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A B S T R A C T

As the built environment ages and incurs natural wear and tear, it becomes imperative to employ measures
that allow cost-effective, rapid, and automated inspection methods to ensure human safety. Displacement-based
damage localization methods can meet these needs through non-contact monitoring techniques such as digital
image correlation that provide high-resolution displacement measurement across large-scale civil structures
rapidly and with great accuracy. In this work, we explore the use of displacement information as the input to an
inverse solver that reconstructs the spatially varying material properties of the target system. We demonstrate
the usefulness of the displacement-based data and our inverse solver on a collection of simple case studies: a
fixed-fixed beam, single-story, single-span frame, and multi-story, multi-span frame. We systematically study
the sensitivity of the system to damage and its location, the ability of the model to identify and localize multiple
simultaneous damage, the damage severity, and the robustness of the optimizer with respect to initialization.
We also study challenges likely to face the method in real-world applications such as noisy measurements,
reconstruction without full-field data, extension to different system sizes and geometries, and sensitivity of
the algorithm to mismatch in resolution. Investigation of the single-span frame shows the solver can achieve
localization accuracy of 83.8% when there is no measurement noise and 71.3% with 2% noise. Additionally, the
proposed method achieves 82.9% accuracy using surface displacement-only which is slightly lower than 84.2%
localization accuracy when the full-depth displacement is available. Results demonstrate the effectiveness of
the proposed solver in identifying subsurface damages with high accuracy using surface displacement only.

1. Introduction

The U.S. is facing a growing problem with its declining infrastruc-
ture [1]. Analytical models, backed by advancements in data collection
and processing techniques, provide a unified means for the damage
prognosis of structures [2]. Additionally, they can be used to store,
visualize, and infer key properties of structures needed for structural
health monitoring (SHM) purposes, which in turn combats the risk
surrounding declining infrastructure.

Damage diagnosis in analytical models involves working backward:
deducing model details from specific measurements. A common dam-
age diagnosis method is to model the system using the finite element
method (FEM) and update the model’s parameters, which are repre-
sentative of the damage status. Additionally, accurate modeling of the
structure’ details determine how well it captures the actual structure’s
behavior, hence providing accurate information about the existing and
future state of the system [2].
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Updating the FE model parameter, also called parameter estimation,
can be done using dynamic and static data [3]. However, dynamic data
often comes with disadvantages [4]. A major problem with dynamic
data is the increased error as the result of approximating the damp-
ing matrix as part of the dynamic equation [5]. Another issue with
dynamic data is that some damage information is only accessible at
higher modes, which are often expensive or difficult to induce on a
structure [6]. In contrast, static parameter estimation requires updating
stiffness and mass matrices, which are easier to recover due to fewer
unknowns [7].

Parameter estimation using static data consists of three stages [3]:
identifying the objective function, dealing with incomplete or sparse
measurements, and choosing a scheme to solve the optimization prob-
lem. Two common objective functions to select from are a displacement
and a force error estimator [8]. In this work, we choose the displace-
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ment metric to measure the discrepancy between the actual and ana-
lytical models’ responses. Moreover, studies show that measuring dis-
placement errors is preferable, especially in the presence of noise [3,7].

Early research in displacement-based damage localization focused
on using sparse static measurements to recover stiffness parameters [9,
10]. Significant methodological advances included sensitivity-based ap-
proaches for preserving matrix properties [7] and gradient-based opti-
mization formulation [8]. While these developments enabled parameter
identification even with limited observations and noisy measurements,
the fundamental limitations of sparse measurements prevented precise
element-level damage localization and quantification [11,12]. Even
with various mathematical enhancements, displacement-based methods
typically require prior accurate knowledge of structural stiffness [13].

