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Abstract—Leveraging the scalable efficacy of reinforcement
learning from AI feedback (RLAIF), large language models
(LLMs) can be refined toward human intent alignment. While
current paradigms employ LLMs to annotate and refine model
outputs, the area of privacy preservation within RLAIF, partic-
ularly in sensitive domains like healthcare where data privacy is
indispensable, remains inadequately explored. Addressing this
gap, we propose PriMa, a novel data obfuscation algorithm
integrated into the RLAIF pipeline, empowering organizations
to harvest the benefits of RLAIF while protecting privacy
concerns. Notably, this work pioneers the investigation of privacy
vulnerabilities, specifically membership inference attacks, within
practical RLAIF implementations. Our empirical evaluations
demonstrate PriMa’s effectiveness in preventing membership
inference attacks while significantly enhancing model alignment
compared to the baseline RLAIF architecture.

I. INTRODUCTION

The thriving prominence of large language models (LLMs)
has significantly enhanced the efficiency of diverse tasks
across numerous industries. However, the substantial resource
demands associated with LLM training have concentrated
ownership of the most potent models within a select few
entities, with OpenAI serving as a premier example [1]. This
centralization necessitates external organizations to interact
with LLMs hosted on large-scale infrastructure via APIs or
interfaces, forfeiting direct control over data processing.

Recognizing the value of in-house data privacy and cus-
tomization, some organizations have opted to fine-tune pre-
trained models for their specific needs. Furthermore, continued
efforts in novel techniques aim to optimize LLM utilization
within individual institutions. Notably, privacy concerns within
domains such as finance and healthcare may have previ-
ously restricted reliance on commercial LLMs. However, the
availability of proprietary data presents these sectors with an
invaluable opportunity to develop and deploy superior models
tailored to their unique requirements.

Emerging within the domain of LLM advancements, Re-
inforcement Learning from AI Feedback (RLAIF) [2], [3]
addresses the scalability limitations inherent in the predecessor

methodology, Reinforcement Learning with Human Feedback
(RLHF) [4], [5]. By leveraging AI-generated feedback in-
stead of human labelers, RLAIF demonstrably facilitates data-
efficient fine-tuning of pretrained models [4]. This refinement
enhances the alignment of LLMs with human intent, empow-
ering users and organizations to cultivate in-house models
tailored to their specific needs and data. Extensive evaluations
[3] reveal that RLAIF-trained models significantly outperform
their supervised fine-tuned and base model counterparts across
diverse assessment metrics.

Despite RLAIF’s efficacy in achieving data-efficient fine-
tuning and human intent alignment, it encounters a crucial
bottleneck in the labeling process for its reward model. Scal-
ing this process via human feedback remains challenging,
and the technique still necessitates a large language model
(LLM) for internal data evaluation within the reinforcement
learning pipeline. Hosting such an LLM on-premise incurs
significant costs, and relying on commercial APIs or cloud-
based solutions for RLAIF implicates data exfiltration, di-
minishing the very purpose of in-house LLM development.
Therefore, organizations desire a mechanism to harness the
effectiveness of external LLMs within the RLAIF pipeline
while simultaneously protecting the privacy of their reward
model training data. Achieving this accomplishment would
pave the way for organizations to cultivate superior LLMs
tailored to their specific needs and data, unlocking the full
potential of the RLAIF paradigm.

While RLAIF has sparked significant academic discourse
regarding its efficacy in data-efficient fine-tuning and hu-
man intent alignment, a noticeable gap exists in the area
of privacy-preserving methodologies. No prior studies have
investigated this critical aspect, highlighting an urgent need
for comprehensive research initiatives to equip organizations
with the tools to leverage RLAIF’s advantages while ensuring
the confidentiality of sensitive data within the reward model
training process.

To circumvent privacy concerns associated with the RLAIF
training pipeline, we propose leveraging masked language
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models (MLMs) [6] for data obfuscation while preserving
the efficacy of model fine-tuning. Specifically, we address
the vulnerability of prompts transmitted to external LLMs
(membership inference attacks, as identified by [7]) by incor-
porating an algorithm that generates synthetic data segments.
This technique optimizes a privacy-utility trade-off, aiming
to maximize privacy protection while minimizing potential
performance degradation in the RLAIF process.

In this paper, we propose a novel algorithm using a masking
technique to preserve the privacy of sensitive data in the
RLAIF model against the membership interference attack.
Specifically, we consider the RLAIF model where organiza-
tions aim to create an in-house large language model to assist
their staff in the process of task analysis. We summarize two
realistic examples that align with this scenario as follows:

Headlands Hospital seeks to augment its diagnostic capabil-
ities by developing an in-house large language model (LLM).
Leveraging their extensive internal patient data, they propose
fine-tuning a pre-trained model to enhance its performance
beyond current benchmarks. The proposed approach entails
Reinforcement Learning from AI Feedback (RLAIF) to op-
timize not only the accuracy of the LLM’s responses but
also their alignment with user intent - a crucial factor in
patient care. While the prospect of harnessing the exceptional
capabilities of GPT-4, a leading LLM in terms of size and
multi-modal prowess, is enticing, privacy concerns regarding
potential HIPAA violations necessitate a more nuanced ap-
proach. Therefore, exploring innovative techniques to safe-
guard sensitive patient data while enabling effective RLAIF-
driven LLM training becomes paramount for Headlands Hos-
pital’s endeavor.

