematic scenarios that are likely to trigger violations.

Different ADS testing techniques differ in the ability of the ego car to handle different running

conditions in terms of the size of maps and the complexity and diversity of scenarios such as obstacle

number, obstacle types, and whether the obstacle runs with constant or mutable speed [43, 44, 53,

58, 59, 64, 65, 67, 71, 86]. ConfVE uses different scenario-generation techniques under the default

configuration to generate initial scenarios. By analyzing the scenario record file, ConfVE extracts

the scenario setup (e.g., perception of obstacles, routing request, module configurations, etc.), uses

the extracted information as input, and reproduces the scenario under different configurations to

determine how configuration changes influence the ego car and the ADS that operates it to identify

bug-revealing violations or other types of bugs (e.g., ADS module crashes).

4.1.2 ADS Oracles. Previous work considers a limited number of test oracles, mainly consisting

of one or only a few test oracles (e.g., less than 5) per work [38, 39, 43, 53, 58–60, 65, 86]. The

limited use of test oracles found in such techniques ignores important safety and comfort issues

(e.g., driving between lanes for too long or causing system failures) and provides significantly less

insight into the testing of production-grade ADSes. Unlike previous work, ConfVE considers 9 test

oracles, 6 of which are based on grading metrics defined by Apollo’s developers [3].

We adopt the following 6 scenario-level oracle types from previous work:
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• Collision [3] oracle has been defined and used by previous test generation approaches to detect

collisions between the AV and other road traffic participants [58, 59, 65, 86]. We apply a bug-

revealing checking mechanism to filter out false positives for which an AV is not responsible.

Collision violations are safety-critical and can lead directly to severe injuries or loss of life.

• Comfort oracles focus on whether the AV accelerates excessively, i.e., Fast Acceleration [3], or

decelerates too fast, i.e., Hard Braking [3]. An acceleration (or deceleration) is excessive if it

exceeds a maximum allowed value of 4�푚/�푠2, which is a threshold set by Apollo developers and

used in prior research [40, 58]. These (de)acceleration violations often cause motion sickness [80],

which affects about one-third of the population [36], especially women [55], who are historically

underrepresented in healthcare research [69] and technology design [72].

• Speeding [3] oracle detects whether the AV is traveling at a speed higher than legally permitted

in a given lane. The most common dangers caused by speeding include loss of control as a driver,

rollover accidents, and higher severity of crashes [20].

• Unsafe Lane-change [58] oracle detects violations in which the AV spends an extended period of

time driving on lane boundaries—which may lead to traffic congestion, traffic delays, road rage

incidents, or collisions [14, 15, 48].

• Lane-change in Junction [3] oracle focuses on traffic law violations in which the AV attempts to

change lanes in a junction. This violation might cause dangers such as collisions and road rage

incidents [11, 48, 75].

Through experimentation and manual analysis of the ADS under test, we further define 3 novel

module-level oracles that aim to detect system failures and invalid configurations:

• A Module Delay oracle aims to detect cases in which certain modules are producing output at a

lower-than-usual frequency, which makes the AV fail to respond to a decision. For example, if

the Control module delays responding for more than two seconds, a collision might occur if an

obstacle is in front of the AV at high speed.

• A Module Malfunction oracle detects scenarios in which an ADS module fails to be initialized

and launched. For example, the Planning module depends on the Routing module in order to

make decisions to operate the AV. Failure to initialize either Routing or Planning causes the

AV to freeze at its location, making the AV unable to reach its destination or cause a traffic

jam if the AV is freezing at a junction. This oracle covers all engaged modules in ADS virtual

testing and is a generalization of the Routing test oracle in Apollo Dreamland [3], which is a

web-based simulation platform maintained by Apollo. The Pony.ai incident [21], due to module

malfunction or delay, led to the system’s shutdown and subsequently caused California to suspend

its driverless testing permit.

• A Vehicle Paralysis oracle detects scenarios in which a module is correctly initialized but is produc-

ing output that differs from its expected behavior. For example, Planning is expected to produce

planning decisions after Routing has determined a trajectory leading to the AV’s destination;

however, during experimentation, we observed Planning may produce empty messages while a

valid input to Planning is provided. This oracle would also cause the AV to freeze at its location.

However, the module is correctly initialized but not running correctly in Vehicle Paralysis, unlike
the module that is not successfully initialized in Module Malfunction.
The module oracles are crucial for detecting crashes and system-level bugs, which is a significant

advancement from previous oracles that were primarily focused on driving functionality bugs.

These new oracles are particularly relevant in configuration testing, as in our experiments, only

configuration-related bugs can trigger specific failures. Although these module-level oracles focus

on system states and differ from prior work that mainly checks for driving behavior violations,

symptoms of these bugs are still observable during simulation.
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Our oracles further aim to account for whether a violation reveals a bug. For all violation types

except collision, a violation instance is bug-revealing because only the ego car is involved in these

violations, making it always responsible for the violation. For collision violations, we must carefully

design a collision oracle to maximize its ability to detect bug-revealing collisions. Specifically, side

and rear-end collisions involving the vehicle are highly unlikely to be the fault of the ego car. If the

ego car is hit from the back or its side, the responsibility likely lies with the obstacle, making the

associated collision not bug-revealing. For example, if an obstacle initiates a lane change maneuver

without considering the right of way of other road traffic participants and collides into the AV from

the side, the obstacle will be determined as responsible if it has not completed the lane change. As a

result, when a collision violation occurs, ConfVE only considers such violations when the collision

occurs in front of the ego car as it moves with non-zero velocity by measuring the locations and

headings of both the ego car and the obstacle.

4.1.3 Ranking Initial Scenarios. Although ConfVE may obtain numerous scenarios from different

ADS scenario-generation approaches, the computational and time expense of executing and simu-

lating the selected scenarios under different configurations prevents ConfVE from re-executing all

scenarios generated by an ADS scenario-generation approach. As a result, we need a mechanism

to select diverse scenarios that contain different AV running conditions and decide which scenarios

should be tested first.

A test case in our configuration testing contains �푘 scenarios with an alternative configuration.

We select �푘 scenarios from all initially generated scenarios based on the diversity ranking of

scenarios �푅�푎�푛�푘�푖�푛�푔S8=8C (�푠�푐�표�푟�푒�푆.�푉 , �푠�푐�표�푟�푒�푆.�퐷 , �푠�푐�표�푟�푒�푆.�푠�푖�푛�푢�표�푠�푖�푡~), where �푠�푐�표�푟�푒�푆.�푉 is the violation rarity,

�푠�푐�표�푟�푒�푆.�퐷 is the number of planning decisions, and �푠�푐�표�푟�푒�푆.�푠�푖�푛�푢�표�푠�푖�푡~ is the sinuosity (i.e., curvature

or bending) of planning routes. �푅�푎�푛�푘�푖�푛�푔S8=8C uses Non-Dominated Sorting [52] to rank initial

scenarios based on their violation rarity, the number of planning decisions, and sinuosity of

planning routes. Non-Dominated Sorting is a technique used in multi-objective optimization to deal

with multiple conflicting objectives, which helps identify Pareto-optimal scenarios by classifying

them into different levels of non-dominance. This ensures that the selected scenarios are diverse

and representative, covering a wide range of trade-offs among the three criteria.

