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Abstract

Here we study the lifetime of strongly correlated stationary states on quantum

computers. We find that these states develop a non-trivial time dependence due to the

presence of noise on current devices. After an exciton-condensate state is prepared,

its behavior is observed with respect to unitary operations that should preserve the

stationarity of the state. Instead of stationarity, however, we observe non-trivial time

dependence in which the large eigenvalue of the particle-hole reduced density matrix—

the exciton population of the condensate—decays towards unity, reflecting the loss

of entanglement and off-diagonal long-range order. The result offers insight into the

challenge of simulating strongly correlated systems on near-term quantum devices and

highlights the importance of developing novel strategies for error mitigation that can

preserve many-body correlations.

Introduction

Efficient and accurate modeling of strongly correlated quantum systems continues to be

a pressing challenge in the field of electronic structure theory, as strong correlation is re-
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sponsible for many novel chemical phenomena such as atypical superconductors, topological

insulators, and spin liquids.1–5 However, the simulation of strongly correlated quantum sys-

tems on classical computers has often been stymied by the computational expense of such

calculations. The unique features of quantum computers, namely coherence and entangle-

ment, mean that the application of quantum computing to electronic structure theory has

the potential to demonstrate significant advantage over classical computing in modeling cor-

related chemical systems.6–12 Ideally, implementing electronic structure theory on quantum

computers can provide significant speedup over classical computers, and even allow for so-

lution of classically intractable problems.7–10 While several algorithms have been developed

to predict the electronic structure of chemical systems,9,11,13–22 these methods are limited

by the errors inherent to near-term intermediate-scale quantum (NISQ) computers.23–25 In

particular, the environmental noise experienced by near-term quantum computers leads to a

breakdown of the system-wide entanglement and long-range order necessary for the quantum

simulation of many-electron quantum systems.26,27

Currently, despite significant advances in understanding, mitigating, and correcting quan-

tum device noise;28–39 the limitations caused by device noise in the preparation of strongly

correlated states are not well defined. In this work we directly probe the extent to which

system-wide entanglement and long-range order can endure in a strongly correlated state

prepared on a NISQ-era quantum device. We prepare a strongly correlated exciton con-

densate state on a quantum computer and observe its behavior with respect to unitary

operations that should preserve the stationarity of the state. We observe instead non-trivial

time dependence evidenced by the transition from the strongly-correlated condensate state

originally prepared to an uncorrelated ensemble state. The breakdown of entanglement and

long-range order is directly observable via the large eigenvalue of the particle-hole reduced

density matrix— the exciton population of the condensate—which decays towards unity. We

find that the lifetime and decay pattern of the strong correlation is dependent on the unitary

operations used for propagation of the system, as well as the number of qubits used to pre-
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pare the state. These investigations elucidate the challenges in simulating strongly correlated

systems on near-term quantum devices as both stationary and time-dependent simulations

will be impacted by the fictitious time evolution induced by noise. Our results underscore

the importance of designing error mitigation techniques tailored to preserve system-wide

entanglement and long-range order for the reliable simulation of strongly correlated systems.

Theory

We use the signature of condensation of particle-hole pairs as the measure of correlation while

the behavior of our chosen state, an exciton condensate state, is observed with respect to

unitary operations in the presence of noise. Here we first detail our chosen strongly correlated

state and describe the process of stationary-state evolution with noise. We then introduce

our signature of exciton (or qubit) condensation, used as the measure of correlation in this

study. Finally, we describe the use of orbital occupation numbers as a visualization of the

state evolution in the presence of noise.

Correlated State Preparation

While there are a diverse range of strongly correlated systems, our targeted investigation of

the effects of noise on strong correlation and system-wide entanglement necessitates a simple

strongly correlated state to serve as model of the quantum entanglement that is desirable

for the modeling of strongly correlated systems. Several varieties of strongly correlated

states have been prepared via superconducting qubits, including Cooper-pair and exciton

condensate-like states.26,40–42 Interpreting a qubit as a site consisting of one fermion in two

orbitals, an exciton condensate-like state is a highly entangled state composed of particle-

hole pairs condensed into a single quantum state.26 The Greenberger-Horne-Zeilinger (GHZ)

state exhibits maximal exciton condensate character for any number of qubits, corresponding

to the maximal entanglement of particle-hole pairs.26 The GHZ state for an N -qubit system
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is described by:

|ΨGHZð =
1√
2
(|0ð⊗N + |1ð⊗N) (1)

which is an ideal model system for the observation of noise effects on strong correlation and

entanglement because it is a correlated state corresponding to the maximal entanglement of

particle-hole pairs.