Further progress in parameter identification using static measure-
ments was seen with advances in close-range photogrammetry. Close-
range photogrammetry captures the spatial variation of targets of inter-
est [13] and provides accurate full-field displacement measurements.
Digital Image Correlation (DIC) systems provide superior data com-
pared to other optical full-field measurement technologies [14]; it
additionally has a measurement noise often within the order of 0.01
to 0.05 pixels [15,16] which can be reliably used as the ground truth
for updating FEM’s response [16]. As a result, DIC became a promising
method for FE model updating and parameter estimation [11,14,17,
18]. DIC measurements were particularly useful in studying deforma-
tion, cracks [19321] and damage in beams [22,23], bridges [24,25],
and wind turbine blades [26].

Research in the field of full-field displacement measurement for up-
dating structural models has progressed from simple to more complex
systems, but there remains a gap in the literature regarding its appli-
cation to FEMU of systems with a large number of parameters [12,27]
with a focus on using deterministic optimization [28]. An early example
is the work of Zaletelj et al. [12], which used full-field measurements
to recover modal shapes of a simply supported beam with 999 ele-
ments. That study particularly focused on evaluating the effectiveness
of their methodology in recovering Young’s Modulus of damaged DoFs.
Dizaji et al. used full-field displacement response to update the full
model of an I-shaped steel beam subjected to flexural loading [29].
That study updated a model with 4300 elements, demonstrating the
scalability of the method in terms of the number of parameters [30]. In
further exploration, the same authors [30] investigated the application
of 3DIC (Three-Dimensional Digital Image Correlation) for identifying
subsurface damage [11]. They employed a topology optimization for-
mulation for internal damage identification of a laboratory-scale T-bone
element, validating their approach with a FE model with up to 28390
elements. Their study also marked DIC as a promising technology
for non-destructive evaluation (NDE) of civil structures. We examined
the potential of DIC-based NDE methods using synthetic data. That
study explored recovering homogeneous and inhomogeneous material
properties in a model beam with 800 elements [31].

Most of these studies have primarily studied small-scale structural
systems, such as beams. The adaption of 3DIC technology for large-scale
civil structures, while promising, also faces non-technical challenges.
While this method enables non-contact distant measurement of struc-
tures with minimal interruption to infrastructure and users, several
practical limitations exist [32]. The initial setup requires expertise in
system calibration, including installation of targets or application of
speckle patterns onto structures for measurement purposes [33]. Envi-
ronmental factors pose significant challenges 4 the method demands
small deformations and a consistent field of view [32]. Weather vari-
ations, lighting changes, localized reflection, glare, and poor speckle
patterns can all contribute to measurement inaccuracies [11].

When operating in real-world conditions, accurately identifying and
isolating mechanisms becomes complex. These mechanisms encom-
pass both system loads (such as pedestrian and vehicular traffic) and
ambient factors like wind effect on both the structure and measure-
ments [33]. Furthermore, while this approach does not require special-
ized equipment like GPR and other NDE tools, it demands additional

labor in other areas. Specifically, it necessitates extensive preprocess-
ing, postprocessing, and computational work, requiring expertise in
both FE modeling and optimization techniques [11].

This paper focuses on the local FEMU of frame structures using full-
field displacement data. We aim to extend the utility of our proposed
framework [31] for parameter identification in large civil structures.
Several key questions are addressed in this regard. First, we investigate
whether surface deformation information alone can detect internal
damage in a frame structure. Secondly, we provide a comparative
analysis of full-field measurement with discrete measurement. Finally,
we conduct a series of systematic numerical experiments to assess
the impact of noise in measurement and FE modeling. Additionally,
we perform sensitivity analyses to evaluate various aspects of the
framework and its parameters.

It is worth emphasizing that our proposed approach is distinct
and more comprehensive than the work done by Dizaji et al. [11,
34]. Damage localization and quantification using topology optimiza-
tion assumes that material property is related to the material density
through the SIMP (Solid Isotropic Material with Penalization) topology
optimization formulation. We lift this limiting assumption by enabling
the direct estimation of material property through displacement data.
The following section will present a detailed overview of our proposed
method, including a brief introduction to differentiable physics-based
models and their application to parameter identification.

