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Abstract We explore the decay of bound neutrons in the
JUNO liquid scintillator detector into invisible particles (e.g.,
n → 3ν or nn → 2ν), which do not produce an observ-
able signal. The invisible decay includes two decay modes:
n → inv and nn → inv. The invisible decays of s-shell neu-
trons in 12C will leave a highly excited residual nucleus. Sub-
sequently, some de-excitation modes of the excited residual
nuclei can produce a time- and space-correlated triple coin-
cidence signal in the JUNO detector. Based on a full Monte
Carlo simulation informed with the latest available data, we
estimate all backgrounds, including inverse beta decay events
of the reactor antineutrino ν̄e, natural radioactivity, cosmo-
genic isotopes and neutral current interactions of atmospheric
neutrinos. Pulse shape discrimination and multivariate analy-
sis techniques are employed to further suppress backgrounds.
With two years of exposure, JUNO is expected to give an
order of magnitude improvement compared to the current
best limits. After 10 years of data taking, the JUNO expected
sensitivities at a 90% confidence level are τ/B(n → inv) >
5.0 × 1031 years and τ/B(nn → inv) > 1.4 × 1032 years.
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1 Introduction

The conservation of the baryon number B is an accidental
symmetry in the Standard Model of particle physics, and
no fundamental symmetry guarantees the proton’s stability.
Baryon number violation is one of three basic ingredients
to generate the cosmological matter–antimatter asymmetry
from an initially symmetrical universe [1]. On the other hand,
baryon number B is necessarily violated, and the proton must
decay in the Grand Unified Theories (GUTs) [2], which can
unify the strong, weak, and electromagnetic interactions into
a single underlying force. These GUTs have motivated a long
history of experiments searching for proton decay [3]. How-
ever, no experimental evidence to date for proton decay or
B-violating neutron decay has been found [4]. Discovering
nucleon decay now remains a key signature of GUTs. Super-
Kamiokande with Gd-loaded water can improve its back-
ground rejection capability in the nucleon decay searches
[5]. The new generation of underground experiments such as
JUNO [6–8], Hyper-Kamiokande [9] and DUNE [10] with
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tens or even hundreds of kiloton target masses and differ-
ent detection technologies, will continue to search for the
nucleon decay and test GUTs.

JUNO is a 20 kton multipurpose underground liquid scin-
tillator (LS) detector under construction in China, with a 650-
meter rock overburden (1800 m.w.e.) for shielding against
cosmic rays [6–8]. The LS detectors have distinct advan-
tages in the search for some nucleon decay modes, such
as p → ν̄K+ [11–13] and the neutron invisible decays
[14,15]. The proton decay mode p → ν̄K+ is one of
the two dominant decay modes predicted by a majority
of GUTs [16]. The JUNO expected sensitivity will reach
τ/B(p → ν̄K+) > 9.6 × 1033 yr with 10 years of data
taking [13], which is higher than the current best limit of
5.9 × 1033 years from the Super-Kamiokande experiment
[17]. The neutron invisible decay has two modes: n → inv
and nn → inv. Invisible modes are dominant in some
new physics models [18–21]. The SNO+ experiment sets
the current best limit for single neutron disappearance at
τ/B(n → inv) > 9.0 × 1029 years (90% C.L.), while for
the nn → inv mode, the best limit is provided by the Kam-
LAND experiment with τ/B(nn → inv) > 1.4×1030 years
(90% C.L.) [14,15,22].

In this paper, the JUNO potential for neutron invisible
decays is investigated. Section 2 briefly introduces the JUNO
detector and its expected performance. In Sect. 3, we describe
the Monte Carlo (MC) simulation of neutron invisible decays
and all background sources. In Sect. 4, some basic event
selection criteria are developed to discriminate the neutron
invisible decays from the backgrounds. In Sect. 5, we esti-
mate all possible backgrounds in detail and use the pulse
shape discrimination and multivariate analysis techniques to
further suppress them. Section 6 presents the expected JUNO
sensitivities to the neutron invisible decays. Finally, a con-
clusion is given in Sect. 7.

2 JUNO detector

As a multipurpose neutrino observatory, JUNO comprises
a central detector (CD), veto detector, and calibration sys-
tem [7,8] as shown in Fig. 1. The CD holds 20 kton of
LS [23] filled in an acrylic shell with an inner diameter of
35.4 m, which is immersed in a cylindrical water pool (WP)
with both diameter and height of 43.5 m. There are 17,612
high quantum efficiency 20-inch PMTs (LPMTs) and 25,600
3-inch PMTs (SPMTs), yielding an integral 77.9% photo-
cathode coverage, closely packed around the LS ball, aiming
to achieve an energy resolution of ≤ 3% at 1 MeV. Two
kinds of LPMTs, MCP-PMT from NNVT and dynode PMT
from Hamamatsu, are used [24]. The veto detector, optically
decoupled from the CD, is designed to tag cosmic muons with
high efficiency and to precisely track performance for the

purpose of background reduction. The veto system includes
a water Cherenkov detector(WCD) and a top tracker (TT)
surrounding the CD to shield the neutrons and the natural
radioactivity from the rock. The water Cherenkov detector is
made of 35 kton of ultrapure water with a radon concentration
below 0.2 Bq/m3 [7], which is supplied and maintained by a
circulation system. The Cherenkov light is detected by 2400
20-inch PMTs, and its muon detection efficiency is expected
to reach 99.5% [7]. The top tracker is made of reused plastic
scintillators from the OPERA experiment, and it covers half
of the water pool on top with a 3-layer configuration for the
muon track angular reconstruction precision of 0.20◦ [25].
The calibration system includes the deployment of sources
along the central axis from an automated calibration unit
(ACU). It also consists of a cable loop system which allows
for position these sources to off-axis positions on a plane.
Additionally, there is a remotely operated vehicle and a guide
tube system outside of the acrylic sphere to study boundary
effects [26,27].

3 Simulation

To understand the detector signature of neutron invisible
decays and discriminate them from the backgrounds in the
JUNO detector, a full MC simulation has been performed
with the JUNO simulation framework [28]. The simulation
accounts for the response of the detector and electronics, as
well as the performance of the energy and vertex reconstruc-
tions. The detector simulation employs GEANT4 [29]. The
electronics simulation [30] incorporates factors such as dark
noise, transit time spread, and afterpulses. To build the hit
time and charge information of each readout signal, we adopt
the deconvolution method in the step of waveform recon-
struction [31]. Furthermore, the maximum likelihood esti-
mation strategy from Ref. [32], combining charge and time,
is used for energy and vertex reconstruction. All background
sources are described and simulated in this section, including
the inverse beta decay (IBD) events from the reactor antineu-
trino ν̄e, natural radioactivity, cosmogenic isotopes and fast
neutrons from the cosmic-ray muons, and atmospheric neu-
trino events.