Time Evolution

If a highly correlated GHZ state is prepared and then subjected to a series of unitary op-

erations that should preserve the stationarity of the state, all time-dependent behavior is

the result of device noise.28 We thus subject our prepared GHZ states to repeated unitary

operations of the form exp(−i Ôτ), where Ô is a scaled dimensionless operator. We can

view each operation as applying a perturbation due to the device noise. As the operations

themselves should not alter the prepared state, the perturbation and any time evolution

resulting are solely the result of noise. We thus prepare exciton condensate GHZ states on

a quantum device and evolve them according to exp(−i Ô(ω)τ). A three-qubit operator:

Ôa = ωσ0
z ¹ σ1

z + ωσ1
z ¹ σ2

z + ωσ2
z ¹ σ0

z (2)

is used for preliminary investigations, where σj
z refers to the Pauli-Z matrix acting on the j th

qubit and σj
z ¹ σi

z is a two-qubit tensor product. As RZZ(θ) = exp(−i θ
2
σz ¹ σz), the unitary

operations correspond to a series of RZZ gates. These RZZ gates can then be implemented

as an RZ rotation between two CNOT gates. The time t in each evolution is denoted as the

number of RZZ operations multiplied by the dimensionless time step τ , where τ = 1

3
. To

compare the relative effects of operators composed of single-qubit and two-qubit gates, we

also calculate the unitary evolution of the GHZ state for a three-qubit perturbation operator
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composed of unentangled single-qubit Pauli-Z operations:

Ôb = ωσ0
z + ωσ1

z + ωσ2
z (3)

A schematic demonstrating the quantum state preparations for the initial states and the first

time evolution steps of Ôa and Ôb can also be found in the Supporting Information.

Signature of Qubit Condensation

In order to determine the presence and extent of strong correlation throughout our time

evolution, a characteristic and calculable signature is required. Ideal for this purpose is

the quantum signature of exciton (qubit) condensation from reduced density matrix (RDM)

theory, i.e., an eigenvalue greater than one in the particle-hole reduced density matrix.43,44

The particle-hole RDM has elements given by:

2G
i,j
k,l = ïΨ| â†i âj â†l âk |Ψð (4)

where |Ψð is the N -electron wavefunction and â
†
i and âi are the fermionic creation and

annihilation operators.43–45 Additionally, one must subtract from the particle-hole RDM

the component corresponding to a ground-state-to-ground-state transition, which otherwise

creates one extraneous large eigenvalue unrelated to exciton condensation

2G̃
i,j
k,l =

2G
i,j
k,l − 1Di

j
1Dl

k. (5)

An eigenvalue greater than one from this modified particle-hole RDM is the signature of

exciton condensation. In the following sections we refer to the maximum eigenvalue of

this matrix as λG. The eigenvalues of the modified particle-hole RDM correspond to the

occupation of each particle-hole state. Garrod and Rosina44 have shown that the eigenvalues

of 2G̃ are zero or one in the noninteracting limit and bounded above by N
2
in the limit of
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strong correlation.

Generalized Pauli Constraints

Orbital occupation numbers—the eigenvalues of the one-fermion RDM—provide a useful

coordinate representation for the visualization of the condensate state. The eigenvalues of

the one-fermion RDM are constrained, not only by the traditional Pauli constraints from the

Pauli exclusion principle (0 f ni f 1),46 but also by a set of further constraints arising from

the requirement that the wavefunction be anti-symmetric.47,48 For a three-qubit quantum

system (a pure system of three electrons in six orbitals),49 the relevant generalized Pauli

constraints are

n5 + n6 − n4 g 0, (6)

where

n1 + n6 = 1, (7)

n2 + n5 = 1, (8)

n3 + n4 = 1. (9)

Here each ni corresponds to the natural-orbital occupations ordered from largest to small-

est.50–54 The smallest three orbital occupation numbers, n4, n5, and n6, can be plotted against

two polytopes representing the imposed constraints: the so-called Pauli polytope containing

the set of all possible occupations according to the Pauli constraints (0 f ni f 1) and the

generalized Pauli polytope containing the set of all possible occupations according to the

generalized Pauli constraint.

6



Results

The noisy time evolution of the GHZ state is performed for an arbitrary value of ω = 0.2.

The orbital occupation numbers are calculated for each timestep of the evolution on a real

quantum device (ibm kyoto) and on a noiseless quantum simulator.55,56 These results are

plotted in Figure 1. Here the Pauli polytope is the combination of yellow and blue regions

allowed by 0 f ni f 1, while the generalized Pauli polytope is the yellow region allowed by

Eq. 5. The (n4, n5, n6) = (0.5,0.5,0.5) corner of the polytope corresponds to the occupation

of the ideal GHZ state, and hence, points deviating from that corner represent a transition

to a new quantum state.

