Exact Ansatz of Fermion-Boson Systems for a Quantum Device
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We present an exact ansatz for the eigenstate problem of mixed fermion-boson systems that
can be implemented on quantum devices. Based on a generalization of the electronic contracted
Schrédinger equation (CSE), our approach guides a trial wave function to the ground state of any
arbitrary mixed Hamiltonian by directly measuring residuals of the mixed CSE on a quantum device.
Unlike density-functional and coupled-cluster theories applied to electron-phonon or electron-photon
systems, the accuracy of our approach is not limited by the unknown exchange-correlation functional
or the uncontrolled form of the exponential ansatz. To test the performance of the method, we stu-

dy the Tavis-Cummings model, commonly used in polaritonic quantum chemistry.

Our results

demonstrate that the CSE is a powerful tool in the development of quantum algorithms for solving

general fermion-boson many-body problems.

Introduction.— Strong coupling with bosonic particles
can drastically change many physical properties of elec-
tronic systems. For instance, when coupled with pho-
nons, low-energy electronic excitations are strongly modi-
fied, influencing, as a result, the optical, thermodynamic,
and transport properties of solids [1]. This electron-pho-
non coupling is also the source of the effective attractive
electronic interaction needed for conventional supercon-
ductivity [2, 3]. When coupled with light, emergent hy-
brid quantum states (known as polaritons) can catalyze
or inhibit the reactive paths of chemical reactions [4—
7]. Both electron-phonon and electron-photon couplings
lead to many fascinating chemical and technological ap-
plications, including spintronics [8], quantum informa-
tion processing [9, 10], optical control of collective modes
in solids [11], catalysis [12-14], solar power [15], or low
energy lasing [16—-19].

Given the complexity of these entangled electron-boson
systems, it is not surprising that their theoretical descrip-
tion usually relies on semi-empirical model Hamiltonians
[20-23]. However, a more complete understanding of
the effects arising from mixed particle coupling requires
quantitative methods that treat electronic and bosonic
modes with equal theoretical rigor [24-27]. For instance,
to predict reaction pathways in polaritonic catalysis, it
is important to port over electronic structure methods to
mixed fermion-boson problems [28]. Current ab-initio ap-
proaches are mainly variants of density functional theory
(DFT), and, while lattice dynamics and electron-photon
coupling can be accounted for through perturbative [29—
31] or quantum electrodynamics DFT [28, 32, 33], the
unknown form of the corresponding exchange-correlation
functionals for the electron-boson interaction limits the
accuracy of both approaches [34-36]. Alternative meth-
ods can be found in a new class of coupled cluster (CC) al-
gorithms. Originally developed for electrons [37, 38], CC
has been extended to electron-phonon [39] and electron-
photon [40-42] systems, where the key ingredient is an

exponential ansatz that approximates higher-body exci-
tations in terms of products of lower-body excitations.
Recently, inspired by the prospects of quantum comput-
ing, there has been considerable development of CC’s
unitary form [43-46]. In both cases the accuracy of the
approach strongly depends on the excitation level in the
ansatz. In addition, from the quantum computational
viewpoint, its Trotterized implementation is not always
well defined [47].

Here we report the development of an alternative ap-
proach that gives an exact ansatz for ground and ex-
cited states of arbitrary electron-boson systems, over-
coming the limitations of both DFT and CC methods.
Our approach is based on an extension of the contracted
Schrodinger equation (CSE) [48-66], known in the con-
text of reduced density matrix theory for fermionic sys-
tems [67-69]. Our main result is an exact ansatz that
can be implemented directly on quantum devices to find
the eigenstates of arbitrary mixed particle Hamiltonians.

The Letter is structured as follows. First, we recap and
extend the fermionic CSE to general many-body physics,
including boson-fermion systems. We then discuss how
the CSE ansatz can inform a quantum algorithm for find-
ing the ground states of mixed particle systems. In the
second part of the paper, we demonstrate the effective-
ness of the CSE ansatz on the Tavis-Cummings model.
Finally, we discuss potential future directions and the
implications of our results.

Theory— Originally derived for fermionic systems, the
Contracted Schréodinger Equation (CSE) reads [48-59]:

(W|a) al,ay,a,, H ) = B DL, (1)
where &;r and G, are fermionic creation and annihilation
operators on the i*® and k'™ sites, respectively, and
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is the two-body reduced density matrix (RDM). Nakat-
suji’s theorem states that the CSE (1) is satisfied if and



only if the corresponding N-body preimage of 2D21i,;" sat-
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isfies the usual Schrodinger equation (SE) [48, 58].