Fantastic Finance aims to leverage the automation potential
of large language models (LLMs) to alleviate the burden of
repetitive tasks facing its customer support team. The company
possesses a rich internal document repository ideal for model
fine-tuning, yet mitigating the generation of ”hallucinations”
(factually inaccurate outputs) is crucial, as financial missteps
could incur significant losses. Recognizing the efficacy of
Reinforcement Learning from AI Feedback (RLAIF) in tai-
loring LLM behavior, Fantastic Finance seeks to implement
this technique while simultaneously addressing critical privacy
concerns. Ensuring the confidentiality of proprietary and cus-
tomer data during the RLAIF process becomes a cornerstone
of their endeavors, necessitating the exploration of privacy-
preserving techniques to protect sensitive information from
potential attackers.

This work examines the intricate world of Reinforcement
Learning from AI Feedback (RLAIF), proposing and exam-
ining a novel data preprocessing approach named PriMa.
PriMa depends on a unique blend of data segmentation,
iterative masking, and Masked Language Modeling (MLM)
to accurately augment data points before their crucial labeling
stage by an external LLM within the RLAIF pipeline.

In short, our main contributions can be outlined as follows:
1) Enhanced Privacy Preservation: We introduce the

PriMa algorithm, which utilizes a unique combination

of data segmentation, iterative masking, and Masked
Language Modeling (MLM) to obfuscate sensitive in-
formation in training prompts. We demonstrate that
PriMa somewhat reduces the precision of membership
inference attacks, thereby further protecting the privacy
of training data. Our result holds significant practical im-
plications for organizations deploying RLAIF models in
sensitive domains by mitigating the risk of unauthorized
data inference.

2) Improved Model Alignment: We propose that PriMa
augmented data improves the alignment of RLAIF mod-
els with desired characteristics by providing cleaner
training examples for the external LLM labeler. Our
comprehensive evaluation reveals that models trained
with PriMa augmented data exhibit a notable improve-
ment in their ability to generate responses aligned with
specific criteria compared to models trained with vanilla
RLAIF. This finding signifies the potential of PriMa
to promote the development of RLAIF models that not
only deliver accurate outputs but also align with specific
application requirements.

The rest of the paper is organized as follows: Section
II surveys relevant prior work in the domain of privacy-
preserving natural language processing (NLP) techniques.
Section III formulates the problem statement guiding this
study. Section IV presents our proposed algorithm. Section V
elaborates our experimental methodology. Section VI reports
the experimental results. Finally, Section VII concludes the
paper.

II. RELATED WORK

This section focuses on a detailed survey of relevant prior
works addressing the vital challenge of privacy preservation
in the burgeoning era of large language models (LLMs). We
explore existing research on diverse anonymization techniques
and dataset generation methodologies. While studies directly
focused on RLAIF-specific privacy preservation remain elu-
sive, valuable insights and transferable results gleaned from
the broader NLP and machine learning domains illuminate the
path forward for this investigation.

A. Large Language Model Privacy

The growing importance of large language models (LLMs)
has ignited a plethora of privacy concerns, stemming from
their voracious data appetites and potent capabilities facilitated
by ubiquitous deployments. Pioneering work by Pan et al.
[8] outlines a spectrum of privacy threats and malicious
attack models, inspiring subsequent research endeavors in
these domains. A critical takeaway from their study is the
inherent vulnerability of user information embedded within
prompts submitted to commercially hosted LLMs. Exploiting
potential weaknesses in these prompts, even without direct
model access, attackers can glean significant amounts of
sensitive data during inference time [8].

The surge in popularity of supervised fine-tuning for task-
specific customization of LLMs prompted concurrent progress
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in research concerning information leakage potential. Several
studies [7], [9]–[14] shed light on the extractable information
from such models, potentially revealing details about the
underlying training data. Shokri et al. [7] laid the groundwork
with their seminal work on membership inference attacks
(MIAs) in machine learning models, generalizing the concept
beyond LLMs. Their groundbreaking study established the
inherent privacy risks associated with information leakage
from training data, paving the way for subsequent research
into various MIA techniques and mitigation strategies [7].