Figure 1: Experimental occupation numbers (n4, n5, n6) from the propagation of Ôa on a
noisy quantum device (a) and a noiseless quantum simulator (b). The color variation of the
points (from violet to red) indicates the timestep. Occupation of the GHZ state is indicated
by occupation of the vertex (0.5, 0.5, 0.5).

The orbital occupations from the noise-free simulator evolution show the system satu-
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rating the (0.5, 0.5, 0.5) vertex for all timesteps, indicating unchanging occupation of the

strongly correlated GHZ state. This confirms that, as intended, our unitary operations pre-

serve the stationarity of the state in the absence of noise. However, the results for the real

quantum device demonstrate that the occupations recede from the (0.5, 0.5, 0.5) vertex as

the simulation progresses, indicating that the noise on the device is acting as a “fictitious

force” that causes time evolution in a system that should remain stationary. Instead of re-

maining in the GHZ state, the system undergoes a transition to some new state characterized

by orbital occupations in a new region of the polytope.

To understand the implications of the state transition observed via orbital occupation

numbers on long-range order and system-wide entanglement, we examine the signature of

qubit condensation mentioned previously. We compare the relative effects of operators com-

posed of single-qubit and two-qubit gates by calculating the time evolution of the GHZ state

for Ôa and Ôb with an arbitrary value of ω = 0.2. The time evolution of λG for each operator

is plotted in Figure 2, for both the actual quantum device (ibm kyoto), a noisy simulator

generated from system snapshots,55,57 and the noiseless quantum simulator. For the real

quantum device, time evolution of Ôa yields a λG that decays for each time evolution step.

Beginning at a value of λG = 1.46, after 10 time evolution steps λG decays to a value of

approximately 0.88. The large eigenvalue at t = 0 falls slightly below the ideal value of

1.5 due to errors occurring in the initial state preparation. As the three-qubit GHZ state

requires 2 CNOT gates to prepare it, some noise during initial state preparation is unavoid-

able.26 Calculating state fidelity allows us to ensure that we are approximating the desired

GHZ state despite this deviation from ideal λG; at t = 0, we calculate a state fidelity of

0.953, showing that our prepared state is very close to the ideal GHZ state. As λG at t = 0

falls only 0.04 below the ideal value, this high state fidelity is unsurprising. The closeness

of λG at t = 0 to the ideal value of 1.5 clearly demonstrates off-diagonal long-range order

and system-wide entanglement. However, this qubit condensate character decays such that

λG falls below the threshold value of 1 by t = 10, indicating the loss of entanglement and

8



long-range order in ten time steps.

Figure 2: Decay trajectory of λG for Ôa (a) and Ôb (b), both with ω = 0.2. Trajectories
from the ibm kyoto device are labelled “Kyoto”, trajectories from the corresponding noise
model are labelled “FakeKyoto”, and trajectories from IBM’s noise-free QASM simulator are
labelled “QASM”. The black line at λG = 1.0 indicates the noninteracting limit. Confidence
intervals are calculated via the method described in the Supporting Information.

Comparing the modified particle-hole RDM 2G̃ at t = 0 and at t = 10 in Figure 3, we

observe the breakdown of the off-diagonal long-range order that leads to the formation of

a condensate. While there are still some off-diagonal contributions from the terms corre-

sponding to the population of a superposition between the |0ð and |1ð states for each qubit,

the off-diagonal elements corresponding to entanglement between qubits all approach zero

at t = 10. This indicates that the transition previously observed in the orbital occupation

numbers is a transition towards an incoherent ensemble state, rather than a different strongly

correlated state.

For the noisy simulator, λG begins at a value of approximately 1.46, and after 10 time

evolution steps decays to a value of approximately 1.03. The state fidelity at t = 0is 0.955,

showing that the prepared state is very similar to the ideal GHZ state, as in the case of the

real device. As λG has not yet fallen below the threshold value of 1, the time evolution from

the noisy simulator results in some condensate character remaining at t = 10. The decay of