3.1 Neutron invisible decays

The JUNO LS includes about 88% 12C and 12% 1H [6]. The
invisible decays of neutrons from the s-shell in 12C will lead
to a highly excited residual nucleus. Then the excited nucleus
can emit secondary particles (p, n,α, γ ) and leave a daughter
nucleus. In Ref. [14], Kamyshkov and Kolbe have analyzed
one and two neutron invisible decays from 12C based on
the statistical model code SMOKER [33]. It has been found
that some de-excitation modes of the excited nucleus can
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Fig. 1 Schematic of the JUNO detector

give time-, energy-, and space-correlated signals in the LS
detector. Here we consider the following four de-excitation
modes [14,33]:

11C∗ → n +10 C (Bn1 = 3.0%), (3.1)
11C∗ → n + γ +10C (Bn2 = 2.8%), (3.2)
10C∗ → n +9C (Bnn1 = 6.2%), (3.3)
10C∗ → n + p +8B (Bnn2 = 6.0%), (3.4)

where the daughter nuclei 10C(β+, 19.3 s, 3.65 MeV),
9C(β+, 0.127 s, 16.5 MeV), and 8B(β+α, 0.770 s, 18.0
MeV) are radioactive. The corresponding decay mode, half-
life, and energy release have been indicated in parentheses.
The de-excitation modes in Eqs. (3.1) and (3.2) for the sin-
gle neutron invisible decay n → inv have branching ratios
of Bn1 = 3.0% and Bn2 = 2.8%, respectively. For the
two neutron invisible decays nn → inv, the de-excitation
modes in Eqs. (3.3) and (3.4) exhibit the branching ratios of
Bnn1 = 6.2% and Bnn2 = 6.0%.

Note that the above four de-excitation modes feature a
triple coincidence signal in the LS detector [14]. The first
signal comes from neutron elastic and inelastic scatterings
with free protons and 12C. The de-excitation products γ and
p can also contribute to this first signal of the triple coin-
cidence event. The neutron will quickly slow down and be

thermalized after many collisions. In the LS, these thermal-
ized neutrons are captured by a free proton ∼ 220µs later
and give a second signal of the 2.2 MeV γ ray. The third
signal arises from the β+ decay of the daughter nuclei 10C,
9C, and 8B. The strong time-, energy-, and space-correlation
between the three signals can be exploited to significantly
suppress backgrounds.

We have made an event generator and used it to generate
0.5 million events for each de-excitation mode in Eqs. (3.1)–
(3.4). Here, the neutron kinetic energy distributions in Figs. 4
and 6 of Ref. [14] have been used. The emitted γ in Eq. (3.2)
is dominated by a strong monoenergetic line at 3.35 MeV,
which is produced from the decay of the first excited 2+ state
of 10C [14]. The ejected proton from Eq. (3.4) is monoener-
getic with an energy of 0.922 MeV, which corresponds to the
de-excitation of the first excited state of 9C [14]. The kinetic
energies of the daughter nuclei 10C, 9C, and 8B have been
set to zero. Then we simulate these events from n → inv
and nn → inv and obtain the energy, spatial, and time inter-
val distributions of these triple coincidence signals. In this
work, Ei (Ri ) is used to denote the reconstructed energy
(radial position) of the i th signal with i = 1, 2, 3. &Ri j and
&Ti j (i, j = 1, 2, 3; i < j) describe the distance and time
interval between the i th signal and the j th signal, respec-
tively. It is worth noting that some invisible decay events
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are unable to exhibit the triple coincidence feature due to
energy leakage, which is the loss of energy resulting from its
deposition in non-active volumes. Conversely, some events
yield a coincidence of more than three signals, for example,
if two neutrons are captured or if radioactive isotopes are
induced by energetic neutrons. The detection efficiencies for
the four de-excitation modes in Eqs. (3.1)–(3.4) are 91.7%,
95.6%, 90.4%, and 90.5%. In order to better reflect the phys-
ical characteristics, we refer to the first, second, and third
signals as prompt, delayed, and decay signals, respectively.

The distributions of Ei and &Ri j from the four de-
excitation modes in Eqs. (3.1)–(3.4) are displayed in Fig. 2.
All prompt energy spectra exhibit two peaks because of
the neutron elastic and inelastic scattering processes. For
11C∗ → n +10 C and 11C∗ → n + γ +10 C, the higher
energy peak of the E1 distribution comes from the neu-
tron inelastic scattering with 12C, which emits a γ ray of
4.4 MeV. Due to the larger initial kinetic energy, neutrons
from 10C∗ → n+9C and 10C∗ → n+ p+8B can produce an
α particle through the inelastic scattering n+12 C → α+X,
which corresponds to the lower energy peaks in the top-
left panel of Fig. 2. For the decay signal, there is a very
narrow peak around 3.3 MeV caused by the β+ decay of
8B →8 Be∗(16.63 MeV)+e++νe. This occurs because the
excited state of 8Be∗ (16.63 MeV) will subsequently decay
into two α particles, which has a large quenching factor in the
LS. The spatial correlations of the triple coincidence signal
show that the distances &R12, &R13 and &R23 are mostly
less than 1.5 m. It is worthwhile to stress that all distributions
of Ei , &Ri j , and &Ti j from the MC simulation are in agree-
ment with the expectations from the National Nuclear Data
Center [34] and the International Atomic Energy Agency
Nuclear Data Services [35].

3.2 Background sources

As discussed in the preceding subsection, the neutron invisi-
ble decays can generate a triple coincidence signal in the LS
detector, which has been exploited by the KamLAND exper-
iment to perform this search [15]. The dominant background
stems from the doubly correlated IBD event (p + ν̄e →
e+ + n) followed by an uncorrelated natural radioactive
decay. Unlike KamLAND, JUNO has a larger target mass and
shallower rock overburden, potentially resulting in a wider
variety of background sources. Therefore, we thoroughly
investigate and simulate the various background sources,
including IBD events, natural radioactivity, cosmogenic iso-
topes, fast neutrons (FN), and atmospheric neutrino (Atm-ν)
events. In Sect. 5, we will assess the JUNO background for
the n → inv and nn → inv searches by leveraging these
MC samples of background sources.