Shokri et al.’s [7] groundbreaking work on membership
inference attacks (MIAs) laid the foundation for our privacy-
preserving approach within the RLAIF context. Their seminal
paper introduced the concept of ”shadow models,” alternate
models trained to mimic the target model’s output, enabling
successful membership inference through attack simulations
[7]. Inspired by this innovative technique, our experiments
leverage the shadow model concept to specifically analyze the
information leakage potential within the RLAIF pipeline. Duan
et al. [15] found that MIAs are generally not very effective
against LLMs, which is mostly consistent with our findings,
however we do still see some reduction in attack efficacy. If it
should happen at some point in the future that a more viable
MIA against LLMs comes out, the method we propose here
will likely be effective against that too.

B. Dataset Anonymization and Generation

The area of data privacy preservation has been a productive
ground for rigorous research, yielding a range of promising
approaches. This study examines two prominent paradigms
within this domain: data anonymization and synthetic data
generation, each offering distinct advantages and challenges
in safeguarding sensitive information.

1) Anonymization: Focusing on applications in the health-
care domain, a contemporary area teeming with privacy
concerns, numerous investigations leverage modern machine
learning and deep learning architectures for data anonymiza-
tion. They strive to automate the process and enhance its
scalability for robust dataset privacy preservation [16]–[18].
However, as exemplified by the pioneering work of Narayanan
et al. and Ohm, such anonymization alone may not suffice,
particularly in the face of evolving adversarial techniques and
model capabilities that attackers can exploit to glean private
information from anonymized data.

2) Generation: In the domain of privacy preservation, a
thriving paradigm has emerged: the synthesis of data that
faithfully replicates the intricacies of real-world datasets. This
strategy offers a compelling solution to the inherent tension
between data utilization and individual privacy. Notably, a
plethora of diverse approaches have arisen, each competing
for efficacy in this domain. Among these, Masked Language
Modeling (MLM) stands out as a particularly promising av-
enue, drawing inspiration from its groundbreaking application
in text generation and augmentation as pioneered by Devlin
et al. [6].

The unquestionably adept capabilities of MLMs in synthetic
data generation have been showcased in numerous studies.
These endeavors have successfully safeguarded sensitive data
and preserved the essential characteristics required for down-
stream analytical endeavors [19], [20]. For instance, Kweon
et al.’s groundbreaking work in synthesizing data for training
an open-source LLM provides evidence of the viability and
efficacy of this approach in the context of LLM development
[21]. This success story formalizes the foundation for fur-
ther exploration and refinement of synthetic data generation
techniques, promising a future where data-driven insights can
be gleaned without compromising the fundamental right to
privacy.

III. PRELIMINARIES

To lay the groundwork for the subsequent discourse, this
section defines key terms that will serve as essential reference
points throughout the remainder of this paper.

A. One-shot RLAIF

A one-shot RLAIF processes a tuple (P,A1, A2, E,R)
where P is the prompt, represented as a text sequence xp.
A1 and A2 are two potential responses generated by the
Supervised Fine-Tuning (SFT) model, represented as text
sequences x1 and x2. E is the evaluation guidelines, encoded
as a set of instructions I for the external LLM. R is the
external LLM, represented as a function R(xp, x1, x2, I) that
outputs a preference score in the range [0, 1], indicating the
relative ”betterness” of A1 compared to A2 based on the
prompt and evaluation guidelines. Figure 1 illustrates the AI
preference labeling process in general.

The one-shot RLAIF process is as follows:
1) Gather data points: Construct a dataset D =

(Pi, A1i, A2i, E) for i = 1, ..., N .
2) Query external LLM: For each data point in D, obtain

R(Pi, A1i, A2i, E).
3) Train reward model: Use the preference scores from R

to train a reward function r(P,A) that approximates the
external LLM’s evaluation of a response A to a prompt
P .

4) Reinforcement learning: Employ the learned reward
function r(P,A) to guide reinforcement learning al-
gorithms in fine-tuning the SFT model to generate
responses that align with the desired preferences.

B. Problem Definition

Drawing upon the presented scenarios, we now formally
define the desired attributes of a privacy-preserving RLAIF
pipeline. This requirement can be clarified into two funda-
mental points.

Privacy Preservation: Our primary objective is to preserve
the privacy of sensitive information learned by the SFT model.
This entails preventing the inference of whether specific data
points from outside the organization (denoted as Iexternal)
belong to the model’s private training dataset (Dprivate).
We hypothesize that membership inference attacks pose the
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Fig. 1. A diagram for the AI preference labeling process, with example prompt and responses.

highest risk in this context. To quantify this risk, we will
leverage a customized version of shadow attacks, as originally
proposed by Shokri et al. [7], with the full details outlined in
the experimental section.

Formally, we define the membership inference risk as the
probability P (Dprivate|Iexternal), which reflects the likeli-
hood of inferring membership in Dprivate based on Iexternal.
The Membership Inference Attack Model can be defined as
a function A(x, Iexternal), where x is a data point accessible
through Iexternal. A(x, Iexternal) ∈ {0, 1} predicts whether
x belongs to Dprivate. We propose a modified version of
shadow attacks to evaluate the effectiveness of membership
inference attacks on the SFT model. The specific modifications
will be elaborated on in the experimental section. Where our
goal is to develop a privacy-preserving RLAIF pipeline that
minimizes the membership inference risk, as measured by the
attack success rate (ASR) calculated from A(x, Iexternal).