λG for the real device is notably steeper, suggesting that the noise model as constructed may
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Figure 3: Heatmap representation of the modified particle-hole RDM 2G̃, after zero (a) and
ten (b) timesteps from the propagation of Ôa on the real quantum device. Elements of 2G̃

are given by eqs 4 and 5. For details of the tomography of the particle-hole RDM, see Ref.26

be unable to capture the full extent of device noise. The Qiskit noise model is constructed

to include single- and two-qubit gate errors consisting of a depolarizing error followed by

a relaxation error, as well as single qubit readout errors.57 These parameters are derived

from qubit and gate information (T1 and T2 times, frequency, readout error, gate error, and

gate time) obtained via system snapshots. More complex errors such as those resulting from

electromagnetic interference and undesired interactions or entanglement between qubits are

not included. One side effect of this is that decoherence and dephasing on idle qubits is

neglected, as those errors are mostly due to electromagnetic interference and cross-talk.58

The inability of the noise model to account for the decoherence and dephasing of idle qubits,

as well as other more complex interactions between system and bath, may account for the

shallower decay of λG from FakeKyoto as compared to the real Kyoto device.

While Ôa results in a smooth decay of λG from 1.46 to 0.88, λG for Ôb does not decay but

instead remains consistently in the realm of the initial value, 1.46. The plotted trajectory

displays a slight oscillation, the result of significant oscillations present in some trials. The

trajectory means and confidence intervals as plotted in Fig. 2 demonstrate that Ôa results in

a reliable decay pattern of λG, while Ôb results in eigenvalues that do not decay significantly
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from the initial value. The fact that Ôa results in swift decay of λG while Ôb does not

decay suggests that the noise incurred by two-qubit CNOT operations cause a significant

degradation of the system-wide entanglement, while the noise incurred by single-qubit RZ

rotations leaves the strongly correlated state essentially intact. The GHZ state preparations

subject to Ôb, however, seem to be sensitive to some transient noise source that causes

oscillations in the λG trajectory during some trials. The oscillations indicate the emergence

of non-Markovian dynamics, wherein complex system-bath interactions cause a system to

develop a “memory” such that the future state of the system depends on past states. Non-

Markovianity is not visible in any trials for the Ôa case. Previous work has identified non-

Markovian dynamics resulting from noise on quantum devices.28

A possible explanation for presence of non-Markovian character from the time evolution

of Ôb but not from Ôa is that the six CNOT operations required for every application of

Ôa cause swift relaxation and thus purely dissipative Markovian dynamics.42 The absence

of such dominating two-qubit gate errors at every timestep in the case of Ôb means a much

slower relaxation where more subtle non-Markovian effects manifest. The fact that non-

Markovian characteristics are present in only some of the trials suggests that, upon variation

of the noise environment of the device (and thus the system-bath interactions), the relative

Markovianity of the dynamics may also be subject to variation. Plots of all trials for the Ôa

and Ôb trajectories are available in the Supporting Information.

Non-Markovian character is not present in the λG trajectory from time evolution of Ôb

on the noisy simulator, which is smooth and does not decay (seen in the turquoise data

points in Figure 2). The failure of the noisy simulator to replicate the oscillatory behavior

of λG for Ôb is likely because the noise model of FakeKyoto does not account for any non-

Markovian noise. The presence of complex dynamical errors on quantum devices that are not

captured by popular Markovian models is well documented, and the characterization of non-

Markovian noise on quantum devices is an active field of study.59–63 The construction of noise

models that capture Markovian and non-Markovian noise will allow further investigation of
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the impact of non-Markovian noise on the lifetime of strongly correlated states on quantum

devices, and future work will explore this issue in more depth.

As expected, evolving the three-qubit GHZ state in time according to Ôa and Ôb with the

noiseless QASM simulator56 results in a λG that remains at the expected maximum value for

3 qubits, 1.5, for every step of the trajectory. These results confirm that all time dependence

of the system results from device noise, and device noise alone is responsible for the decay

of λG and thus the destruction of long-range order and system-wide entanglement.

The methodology used in the above three-qubit investigations is generalizable to any

number of qubits, so it is of interest to see how the noise-triggered time dependence of the

GHZ state is influenced by the number of qubits in the system. GHZ states are prepared

with 4,5,6, and 10 qubits, then evolved in time via repeated unitary operations as described

above. In each case Ôa is modified to include two-qubit tensor product terms for the addi-

tional qubits. These modified Ôas, as well as schematics demonstrating their quantum state

preparations, are available in the Supporting Information. Ôb is also modified by including

an additional σz operation for each additional qubit.

The resulting trajectories of λG for each case are plotted in Figure 4, for an arbitrary ω

of 0.2. Due to limited computational time available, the noisy simulator is used for these

investigations. The noisy simulator was previously shown to be suitable for replicating the

general decay curve of λG for Ôa, and so the patterns resulting from these simulations are

expected to hold for the real quantum device. While the noisy simulator is unable to replicate

the oscillatory behavior seen in some trials of Ôb, it is still able to capture the fact that λG

for Ôb does not decay but instead remains in the realm of the initial value. As such, we

believe the noisy simulator provides a reasonable estimation of the λG trajectory for Ôb with

increasing number of qubits, neglecting any non-Markovian effects.