In JUNO [6,7], the reactor antineutrinos are detected by
the IBD reaction via the prompt-delayed coincidence sig-

nal. The kinetic energy deposited by the positron via ioniza-
tion, together with its subsequent annihilation into typically
two 0.511 MeV γ s, forms a prompt signal. The impinging
neutrino transfers most of its energy to the positron. This
establishes a strong correlation between the reconstructed
energy of the positron and the energy of the antineutrino ν̄e,
which is a crucial parameter for measuring neutrino oscil-
lations. The neutron is captured in an average time ∼ 220
µ s, and the corresponding photon emission forms a delayed
signal. Neutron captures predominantly occur on hydrogen
(∼ 99%), resulting in the release of a single 2.2 MeV γ ray,
while neutron captures on carbon (∼ 1%) yield a gamma-
ray signal with a total energy of 4.9 MeV, albeit very infre-
quently. The expected average IBD rate in JUNO is 57.4 /day
[36]. The accidental coincidence between an IBD event and
an uncorrelated single event significantly contributes to the
background.

Natural radioactivity is found in all materials and can
only be reduced by strict requirements for material screen-
ing and environmental control. It can be separated into inter-
nal radioactivity originating from the LS itself and external
radioactivity from other parts of the JUNO detector, with
the predominant external background originating in the PMT
glass. The internal radioactivity primarily comes from radio-
nuclides in the U/Th chains, with the assumed concentra-
tion of U/Th being 10−6 ppb [37]. They contribute to the
deposited energy regardless of the type of emitted particles
(α, β, and γ ), as the energy is directly released into the
LS, where these radionuclides are uniformly distributed. To
reduce the impact of radioactivity, JUNO has implemented
strict background control strategies, enabling the rate of nat-
ural radioactivity to be limited to 10 Hz. Ref. [37] provides
a comprehensive summary of the approach taken by JUNO
to achieve this goal and presents the internal and external
radioactivity results from the detector simulation. The exter-
nal radioactivity can be suppressed significantly with a fidu-
cial volume cut of Ri < 16.7 m and an energy cut of 0.7–30
MeV as shown in Fig. 3. In this case, the internal and external
radioactivity rates are around 1.98 Hz and 0.48 Hz. Mean-
while, the α particle from 238U, 232Th, 210Po radioactive
decay chains can interact with 13C in LS, and the interac-
tion of 13C(α, n)16O may produce the prompt-delayed event.
The expected rate of such events can be determined based on
the concentrations [37] and neutron yields [38].

Cosmogenic radioactive isotopes and neutrons can be pro-
duced in the LS through the spallation of cosmic-ray muons.
Approximately 3.94 Hz of muons will pass through the JUNO
LS with an average energy of 207 GeV [7]. MUSIC [39] is
employed to track muons traversing the rock to the under-
ground experimental hall, based on the local geological map.
Among the generated cosmogenic isotopes, the long-lived
isotopes 9Li and 8He can undergo β−n decay, which can
mimic the prompt and delayed signals of neutron invisible
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Fig. 2 The E1, E2, E3, &R12, &R13 and &R23 distributions of four de-excitation modes

Fig. 3 The internal and external natural radioactivity rates as a function
of radius. The dashed line represents the fiducial radius

decays. Other long-lived isotopes will give a single signal
similar to natural radioactivity, which predominantly comes
from 11C, 12B, 6He, 10C, and 8Li. To address the observed dis-
crepancies between the GEANT4 [29] simulation and actual
isotope yield data, the cosmogenic isotope rates are adjusted
based on the experimental results from both KamLAND [40]
and Borexino [41]. The event rates for 9Li and 8He are deter-
mined to be 127 per day and 40 per day, while the event rates
of 11C, 12B, 6He, 10C and 8Li are 50,020, 2478, 2373, 953
and 705 per day, respectively. To enhance the precision of

cosmogenic isotope results and study the muon veto strat-
egy, we simulated a decade of muon data without including
the photon production and propagation processes.

Fast neutrons, originating from untagged cosmic muons
and coinciding with an uncorrelated single event, is another
background that needs to be considered. The tagged effi-
ciencies of muons passing through the LS and only the
water buffer are almost 100 and 99.8% [6], respectively. The
untagged muon is also called a rock muon, including the
corner clipping muons and the muon whose track length in
water is less than 50 cm. Fast neutrons associated with the
untagged muons may enter the CD and produce a correlated
signal, which can mimic the prompt and delayed signals,
whose rate is ∼ 0.4 /day. Note that the fast neutrons are pri-
marily concentrated around the CD edge. Accordingly, the
fiducial volume cut of Ri < 16.7 m lowers their rate to about
0.08 /day.

Atmospheric neutrino (Atm-ν) charged current (CC) and
neutral current (NC) interactions can also contribute to the
background of neutron invisible decays. Atm-ν CC events
usually have an energy larger than the typical nuclear de-
excitation energy [14]. For the prompt signal energy range
from 0.7 to 30.0 MeV, the IBD-like event rate from the Atm-ν
CC interaction has been estimated by Ref. [42]. It is evident
that the IBD-like event rate is significantly lower than the
JUNO reactor IBD rate. Here, we have found that the triple
coincident events from Atm-ν CC reactions are negligible.
An assessment of the expected CC and NC rates from atmo-
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Table 1 Summary of generator models (G represents GENIE [46],
N represents NuWro [47]) for atmospheric neutrino interactions. The
Local Fermi Gas (LFG), Spectra Function (SF), and relativistic Fermi
gas model with “Bodek-Ritchie” modifications (BRRFG) are used as
the nuclear models, with MA representing the axial mass. The Berger-
Sehgal (BS) model is employed for the coherent and diffractive produc-

tion (COH) and nuclear resonance production (RES). For the two par-
ticle two hole (2p2h), the empirical model is utilized for GENIE. Final
state interactions are described by the hN, a traditional hadron-nucleon
intranuclear cascade model, and hA, a custom model that provides a
more empirical characterization of the effect of multiple hadron-nucleon
interactions

Models Version MA [GeV] Nuclear model RES & COH 2p2h FSI

G1 3.0.6 0.96 LFG BS Empirical hN

G2 3.0.6 0.96 LFG BS Empirical hA

G3 3.0.6 0.96 BRRFG BS Empirical hN

N1 19.02 1.03 SF Default Default Default

N2 19.02 1.03 LFG Default Default Default

spheric neutrinos below 100 MeV [43] resulted in a negligible
contribution. Hence, our analysis primarily concentrates on
NC background from atmospheric neutrinos with energies
higher than 100 MeV. As listed in Table 2 of Ref. [44] and
Table I of Ref. [45], the following three Atm-ν NC processes
may directly form a triple coincidence signal:

ν/ν̄ +12C → ν/ν̄ + n +11C, (3.5)

ν/ν̄ +12C → ν/ν̄ + 2n +10 C, (3.6)

ν/ν̄ +12C → ν/ν̄ + 3p + n +8Li, (3.7)

where the daughter nuclei 11C(β+, 20.36 min, 1.98 MeV),
10C(β+, 19.3 s, 3.65 MeV) and 8Li(β−α, 0.839 s, 16.0 MeV)
are radioactive. The reaction in Eq. (3.6) can produce only
one neutron capture signal if one of two neutrons loses energy
at the CD edge or disappears through the inelastic scattering
with 12C. In addition to the three processes, some Atm-ν NC
reactions can also form the triple signal indirectly through
accidental coincidences between the prompt-delayed sig-
nal and an uncorrelated single event. The MC simulation
indicates that over 90% of all prompt-delayed signals with
E1 < 30 MeV are generated by four dominant NC interac-
tions:

ν/ν̄ +12C → ν/ν̄ + n + p +10B, (3.8)

ν/ν̄ +12C → ν/ν̄ + n + p + α +6Li, (3.9)

ν/ν̄ +12C → ν/ν̄ + n + 2p +9Be, (3.10)

ν/ν̄ +12C → ν/ν̄ + n + p + d +8Be. (3.11)

Based on our estimation, the other Atm-ν NC reactions are
negligible.