The intuition of the �푠�푐�표�푟�푒�푆.�푉 ranking scheme is to assign different weights for each test oracle

so that a scenario with rarer violations is more likely to be selected compared to a scenario with

violations that appear in many other scenarios. More formally,

�푠�푐�표�푟�푒�푆.�푉 =

∑

�푣�푡 ∈�푆.�푉 .�푡~�푝�푒�푠

�푊�푣�푡 ∗ |�푆.�푉�푣�푡 | (1)

�푊�푣�푡 = 1 −
|S�푣�푡�푖�푛�푖�푡 |

|S�푖�푛�푖�푡 |
(2)

�푆.�푉�푣�푡 = {�푣 ∈ �푆.�푉 | �푣 .�푡~�푝�푒 = �푣�푡} (3)

S
�푣�푡
�푖�푛�푖�푡 = {�푆 ∈ S�푖�푛�푖�푡 | �푣�푡 ∈ �푆.�푉 .�푡~�푝�푒�푠} (4)

�푊�푣�푡 is the rarity weight of a violation type in S�푖�푛�푖�푡 , �푆.�푉�푣�푡 is the set of violations of type �푣�푡 in scenario

�푆 , S�푖�푛�푖�푡 is the set of all initial scenarios, S
�푣�푡
�푖�푛�푖�푡 is the set of scenarios containing the violation type �푣�푡

in S�푖�푛�푖�푡 , and �푆.�푉 .�푡~�푝�푒�푠 is the set of violation types in a scenario.

While scenarios with violations can be compared using the rarity of violations, those that do not

have any violations are harder to compare. Instead of only focusing on the outcome of the scenario,

we leverage the decisions that the ADS makes during a scenario to evaluate the complexity of

the scenario. The intuition is that the more unique decisions the ADS makes (e.g., yield, overtake,

stop, etc.), the more complex the scenario is. Hence, the decision ranking scheme is defined as

�푠�푐�표�푟�푒�푆.�퐷 = |{�푑 ∈ �푆.�퐷}|.
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An additional feature that we use for determining whether a scenario is more interesting than

another is the sinuosity of the path traversed by the AV. Sinuosity is represented as the ratio of

the curvilinear length and the Euclidean distance between the endpoints of the path traversed.

The ratio is exactly 1.0 if the AV traverses on a straight line. The intuition behind this feature is

that scenarios in which the AV made complex maneuvers (e.g., overtaking an obstacle, turning

at junctions) are more interesting than ones only involving AV traversing on a straight line. The

sinuosity score is defined as �푠�푐�표�푟�푒�푆.�푠�푖�푛�푢�표�푠�푖�푡~ =
disttraveled (�퐸 )

displacement (�퐸 )
, where disttraveled (�퐸) is the total length

of the path traversed by the ego car �퐸 and displacement (�퐸) is the distance between the initial and

final location of �퐸 (i.e., straight-line distance) in a scenario.

Through our experiments, we find that constantly testing configurations in fixed initial scenarios

tend to produce similar emerged violations. To address this challenge, a scenario substitution

mechanism is introduced to change the tested scenarios by replacing initial scenarios if the emerged

violations are detected in them using an alternative configuration. More specifically, as the genetic

algorithm executes, when ConfVE finds an emerged violation in a scenario, it will replace such

a scenario with another one from initially generated scenarios based on the ranking of diversity

score (i.e., �푅�푎�푛�푘�푖�푛�푔S8=8C ) at the end of a generation.

4.2 Configurator

Configurator manages the generation of alternative configurations in the genetic algorithm. Con-
figuration Parser parses configuration files of the ADS, extracting options, and analyzing their

types so that appropriate mutation operators can be applied to individual configuration options.

Configurator then applies the genetic algorithm and its associated mutation operators to different

types of options and initializes the ADS under the alternative configuration.

4.2.1 Configuration Parser. A configuration file under test needs to be analyzed before the configu-

ration testing. Configuration Parser identifies options using regular expression and infers the option

type and potential range for each option, which would be used in the mutation process of the genetic

algorithm. For example, if the type of the default value of an option is floating-point, Configuration
Parser produces a large range of floating-point values it can take on. From experiments, we found

assigning an exceedingly large value generally would cause module violations. However, we do not

expect emerged violations to always be these types, which is against one of ConfVE’s objectives,

i.e., to trigger more types of violations. Since permissible values for an ADS configuration option

are seldom specified or documented [42], we also need a way to narrow down the range for options,

which we discuss in Section 4.4.

Configuration 1 Configuration 2 Configuration m…Configurations

(Individuals)

Options

(Genes)
accel_penalty decel_penalty speed_weight jerk_weight lowest_speed… …

Fig. 2. Genetic Representation of a Configuration

4.2.2 Representation. Figure 2 illustrates the

genetic representation of an individual pro-

duced by ConfVE. An individual (i.e., chro-

mosome) represents a configuration�퐶 , which,

in turn, represents a single test. A test suite

in ConfVE is a set of test cases that contain

different alternative configurations and the same set of scenarios. An individual is represented by a

sequence of genes, each corresponding to a configuration option �표 . When initializing an individual,

all genes are assigned their default values. Each gene can change its value through mutation, but it

still has to adhere to the ranges determined by Configuration Parser and Range Analyzer.

4.2.3 Fitness Evaluation. In each generation, ConfVE evaluates individuals by their fitness with

respect to multiple search objectives and determines which individuals should be selected to pass

on their genes. ConfVE determines the fitness of an individual by evaluating the diversity and
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number of emerged violations and planning decisions. This is measured by calculating an individual

�푖’s fitness using a function �퐹 (�푖) =
(

�푓�푐�표�푢�푛�푡 (�푖), �푓�푡~�푝�푒 (�푖), �푠�푐�표�푟�푒�퐷 (�푖), �푠�푐�표�푟�푒�푠�푖�푛�푢�표�푠�푖�푡~ (�푖)
)

, where �푓�푐�표�푢�푛�푡 (�푖)

counts the total number of emerged violations within a scenario; �푓�푡~�푝�푒 (�푖) refers to the number of

emerged violation types; �푠�푐�표�푟�푒�퐷 (�푖) is a function that computes the decision score, �푠�푐�표�푟�푒�푆.�퐷 ; and

�푠�푐�표�푟�푒�푠�푖�푛�푢�표�푠�푖�푡~ (�푖) is a function that computes the sinuosity of planning routes �푠�푐�표�푟�푒�푆.�푠�푖�푛�푢�표�푠�푖�푡~ for a

scenario �푆 produced with configuration �푖 .

4.2.4 Search Operators. In every iteration of the genetic algorithm, ConfVE runs the ADS in the

simulation environment and tests scenarios under the configuration. Based on the testing results

of this generation, ConfVE updates the configurations to be tested in the next generation. Alter-

native configurations are generated by applying the mutation and crossover to the configuration

individuals of the current generation. Configurator aims to focus on four objectives: (1) the number

of emerged violations obtained from configuration testing, (2) the number of emerged violation

types, (3) the number of planning decisions, and (4) the complexity of the planning route.