Training Effectiveness: We also aim to evaluate the
effectiveness of RLAIF training on the model’s performance,
considering both accuracy and alignment with desired output
characteristics. We use two different metrics to achieve this:

• ROUGE-based Accuracy Assessment: we denote the
test dataset as Dtest. Let MSFT , MRLAIF , and
MPP−RLAIF represent the SFT model, vanilla RLAIF
model, and privacy-preserving RLAIF model, respec-
tively. We employ ROUGE metrics by Lin [22] to com-
pare model outputs on Dtest by calculating ROUGE
scores RSFT , RRLAIF , and RPP−RLAIF for each
model. and compare scores to assess relative accuracy
improvements or degradations.

• Pairwise Alignment Evaluation: we define a pairwise
alignment model A(a1, a2) that compares two model out-
puts a1 and a2 and outputs a preference score indicating
which response is better aligned with desired characteris-
tics. This is done by conducting pairwise comparisons of
generated responses using A. We then analyze preference
scores to quantify model alignment. It is worth noting that
this is similar to the work done by Lee et al. [3] in their

comparisons of RLAIF models to other models.
Our investigation into these effectiveness measures acknowl-
edges the potential for inherent, and potentially complex,
trade-offs. Further research dedicated to understanding and
optimizing these trade-offs emerges as a potential future
direction.

IV. PRIMA ALGORITHM

We introduce PriMa, an algorithm specifically tailored for
data augmentation within RLAIF frameworks. The PriMa
algorithm takes place between the SFT Model and the LLM
model in the RLAIF pipeline as shown in figure 2. It operates
by accordingly masking a designated percentage of tokens
within a data point, comprising a prompt and its corresponding
generated responses. This process is repeated iteratively to
achieve the desired degree of obfuscation as illustrated in
Figure 3.

The algorithm’s primary objective is to establish a balance
between two crucial requirements:

• Privacy Preservation: Masking tokens strategically pre-
vents the ability of adversaries to infer sensitive informa-
tion from the data, thereby enhancing privacy.

• Content Preservation: Maintaining sufficient coherence
within the masked data is crucial to ensure its utility for
the RLAIF labeler, as it relies on contextual understand-
ing to provide meaningful feedback.

Key Parameters for granular control:
• ρ%: This parameter governs the probability of token

replacement within each iteration, directly influencing the
extent of privacy preservation.

• N : This parameter dictates the number of iterations
performed, incrementally augmenting the overall level of
obfuscation.

The precise operational details of PriMa are encapsulated
within Algorithm 4. PriMa offers a flexible and parameterized
approach to privacy-preserving data augmentation in RLAIF,
empowering researchers to calibrate the trade-off between pri-
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Fig. 2. The RLAIF pipeline with PriMa

Fig. 3. A simplified step-by-step of PriMa.

vacy and content preservation to align with specific application
requirements.

A. Probabilistic Mask and Replacement

To safeguard the integrity of both semantic content and
privacy within the PriMa algorithm, we execute a multi-stage
process that preserves the underlying structure of the input
data:

1) Sectional Disassembly: The input data is parsed into its
constituent sections—the prompt, Answer 1, and Answer
2—to ensure independent masking while maintaining
their interrelationships.

2) Intra-Section Masking with Probabilistic Token Re-
placement: Within each section, we iterate through each
token and probabilistically supplant ρ% of them with
the [MASK] token, strategically obfuscating sensitive
information while preserving contextual cues.

Fig. 4. PriMa Algorithm
Require: input, iterations, proportion

1: for i = 1 to N do
2: prompt, answer1, answer2← Split(input)
3: sections← {prompt, answer1, answer2}
4: for all section in sections do
5: for all word in prompt do
6: if Random() < ρ then
7: Replace word with [MASK]
8: end if
9: end for

10: Join(prompt, answer1, answer2)
11: Fill [MASK] Tokens
12: end for
13: end for
14: return Join(prompt, answer1, answer2)
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3) Context-Aware Token Prediction via TinyBERT: The
masked sections are subsequently fused and collectively
presented to a TinyBERT model [23], a compact and
efficient Transformer-based language model. This model
leverages its contextual understanding to predict the
most plausible replacements for the [MASK] tokens,
ensuring semantic coherence within the masked text.

4) Reassembly and Iteration: The masked tokens within
each section are then substituted with their correspond-
ing TinyBERT-predicted counterparts, and the sections
are reassembled to reconstitute the complete data point.
This process is reiterated for the remaining sections
(Answer 1 and Answer 2), fostering a comprehensive
obfuscation strategy.