In this analysis, we consider the seven reactions in
Eqs. (3.5)–(3.11) for the background analysis. The cross sec-
tions of these Atm-ν NC interactions can be obtained from
the GENIE (3.0.6) [46] and NuWro (19.02) [47] generators.
Both the GENIE and NuWro generators use physics models,
which rely in different choices for the nuclear models, the
axial mass MA, the underlying reaction processes, and final
state interaction (FSI) models. Determining the best model

among the available options presents a significant challenge
currently. Therefore, we use a total of five generator physics
models to estimate the event rates of the seven NC processes
with the help of the Atm-ν fluxes at the JUNO site [48]. The
details of the generator models utilized in this study are pre-
sented in Table 1. For the de-excitation of the residual nuclei,
we use the TALYS code [49] and take the same strategy as
that of Refs. [42,50]. Section 5.1 will explain how these dif-
ferent estimates are used to predict this background.

4 Event selection

To enhance JUNO’s sensitivity to the neutron invisible
decays, we should choose the proper event selection crite-
ria to effectively suppress backgrounds while maintaining
high signal efficiency. In this section, the muon veto strat-
egy is first introduced before the event selection to reduce
cosmogenic isotopes, radioactivity, and other backgrounds.
Then, beyond the basic event selection criteria based on sig-
nal physical characteristics aimed at primarily selecting the
vast majority of the neutron invisible decay events, a multi-
plicity cut strategy is designed to select real triple signals.

4.1 Muon veto strategy

A muon veto must be used to reduce the impact of long-lived
isotopes produced by the spallation of cosmic-ray muons
in the JUNO LS [6]. Its primary goals are to maximize the
rejection of 9Li/8He and to reduce triple coincidences pro-
duced through triple isotope production by the same muon,
both of which are dominant backgrounds in the search for
neutron invisible decays. JUNO has developed two kinds of
muon veto strategies to investigate the reactor antineutrinos
[36] and solar neutrinos [51]. Unlike the single signal from
solar neutrinos and the prompt-delayed signal from reactor
antineutrinos, a muon veto strategy tailored for the unique
triple coincidence signal expected in this analysis is devel-
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oped using a 10-year MC simulation as follows, based on the
corresponding physical feature distribution:

• For all muons passing the water pool and/or the central
detector, a veto of 3 ms after each muon is applied over
the whole detector to suppress spallation neutrons and
short-lived radioactive isotopes.

• For all muons passing the water pool and/or the central
detector, a 3 m spherical volume around any spallation
neutron candidates is vetoed for 30 s and 10 s in the n →
inv and nn → inv analyses, respectively.

• For well-reconstructed muon tracks in the central detec-
tor caused by single or two far-apart (> 3 m) muons,
a veto of 2 s is applied to candidate events with recon-
structed vertices smaller than 2 m away from each track.

• For events containing two close and parallel muons
(< 3 m), which constitute roughly 0.6% of muon-related
events, a single track is often reconstructed. A cylindrical
veto with a radius of 3.5 m around this track is applied
for 5 s.

• For events where a track cannot be properly recon-
structed, which amount to about 2% of all muon-related
events and occur primarily when more than two muons
go through the detector simultaneously, a 0.2 s veto is
applied over the whole detector volume for n → inv due
to its larger &T23.

The above muon veto strategy can effectively reject the cos-
mogenic long-lived isotopes while keeping a high signal effi-
ciency. For neutron invisible decay events, the dead time and
dead volume introduced by the muon veto strategy may result
in one of the signals in the triple signal being vetoed, lead-
ing to a decrease in the signal efficiency. The efficiencies
of the four de-excitation modes in Eqs. (3.1)–(3.4) after the
above muon veto are 65.7 ± 0.2(stat.)%, 65.5 ± 0.2(stat.)%,
80.8 ± 0.2(stat.)%, and 78.3 ± 0.2(stat.)%, respectively.
Meanwhile, the long-lived cosmogenic isotopes and neutrons
have been well suppressed. After applying the above muon
veto strategy, the 9Li and 8He rates are approximately 0.07
(0.1) /day and 0.02 (0.06) /day for n → inv (nn → inv).
Compared with 127 /day and 40 /day before the muon veto,
the 9Li and 8He rates have been reduced by a factor of over
500.

4.2 Event selection

As previously mentioned, a fiducial volume cut of Ri <

16.7 m is chosen for both n → inv and nn → inv in
order to reduce the contributions of external radioactivity and
fast neutrons to backgrounds. As shown in Fig. 3, the fidu-
cial radius cut can reject most external radioactivity events.
According to the signal characteristics as demonstrated in
Sect. 3.1, we set the basic event selection criteria for Ei ,

Table 2 Basic selection criteria used for n → inv and nn → inv

Quantity n → inv nn → inv

R1,2,3 [m] < 16.7 < 16.7

E1 [MeV] 0.7–12 0.7–30

E2 [MeV] 1.9–2.5 1.9–2.5

E3 [MeV] 1.5–3.5 3.0–16.0

&T12 [ms] < 1 < 1

&T23 [s] 0.002–100 0.002–3.0

&R12 [m] < 1.5 < 1.5

&R23 [m] < 1.5 < 1.5

&R13 [m] < 1.0 < 1.0

&Ri j , and &Ti j as listed in Table 2. For the n → inv and
nn → inv analyses, the prompt energy E1 is restricted
to the range of [0.7, 12] MeV and [0.7, 30] MeV, respec-
tively. For the delayed signal from the neutron capture, we
require the reconstructed energy E2 ∈ [1.9, 2.5] MeV and
the time interval of &T12 < 1.0 ms. The decay energy E3
from the daughter nuclei in Eqs. (3.1)–(3.4) takes the range of
[1.5, 3.5] MeV ([3.0, 16.0] MeV) in the search of n → inv
(nn → inv). The corresponding time interval &T23 lies in
the range [0.002, 100] s ([0.002, 3.0] s). To further reduce
the accidental coincidence backgrounds, the surviving triple
signals are restricted to occur in proximity to each other:
&R12 < 1.5 m, &R23 < 1.5 m, and &R13 < 1.0 m. As
shown in Fig. 2, these basic selection criteria can select the
vast majority of the neutron invisible decay events.