Mutation.ConfVE uses a single-point mutation strategy by applying one of the mutation operators

shown in Table 1 to a gene from an individual. Themutation operators differ by option type, covering

all standard and appropriate operators that could be applied to ADS configuration options. For

example, options of numerical types can bemutated by applying the digit type changing or randomly

generating a value within the range; options of string type can be mutated by following the mutation

operators in state-of-the-art approaches of misconfiguration injection testing [66, 82, 85].

Table 1. Mutation Operators for Different Option Types,

and Examples of Option Values Before and A�er Mutation

Option
Type

Mutation Operator Before After

Integer
Generate Value 5 10

Digit type change 5 6.5

Float
Generate Value 15.70 30.42

Digit type change 15.70 15

E-Number Generate Value 4e7 4e5

Boolean Negation true/yes/max false/no/min

String

Substitute "aa/bb" "aa/cb"
Add "aa/bb" "aa/bcb"
Delete "aa/bb" "aabb"
Cut "aa/bb" "aa"

Case Conversion AABB aabb
Disorder AABB BBAA
Repeat AABB AABBAABB

Multiple mutations can lead to failures,

which our approach supports by incre-

mentally mutating configuration options

through its single-point mutation. By mutat-

ing a single configuration option at a time,

our approach enables effective tracking of

option tuning, facilitates range analysis, and

allows multiple mutations to a single indi-

vidual. Note that our approach focuses on

identifying potential problematic configu-

rations and is not a root-cause analysis or

fault-localization approach. Considering the

time-consuming nature of scenario testing

in the ADS domain, our choice of a single-point mutation strategy makes the relationship between

an emerged violation and a tuned option relatively explicit and balances the trade-off between

individual diversity and the difficulty of tracking the latest option tuning. If more than one option

is tuned for a mutation, it is relatively difficult to judge which option causes a violation because, as

the number of simultaneously mutated options increases, the number of required evaluations grows

exponentially. For instance, consider a scenario where two options are mutated simultaneously,

and a violation emerges. To determine the root cause, it would be necessary to test both options

individually and in combination, resulting in four potential evaluations.

Crossover. This operator selects two individuals and creates offspring by mixing the genetic

makeup of their parents. ConfVE uses a commonly used single-point crossover strategy, where

the crossover point is picked randomly from the mating individuals (i.e., parents), and the genes

behind the point are swapped. Figure 3 illustrates the application of the crossover operator on two

sample individuals.

Selection. Certain individuals can trigger module violations (e.g., module malfunction) and cause

the ADS to freeze at its initial location. Once a module violation occurs, tuning other options may
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result in the same module violation that is likely triggered by an option mutated in the previous

generation as opposed to a newly mutated option in the current generation. We refer to this

phenomenon as violation masking, i.e., a module violation masks the effect of tuning other options

and impairs the effectiveness of the optimization algorithm. ConfVE will not select individuals

that are likely to cause violation masking.
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Fig. 3. An Example of a Crossover

ConfVE uses the Non-dominated Sorting

Genetic Algorithm selection (NSGA-II) for breed-

ing the next generation [47]. NSGA-II is an effec-

tive algorithm used for solving multi-objective

optimization problems (i.e., problems with multi-

ple conflicting fitness functions) and further aims

to maintain the diversity of individuals. NSGA-

II starts by sorting a set of individuals based

on a non-dominated order of fitness. In a multi-

objective problem, an individual �푖1 is said to dominate another individual �푖2 if (1) �푖1 is no worse than
�푖2 for all objective functions (e.g., the number of planning decisions), and (2) �푖1 is strictly better than

�푖2 in at least one objective. Once the non-dominated sort is complete, a crowding distance is assigned
to every individual in a given scenario. A crowding distance measures how close individuals are

to each other; a large average crowding distance will result in better diversity in the population.

Once the crowding distance is assigned, parent individuals and offspring are selected to produce

offspring based on the fitness and crowding distance; an individual is selected if its order rank

of fitness is less than the other, or if the crowding distance is greater than the other. Only the

best �푁�푝�표�푝 individuals are selected, where �푁�푝�표�푝 is the population size. The intuition behind using

NSGA-II selection is threefold: (1) it uses an elitist principle, i.e., the most elite individuals in a

scenario are given the opportunity to be reproduced so their genes can be passed on to the next

generation; (2) it uses an explicit diversity-preserving mechanism, which maintains the diversity of

driving scenarios in ConfVE; and (3) it emphasizes the non-dominated solutions.

4.3 Duplicate Violation Eliminator

Duplicate Violation Eliminator (DVE) identifies violations arising from rerunning scenarios using

alternative configurations in Scenario Player and filters out duplicate violations, retaining only those
that are unique. ConfVE integrates DVE at two distinct stages of its operation. In the first stage,

ConfVE assesses the uniqueness of violations that manifest in specific scenarios by rerunning these

scenarios under alternative configurations and contrasting the results with those obtained under the

default configuration. Violations that are identified as unique under these new configurations are

designated as emerged violations. As ConfVE progresses, Duplicate Violation Eliminator evaluates
the violations from these alternative configurations in terms of their emergence and their potential

to reveal bugs. In each iteration, emerged violations are aggregated. Notably, configurations that

give rise to these emerged violations are classified as suspicious configurations. These configurations
hold significance as they can be instrumental for range analysis, as referenced in Section 4.4, or

even for software debugging purposes. In the second stage, ConfVE employs DVE to examine the

accumulated emerged violations for duplicates, eliminating them and producing one of ConfVE’s

final outputs, i.e., unique, emerged violations. This stage is crucial because different configurations

could produce the same violation, even for the same scenario.

To distinguish ego behaviors, especially different violations committed by the ego car in a

scenario, recent work proposed clustering-based approaches [45, 58], that leverage a distance-based

metric to determine the similarity between ego behaviors across two distinct scenarios. For ConfVE,

we reused and augmented the duplicate elimination approach in scenoRITA [58], including a set
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of general representations of violations and the clustering algorithm, for mitigating the presence

of duplicate violations since scenoRITA focuses more on violations while the other approach

focuses on ego behaviors. Our approach extends beyond this by introducing non-strict and strict
features. Strict features are domain-specific and any difference between two violations immediately

indicates those violations are different while non-strict features are used to determine violation

similarity in cases where strict features are equal. This dual classification balances adaptability

and specificity, ensuring robustness across varying real-world conditions. We further expanded

the violation representations to include our newly introduced violation types (i.e., Module Delay,
Module Malfunction, Vehicle Paralysis, and Lane-change in Junction) according to the principles

of applicability across ADSes and the minimum involved components of a violation, which were

confirmed by two Apollo contributors. Previous scenario-generation approaches have introduced a

feature representation for violations in virtual driving scenarios [58, 59]. To compare violations,