2. Methodology

We use an automated method to calculate the sensitivity of model
parameters with respect to the output, assuming a linear elastic struc-
ture. This assumption is valid for structural systems with small de-
formations. Consequently, we employ the linear elasticity formulation
within the differentiable physics solver to represent the structure’s
behavior. We rely on dolfin-adjoint to calculate the system’s
sensitivity using the adjoint method, which is computationally efficient
for computing gradients of systems with many unknowns.

The computational cost of the adjoint method primarily increases
with the number of outputs variables, while it is largely independent
of the number of input variables, i.e., the number of elements. Although
adjoint method is highly scalable in this sense, one must be mindful of
its memory requirements and the increased computational cost of the
forward problem. In contrast, computation cost of methods like finite
difference directly scales with the number of input variables. This char-
acteristic makes the adjoint method well-suited for the optimization of
systems with a large number of elements [35,36].

In this study, we aim to recover the spatially varying inhomoge-
neous material properties throughout the structure using local FEMU.
For complete details of the computational framework, refer to Ref. [31].
Here, we will summarize the Partial Differential Equation (PDE) of
the system, the gradient-based optimization, and the regularization
method used in this work. We will also discuss the evaluation criteria
for quantifying the solution’s fitness.

2.1. Differentiable physics model

We use an automated method to perform gradient-based updates
on the differentiable physics model. The dolfin-adjoint [37] soft-
ware provides a differentiable interface for models in the FEniCS [38]
finite element solver. Initially, it is only necessary to consider the
physics model. We implement linear elasticity within FEniCS, using
the principle of virtual work to derive the equations of strain energy,
as defined in our earlier work [39]:

ĂćČĂ u * V

s.t. a(u, v) =+
 �(u) ∶ �(v) d 
 = +
 f ç v d 
 "v * V̂ ,

�(u) =� t r (�(v)) I + 2� �(v),

�(v) =1

2
(∇v + (∇v)T ).

(1)
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In the above equation, the goal is to find u, the displacement
vector field, within the solution space V . This field u must satisfy
the equilibrium of forces, represented by the bilinear form a(u, v) for
internal virtual work. The stress tensor �(u) and strain tensor �(v) are
defined using the deformation gradient ∇u and Lamé’s parameters �

and �. I is the identity matrix, f represents the body force per unit
volume, and 
 is the problem’s domain.

These equations may include spatially varying material properties,
specifically elastic modulus E(x), where x indicates spatial coordinates
within 
. For simplicity, we introduce a dimensionless parameter �(x),
termed fractional elastic modulus, defined as �(x) = E(x)∕E0, where
E(x) is the elastic modulus at position x and E0 is some reference
elastic modulus. Representing the spatially varying material properties
in terms of � allows for consideration of any materials, given a dif-
ferentiable physical model, using a coefficient factor. In practice, we
represent the body as a collection of discrete elements, such that �(x)

is implemented as a vector �i of continuous values between [0, 1], with
one entry for each element i in the mesh.

We can explicitly introduce � in Eq. (1) as a coefficient as follows:

�(u, x) = �(x)
[
�0(t r )�(v)I + 2�0�(v)

]
, (2)

The right-hand side of the above equation directly modifies the
elasticity tensor ñ based on �.

2.2. Gradient-based optimization

We compute the gradient within the PDE solver using the dolfin-
adjoint library. Gradient descent is performed using the Adam op-
timizer [40], a common gradient-based optimization algorithm known
for its robustness and high success rate in large parameter systems [41].
Its second-order moment estimation term is particularly useful in solv-
ing physics-based optimization problems [42]. In practice, we connect
the gradients from dolfin-adjoint with the Adam implementa-
tion in the machine learning library PyTorch [43] using torch-

fenics [44]. torch-fenics enables seamless updating of FE pa-
rameters using the Adam optimizer in PyTorch.