We now extend the CSE to mixed fermion-boson sys-
tems and show that Nakatsuji’s theorem also holds for
those systems. Let’s first define a general electron-boson
density operator
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where 5; and Bl are bosonic creation and annihilation op-
erators. Here i,, and k,, (j,, and l,,,) run over the differ-
ent fermionic (bosonic) indices, and we use the compact
notation ¢ = (i1,...,44), k = (k1,...,kr), 3 = (J1, -, Js)
and U = (Iy, ..., 11).

The density operator (3) allows us to define concisely
a general fermion-boson (fb) Hamiltonian:

f{fb Z h‘L’J Fz’J (4)
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We then multiply the corresponding fermion-boson SE,
ie., Hpy |¥) = E|¥), on the left by (| F 7 to obtain a
generalized CSE:

(W| T35 Hypy |¥) = ED}, (5)

where D,’cjl = (U] f‘;jl |¥) is a generalized RDM of the
electron-boson system. Multiplying both sides of the gen-
eralized CSE (5) by the elements of the reduced Hamil-

tonian matrix hy? and summing over all indices yields
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The sum on the right-hand side is equal to the energy,
making the expression equal to E2. Thus, the equation
can be rewritten as the energy variance

(U HF, |O) — (U] Hpy |9)* =0, (7)

which, as a stationary condition for the wave function,
is equivalent to the SE. Therefore, the set of solutions
to Eq. (5) must be the same as the solutions to the
electron-boson SE. This derivation shows that the mini-
mal RDM necessary to satisfy both the CSE and SE will
have the same degrees of freedom as the corresponding
many-body Hamiltonian. This is reminiscent of the stan-
dard electronic structure problem where a nondegenerate
electronic ground-state wavefunction maps to a unique 2-
electron RDM, which, as a result, has enough information
to build higher-order RDMs and the exact wavefunction
[48, 70].

The CSE (5) can be further decomposed into Hermi-
tian and anti-Hermitian parts:
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where [-,-] and {-,-} are the usual commutator and an-
ticommutator. As described in several prior works for
the electronic problem, this decomposition can be used
to converge to stationary states either through classical
[60-66, 71] or quantum [56, 72-77] computing methods.

On modern quantum devices, the Contracted Quantum
Figensolver (CQE) algorithm measures the total residual
of Eq. (8) for trial wave functions. Such a residual can
then be used to guide a sequence of trial wave functions
toward the ground (or an eigen-) state by iteratively ap-
plying a sequence of exponential transformations. The
scheme is agnostic to the statistics of the system and has
already been applied both for fermions and bosons with
significant success [56, 73-77]. Here, we will show that
the CQE algorithms also provide a simple methodology
for resolving the ground state in mixed fermion-boson
systems.

Our scheme is as follows: at iteration (n+ 1) the wave
function results from two separate exponential transfor-
mations of the wave function at iteration (n) [56]:
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is an anti-Hermitian operator,
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is a Hermitian one, and n4 and np can be interpreted as
learning rates of the algorithm.

Notice that if the unitary operator exp(naA™) is ap-
plied to a normalized wave function |¥(™)), the total en-
ergy of the transformed state is (m leading order of the
parameter 14): Eny1 = En+na (T [Hfb ()] | @)y 4
O(n?) where &, = (U] Hp, [T, As a result, the
anti-Hermitian portion of Eq. (8) can be used as a resid-
ual to find the optimal operator at each step, and the
anti-Hermitian parameters can be updated as follows:

AN = (WD, Hp) [0, (12)

These parameters generate the unitary exp(nAA(”)). In
turn, n4 can be selected to minimize the expectation en-
ergy of the resulting state |®() = exp(na A™) W),
Quite remarkably, many well-known canonical transfor-
mations of mixed fermion-boson systems are exactly re-
covered when only the anti-Hermitian part of the ansatz
is used. This is the case, for instance, of the Lang-Firsov
transformation for the Holstein Hamiltonian [78] or the
Schrieffer-Wolff transformation for the Anderson model
[79]. As already suggested for the electronic case [71],
this means that the anti-Hermitian part of the CSE con-
verges to the appropriate canonical transformation of the
respective problem.