ConfVE represents them using the features shown in Table 2. These features represent the key

characteristics of violations per type, which we determined by studying each violation type, the

information recorded by anADS, and confirmation fromApollo contributors. For a collision violation,
the Duplicate Violation Eliminator reuses 4 features that are extracted at time �푡 , where �푡 indicates

the first timestamp at which the violation occurs. These features include the position �푝�퐸�푡 of the

ego car �퐸 at time �푡 ; �퐸’s speed �푠�퐸�푡 at time �푡 ; the position �푝�푂�푡 of obstacle �푂 ; obstacle �푂’s speed �푠�푂�푡 at

collision time �푡 . We also add two features ℎ�퐸�푡 or ℎ�푂�푡 , which denote the heading of the ego car or

obstacle, to represent scenario violations more accurately. For the remaining violations, we extract

their respective features. These features include the ego car �퐸’s location at a violation time �푝�퐸�푡 , and

the speed �푠�퐸�푡 of �퐸. For speeding, unsafe lane-change, fast acceleration, hard braking, andmodule delay
violations, we also measure the length of time for which it lasts (�푑�푢�푟�푎�푡�푖�표�푛) while fast acceleration
and hard braking oracles measure the acceleration value at a violation time (�푎�푐�푐�푒�푙/�푑�푒�푐�푒�푙).

Table 2. Feature Representations of Each Violation Type

Violation Type Non-strict Features Strict Features

Collision {�푝�C , �푠
�
C , ℎ

�
C , �푝

$
C , �푠$C , ℎ$C } −

Fast Acceleration {�푝�C , �푠
�
C , ℎ

�
C , �푑�푢�푟�푎�푡�푖�표�푛, �푎�푐�푐�푒�푙 } −

Hard Braking {�푝�C , �푠
�
C , ℎ

�
C , �푑�푢�푟�푎�푡�푖�표�푛,�푑�푒�푐�푒�푙 } −

Speeding {�푝�C , �푠
�
C , ℎ

�
C , �푑�푢�푟�푎�푡�푖�표�푛} −

Unsafe Lane-change {�푝�C , �푠
�
C , ℎ

�
C , �푑�푢�푟�푎�푡�푖�표�푛} −

Lane-change in Junction {�푝�C , �푠
�
C , ℎ

�
C } �푖�푑 9D=2C8>=

Module Delay {�푝�C , �푠
�
C , ℎ

�
C , �푑�푢�푟�푎�푡�푖�표�푛} �푡~�푝�푒<>3D;4

Module Malfunction {�푝�C , �푠
�
C , ℎ

�
C } �푡~�푝�푒<>3D;4

Vehicle Paralysis {�푝�C , �푠
�
C , ℎ

�
C } �푡~�푝�푒<>3D;4

While the aforementioned features can ef-

fectively distinguish violations detected in

prior work, for module-related violations that

are detected in ConfVE, those features cannot

correctly determine the uniqueness of a vio-

lation. For example, the AV may freeze at the

same position with the same heading due to

module malfunction from 2 different modules.

To address this problem, we also use the type

of an ADS module (e.g., Routing, Planning, Prediction, or Localization), denoted by �푡~�푝�푒�푚�표�푑�푢�푙�푒 ,

or a junction’s unique identifier, denoted by �푖�푑 �푗�푢�푛�푐�푡�푖�표�푛 , as strict features, which are features that

cause any two violations to be identified as different, irrespective of other feature values, if such

a feature’s values differ for those two violations. For example, if the type of a module �푡~�푝�푒�푚�표�푑�푢�푙�푒

differs for two violation instances of amodule malfunction, then the two instances must be different

since the malfunction occurs in different modules.

As a concrete example of duplicate violations, consider the three collisions with partial features

shown in Table 3. When comparing Collision-1 and Collision-2, these incidents occurred 5.2572

meters apart from each other, the headings of the AVs differ by -4.0060 degrees, and the headings

of the obstacles differ by 0.0001 degrees. These two collisions are considered duplicate collision

violations, while Collision-3 is considered to be different from both Collision-1 and Collision-2 given

it occurred at a place farther away (181.3857m) and the heading of both the AV and obstacle differ

significantly (195.8593 and 237.9755 degrees, respectively). Identifying such duplicates is important
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in configuration testing since we need to distinguish misconfiguration-induced violations from

ones in the original scenario.

Table 3. Example of Duplicate Collision Violations

ID ego location x ego location y ego heading obstacle heading ego speed obstacle speed

Collision-1 559449.716550803 4157214.07281456 -2.44831086142857 -2.42155592419325 40.1479655443566 68.5231404988578

Collision-2 559445.666180909 4157210.72136067 -2.47056667699013 -2.42155667074278 39.7015265216219 68.5231404988578

Collision-3 559264.568996154 4157220.94727521 -1.38245939298376 -1.09947073870517 29.7268322456541 59.1636072973156

Using the features we defined, ConfVE identifies emerged violations by (1) determining if a

violation in an alternative configuration is sufficiently different from one in the default configuration

and (2) addressing the inherent non-determinism of an ADS. Due to the inherent non-determinism,

reproducing default scenarios may yield slight variations, potentially leading to slightly different

violation results for the same scenario. To mitigate this, each initial scenario �푆�푑 is rerun under the

default configuration �퐶�푑 10 times to collect all violations (�푉�퐶3
) arising from �퐶�푑 . When ConfVE

produces an alternative configuration �퐶�푎 , ConfVE runs each scenario �푆 �푗 using �퐶�푎 to find all

violations�푉�퐶0
arising from�퐶�푎 . To support diverse and potentially fluctuating scenarios, we employ

a clustering algorithm to accommodate variations in scenarios and violations. ConfVE determines

if a violation �푣
�푗
�퐶0

∈ �푉�퐶0
is emergent if (1) the violation type of �푣

�푗
�퐶0

does not exist in �푉�퐶3
or (2) the

violation type of �푣
�푗
�퐶0

is in �푉�퐶3
.�푡~�푝�푒�푠 and the similarity between �푣

�푗
�푐0 and a violation of this type in

�푉�퐶3
are sufficiently low. For example, if �푣�퐶0

is assigned to a cluster with more than one violation in

it, ConfVE considers �푣�퐶0
to be sufficiently similar to at least one violation in �푉�푑 . In such a case,

ConfVE does not consider �푣�퐶0
an emerged violation. If �푣�퐶0

is a singleton cluster, ConfVE considers

�푣�퐶0
as an emerged violation since it is an outlier that is sufficiently different from any violation

in �푉�푑 . For the clustering itself, we chose DBSCAN [50] (i.e., density-based spatial clustering of

applications with noise), which was used in scenoRITA [58], since it is distance-based and more

suited for spatial data.

4.4 Range Analyzer

From our comprehensive analysis, we observed that program paths of ADS configurations typically

do not impose limitations on the value ranges they can assume, indicating that ADSes often bypass

range checking for configuration options. After checking the source code of the Apollo planning

module in terms of the configuration file, we found only 15 options out of 197 numeric (i.e., integer,

floating-point, and Euler’s number types) options have constraints or bounds that could be used to

infer initial option ranges. However, these initial ranges are somewhat imprecise and broad (e.g.,

dense_dimension_s > 1 or sparse_unit_s ≠ 0), requiring further refinement through dynamic

analysis. This lack of range checking by ADS code, combined with a large number of configurations

and unknown valid ranges, poses a significant risk of generating unsupported configurations, thus

leading to intrinsic crashes, errors, or exceptions within the ADS—especially when it is customized

to run on a particular physical AV.