We previously hypothesized [31] that displacement data should
suffice to recover the spatially varying material properties of a target
system. Hence, we optimize for the match between target (utarget) and
optimized (uoptim) displacement fields, defined as follows:

úu = log10
(
1

n

√
�n
i=1

(ui
t ar get − ui

opt im)2
)

(3)

The formula within the log10 is the root mean squared error (RMSE),
with the log term stabilizing the loss function’s behavior on displace-
ments of vastly different scales. For instance, in a cantilever beam, the
elements at the free end have significantly larger displacements than
those near the clamped boundary. This transformation prevents the
gradients of large displacements from dominating the gradient descent,
leaving regions with relatively smaller displacements unchanged.

2.3. Regularizations

The proposed inverse problem is considered ill-posed, with multiple
possible solutions. Regularization helps mitigate ill-posedness, ensuring
attention to parameters’ search space, not just fitting the model’s re-
sponse to the data. It also helps manage measurement noise, which is
crucial since the output of an ill-posed problem can change drastically
with minor input variations, potentially destabilizing the optimization
process [45,46]. Insufficient data, leading to an infinite number of
solutions, is another issue that regularization addresses [47].

To mitigate the ill-posedness and enhance the solution’s robust-
ness, we add a regularization term. Common terms in SHM literature
include L1 sparsity-promoting regularization and Tikhonov L2 regular-
ization [13,48]. We choose L1 regularization to limit the number of

identified damages. Finding the right balance between the objective
and regularization losses through the regularization coefficient � can
be challenging.

Through empirical evaluation, we have identified � = 0.1 as a
suitable compromise. To determine �, we scale the penalty value to
match the loss term’s order, then test coefficients � * {10−4, 101}

to find the most appropriate value. Our experiments indicate that
� = 0.1 effectively penalizes degenerate solutions while optimizing the
objective function.

We add the effect of L1 penalty as the following term to the above
loss function:

úpenalty = ‖�undamaged − �optim‖1 (4)

úfinal = �u + �úpenalty (5)

In this context, �undamaged represents the homogeneous material
state (i.e., no damage), such that �(x) = 1 everywhere.

We also consider the convergence and the number of iterations
required for the inverse solver. Empirically, we have found that allow-
ing the L1 loss to converge to a near-zero value is crucial for finding
the correct solution. Additionally, L1 loss can serve as a convergence
criterion, given that there is no lower bound when optimizing for
displacement loss.

In our study, we always use the Adam optimizer with a learning rate
of 5 × 10−4 and run the optimizer for 1000 iterations.

2.4. Evaluation metric

Conventionally, an evaluation metric like element-wise norm can be
used to compare two solutions, especially when the spatial difference
between the results is not a major concern, meaning the proximity
or distance of the damaged element from its original location is not
crucial. However, in the case of local FEMU, and due to the high resolu-
tion of damage localization, it becomes essential to consider adjacency
information related to the target and identified damage locations.

Earth Mover’s Distance (EMD), also known as the Wasserstein dis-
tance, is a statistical measure defined as the minimum cost required
to transform one distribution into another. In the context of damage
localization, this will be applied to compare the distribution of �(x) in
space. Unlike the MSE metric we have used in our past work [31], EMD
provides a more sophisticated measure that is robust to translations.
An illustrative example of the difference between MSE and EMD is two
completely disjoint distributions: MSE yields the same value no matter
where the samples are, whereas EMD is sensitive to how far apart the
samples are.

Our distance metric is defined in the standard way:

EMD(�G T , �optim) =
1m

i=1

1n

j=1
�i,jdi,j

1m

i=1

1n

j=1
�i,j

, (6)

where �G T is the ground truth fractional elastic modulus, �optim is the
optimized fractional elastic modulus, D = [di,j ] is the distance matrix
between elements i in �G T and j in �optim, and � = [�i,j ] denotes
the optimal transport plan between these two distributions, subject to
minimizing the total cost,

cost = min
�

m1

i=1

n1

j=1

�i,jdi,j (7)

In this work, we use the Python Optimal Transport (POT) library [49]
to solve this minimization problem.