Separating the text into sections and masking them sepa-
rately gives several advantages as follows:

• Enhanced Labeling Accuracy: By preserving structural
integrity and coherence, we facilitate the external LLM’s
ability to accurately comprehend and label the masked
data, yielding high-quality training material for the re-
ward model.

• Fortified Privacy: The granular, probabilistic token
masking technique impedes potential adversaries from
reverse-engineering the algorithm and effectively recon-
structing the original text, maintaining privacy protection.

• Balanced Trade-off: The adjustable parameters ρ% and
N empower researchers to precisely calibrate the degree
of privacy preservation and content coherence, striking an
optimal balance that aligns with the specific requirements
of the RLAIF pipeline.

B. Iterative Probabilistic Masking: Balancing Privacy and
Coherence

PriMa’s core masking mechanism, probabilistic token re-
placement, allows for iteratively enhancing privacy while
navigating the delicate balance with content coherence. By
repeating the masking process N times, we progressively re-
place more tokens within each data point. Notably, maintaining
stability throughout these iterations is crucial. This is achieved
by ensuring only a fraction of the tokens are masked at any
given time, preventing drastic alterations to the data structure.
The privacy benefits, however, increase with each iteration. As
more tokens are probabilistically replaced, the original data
becomes increasingly obscured.

V. DATASET AND BASE MODELS

This section lays the groundwork for the extensive experi-
mental study, which forms the backbone of our evaluation of
the PriMa algorithm. Our objective necessitates training mul-
tiple RLAIF models under different configurations, requiring
a constructed and split dataset.

A. Dataset Splitting

We utilize the MedQuAD dataset [24], a publicly available
repository containing 16.4K medical question-answer pairs.
This rich resource provides a realistic and relevant domain

for evaluating the effectiveness of our approach. The dataset is
partitioned into distinct subsections to facilitate various aspects
of the experiment:

1) Fine-tuning: 5.74K question-answer pairs are allocated
for fine-tuning both the target SFT model and the
shadow model used for membership inference attacks.
This ensures both models are well-equipped for their
respective tasks.

2) Vanilla RLAIF Pipeline: 820 out-of-sample questions
serve as the input for the standard RLAIF pipeline, al-
lowing us to compare its performance to models utilizing
PriMa augmented data.

3) Shadow Classification: An additional 820 out-of-
sample questions are reserved for the shadow classifi-
cation task, enabling us to assess the effectiveness of
membership inference attacks on different data configu-
rations.

4) Reinforcement Learning: Dedicated sets of 1.64K
questions each are designated for reinforcement learning
within the RLAIF pipeline and for testing the final
models. This dedicated resource ensures robust training
and accurate performance evaluation.

This data-splitting strategy creates a rigorous evaluation frame-
work, enabling us to compare the performance of models
trained with and without PriMa across various tasks. Each
partition plays a crucial role in revealing the efficacy of our
proposed approach in terms of privacy preservation and model
alignment.

B. Mock Preference Labeler Model

Given the resource constraints and desire for a controlled
environment, we opted for a synthetic approach to preference
labeling, rather than directly employing a commercial LLM
in the experimental phase. This involved fine-tuning a Dis-
tilBERT model [25] for text sequence classification based on
the hh-rlhf dataset [26] curated by Anthropic. This dataset
specifically focuses on the ”helpfulness” aspect of model
responses [26], a crucial criterion for our evaluation.

To leverage the hh-rlhf data effectively, we transformed
it into a binary classification task. For each prompt and its
two corresponding answers, the model predicts ”0” if the
first answer is deemed more helpful and ”1” if the second
is preferred. This simplified formulation facilitates efficient
and consistent labeling within the controlled setting. This
preference labeler model plays a pivotal role in various stages
of our evaluation:

1) Reward Model Training: We utilize the model as a
surrogate for the ”External LLM” depicted in Figure 2,
allowing us to generate labeled training data for both
the Vanilla Reward Model and the Privacy Preserving
Reward Model. This enables a controlled comparison of
their performance under different data configurations.

2) Alignment Assessment: In the ”Alignment Increase”
section, we reuse the model to act as a grader, determin-
ing the win rates of different models when facing head-
to-head comparisons on test prompts. This provides
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valuable insights into the impact of our PriMa algorithm
on model alignment with desired characteristics.

By employing a well-chosen and carefully constructed mock
preference labeler model, we achieve both resource efficiency
and a controlled environment for evaluating the effectiveness
of our PriMa algorithm. This approach offers a reliable
foundation for assessing its impact on privacy preservation
and model alignment within the RLAIF pipeline. The model
is available at [27].