To determine an effective range of values for testing ADS configuration options, ConfVE applies

a range analysis to options that cause violation masking, i.e., when a violation prevents other

likely bug-revealing violations from emerging. From our investigation of ADS configurations,

we find that the types of emerged violations are highly related to the values of mutated options

and that a value outside of a configuration option’s valid range, which is highly unlikely to be

documented, tends to mask other failures that occur in an ADS, creating an undesirable increase

in time spent rerunning scenarios for each alternative configuration. A common example of this

masking phenomenon we have observed is the possibility of an AV freezing at its initial position

due to an invalid option value, thus hindering the occurrence of violations such as speeding, fast
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acceleration, and hard braking. This masking effect leads to inefficient utilization of time due to

the generation of repetitive violations. Through our experimentation and observation, we find

that invalid configurations always cause intrinsic crashes, errors, or exceptions that prohibit the

modules from normally launching or running. More specifically, we find all types of failures tend

to be masked by previously identified module failures (i.e., module failures found by the initial

scenarios of a scenario-generation approach or by earlier executions of ConfVE). As an example,

once a module failure occurs in the same scenario, changing a configuration option’s value to an

invalid range (e.g., one that is not even possible in the physical world) would trigger highly similar

violations (e.g., the vehicle would always fail to start and stop in the same lane).

To overcome failure masking, we leverage the insights that (1) module violations are often

caused by invalid values and (2) the default value is consistently within the valid range to test for

option values that are likely to prevent failure masking. More specifically, given an option with a

range of
[

�표lower , �표upper
]

, which can be arbitrarily large or small, and default value �표�푑 , if ConfVE

produces a value �표 �푓 , we use the value to update the range of values that the option can take on

in future executions of ConfVE’s genetic algorithm. More specifically, the range for the option

is subsequently truncated to
[

�표lower , �표 �푓
]

if
(

�표�푑 < �표 �푓
)

or
[

�표 �푓 , �표upper
]

if
(

�표�푑 > �표 �푓
)

. In cases where a

tested value cannot cause module violations, the range remains unaltered. As a result, the algorithm

tends to reduce the initial large range of values, i.e.,
[

�표lower , �표upper
]

, closer to the default value, which

is a value that is unlikely to cause an error. This property of Range Analyzer balances between
obtaining values closer to a likely valid value (i.e., the default value) while starting with a wide

range of values that are likely to be invalid, resulting in the prevention of failure masking and the

emergence of violations or failures likely to occur, which our evaluation will demonstrate.

5 EVALUATION

In order to empirically evaluate ConfVE, and to understand how configurations affect the scenarios

and violations, we investigate the following research questions:

• RQ1: How effective is ConfVE at exposing unique emerged violations?

• RQ2: How effective is ConfVE at finding unique emerged violations?

• RQ3: To what extent are duplicate violations eliminated by ConfVE?

• RQ4: What is the runtime efficiency of ConfVE?

5.1 Experimental Setup

We evaluated ConfVE by executing 124,950 virtual tests for a total of 990 hours on Baidu Apollo

7.0 [28] and Autoware v1.0 [19], which are both open-source versions of production-grade or

near production-grade ADSes. Although Apollo and Autoware have co-existed for several years,

evaluations of prior work [58, 59, 65, 78, 79, 86] were predominantly conducted only on Apollo.

To the best of our knowledge, we are the first to evaluate an ADS testing approach on Autoware

v1.0. We conducted our experiments on four machines: 2 machines each with 2 AMD EPYC 7551

32-Core Processors (512GB RAM), 2 machines each with 1 Core i9 16-Core Processor (96GB RAM),

running Ubuntu 22.04.

For Apollo, we evaluated ConfVE on four real-world HD Maps located in California, including

three provided as part of Baidu Apollo [28] and one from the simulator LGSVL [74]. Sunnyvale

Loop is a large map consisting of 3,061 lanes, with a total length of 107 km; San Mateo is a medium

map consisting of 1,305 lanes, with a total length of 24 km; San Francisco is another medium map

consisting of 1,524 lanes, with a total length of 109 km; and Borregas Ave at Sunnyvale with 60

lanes and a total length of 3 km. The four maps consist of various types of road curvature (e.g.,

straight, curved, intersections) and different types of lanes (e.g., highways, city roads, bike lanes,

etc.). We selected planning_config.pb.txt as the target configuration file to test the planning module.
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This file consists of 18 integer options, 167 floating-point options, 29 Boolean options, 51 string

options, and 12 options containing Euler’s number. We ran 4 scenario-generation approaches to

generate initial scenarios, which are used as input for Scenario Player in ConfVE. ConfVE uses

Apollo’s simulation feature, Sim-Control, to simulate driving scenarios.

We used different state-of-the-art scenario-generation approaches for ConfVE whose code and

dependencies are available for Apollo. To date, various scenario-generation approaches have been

proposed and evaluated on an open-source ADS. AV-Fuzzer [65] uses the state-of-the-art simulator

LGSVL [74] and applies a genetic algorithm to generate scenarios in which other vehicles may

perform various actions such as cutting in during a scenario, testing an ADS’ capability of reacting

to those vehicles. AutoFuzz [86] uses the same simulator as AV-Fuzzer but applies a neural network-

guided fuzzing algorithm to generate scenarios using the simulator’s API, which is provided to

configure the virtual environment. scenoRITA [58] does not rely on using a specific simulator

and, therefore, is not limited by the types of obstacles that the simulator provides to test an ADS.

Furthermore, scenoRITA analyzes high-definition maps (HD Maps) so trajectories of the AV and

obstacles are automatically generated instead of manually specified. DoppelTest [59] is similar

to scenoRITA but uses the ADS to model every vehicle in a scenario as opposed to only a single

vehicle. Such a setting guarantees at least one AV is responsible for any violation occurring. Scenario
Generator uses the default settings and supported maps of these approaches.

Due to ADS scenario-generation approaches [58, 59, 65, 67, 86] being predominantly based on

and implemented for Apollo, migrating tools and re-implementing existing scenario-generation

approaches from Apollo to Autoware requires overcoming challenges such as map transformation,

interface and automation implementations, and the connection between the ADS and simulators.

Considering the lack of available scenario-generation approaches implemented for Autoware, we

choose to use scenarios provided by the Autoware Evaluator [37], which is an official Autoware

Foundation platform that collects datasets and test suites that focus on the Operational Design

Domain (ODD) [46], which specifies the operating conditions under which an ADS can operate

safely, to test Autoware on different scenarios to enhance safety and optimize functionality. We

tested the behavior velocity planner of Autoware, which consists of 5 integer options, 181 floating-

point options, 55 Boolean options, and 4 string options. We evaluated the approach on three HD

Map groups, LEO-VM, which are virtual maps created by the AV company Leo Drive; AWF CICD,

which are HD maps developed by the Autoware Foundation; and HD maps of roads in Taiwan.