We define the cost matrix D as the Euclidean distance between
the centroids of the ground truth and optimized mesh. A convenient
feature of this choice is that the EMD has units of length (m) and
thus represents how far ‘‘mass’’ (in this case, more like stiffness) must
typically be moved to transform the obtained solution into the ground
truth. Thus, we report EMD values in m throughout this work. For
simplicity, we use the same ground truth and optimized mesh shown
in Fig. 2.
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Fig. 1. Schematic depiction of the inversion process: The inverse solver F −1 computes
the optimized fractional elastic modulus for a ground truth (GT) damaged element i,
denoted by �ioptim. Inputs to the solver include the target displacement field uitarget and
the initial FE mesh �raw, which incorporates its boundary and loading conditions. This
procedure is performed for each element i to evaluate the algorithm’s sensitivity to
each damaged element individually throughout the mesh.

3. Results and discussion

3.1. Data generation

To evaluate the usefulness of this approach, we generate a synthetic
dataset using FEA. We generate displacement fields using a ground
truth model, which is later used as a target for the inverse problem.
The process for generating utarget is illustrated in Fig. 3 for a simplified
mesh. We begin with the raw mesh, �raw, and for each element in the
mesh, we assign a damaged value �dmg to the ith element while keeping
the rest undamaged, �undmg. In Fig. 3, there are 4 elements, resulting
in 4 unique cases �iGT, where i denotes the element number and GT
indicates that it is the ground truth � that we will later attempt to
recover. Although it is possible to assign multiple damages to �raw, for
demonstration purposes, we focus on single-damage scenarios where
only one element is damaged at a time.

For each damage case (four here), we run the physics solver in the
forward mode to obtain the displacements at the nodes. This process
yields four different utarget, which will later be used to recover their
corresponding �iGT. After calculating the target displacement fields for
each utarget, we run our inverse solver to attempt to recover their
corresponding �iGT. This process is depicted in Fig. 1. The inverse solver
takes in the initial guess (�raw) and a target displacement (utarget), then
produces an optimized solution �optim through gradient descent.

Next, we calculate the EMDi between �iGT and �ioptim. First, we com-
pute the Euclidean distance between the two meshes, here assuming
the same mesh for �GT and �optim, as shown in Fig. 2. We then calculate
the EMDi for each element in the FE mesh �raw, as illustrated in Fig. 4.
For visualization purposes, we display the corresponding EMD value for
each element i in the mesh; it is important to note that these represent
one inverse solve for each element and are not obtained all at once.

In the following sections, we will consider different scenarios re-
lated to generating various displacement fields and recovering the
corresponding � that resulted in utarget. Specifically, we define the
problem as recovering the spatially varying �(x) of an inhomogeneous
2D frame under plane stress. As shown in Fig. 5, the frame is clamped
on its left and right ends, and a uniform downward traction load ! =

−1000 N/m is applied to the top span. During mesh generation, we
ensure symmetrical meshing along the y-axis, halfway along the span
(x = 3 m).

Our experiments are performed in a high-performance computing
environment, typically utilizing 8 CPU cores and up to 32 GB of RAM
for each experiment. On average, it takes about 40 s to perform a single
inverse solve, and this duration scales with the number of damage
cases, which is equivalent to the number of elements in the mesh in
most scenarios presented below.

3.2. Single-cell damage localization

In this scenario, we vary the elastic modulus for each element in
the mesh, designating one element as damaged (�dmg = 0.5), while the
rest remain undamaged (�undmg = 1). We then calculate the EMD for
every solution the solver finds and assign its value to the corresponding
element, as shown in Fig. 5.