C. Target Supervised Fine-Tuned Model (Target SFT)

This section introduces the Target Supervised Fine-Tuned
Model (Target SFT), which serves as a foundational element
in our evaluation of the PriMa algorithm within the RLAIF
framework. We leverage the well-established T5-small model
[28] pre-trained by Google AI, fine-tuned on a dedicated
portion of the MedQuAD dataset [24]. This dataset offers a
rich resource of medical question-answer pairs sourced from
diverse sources, making it highly relevant to the domain of
healthcare information access. Importantly, we intentionally
hold back some parts of the MedQuAD dataset for subsequent
stages of the experiment, maximizing data utilization and
preventing potential overfitting issues.

The Target SFT fulfills two crucial roles within our research:
• RLAIF Baseline: This model serves as the initial starting

point for the RLAIF training process. By fine-tuning its
parameters on the chosen MedQuAD data, we establish
a baseline performance against which the RLAIF models
incorporating PriMa-augmented data can be compared.
This comparison allows us to assess the efficacy of our
proposed approach in terms of model alignment and
accuracy within the RLAIF pipeline.

• Privacy Evaluation Target: The Target SFT also plays a
vital role in our privacy evaluations, specifically concern-
ing membership inference attacks. Its availability enables
us to analyze the effectiveness of PriMa in obfuscating
sensitive information within training prompts, thereby
mitigating the risk of unauthorized data inference.

The model is available at [29].

D. Vanilla RLAIF Pipeline

This section dives into the Vanilla RLAIF Pipeline, which
serves as the baseline against which we evaluate the effective-
ness of our PriMa algorithm within the RLAIF framework.

1) Vanilla Reward Model (Vanilla RM): The main ingre-
dient of the RLAIF pipeline is the Vanilla Reward Model
(Vanilla RM), trained on a carefully constructed dataset de-
signed to represent a realistic training scenario with potential
privacy concerns. We achieve this by combining several key
elements:

• Balanced Data:
– Response Pairs: We extract pairs of responses (gen-

erated by the Target SFT) to questions from another
portion of the MedQuAD dataset. This ensures the
responses are relevant to the domain but distinct from

the training data used for the Target SFT, mitigating
potential overfitting issues.

– Randomly Sampled In-sample Prompts: An equal
number of randomly sampled prompts from the
Target SFT’s training data are added. This introduces
realistic diversity and reflects the unknown propor-
tion of sensitive information in real-world training
data.

• Varied Temperatures: To encourage diversity in re-
sponses, the Target SFT generates responses with varied
temperatures during the response pair extraction process.
This further strengthens the generalizability of the trained
model.

• Mock Preference Labeler Integration: Questions and
paired responses are formatted and presented to the
previously mentioned mock preference labeler model.
This model evaluates the ”helpfulness” of each response,
providing valuable labels for training the Vanilla RM.

• DistilRoBERTa Fine-tuning: We leverage a Distil-
RoBERTa model [25], [30] as the base architecture for the
Vanilla RM. This model is fine-tuned for single-label text
classification, generating a single score for each response,
which later serves as the reinforcement learning signal
within the RLAIF pipeline.

This reward model is available at [31]
2) Vanilla RLAIF Model: Using the Vanilla RM from the

previous section, we utilize the Proximal Policy Optimization
(PPO) Algorithm proposed by Schulman et al. [32] to align our
Target SFT. This is done using prompts from another subsec-
tion of the MedQuAD dataset designated for the reinforcement
learning part of our pipeline.

This is the final product of the Vanilla RLAIF pipeline
which we will use to compare against the model that comes
out of our privacy-preserving RLAIF pipeline. This model can
be found at [33].

E. Privacy Preserving RLAIF Pipeline

We begin a separate process of privacy-preserving RLAIF
as shown in Figure 2. This mirrors the Vanilla RLAIF pipeline
with the addition of our novel PriMa algorithm.

1) Privacy Preserving Reward Model (Privacy RM): Using
the same pairs of responses generated for the Vanilla RM
specified previously (both in-sample and out-of-sample), we
pass the dataset through our PriMa algorithm, masking with
a probability of 30% and iterating once through the data.

This gives us a privacy-preserving dataset, which is passed
to the mock preference labeler model. After this dataset is
labeled, we take it and split it into a dataset fit for training
the reward model, splitting data points into “chosen” and
“rejected” using the same process as the Vanilla RM.

This dataset now contains “masked” responses that no
longer directly resemble the original outputs of the Target SFT,
but remain the same size as the original dataset used to train
the Vanilla RM.

We utilize this dataset to fine-tune a base DistilRoBERTa
model (same base model as the Vanilla RM) for single-label
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text classification, using the same training parameters as the
Vanilla RM to maintain comparability. This model is available
at [34].

2) Privacy Preserving RLAIF Model: Using the Privacy
Preserving Reward Model as a reinforcement learning signal,
we utilize the Proximal Policy Optimization (PPO) algorithm
on our Target SFT once again, using the same prompts
designated for the reinforcement learning process from the
MedQuAD dataset. This time, we utilize the Privacy RM as the
reinforcement learning signal, and we utilize the same training
parameters as we did for the Vanilla RLAIF model.