ConfVE evolved populations of 20 configurations per generation with a maximum scenario

duration of 30 seconds for Apollo and 60 seconds for Autoware, which is similar to prior work

[58, 59]. In this research, we selected 10 initial scenarios as test cases to start the configuration

testing because it balances the ability to find emerged bug-revealing violations and the time it

takes to run all scenarios for one alternative configuration. To enhance the speed of ConfVE,

we launched five Docker containers to run configuration testing simultaneously. We choose to

compare with the baseline approaches, pairwise testing, which is regarded as an efficient and

intuitive testing and sampling strategy for highly configurable systems [70, 77], and ConfVD [66],

which is a misconfiguration testing approach that utilizes fine-grained constraints of option type

classification. To support ADS experiments, we integrate pairwise testing and ConfVD into our

configuration testing framework as a different option tuning strategy for Configurator. We carefully

implemented a version of ConfVD for Apollo and Autoware, as no implementation is publicly

available, and we make our implementation of ConfVD publicly available (Section 9). We set a

predefined time budget of 10 hours for each experimental group, i.e., either ConfVE or baseline

approach conducted on a particular HD Map using the initial scenarios from a scenario-generation

approach. We ran each experimental group three times and calculated the averages after rounding

to integers as testing results to reduce the influence of bias and non-determinism.
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5.2 RQ1: Independent Effectiveness

For RQ1, we evaluated ConfVE’s ability to produce unique, emerged violations on different maps

and ADS testing approaches. From Table 4, the experiments conducted in this study involved the

deployment of scenoRITA and DoppelTest techniques across three distinct maps, while AutoFuzz

andAV-Fuzzer approaches were only employed in a singlemap, due to their manual setup preventing

them from being run on other maps. The results obtained from the experiments were organized by

violation type and grouped based on the respective ADS testing techniques employed. Notably,

the study identified the highest number of violations within the same violation oracle and marked

those results in grey, which was highlighted as the most frequent across all groups.

Table 4. ConfVE (CE), Pairwise (Pa.), and ConfVD (CD) in terms of Unique Emerged Violations by Apollo

Violation

Type

scenoRITA DoppelTest AutoFuzz AV-Fuzzer

Borregas Ave San Mateo Sunnyvale Borregas Ave San Mateo Sunnyvale Borregas Ave San Francisco

CE Pa. CD CE Pa. CD CE Pa. CD CE Pa. CD CE Pa. CD CE Pa. CD CE Pa. CD CE Pa. CD

Collision 1 0 1 0 0 0 0 0 0 0 0 0 2 2 1 0 0 0 1 1 0 1 1 0

Fast Accel. 2 2 3 2 1 1 8 4 1 0 1 1 4 1 1 8 5 3 0 0 0 4 4 1

Hard Brak. 49 25 22 17 16 5 101 35 27 16 12 13 21 10 13 31 26 18 4 3 3 20 11 9

Speeding 0 0 0 98 56 53 62 43 39 16 12 5 18 12 9 16 3 3 13 7 4 0 0 0

Unsafe LC 78 47 30 52 44 24 42 32 23 22 13 7 23 8 16 108 20 9 13 5 9 0 0 0

LC in Junc. 0 0 0 38 31 18 35 30 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Delay 12 8 3 5 10 0 6 3 1 5 9 6 2 2 1 19 13 7 0 1 1 30 26 6

Malfunc. 53 56 34 49 66 44 49 63 42 31 33 22 30 29 29 54 52 26 17 17 15 30 33 20

Paralysis 27 30 19 21 14 12 26 36 23 24 26 19 21 25 18 23 32 18 14 11 13 18 17 16

Total 222 168 112 282 238 157 329 246 181 114 106 73 121 89 88 259 151 84 62 45 45 103 92 52

Improv. (%) - 32.14 98.21 - 18.49 79.62 - 33.74 81.77 - 7.55 56.16 - 35.96 37.5 - 71.52 208.33 - 37.78 37.78 - 11.96 98.08

As shown in Table 4, Apollo scenarios from scenoRITA, when used with ConfVE, produce more

unique, emerged violations (222-329) and more violation types (i.e., the only approach that produces

all 9 violation types) than other scenario-generation approaches. DoppelTest, which guarantees

any generated collision is bug-revealing by making all vehicles AVs in a scenario, produces 114-259

unique, emerged violations from 8 violation types when used as input toConfVE. While scenoRITA

and DoppelTest produce a wide variety of diverse violations, AutoFuzz and AV-Fuzzer, when used

with ConfVE, produce significantly fewer violations and violation types: AutoFuzz only produced

62 violations from 7 violation types; AV-Fuzzer only detected 103 violations from 6 violation types.

We found that for each scenario-generation approach, the large map Sunnyvale Loop has more

complex road conditions, and produces more unique, emerged violations than medium or small

maps. The greatest number of unique, emerged violations among the three maps was recorded on

Sunnyvale Loop, with scenoRITA and DoppelTest generating 329 and 259 violations, respectively.

The bug-revealing checking mechanism of ConfVE identified 196 false positives out of 278

collision violations, which means about 71.79% of collision violations are filtered out by bug-revealing
checking. The amount of collision violations is relatively smaller than other violation types because

collision violations are more dependent on input scenarios. For example, in some initial scenarios,

the ego car cannot encounter obstacles throughout the entire process. For Autoware, as shown in

Table 5, 8 violation types are detected except Speeding, which indicates Autoware’s implementation

of speed controlling is less likely to violate speed limits on given HD maps.

Finding 1: ConfVE can produce a wide variety of unique, emerged violations (46-329) for all

scenario-generation approaches and maps, demonstrating its ability to identify such violations

irrespective of a particular scenario-generation approach and across two ADSes.

5.3 RQ2: Comparative Effectiveness

RQ2 aims to compare the number of unique, emerged violations discovered by ConfVE with that

of the baseline approaches, i.e., pairwise testing and ConfVD, by setting a predefined timeout (i.e,
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10 hours) with a goal of finding emerged violations within a time budget. Table 4 shows the total

number of unique, emerged violations discovered by ConfVE and the baseline approach for each

scenario-generation approach. The approach that generates more unique, emerged violations than

the others on the same map is bolded. ConfVE demonstrated superior performance compared to

pairwise testing and ConfVD, achieving an overall improvement of 28.03% and 67.80% in Apollo,

respectively. For example, it yields improvements of 27.76%, 42.77%, 37.78%, and 11.96% over pairwise

testing in the scenoRITA, DoppelTest, AutoFuzz, and AV-Fuzzer scenarios, respectively. ConfVE

also works better on larger maps than the baseline while the testing result in of DoppelTest on

Sunnyvale Loop has the highest improvement of 71.52% than the pairwise testing and 208.33% than

ConfVD. For Autoware, ConfVE achieves overall improvements of 10.14% and 7.24% than pairwise

and ConfVD, respectively, which are significantly less than those in Apollo.