To understand how EMD characterizes the solution, we included
examples with varying EMD values in Fig. 6. To quantitatively dif-
ferentiate between successfully localized and mislocalized damage, we
establish an EMD threshold of 0.015 m. This threshold is determined
by calculating the EMD in a scenario where a single element is dam-
aged, but the solver incorrectly predicts no damage (or vice versa).
Specifically, any EMD value below 0.015 m indicates successful damage
localization, while values equal to or larger than 0.015 m are classified
as mislocalized cases. Note that, here our defined EMD threshold is set
to measure the exact damage localization accuracy by defining it as the
misclassification of one element. However, a larger EMD may be also
acceptable, for example, the second and third row of Fig. 6 show cases
where mislocalization happens in the vicinity of the original damage
location, and for some use cases, this tolerance is acceptable. Based
on the 0.015 m threshold, the solver accuracy is 86.76%, with 118
out of 136 elements. It is important to note that EMD reflects both
localization and quantification accuracy, so higher values can mean
either locating the wrong damaged element, identifying the wrong
modulus magnitude, or both.

As shown in Fig. 5, the EMD in elements near the boundary condi-
tions (such as the lower end of columns and the top span) is relatively
low, while the EMD in mid-column elements is higher. This can be
physically interpreted as the varying response of different parts of
the structure to imposed loads and support conditions; the stability
provided by boundary conditions, consistent stress distributions in the
beam, and the complex load paths could explain the observed EMD val-
ues and the solver’s performance in localizing damage. Consequently,
there are some blind spots in the columns near the boundary, where
the displacement is not sensitive enough to the elastic modulus to
accurately detect damaged elements in this region.

3.3. Damage size

Next, we study how the damage size affects localization accuracy.
We consider circular damage regions of radius R, such that all cells
encompassed within that radius are damaged, rather than a single cell.
Note that when R is larger than the smallest characteristic length in
the geometry (i.e., the column width), the geometry deviates from a
circle since the frame is non-convex. The results in Fig. 7 indicate that
as the damage radius increases, the EMD also increases (r = 0.750,
p < 0.001). However, the EMD should be proportional to the size of
the damaged region as more cells are included in the calculation (r
= 0.773, p < 0.001). These strong correlations confirm that larger
damage regions lead to proportionally higher EMD values, shown on
the secondary axis of Fig. 7. The relative error (EMD/Radius ratio)
remains fairly consistent for most damage sizes, with means ranging
from 0.028 to 0.069. A slight decrease in accuracy is observed only
for the largest damage sizes (R e 1.8 m, relative error H 0.067). This
is likely due to the increased complexity of damage spanning multiple
structural elements as well as the fewer number of cases tested, mainly
because larger damage areas tend to cover all the elements in the frame
with fewer cases. This shows no significant change in the quality and
accuracy of solutions when moving from a single damaged element to
many damaged elements. Overall, these results indicate that the solver
maintains a reliable accuracy across different damage sizes, particularly
for the well-sampled smaller and medium damage radius scenarios.
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Fig. 2. Illustration of cost matrix calculations used in the evaluation metric. Each element’s index is displayed at the element’s centroid.

Fig. 3. Process of generating target displacement fields utarget: Using the forward linear elastic solver (F ) to calculate utarget for the damaged ith element, �iGT.

3.4. Multi-cell damage localization

In real-world scenarios, a structure may have multiple disconnected
damaged elements throughout the system rather than a single damaged
element of varying size. Accurately identifying the locations of all
key damages is crucial for effective damage assessment. To evaluate
the solver’s performance in such scenarios, we systematically varied
the number of damaged elements (nd) sequentially: 2, 3, 5, and 10,

testing 544 total cases. For each scenario, an ensemble of nd random
elements is damaged rather than exhaustively enumerating all possible
combinations. We report the average EMD for cells that have been
damaged across different experiments.

Using our established threshold of 0.015 m for successful localiza-
tion, the solver achieves success rates of 69.1%, 72.8%, 73.5%, and
86.0% for nd = 2, 3, 5, and 10 respectively. However, as shown in
Fig. 8, increasing the number of damaged elements in the system shifts
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Fig. 4. Process of generating EMD map. We assign the EMD to the corresponding
element in the FE mesh �raw. EMD is calculated between the actual damaged case �iGT
and the recovered case �ioptim.

the median EMD towards zero, while the number of outliers tends to
increase, especially for nd = 5 and 10. This suggests that the solver may
not reliably detect more than 5 (disconnected) damaged cells at once.
It is worth noting that the penalty term can be adjusted and varied to
identify fewer or more damaged elements; while we use a fixed penalty
value � = 0.1, the choice of varying the penalty term is determined
based on one’s need and can be used to optimize the trade-off between
detection sensitivity and false positives based on specific application
requirements.