Applying the above selection criteria, we calculate the
signal selection efficiencies of the four de-excitation modes
in Eqs. (3.1)–(3.4) as listed in Table 3. The efficiency of the
fiducial volume cut is about 83%, which is consistent with
(16.7/17.7)3 ≈ 84.0%. The selection criteria of Ei , &Ti j ,
and &Ri j preserve most of the signals. For 11C∗ → n+10 C,
the relatively small efficiency of 75.4% is due to the energy
threshold of E1 > 0.7 MeV, which can reduce some signals,
as shown in the top-left panel of Fig. 2. For 10C∗ → n+ p+8

B, the requirement of &T23 < 3.0 s rejects many 8B decay
signals because of its half-life time of 0.77 s. In Table 3, we
present a summary of event selection efficiencies. According
to Ref. [36], the systematic uncertainties are from the fiducial
volume cut (2 cm vertex bias) and the event selection.

Most of the de-excitation events from Eqs. (3.1)–(3.4) will
generate a triple coincidence signal in the JUNO LS. In real-
ity, many single events from the natural radioactivity and cos-
mogenic isotopes can appear between the delayed and decay
signals of neutron invisible decays, owing to the large time
interval &T23. In this case, the triple coincidence signal can
easily form a quadruple or higher coincidence with an uncor-
related single event. To correctly select the triple coincidence
signals from the experimental data and reject the influence
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Table 3 Summary of selection efficiencies (%) of four de-excitation modes for n → inv and nn → inv

Selection criterion n → inv nn → inv
11C∗ → n +10 C 11C∗ → n + γ +10 C 10C∗ → n +9 C 10C∗ → n + p +8 B

All triple signals 100 100 100 100

Muon veto 65.7 ± 0.2 65.5 ± 0.2 80.8 ± 0.2 78.3 ± 0.2

Fiducial volume 83.5 ± 0.4 82.7 ± 0.4 82.9 ± 0.4 83.1 ± 0.4

Event selection 75.4 ± 0.9 89.7 ± 0.3 89.2 ± 0.3 83.5 ± 0.3

Multiplicity cut 93.8 ± 0.1 93.8 ± 0.1 99.9 ± O(10−4) 99.9 ± O(10−4)

Combined selection 38.8 ± 0.5 45.6 ± 0.3 59.7 ± 0.4 54.3 ± 0.4

of single events, this study uses two kinds of multiplicity cut
methods. Method I first selects the prompt-delayed signal,
which should satisfy the selection criteria of E1, E2, &R12,
and &T12. In addition, we have the following requirements:

• No trigger with 0.7 < E < 12 MeV in a 1 ms window
before the prompt signal;

• No other events during &T12;
• No trigger with 0.7 < E < 12 MeV in a 1 ms window

before/after the decay signal;
• Only one prompt-delayed signal in a 100 s window before

the decay signal.

Method II firstly searches for the neutron capture signal. Its
requirements are the following:

• Only 1 satisfied trigger falls in [−1, 0] ms;
• No other neutron capture signals within a spherical vol-

ume with a radius of 3 m during [−3.001, 3.001] s;
• Only 1 satisfied trigger falls in [0, 3] s.

The biggest difference is that Method I has a more strict space
limit than Method II. It requires the absence of candidate sig-
nals that meet the criteria anywhere within the detector space,
whereas Method II only requires no candidate signals within
a specific selected spatial range. Hence, Method I gives a
slightly lower multiplicity cut efficiency of 93.8±0.1 (97.9±
O (10−2)) compared to the 95.7 ± 0.1 (99.9± O (10−4)) of
Method II for n → inv (nn → inv). In the following parts
of this work, we conservatively take Method I to analyze
n → inv due to its larger time interval of &T23. Method II
is applied to nn → inv.

Based on Table 3 and the detection efficiencies discussed
in Sect. 3.1, we calculate the signal efficiencies of the four de-
excitation modes in Eqs. (3.1)–(3.4) as listed in Table 4. The
signal efficiencies εn1 and εn2 correspond to the de-excitation
modes in Eqs. (3.1) and (3.2), while the signal efficiencies
εnn1 and εnn2 correspond to those of Eqs. (3.3) and (3.4).

5 Background estimation

We have introduced all possible background sources in
Sect. 3.2. Most backgrounds are formed by the accidental
coincidence of two background sources, while the Atm-ν
NC interactions can directly produce a triple coincidence
signal. In this section, we estimate all types of backgrounds
for n → inv and nn → inv based on the event selection cri-
teria described in Sect. 4. Subsequently, the pulse shape dis-
crimination technique and the multivariate analysis method
will be employed to further suppress the background. For
instance, for the IBD events followed by an uncorrelated sin-
gle event, the prompt signals from neutron invisible decays
and IBD events are generated by neutrons and positrons,
respectively, which exhibit different pulse shapes [45,52].
Consequently, the pulse shape discrimination (PSD) tech-
nique can be employed to reject background events. Fur-
thermore, the correlations among E1, E2, E3, &R12, &R23,
&R13, &T12, and &T23 exhibit variations between signal
and accidental coincidence background. The discrepancies
among the time, spatial and energy distributions suggest that
the employment of the multivariate analysis (MVA) method
will be instrumental in effectively discerning the signals from
the backgrounds. To ensure the reliability of the results, we
have employed two distinct background estimation methods
and suppression techniques during the analysis that cross-
validated each other. The background estimation utilizes both
the MC approach and computational methods. For suppres-
sion methods, one approach does not integrate the PSD into
the MVA, whereas the other incorporates the PSD as a vari-
able along with the basic features. It is worth noting that these
methodologies are employed for background analysis. In the
ensuing sections, we have opted to elaborate on the method
that exhibited very slightly superior performance for each
decay mode.