Next, the Hermitian portion of the residual is measured
with respect to the updated (normalized) vector |®(™)).

where E() = (8| Hy, |®(™). The resulting Hermitian
operator B generates the non-unitary exp(nBB(”))
where 7p is selected to minimize the energy of |1},
Implementing non-unitary operators on quantum devices
is an active field of research [80, 81] and has resulted
in the development of several methods such as quantum
imaginary-time evolution [82, 83]. Prior implementations
of the fermionic CQE have utilized dilation techniques
similar to the Sz.-Nagy dilation [56], but the CQE is
agnostic to the particular technique used to accomplish
non-unitary transformations. Here, we exactly map the
non-unitary transformation to a unitary transformation
on a classical device, allowing us to focus on the effec-
tiveness of the CSE ansatz for mixed systems.

The CSE ansatz (e.g., Eq. (9)) is a product-of-expo-
nentials ansatz whose gradient by construction equals the
residual of the CSE or its Hermitian and anti-Hermitian
components [55, 56, 71]. It has some important differ-
ences from other ansétze such as those from unitary cou-
pled cluster (UCC) theory [84], generalized coupled clus-
ter (GCC) theory [85, 86], and quantum imaginary time
evolution (QITE) [87]. If the non-unitary part of the CSE
ansatz is removed, we obtain the anti-Hermitian CSE
(ACSE) ansatz [61] whose gradient equals the residual of
the ACSE. Like the ACSE, the UCC is a unitary ansatz,
but unlike the ACSE, it contains a single exponential
of only occupied-to-unoccupied-orbital transitions [84].
The disentangled UCC ansatz [88], whose truncations are
unequal to those of the UCC ansatz, introduces a product
of exponential operators like the ACSE but retains the
restriction to only occupied-to-unoccupied-orbital tran-
sitions.

If the unitary part of the CSE ansatz is removed, we
obtain the Hermitian CSE (HCSE) ansatz [55, 56, 71]
whose gradient equals the residual of the HCSE. Like
the HCSE, the GCC is a non-unitary ansatz, but unlike
the HCSE, it contains only a single exponential opera-
tor [85, 86]. While the GCC was initially conjectured to
be exact [86], it was later shown to be an approxima-
tion [71]. The CSE and HCSE ansitze were introduced
to generalize GCC to satisfy the CSE and HCSE equa-
tions upon convergence, respectively [55, 71], and hence,
to be verifiably exact [56]. Finally, restricting the two-
body operator of each exponential in the HCSE to be the
Hamiltonian yields QITE [87, 89]. This restriction signif-
icantly slows the convergence of the exponential product
from linear (or superlinear in a quasi-Newton optimiza-
tion) [90] to an exponential decay that depends upon the
energy gap between the ground and excited states.

We note that because the gradient of the CSE ansatz
equals the residual of the CSE, gradient descent (or quasi-
Newton optimization) provides linear (or superlinear)
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FIG. 1. CSE and QED-CCSD energies for the 3 fermion

Tavis-Cummings model with increasing coupling. The Hamil-
tonian parameters from Eq. (14) were fixed as (wp,wy) =
(2,0.5) while g. is varied as shown along the z-axis. The
QED-CCSD-n methods are named according to the conven-
tion used in Ref. [41].

convergence [91] to a solution of the CSE, which is a
solution of the Schrédinger equation. For a comparison
of the convergence rates of the CSE, HCSE, and ACSE
in molecular cases, refer to Ref. [56].

To study the numerical performance of the algorithm,
we use the Tavis-Cummings model (TC). This is a pro-
totypical mixed fermion-boson system that attempts to
capture the behavior of polaritons in a wide range of cou-
pling regimes [92-96]. The model is comprised of N two-
level fermionic systems coupled to a bosonic mode, mak-
ing it analogous to situations found in polaritonic chem-
istry where molecules are bound in cavities [6, 13, 26, 97]
or solid-state intersubband devices [98, 99]. The TC Ha-
miltonian is written as follows:

I:I = wblA)TlA)

N
+3 [wfa}+ai+ +ge(al, a, b+ aj,aHl}T)] , (14)
=1

with the fermionic subscripts indicating the excited (4)
and ground (—) orbitals in the i*® two-level system, and
where wp, wy, and g. describe the angular frequency of
the bosonic mode, the transition frequency of the fermio-
nic modes, and the coupling between the bosonic mode
and the fermionic bath, respectively. The TC Hamilto-
nian contains no explicit fermionic correlation, but, due
to the mixed particle coupling, significant correlation ex-
ists between the bosonic and fermionic degrees of free-
dom, which renders mean field methods, like quantum
electrodynamics Hartree-Fock (QED-HF), ineffective.
Results.— We first compare the CQE ground-state re-
sults to those obtained from the mixed fermion-boson
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FIG. 2. CSE and QED-CCSD predicted ground fermionic
orbital populations with increasing coupling in the 3-fermion
Tavis-Cummings Model.
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FIG. 3. CQE and QED-CCSD ground-state energy and

fermionic orbital population with increasing coupling. The
y-axis of the energy shows the absolute error in mHartree.

quantum electrodynamics coupled cluster (QED-CC)
methods for the TC model. Those are named such that
QED-CC(SD)-n refers to coupled-cluster with single and
double fermionic cluster terms combined with bosonic
and mixed cluster terms containing up to n bosonic cre-
ation operators [41].