This is the final product of the privacy-preserving RLAIF
pipeline and is used for comparison against both the base
SFT and the Vanilla RLAIF model in our results section. This
model is available at [35].

F. Shadow Model for Membership Inference Attack

We propose a novel approach to evaluate the privacy preser-
vation efficacy of the PriMa algorithm. Inspired by the frame-
work established by Shokri et al. [7], we focus on the data
labeling stage within the RLAIF pipeline as a critical point
for potential privacy leakage. To the best of our knowledge,
this constitutes the first dedicated investigation into privacy
vulnerabilities within this specific stage, precluding direct
comparisons with existing baselines.

Fig. 5. The Shadow model for membership inference attack diagram

The goal of the shadow attack is to train a separate model
on similar distributions of data. Then, the attacker can create
a dataset on the model’s responses to in-sample and out-of-
sample prompts. Using this labeled dataset, they can try to
infer membership on a target model. This process is presented
in Figure 5. In practice, there are varying degrees of success
with this strategy since the attack depends completely on the
date chosen, but the primary measure is the precision of the
attack [7].

The first step in implementing this attack is to train a model
that ideally has the same architecture as the target model and

is trained on a disjoint dataset. We fine-tune a t5-small model
on a held-out portion of the MedQuAD dataset that is disjoint
with the dataset that our target model (the Target SFT) is
trained on.

We also test it on the same test dataset as the target
model to guarantee similar overall performance. In practice,
attackers can obtain these models or train them, depending on
the situation, but we pessimistically assume that an attacker
can replicate similar results due to the vast amounts of data
that are publicly available. This shadow model is available
at [36]. Using this model, we create a training dataset for our
attack model. We prompt the shadow model for two responses,
mirroring the way we prompted the target SFT at the beginning
of Section 5.3.1. The out-of-sample prompts are taken from
another disjoint segment of the MedQuAD dataset that we
held out for this purpose.

This creates a labeled dataset for classification, where the
goal is to classify whether a given data point comes from
within the training set or is out-of-sample. In our next section,
we examine the architecture for this membership inference
attack model.

1) Attack Classifier Model: We fine-tune a base DistilBERT
model for text classification to act as our attack model in this
study. Using the labeled dataset mentioned in the previous
section, we split it into training (80%) and validation (20%)
datasets to prevent overfitting. This model is available at [37].
After fitting this model on the text classification task, we test
it on the data used for the Vanilla RLAIF pipeline and the
obfuscated data from the Privacy Preserving RLAIF pipeline.
We will analyze these results in the next section.

VI. PriMa’s EFFICACY

The study design involves comprehensively controlling var-
ious parameters of the PriMa algorithm, such as the mask-
ing probability (ρ%) and the number of iterations (N ). By
systematically comparing the performance of models trained
on data subject to different PriMa settings, we can gather
valuable insights into the algorithm’s efficacy. Notably, this
comparative analysis will address two key aspects: Privacy
Preservation, for which we will evaluate the degree to which
PriMa successfully obscures sensitive information in the input
data, and RLAIF Performance, for which we will measure
the impact of PriMa-augmented data on the performance of
RLAIF models. This entails examining metrics like accuracy,
alignment with desired outputs, and overall effectiveness in
guiding reinforcement learning. By carefully navigating the
intricate balance between privacy preservation and RLAIF
effectiveness, we can establish the optimal configuration for
PriMa within the context of specific RLAIF applications.

A. Privacy Preservation

In the domain of evaluating privacy preservation, precision
takes center stage, quantifying the effectiveness of membership
inference attacks. This metric shines a light on the percentage
of in-sample data points that the attack model successfully
identifies.
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TABLE I
MEMBERSHIP INFERENCE ATTACK RESULTS

Prima Augmentation % Attack Precision %
0% (Base Data) 50.19
30% 49.37
40% 48.99
50% 48.56

TABLE II
ROUGE SCORES FOR EACH MODEL ON THE TEST DATASET. VANILLA

RLAIF INVOLVED NO MASKING, WHILE THE THREE RIGHTMOST
COLUMNS REPRESENT PRIVACY RLAIF WITH THREE DIFFERENT

MASKING PROBABILITIES

SFT Vanilla RLAIF 0.3 0.4 0.5
ROUGE-1 26.79 26.01 22.77 20.40 22.30
ROUGE-2 11.95 12.11 12.49 11.12 12.05
ROUGE-L 22.09 21.48 19.32 17.51 19.09

As Table I reveals, the starting point—the Vanilla RLAIF
pipeline’s ”base data”—exhibits a surprisingly low attack
precision. This observation can be attributed to two primary
factors:

• Complex Classification Landscape: The inherent in-
tricacies of the classification problem itself may pose
inherent challenges for the attack model, hindering its
ability to accurately discern membership.