5.1 n → inv analysis

To simplify, we refer to the prompt-delayed signal as a Dou-
ble signal. Meanwhile, the events with no other correlated
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Table 4 Summary of the background event rates (10 years) and signal efficiencies before and after the PSD+MVA for n → inv and nn → inv

n → inv nn → inv

Basic selection PSD + MVA Basic selection PSD + MVA

Backgrounds (10 years)

IBD + Single 1235 ± 50 2.72 ± 0.10 3.01 ± 0.09 0.0110 ± 0.0003

Atm-ν NC 3.0 ± 1.1 0.89 ± 0.67 4.3 ± 3.5 0.55 ± 0.63
13C(α,n)16O + Single 3.4 ± 1.4 0.036 ± 0.013 – –
9Li/8He + Single 1.55 ± 0.39 0.29 ± 0.17 0.13 ± 0.13 0.13 ± 0.13

Accidental 1.46 ± 0.05 0.095 ± 0.004 – –

Total 1244 ± 50 4.03 ± 0.70 7.4 ± 3.5 0.69 ± 0.64

Signal efficiency (%)

εn(nn)1 35.6 ± 0.2 23.5 ± 0.2 54.0 ± 0.3 48.2 ± 0.3

εn(nn)2 43.6 ± 0.3 30.3 ± 0.3 49.2 ± 0.3 36.3 ± 0.3

triggers are referred to as “Single”. We first estimate the
Double+Single background rates (RDouble+Single), originat-
ing from the coincidence of a doubly correlated event (IBD,
9Li/8He, 13C(α, n)16O, fast neutron) with Single.

RDouble+Single = RDouble(1 − e−RSingle·P(&R23,13)·&T23), (5.1)

where RDouble is the rate of Double signals after applying the
selection criteria of E1, E2, &R12, &T12, the fiducial volume
cut, and the muon veto. RSingle = 0.71 Hz represents the
Single rate with the energy E3 in the range of [1.5, 3.5] MeV,
including 0.64 Hz of radioactivity and 0.07 Hz of isotopes.
P(&R23,13) is the survival probability of backgrounds after the
spatial cuts &R23 and &R13.

After 10 years, the expected rates for this type of back-
ground, based on the spatial distribution of Single, are sum-
marized in Table 4. Note that 9Li/8He+Single rates account
for the possibility of both the correlated 9Li/8He events and
the single event originating from the same muon shower. In
Fig. 4, we show the energy, time interval, and spatial distri-
butions of the IBD+Single background. As a comparison, we
also plot the distributions of n → inv, which is calculated
based on the event selection in Sect. 4 and the sensitivity
reported in Sect. 6, namely τ/B(n → inv) = 5.0 × 1031

years. Using a similar method, the accidental triple coinci-
dence from three Single has been estimated to be 1.46 ±
0.05 /10 years.

The systematic uncertainty of the IBD+Single rate arises
from the uncertainties of both the IBD rate and the Single rate.
Here we adopt a relative systematic uncertainty of 2% for
the world reactor IBD rate based on Ref. [36]. For the Single
rate, it consists of contributions from natural radioactivity
and cosmogenic isotopes. The systematic uncertainty of the
radioactivity rate is expected to be small, as we can measure
the rate precisely after JUNO starts taking data. Therefore, a
conservative uncertainty of 1% is used for the accidental rate
[36]. For the cosmogenic isotopes rate, we assign a larger

uncertainty of 20% according to the KamLAND experiment
[40]. For the 13C(α, n)16O, an uncertainty of 50% from Ref.
[6] is applied.

For the Atm-ν NC background, we first calculate the total
event rate of three interactions in Eqs. (3.5)–(3.7). The five
typical generator models in Table 1 give significantly differ-
ent predictions, as shown in Fig. 5. The rate derived from the
NuWro SF nuclear model (N2) is lower compared to other
models. The averaged rate from the three GENIE models is
higher than that from the two NuWro models. To reasonably
estimate the Atm-ν NC background, we select the maximal
and minimal values among the five predicted event rates,
and then take their mean value as the nominal event rate. The
systematic uncertainty from the interaction cross section is
chosen as half of the difference between the maximum and
minimum values. This uncertainty estimation method can
fully encompass all five models. Using Eq. (5.1), we analyze
the accidental coincident background between the Atm-ν NC
reactions in Eqs. (3.8)–(3.11) and Single. All five models
indicate that the Atm-ν NC Double+Single background is not
negligible for n → inv, as shown in Fig. 5. We finally con-
sider the statistical error and the systematic uncertainty from
the Atm-ν flux. Previous research has already delineated the
systematic uncertainty estimation from the Atm-ν flux at the
JUNO site [50]. Given that this research also employs the
identical Honda Flux with an energy range of 0.1–20 GeV,
we conservatively apply a systematic uncertainty of 30% to
the flux. After considering all uncertainties, the final total
Atm-ν NC background number is 3.0 ± 1.1 in 10 years, as
listed in Table 4. Their energy, time interval, and spatial distri-
butions have been shown in Fig. 4. In the E1 spectrum of NC,
a peak is observed from the 2n+10C reaction channel. Our
simulation observed cases where some final state nucleons
of the NC interaction process from GENIE had zero momen-
tum in GENIE (3.0.6), potentially affecting the prompt signal
composition for 2n+10C. Additional calculations were per-
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Fig. 4 The E1, E2, E3, &R12 &R13, &R23, &T12, and &T23 distri-
butions of n → inv and backgrounds. The vertical axis represents the
event number over a period of 10 years, and x-axis for each plot corre-
sponds to the selection criterion in Table 2. The expected signal num-

ber is calculated based on the JUNO sensitivity of this article, namely
τ/B(n → inv) = 5.0 × 1031 years. The number in parentheses in the
legend represents the scale factor

formed to address this issue. Our estimations with 5 models
and 2 generators (GENIE and NuWro) show that its impact
on the final results is negligible.

After the basic event selections, many backgrounds still
remain, as listed in Table 4, especially from IBD+Single. The
prompt signal for the vast majority of background events is
caused by a positron. However, the neutron invisible decays
generate the prompt signal through the neutron elastic and
inelastic scattering processes as described in Sect. 3.1. Note
that the deposited energies of positrons and energetic neu-
trons in the LS have distinct photon emission time pro-
files [45,52]. Based on this feature, JUNO is planning to
use the PSD technique described in [42,53] to separate the

IBD events from the Atm-ν NC events. Here we primarily
utilize the same PSD tool to distinguish the prompt signal
of the neutron invisible decays and two kinds of dominant
backgrounds (IBD+Single, 9Li+Single). As shown in the left
panel of Fig. 6, the PSD technique can effectively identify the
invisible decay signals from the two backgrounds, especially
from the IBD+Single. There is a tail around a PSD value of
1.0 for 9Li events, which can be attributed to the fact that the
prompt signal of 9Li contains the kinetic energy of both the
β− and neutron. Note that the Atm-ν NC background cannot
be suppressed effectively since its prompt signal also comes
from the energetic neutrons.
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Fig. 5 The Atm-ν NC background rates from five typical generator
models in Table 1 after basic event selection criteria for n → inv (left)
and nn → inv (right). The horizontal axis describes different models,
while the vertical axis represents the background rate per 10 years. The
dashed line within the corresponding color rectangular region denotes

the average of the maximum and minimum among five models, which
we take as the nominal background rate. Its systematic uncertainty is
chosen as half of the difference between the maximal and minimal val-
ues