Table 5. ConfVE (CE), Pairwise (Pa.), andConfVD (CD)

in terms of Unique Emerged Violations in Autoware

Violation

Type

Autoware Evaluator

LEO-VM AWF CICD Taiwan

CE Pa. CD CE Pa. CD CE Pa. CD

Collision 2 3 4 10 5 4 2 1 2

Fast Accel. 2 1 0 9 5 8 0 0 0

Hard Brak. 9 6 5 106 77 91 6 3 5

Speeding 0 0 0 0 0 0 0 0 0

Unsafe LC 22 20 22 44 44 52 11 5 13

LC in Junc. 0 0 0 17 15 15 0 0 0

Delay 11 10 7 3 5 3 2 4 1

Malfunc. 29 23 25 14 33 24 19 23 16

Paralysis 1 1 2 1 1 2 6 7 3

Total 76 64 65 204 185 199 46 43 40

Improv. (%) - 18.75 16.92 - 10.27 2.51 - 6.98 15.0

We manually inspected and analyzed some

scenarios generated by each of the testing ap-

proaches to get an insight as to why ConfVE’s

performance varies. First, ConfVE is optimized

for considering complex road conditions by set-

ting a scenario diversity as objectives in the

fitness function. It also reduces occurrences of

violation masking by dynamic range analysis
to reduce duplicate module violations. Besides,

the complexity and diversity of initial scenar-

ios generated by ADS testing approaches vary.

DoppelTest generates the most sophisticated

scenarios as it uses the ADS to model every

vehicle in the simulation, making the scenario

more complex because vehicles are reacting to each other. scenoRITA models automatically gener-

ate a considerable number of obstacles and model them as constant speed obstacles, having the

highest number of obstacles across all approaches. While DoppelTest and scenoRITA automatically

analyze the map and generate different scenarios in terms of the initial and final location of the

AV, AutoFuzz and AV-Fuzzer always generate similar scenarios that start at the same position and

finish at the same position.

Finding 2: ConfVE managed to generate 27.40%, and 65.88% more unique, emerged violations

compared to the pairwise testing and ConfVD within the same time budget. ConfVE performs

better in complex and diverse scenarios and produces more violation types than the baselines.

5.4 RQ3: Duplicate Violation Elimination

In RQ3, we study the extent to which ConfVE eliminates similar violations and compare the

percentage of duplicate violations generated by 3 configuration testing approaches. To answer

this RQ, we use DBSCAN [50] to cluster the scenarios with similar violations into the same group,

based on a set of features as described in Table 2.

Table 6 shows all emerged violations (including duplicates) generated by Apollo and Autoware

along with the number of unique violations (generated by Duplicate Violations Eliminator) and
the percentage of eliminated violations. From the results, we observe that ConfVE has a lower

elimination ratio (74.19%) than (81.45%) of pairwise testing overall, while ConfVE found fewer

emerged violations in total but produced more unique, emerged violations, which indicates that

ConfVE is more efficient at finding diverse violations. Although ConfVD has fewer emerged
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violations in total and less elimination ratio, the number of unique emerged violations is significantly

fewer than ConfVE and pairwise testing.

Table 6. Results of Duplication Violation Elimination

Violation

Type

ConfVE Pairwise ConfVD

All Uniq. Elim. All Uniq. Elim. All Uniq. Elim.

Collision 29 19 34.48% 29 13 55.17% 24 12 50.00%

Fast Accel. 100 39 61.00% 44 24 45.45% 34 19 44.12%

Hard Brak. 1482 380 74.36% 741 224 69.77% 734 211 71.25%

Speeding 842 223 73.52% 380 133 65.00% 311 113 63.67%

Unsafe LC 1391 415 70.17% 634 238 62.46% 592 205 65.37%

LC in Junc. 314 90 71.34% 225 76 66.22% 162 58 64.20%

Delay 703 95 86.49% 504 91 81.94% 110 36 67.27%

Malfunc. 1743 375 78.49% 4338 428 90.13% 1322 297 77.53%

Paralysis 441 182 58.73% 796 200 74.87% 385 145 62.34%

Total 7045 1818 74.19% 7691 1427 81.45% 3674 1096 70.17%

We also found that module malfunc-
tion is the most frequent violation type

to occur for both ConfVE and pairwise

testing. Furthermore, pairwise testing

has the highest duplicate elimination

ratio, i.e., 90.13% with 4,338 total viola-

tions, suggesting that ConfVE outper-

forms pairwise testing, which spent an

excessive amount of time testing mod-
ule malfunction violations, likely due to

it lacking a dynamic range analysis to

narrow down valid option ranges like that found in ConfVE.

Finding 3: The Duplicate Violation Eliminator eliminated 74.19% duplicate tests in ConfVE,

81.45% in pairwise testing, and 70.17% in ConfVD. Nevertheless, ConfVE had 27.40% more

unique, emerged violations (1,818) than pairwise testing (1,427) and 65.88% more unique,

emerged violations than ConfVD (1,096).

5.5 RQ4: Runtime Efficiency of ConfVE

To investigate the runtime efficiency of ConfVE, we measure the execution time of scenarios

for each combination of a scenario-generation approach and HD Map. Scenario Player plays and
records every scenario for the same amount of time (i.e., 30 seconds), which previous work [58, 59]

has shown to effectively balance the time allocated to find bugs without spending an excessive

amount of time executing tests. As a result, every scenario has the same execution time, making

Scenario Player’s difference in execution time across scenario-generation approaches negligible. At

the same time, Configurator takes 0.1 seconds or less to execute, on average, making the execution

time negligible. Consequently, the major differences in time efficiency arise from Scenario Generator
and Duplicate Violation Eliminator . Scenario Generator employs scenario-generation approaches to

produce initial scenarios while the Duplicate Violation Eliminator measures violations through 9

test oracles and eliminates duplicates. Note that ConfVE and pairwise testing incur the same time

spent executing the Scenario Generator because it needs to be only executed once and, thereafter, is

used to provide initial scenarios as input before ConfVE or pairwise testing runs.

Table 7. Runtime Efficiency of ConfVE Per Scenario

(Scenario Generator + Duplicate Violation Eliminator)

HD Maps
Execution Time (sec.)

scenoRITA DoppelTest AutoFuzz AV-Fuzzer AutoEva.

Borregas Ave (34.07+0.86) (45.55+0.74) (40.86+0.32) - -

San Mateo (33.33+3.23) (48.36+3.00) - - -

Sunnyvale Loop (35.54+5.25) (48.94+11.95) - - -

San Francisco - - - (53.86+0.61) -

LEO-VM - - - - (60.67+3.90)

AWF CICD - - - - (58.02+5.48)

Taiwan - - - - (57.79+4.50)

Table 7 shows the average time to execute

the Scenario Generator and Duplicate Violation
Eliminator for a scenario. As an example, for

scenoRITA, scenario generation takes 34.07

seconds and duplicate violation checking takes

0.86 seconds. The results for Table 7 indicate

that the size of the map is correlated with the

measurement time of violations. Duplicate Vio-
lation Eliminator takes 5.25 or 11.95 seconds to
analyze one scenario from scenoRITA or DoppelTest in Sunnyvale Loop, which is considerably

longer compared with a scenario from Borregas Ave. For Autoware, the scenario generation time

ranges from 57.79 to 60.67 seconds and the Duplicate Violation Eliminator time ranges from 3.90 to

5.48 seconds.
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We also compared different scenario-generation approaches in terms of time efficiency of gen-

erating initial scenarios for the same map, Borregas Ave. DoppelTest takes the longest time to

generate a scenario, which is consistent with the fact that only DoppelTest considers traffic light

signals and manipulates intelligent obstacles thus generating the most complicated scenarios.