• Data Scarcity: The size of the dataset utilized to train
the attack model might also play a role. Limited data
availability can constrain the model’s learning capacity,
potentially leading to underfitting and underwhelming
attack performance.

However, when the data is filtered through the PriMa algo-
rithm, a subtle but noticeable decrease in precision can be
noted. This reduction in attack success suggests that PriMa
effectively camouflages a portion of the in-sample data points,
Obfuscating sensitive information through a layer of protec-
tion, ensuring its confidentiality.

B. RLAIF Performance: ROUGE Stability

Our primary objective is to ensure that the enhanced privacy
afforded by the PriMa algorithm does not come at the expense
of language model performance. To comprehensively evaluate
the quality of responses generated by the various models,
we employed a battery of ROUGE metrics [22] based on
comparisons with curated reference responses in the test
dataset.

1) ROUGE Score Analysis: Table II demonstrates that
most ROUGE metrics remain relatively stable across all three
models (SFT, Vanilla RLAIF, and Privacy-Preserving RLAIF).
However, a notable decrease in the ROUGE-1 score for the
Privacy-Preserving RLAIF model is observed. This was an
anticipated consequence of incorporating token masking and
replacement within the reward model, as it inevitably alters
the model’s vocabulary distribution. Interestingly, 0.4 masking
rate resulted in lower scores than 0.3 and 0.5.

Moving beyond ROUGE-1, the analysis reveals other in-
formative patterns. The ROUGE-2 score, which assesses two-

TABLE III
RESULTS FROM HEAD-TO-HEAD ANNOTATIONS BY THE AI PREFERENCE

LABELER

SFT Vanilla RLAIF
Vanilla RLAIF 58.65% N/A
PriMa 0.3 66.40% 56.65%
PriMa 0.4 70.42% 61.89%
PriMa 0.5 67.13% 58.29%

word phrase similarity, indicates that both RLAIF models can
maintain coherence in terms of generating bi-grams compa-
rable to the reference text, exceeding the performance of the
SFT model in this aspect. This observation mitigates concerns
raised by the reduced ROUGE-1 score and reinforces the
notion that the RLAIF models can deliver accurate answers
on par with the SFT model.

Finally, the ROUGE-L score, capturing overall structural
similarity, suggests that both RLAIF models generate re-
sponses with slightly less structural resemblance to the refer-
ence text compared to the SFT model. While this divergence
may be attributed to the intrinsic features of the Proximal
Policy Optimization (PPO) algorithm employed in the RLAIF
training process, it does not definitively imply lower response
quality. Further investigation and analysis are necessary to
fully understand the implications of this observation, along
with the apparent dip in overall ROUGE score around 0.4
masking rate.

C. Alignment Increase

Given that the benefit of RLAIF’s advantage lies in its abil-
ity to align generated responses with desired characteristics,
evaluating the potential effects of our novel PriMa algorithm
on this crucial metric is important.

To achieve this, we leverage the simulated preference la-
beler model (introduced in Section V-B) to conduct pairwise
comparisons of model responses within the test dataset. This
enables the calculation of win rates, whereby a ”win” signifies
a response that is deemed more aligned and, in the context of
this study, more ”helpful” than its counterpart.

As illustrated in Table III, both RLAIF models emerge
victorious against the SFT model in a majority of comparisons,
echoing the findings of Lee et al. [3], albeit to a slightly lesser
extent.

Crucially, the model subjected to the privacy-preserving
RLAIF pipeline, incorporating the PriMa algorithm, exhibits
an even more pronounced win rate against the SFT model com-
pared to the vanilla RLAIF approach. Moreover, when directly
compared against the vanilla RLAIF model, the preference
labeler demonstrates a preference for the responses generated
by our PriMa-enhanced model. In contrast to the previous
experiment, a masking rate of 0.4 had higher performance in
head to head trials than both 0.3 and 0.5. That cause of this is
currently unclear, but may have to do with the proportion of
complex phrases that get replaced resulting in easier alignment
up to a point, but lowering similarity with the original phrase.
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Based on the observed alignment improvement, we hypoth-
esize that the PriMa algorithm might act as a noise filter
for the preference labeler. This potentially results in higher-
quality annotations, leading to more effective training of the
reward model. Expanding on this hypothesis and exploring
its generalizability to broader RLAIF contexts represents a
significant future research opportunity.

VII. CONCLUSION

PriMa stands as a testament to the possibility of harmoniz-
ing privacy and performance within the RLAIF domain. By
offering a sophisticated approach to data preprocessing, the
algorithm paves the way for building and deploying RLAIF
models that deliver accurate, aligned responses while safe-
guarding sensitive information, ultimately propelling responsi-
ble innovation in the realm of language models. The proposed
approach improves the privacy preservation of the released
prompts, decreasing the precision of shadow membership
inference attacks. It also improves the alignment ability of the
final model while maintaining accuracy after the entire RLAIF
training pipeline.
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