Fig. 1 depicts the ground-state energies predicted by
various methods for the 3-site TC model as the coupling
strength increases, entering well into the ultra-strong re-
gime. The QED-CC methods capture the general trend
of the energies but do not align with any section of the
exact energy curve, including the high-level QED-CCSD-
3. The QED-CCSD-3 is the most accurate QED-CCSD
method possible for the coupling strength shown in the
figure at which only single, double, and triple bosonic

excitations contribute to the exact ground state. This
suggests that QED-CCSD-3 would begin to fail again in
the stronger coupling limit when the maximum bosonic
population increases to 4 or larger. Additionally, despite
being the best CCSD method in this region, QED-CCSD-
3 is unable to predict the transition in the weak coupling
limit seen in the zoomed-in section of the figure due to the
omission of the triple cluster operator. The CSE, how-
ever, is able to accurately reproduce the exact energy
regardless of coupling strength. Notice that this accu-
racy is achieved while only ever measuring the residual
with the same density operators that appear in the TC
Hamiltonian, while QED-CC must include all possible
excitations to be accurate. Therefore, while the number
of bosonic and mixed cluster terms remains fixed for the
CQE, for the QED-CC methods it will grow with the
coupling strength or, equivalently, the maximum boson
population.

Fig. 2 demonstrates how QED-CC methods fail to cap-
ture both the quantitative and qualitative properties of
the TC model. The plot shows the predicted population
of the lower energy level in any of the fermionic two-level
subsystems, which, due to symmetry, are the same. The
QED-CC methods up to QED-CCSD-2 approximate the
discontinuous population changes with successively bet-
ter least squares errors, but fail to capture any of the
stair-stepping behavior caused by actual level crossings.
QED-CCSD-3 smoothes out the final two stair steps, but
completely misses the first, as could be predicted from
its failure in the prior figure. The CSE method, how-
ever, exactly recovers the populations, despite needing
to resolve nearly degenerate states at the level crossings.
The failure of CC to resolve level crossings [100] and
the success of the CSE highlight the importance of the
particular combination of Hermitian and anti-Hermitian
contributions present in the CSE ansatz.

Finally, Fig. 3 compares the results from the CQE al-
gorithm performed on an ideal quantum device simulator
to those obtained from classical QED-CCSD. The CQE
algorithm reproduces the energies with an average error
of 7 mhartree with a standard deviation of 1 mhartree,
indicating that the error is uniform regardless of the dis-
tance from the level crossings. This is in contrast to the
CC methods where the error exhibits significant fluctua-
tions. The CQE recovers the ground orbital populations
near the degeneracies despite not exactly recovering the
energy. These results demonstrate that despite sampling
error, due to the finite number of measurements (shots)
on a quantum device simulator, the CQE is able to out-
perform some of the most popular classical algorithms
for mixed-particle systems.

Conclusions.— Based on a generalization of the elec-
tronic CSE, we present an exact ansatz for mixed quan-
tum fermion-boson systems. Our numerical results on
the Tavis-Cumming model demonstrate the power of the
CSE ansatz. While CC methods require constantly in-



creasing the number of terms in the exponential to be
accurate in different coupling regimes, the CSE is always
exact and the required number of terms exactly matches
the density operators present in the Hamiltonian. Addi-
tionally, the CQE demonstrates how the CSE can be ap-
plied on a quantum device, and can outperform cutting-
edge classical algorithms. This Letter leaves many av-
enues for future works, whether it be the development of
classical computing algorithms for mixed particle systems
that leverage the CSE or the application of the CQE on
real quantum devices. For example, molecular systems
coupled to a bath, such as those found in polaritonic
chemistry, will be explored in future work. Furthermore,
since the ansatz can be equally used for any eigenstate
[101], the computation of exact excited states in polari-
tonic quantum chemistry is also a promising future di-
rection.
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