Fig. 6 The PSD (left) and MVA (right) separation capabilities for n → inv. The left plot is normalized to unity to highlight the performance of
the PSD, while right plot show the BDT performance and the vertical axis represents the event number over a period of 10 years

In addition to the PSD technique, some significant differ-
ences between the signals and backgrounds can be clearly
observed in Fig. 4. These differences among the time, space,
and energy distributions imply that the multivariate analysis
method can be powerful in further separating the signal from
the background. Here we employ the Boosted Decision Trees
(BDT) and consider eight input variables, including E1, E2,
E3, &R12, &R23, &R13, &T12, and &T23. The right panel
of Fig. 6 shows the BDT output distributions. It is clear that
the MVA method can reject most backgrounds except for the
Atm-ν NC triple events. Applying the PSD and MVA meth-
ods, the residual backgrounds and the signal efficiency are
derived as tabulated in Table 4. The cut values for the PSD
and BDT values have been chosen as 0.60 and 0.11 for the
best sensitivity, respectively. The chosen values correspond

to the BDT and PSD at the optimum εsig/S90, where S90 rep-
resents the average upper limit of the signal number at a 90%
confidence level. Further details of the optimization can be
found in the appendix. The IBD+Single background is sig-
nificantly suppressed relative to the Atm-ν NC background.
This is because of the inherent dissimilarity in PSD values
between the IBD events and the signals. The IBD+Single
and Atm-ν NC events contribute predominantly to the back-
grounds after PSD+MVA suppression, with the other back-
grounds contributing negligibly.

5.2 nn → inv analysis

To ensure the reliability of the results, we have developed
two independent approaches to estimate the backgrounds for
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both n → inv and nn → inv. In contrast with the approach
described in Sect. 5.1 for n → inv analysis, we employed a
numerical calculation approach to estimate the background
of nn → inv. For the Double+Single background, we first
divide the fiducial sphere of radius 16.7 m into 4658 con-
centric shells of equal volume due to the non-uniform radial
distribution of external radioactivity, and assume the single
events are uniformly distributed in each shell. Secondly, due
to the selection criteria of &R12 < 1.5 m and &R23 < 1.5 m,
a spherical volume with a radius of 1.5 m is chosen around the
delayed signal. For a prompt-delayed event in the i th shell,
we can calculate the fraction f j

i of the volume of the j th shell
inside this sphere to the total volume of this shell. Finally, we
use the following formula to calculate the background rate
of the Double+Single events:

RDouble+Single=
∑

i=1

Ri
Double(1−e−∑

j f ji ·R
j
Single&T23)P&R13 ,

(5.2)

where Ri
Double is the prompt-delayed event rate in the i th shell

after applying the selection criteria of E1, E2, &R12, &T12,
the fiducial volume cut, and the muon veto strategy. Similarly,
R j

Single denotes the Single rate in the j th shell following the
3.0 MeV < E3 < 16.0 MeV selection. P&R13 is the survival
probability of backgrounds after the &R13 cut.

By utilizing the event rates of Ri
Double and R j

Single in
each shell, we estimate the background rates from the
Double+Single. It is found that the expected number of
IBD+Single event is 3.01 ± 0.09 in 10 years. In Fig. 7,
we plot the energy, time interval, and spatial distributions of
the IBD+Single background, where the signal distributions
are calculated based on the event selection in Sect. 4 and the
JUNO sensitivity of τ/B(n → inv) = 1.4 × 1032 years in
this work. Note that other Double+Single backgrounds from
9Li/8He, 13C(α, n)16O and fast neutrons, and the accidental
triple coincidence of three Single are negligible. Besides the
accidental coincidence with Single, 9Li/8He can also form a
triple coincidence event with an isotope from the same muon
shower. Based on the 10 years of simulation data of cosmic
muons, we find that the final rate of this kind of background
is 0.13 ± 0.13 per 10 years. A relative statistical uncertainty
of 100% has been assigned.

For nn → inv, one can easily find that the Atm-ν
NC Double+Single background rate (0.1/10 years) will be
negligible compared to the IBD+Single rate. Consequently,
we focus exclusively on the Atm-ν NC triple coincident
events in Eqs. (3.5)–(3.7). In fact, the dominant channel is
ν/ν̄ + 12C → ν/ν̄+3p+n+ 8Li. This is because the selec-
tion criteria of 3.0 MeV < E3 < 16.0 MeV can reject all 11C
and most of 10C. In addition, &T23 < 3.0 s can also remove
many 10C since its half-life is 19.29 s. Here, we still employ
five generator models to estimate the rate of Atm-ν NC triple

events, as shown in Fig. 5. Using the same uncertainty esti-
mation method in Sect. 5.1, the Atm-ν NC background rate
is given by 4.3 ± 3.5 in 10 years, including both the cross
section and flux uncertainties. The energy, time interval, and
spatial distributions of the Atm-ν NC background have also
been illustrated in Fig. 7.

After the basic event selections, the estimated total back-
ground rate is 7.4±3.5 per 10 years, as listed in Table 4. Here,
we further suppress these backgrounds by using the PSD and
MVA methods. As shown in the left panel of Fig. 8, the PSD
technique can also effectively distinguish the invisible decay
signals from the IBD+Single background. To enhance the
reliability of our results, the nn → inv analysis incorpo-
rates some differences compared to n → inv, such as the
incorporation of the PSD value into the MVA and the use of
a BDT with Gradient Boosting (BDTG). We take the PSD
output, along with other basic features, as an input variable
for the MVA training. Whereas PSD and MVA are treated
as two independent variables for the n → inv analysis. In
the right panel of Fig. 8, we plot the MVA output distribu-
tion for nn → inv. It indicates that this MVA method has a
good capability to distinguish the signal from the IBD+Single
and Atm-ν NC backgrounds. In the following analyses, the
BDTG cut value of 0.32 is chosen to maximize the sensitiv-
ity. Further optimization details are provided in the appendix.
In this case, the residual background rates and signal effi-
ciencies after PSD+MVA have been listed in Table 4. The
Atm-ν NC events and the 9Li/8He+Single become the dom-
inant backgrounds after PSD+MVA suppression. It is worth
emphasizing that the IBD+Single background is suppressed
to a negligible level.