By applying a nonlinear least-squares fit (to the exponential function y = aebx), we

see that λG trajectories from Ôa with increasing the number of qubits demonstrate steeper

decay curves for increasing numbers of qubits. The decay rates from nonlinear least-squares
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Figure 4: Decay trajectory of λG for Ôa (a) and Ôb (b) with 3,4,5, and 10 qubits (ω = 0.2). All
trajectories from noisy simulations. Best-fit curves obtained via nonlinear least-squares fit.
Confidence intervals are calculated via the method described in the Supporting Information.

fitting are -0.0309, -0.0590, -0.0773, and -0.121 for the 3-qubit, 4-qubit, 5-qubit, and 10-

qubit trajectories, respectively. All parameters obtained from the nonlinear least-squares

fit, as well as standard deviation data for each parameter, are available in the Supporting

Information. At t = 0, λG begins at a greater value for increasing numbers of qubits (as

the value of λG approaches the ideal value of N
2
in each case, with N equal to the number

of qubits). However, the increasing decay rate for larger numbers of qubits results in all

eigenvalue trajectories falling below the threshold value of 1 by t = 20. The steeper decay

curves observed for larger numbers of qubits are likely due to the cumulative errors from the

greater number of two-qubit gates required for propagating systems with increasing numbers

of qubits. The resultant trajectories from Ôb with increasing numbers of qubits demonstrate

that, as in the 3-qubit case, the eigenvalue does not decay but remains very close to the

initial value. Nonlinear least-squares fits demonstrate decay rates very close to zero for any

number of qubits. While these results do not include any non-Markovian effects that may

be present in the real device, they do support the idea that the minimal noise brought on by

RZ rotations is not sufficient to impact system-wide entanglement, even for states involving

larger numbers of qubits.
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Discussion and Conclusions

Here we probe the lifetime of system-wide entanglement and long-range order in a strongly

correlated state prepared on a NISQ-era quantum device. We find that noise on the device

generates an effective bath which couples to the strongly correlated state, causing non-trivial

time dependence observed in the breakdown of off-diagonal long-range order. The extraneous

time evolution experienced by a stationary state indicates the presence of undesirable “fic-

titious forces” resulting from the complex combined effects of various error types including

thermal decoherence and dephasing, depolarization, measurement errors, electromagnetic

interference, inter-qubit cross-talk, and time-correlated system-bath interactions, which re-

sults in a transition from the desired state to an incoherent ensemble state. Understanding

that quantum device noise causes a stationary state to develop non-trivial time dependence

through the disruption of strong correlation provides insight into the challenges faced in

simulating strongly correlated systems on quantum devices. Furthermore, our results high-

light the severe restrictions faced in designing algorithms for reliable simulation of quantum

chemical systems on current quantum computers.

We observe off-diagonal long-range order being completely extinguished in only ten

timesteps for a three-qubit GHZ state, corresponding to 30 CNOT gate applications. This

underscores the restrictions in algorithm design faced if one hopes to accurately model a

strongly-correlated quantum system on a near-term quantum computer, as each two-qubit

gate progressively destroys the correlation in the system. Single-qubit gate errors, how-

ever, do not appear to extinguish the system-wide entanglement in the way that two-qubit

gate errors do. The impact of system size on the decay of λG presents an additional ob-

stacle for simulating quantum chemical systems—achieving system-wide entanglement and

off-diagonal long-range order for increasing numbers of qubits will require increasing numbers

of two-qubit gates, which in turn causes swifter breakup of system-wide entanglement and

off-diagonal long-range order. Together, the compounding destruction of correlation caused

by qubit number and circuit size emphasizes the necessity of developing novel strategies
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for error mitigation that can preserve many-body correlation and minimize undesired time

evolution brought on by noise.

The investigations presented here all involve the case where the strongly correlated sys-

tem is a stationary state, and thus all time dependence is the result of noise. However, the

knowledge that device noise causes extraneous time evolution in even in stationary simula-

tions suggests that such “fictitious forces” brought on by noise will impact the dynamics of

a time-dependent calculation. This motivates future investigations into the effect of device

noise on a strongly correlated system undergoing a driven process. Such investigations could

provide important insight into the particular challenges faced in modeling time-dependent

processes on quantum computers.
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