Finding 4: Overall, ConfVE adds an additional 0.32 seconds to 11.95 seconds per scenario

depending on the utilized scenario-generation approach and HDMap, which is small compared

to the time it takes for a scenario-generation approach to produce a scenario (i.e., 33.33 seconds

to 60.67 seconds), making the runtime overhead of ConfVE relatively small.

6 THREATS TO VALIDITY

Internal Threats. One potential threat to internal validity is that testing results under specific

configurations are not always deterministic. To reduce the non-determinism, we rerun the initial

scenarios 10 times to collect the initial violations for checking of emerged violations and rerun

ConfVE and pairwise testing on each combination of a scenario-generation approach and HD Map

3 times to get averages for evaluation results. We select the rerunning times mainly for a trade-off

between the time budget and the accuracy of results. Another threat arises from our large-scale

experiment requiring multiple machines. To mitigate this threat, we selected machines with similar

hardware specifications.

External Threats. One external threat is our evaluation of ConfVE on limited ADSes. This threat

is mitigated by Apollo and Autoware being high autonomy (i.e., Level 4), and open-source versions

of the production-grade AV software systems. Apollo is selected by Udacity to teach state-of-the-art

AV technology [27] and can be directly deployed on real-world AVs such as Lincoln MKZ, Lexus

RX 450h, and others [6, 16], and has mass production agreements with Volvo and Ford [32] while

the Autoware Foundation’s membership comprises several industrial entities [12] .

Construct Validity. A threat to construct validity is how we evaluate different violations. To

mitigate this threat, we measure these violations using grading metrics defined by Apollo’s develop-

ers [3].We utilize thresholds (e.g., speeding or acceleration thresholds) set by Apollo’s developers [3],

the U.S. Department of Transportation [51], or major AV companies [5].

7 RELATED WORK

ADS Testing Approaches. A variety of ADS testing approaches focus on generating driving

scenarios [58, 59, 63, 65, 67, 78, 79, 81, 86], ADS test selection and prioritization [49, 68] and also

evaluate in an open source ADS, i.e. Baidu Apollo [28]. Besides the scenario-generation approaches

described in Section 5.1, Lu et al. proposed DeepCollision [67], which leverages deep reinforcement

learning to configure the simulator using its APIs to construct virtual environments and focuses on

generating scenarios that involve collisions. Tian et al. proposed MOSAT [78] and CRISCO [79]

that abstract the movements of road traffic participants into a diverse set of maneuvers and find

combinations of maneuvers to create scenarios that are more complex than the ones generated by

AV-Fuzzer. These two approaches have not been made available and therefore cannot be used as

part of ConfVE. Deng et al. proposed STRaP [49], which segments the original ADS scenario to

effectively reduce the length of the scenarios but maintain high fault coverage. Lu et al. proposed

SPECTRE [68], which extracts attributes from scenarios (e.g., collisions and collision probability)

and applies multi-objective evolutionary algorithms to select and prioritize test scenarios.

Unlike previous approaches, ConfVE focuses on testing ADS under different configurations to

discover emerged violations. ConfVE also applies a more diverse set of oracles that can detect

module failure, safety, and comfort violations.
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(Mis)configuration Testing. A traditional way to test configurations is to use a sampling-based

testing strategy. Medeiros et al. presented a comparative study [70] between 10 sampling algorithms

for finding configuration-related faults. The study showed t-wise sampling algorithms detected 92%

of configuration-related faults on a corpus with existing faults, with pair-wise sampling algorithm

being one of the most efficient algorithms. Jung et al. proposed Swarmbug [61], which aims to

diagnose the root cause and fix bugs when a robotic system is misconfigured. Sun et al. proposed

Ctest [76], which aims to detect failure-inducing configuration changes to prevent production

failure, but instruments the software system, which can violate real-time properties of an ADS. Keller

et al. proposed ConfERR [62], which models human errors when generating misconfigurations (e.g.,

typo). Xu et al. proposed SPEX [82], which infers configuration requirements from source code so

that misconfiguration vulnerabilities (i.e., bad system reactions, such as crashes and hangs) can be

exposed. SPEX only generates values out of valid ranges. However, in the ADS testing, some values

within a valid range can also lead to AV misbehaviors. Zhang et al. proposed ConfDiagDetector [85],

which aims to detect improper diagnostic output produced by the system under misconfiguration.

Li et al. proposed ConfVD [66], which utilizes fine-grained constraints of option type classification,

so a more diverse set of misconfigurations can be generated.

These approaches require some knowledge about option ranges or techniques to infer possible

ranges before testing, which is time-consuming and performs poorly in the ADS domain. They

have two key deficiencies: (1) not identifying which options should be changed to reduce search

time (e.g., through a genetic algorithm), and (2) not identifying values of configuration options in

ADSes that are likely to exhibit failure since ADSes typically do not include this information about

valid/invalid option ranges, which are likely to be real-valued/floating-point and undocumented,

and pre-existing work ignores by assuming these values can be obtained a priori. Unlike these

techniques, ConfVE employs a runtime range analysis to identify option ranges to save testing

time and is well-suited for the ADS domain’s large potential space of real-valued/floating-point

ranges while none of these techniques are designed for the ADS domain.

8 CONCLUSION

We propose ConfVE, the first automated configuration testing framework in the ADS testing

domain, which exposes ADS to 3 types of safety-critical, 3 types of motion sickness-inducing, and

3 types of inner module violations in a manner that reduces duplicate violations. We evaluate

ConfVE on Baidu Apollo, a high autonomy (Level 4), open-source version of a production-grade

ADS that supports a wide variety of driving scenarios, and Autoware, an open-source version

of a near production-grade ADS whose foundation’s membership comprises several industrial

entities, such as Intel, Hitachi, LG, and Xilinx. We compare ConfVE with pairwise testing, which

is known to work highly effectively for highly configurable software systems, and ConfVD, a

state-of-the-art misconfiguration testing approach. We further compare different state-of-the-art

scenario-generation approaches for ADSes under different HDMaps in terms of violation emergence.

ConfVE found a total of 1,818 unique, emerged violations and reduced 74.19% of duplicate violations

withmodule malfunction, unsafe lane-change, and hard braking violations occurring most. Moreover,

ConfVE generated, on average, 27.40% and 65.88% more unique, emerged violations for different

ADS scenario-generation approaches in total compared to pairwise testing and ConfVD within the

same time budget. In the future, we aim to (1) use configuration testing knowledge to aid cause

analysis and bug localization of ADS bugs, and (2) apply more exotic learning-based approaches,

such as surrogate models [57], to support increasingly complex scenarios.

9 DATA AVAILABILITY

The source code of our approach is available at [1] while video recordings are available at [2].
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