6 Sensitivity

Based on the MC simulation, the background rates, signal
efficiencies, and their uncertainties have been derived as
listed in Table 4. The JUNO sensitivity for n → inv can
be calculated as follows:

τ/B(n → inv) > N0 T
∑

i=1,2

εni Bni/S90, (6.1)

where B(n → inv) represents the branching ratio of the
invisible decay mode n → inv when one neutron undergoes
the baryon number-violating decay. N0 = 1.76 × 1033 is the
number of s-shell neutrons, and T is the JUNO running time.
The signal efficiencies εni can be found in Table 4. Bn(nn)i
are the de-excitation branching ratios for single (two) neutron
invisible decay, which can be known from Eqs. (3.1)–(3.4). A
systematic uncertainty of 30% will be considered, stemming
from the theoretical prediction of de-excitation branching
ratios of highly excited residual nuclei [14]. S90 is the upper
limit of the detected signal number at a 90% confidence level
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Fig. 7 The E1, E2, E3, &R12 &R13, &R23, &T12, and &T23 distribu-
tions of nn → inv and two dominant backgrounds. The vertical axis
represents the event number over a period of 10 years, and x-axis for

each plot corresponds to the selection criterion in Table 2. The expected
signal number is calculated based on the JUNO sensitivity of this article,
namely τ/B(nn → inv) = 1.4 × 1032 years

(C.L.). It depends on the number of observed events and the
background level. For nn → inv, the calculation of sensitiv-
ity follows a similar procedure but with corresponding s-shell
nn pairs number of N0 = 8.8 × 1032, signal efficiencies εnni
and branching ratios Bnni .

The likelihood contours method [54] (usually denoted as
the Feldman-Cousins method) is employed to calculate S90
for n → inv and nn → inv. Here we report the sensitivities
using the average upper limits, which are obtained by the
following formula [55]:

S90 =
∞∑

n=0

P(n|b)U (n|b), (6.2)

where U (n|b) is a function yielding the upper limit for a
given observation n and a predicted background b through
the likelihood contours method in 90% confidence level.
P(n|b) is the Poisson distribution for the pure background.
The systematic uncertainties in signal efficiency and back-
grounds are accounted for by integrating over probability
density functions that parametrize these uncertainties [56].
The large background uncertainty in nn → inv may lead to a
negative value when assuming a Gaussian distribution. Thus,
we choose the Log-Normal distribution [56] to describe the
uncertainties of the background rate. The signal efficiencies,
background rates, and their uncertainties, as shown in Table 4,
result in the following JUNO sensitivities to n → inv and
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Fig. 8 The PSD (left) and MVA (right) separation capabilities for nn → inv. The left plot is normalized to unity to highlight the performance of
the PSD, while right plot show the BDTG performance and the vertical axis represents the event number over a period of 10 years

Fig. 9 JUNO sensitivities to n → inv and nn → inv as a function of
the running time at 90% C.L. SNO+ and KamLAND give the current
best upper limits in the search of n → inv and nn → inv based on
experimental data, respectively

nn → inv after 10 years of data taking at the 90% C.L.:

τ/B(n → inv) > 5.0 × 1031 years,

τ/B(nn → inv) > 1.4 × 1032 years.
(6.3)

The predicted sensitivity of n → inv (nn → inv) is almost
one(two) orders of magnitude better than the SNO+ (Kam-
LAND) results. In Fig. 9, we plot the JUNO sensitivity as a
function of the running time. It is found that JUNO with two
years of data, will give an order of magnitude improvement
compared with the current best limits: τ/B(n → inv) >

9.0 × 1029 years and τ/B(nn → inv) > 1.4 × 1030 years.
To ensure the reliability of the results in Eq. (6.3), we

use the analysis method in Sect. 5.1 (Sect. 5.2) and the cor-
responding multiplicity cut strategy to study nn → inv
(n → inv). It is found that different analysis methods

only slightly influence the final sensitivities. In addition, we
have also varied the MVA cuts to investigate the sensitiv-
ity changes. The predicted sensitivities are not significantly
affected by the MVA cut value when it falls within the range
of [0, 0.5]. To assess the impact of Atm-ν NC as the main
background on the predicted sensitivities, we enlarge their
nominal values and uncertainties. We observe that for both
decay modes, escalating the Atm-ν NC uncertainty to 150%
marginally affects the predicted sensitivities. Given that Atm-
ν NC is one of the main backgrounds for both analyses, the
sensitivity is expected to change by about 10 and 20% when
doubling the nominal value of the Atm-ν NC event rate,
respectively.

7 Conclusion

In conclusion, we have investigated neutron invisible decays
in the JUNO LS detector. The triple coincidence character-
istic arising from the invisible decays of s-shell neutrons in
12C has been briefly described, providing insight into the
development of dedicated selection criteria applied to the
signal sample generated with the full simulation. To cor-
rectly select triple coincidence signals from the experimental
data and minimize the influence of the uncorrelated single
signals, we have developed two muon veto strategies and
implemented two types of multiplicity cut methods tailored
to the characteristics of both the signal and backgrounds.
On the other hand, we have conducted a detailed estima-
tion of all potential backgrounds, which have been classified
into six categories: IBD+Single, Isotope(9Li/8He)+Single,
FN+Single, 13C(α,n)16O+Single, Accidental backgrounds,
and Atm-ν NC events. It is observed that the IBD+Single
and Atm-ν NC events are the dominant backgrounds. To
suppress backgrounds further, we employ pulse shape dis-
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crimination and multivariate analysis techniques in both
searches. After 10 years of JUNO data taking, the expected
background numbers for n → inv and nn → inv are
4.07 ± 0.68 and 0.69 ± 0.64, with final signal efficiencies
of 26.7 and 42.3%, respectively. Finally, we have found that
with two years of data, JUNO will yield an improvement
by an order of magnitude with respect to the current best
limits. After 10 years of data taking, the expected sensitiv-
ities for JUNO are τ/B(n → inv) > 5.0 × 1031 years and
τ/B(nn → inv) > 1.4 × 1032 years at the 90% confidence
level.
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Appendix: Optimization of sensitivity

We separately studied the εsig/S90 variation trends with the
BDT/PSD and BDTG cut values for two invisible decay
modes, as shown in the following Fig. 10. The left panel
depicts the case of n → inv , where a two-dimensional scan
was performed using PSD and BDT values, with the white
star indicating the location of the optimal scan value. For
nn → inv , as PSD is used as an input variable for BDTG,
it can be represented by a one-dimensional curve. Similarly,
the red star represents the optimal scan point. It should be
noted that, in order to simplify the calculation during the
optimization process, the systematic uncertainties of signal
efficiency and background event counts were not taken into
account.

Fig. 10 The sensitivity (without including systematic uncertainty) variation tendencies with the BDT/PSD cuts of n → inv (Left) and the BDTG
cut of nn → inv (Right). The white star and red star in the graph represnt the optimal value for n → inv and nn → inv , respectively
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