3.5. Effect of initialization

It is imperative to assess the sensitivity of the gradient-based op-
timization algorithm to the initial guess used to seed the system. To
this end, we start the optimization from different homogeneous states
where �init * {0.1, 0.2,& , 1.0}. We then perform the optimization
while keeping the rest of the parameters unchanged. In addition to the
homogeneous state, we attempt to start initialization from a noisy state
by adding 1� white Gaussian noise to the half (�init = 0.5) initialization.
However, the solutions show many cells as damaged (�optim < 1), which
is inaccurate. Since that strategy is ineffective, we omit those results.

In Fig. 9, we observe a downward trend in EMD, suggesting that
as the initial value increases, the error decreases. We quantify this
observation by a Pearson correlation coefficient of (r = −0.647, p =

0.043), indicating a significant negative correlation between �init and
EMD. We also do not observe any special preference to �init = 0.5 where
�dmg = �init, suggesting the procedure used throughout our other tests
is relatively robust to the initialization strategy.

To benchmark, we also plot the 0.015 m threshold indicated by a
horizontal red line in Fig. 9. The line shows that initializing � outside
the range 0.4 d �init d 0.9 prevents the solver from converging to useful
values. This is likely due to the gradient descent getting stuck in one of
the many local minima as it approaches the solution from a poor initial
guess. Within the optimal initialization range, mean EMD < threshold,
the solver achieves a localization accuracy of 89% with the mean EMD
of 0.0092 m.

We also tested the scenario where, for each initial value, we assume
its ground truth has no damaged element. As shown in Fig. 10, when
the initial value is too small, the optimizer tends to converge to poor
solutions that do not reflect the ground truth. As the initial value
exceeds 0.4, the mean � converges to the correct value of 1.0 (per our
definition of �). We are only testing for a homogeneous (undamaged)
case; therefore there is only one experiment for each initial value.

We performed further analysis across different ranges of initial
value. For low initialization values (�init < 0.4) the median EMD is
significantly higher (0.0263 m), indicating poor performance. For mid-
range initializations (0.4 d �init d 0.9), the solver performs best with the
lowest median EMD (0.0079 m). High initialization values (�init e 0.9)
result in slightly increased median EMD (0.0138 m), which approaches
our established threshold of 0.015 m.

From these experiments, we learn that an initial value that is too
low, too high, or inhomogeneous can cause the optimizer to converge
to incorrect solutions due to the prevalence of local minima in the
optimization landscape. Conversely, initializing using a homogeneous
approach and within the range of 0.4 to 0.9 provides a good balance,
ensuring reliable convergence to accurate solutions. Our strategy using
a mid-range homogeneous initialization �init = 0.5 strikes this balance
effectively, demonstrating robustness in the optimization process.

3.6. Mesh resolution

We next evaluate the solver’s sensitivity to mesh resolution by ana-
lyzing the relationship between element size and localization accuracy.
In other words, we probe the smallest damage we can detect using
this displacement-based inverse solver. For this matter, we use a fixed-
fixed beam geometry, which allows for better control over the mesh
resolution as shown in Fig. 12 (top). We can now vary the number of
elements in the subsequent experiment.

In Fig. 13, we present the effect of increasing mesh resolution. We
observe a corresponding decrease in the median EMD distribution for
each case. The resulting median EMD for each case were 1.05 × 10−2 m,
2.65 × 10−3 m, 5.43 × 10−4 m, 1.50 × 10−4 m for 64, 256, 1024, and 4096
element beams, respectively. This represents a 3.97, 4.87, and 3.62-fold
decrease in median EMD values as the number of elements increased.

To explain this trend, we plot the average size of the elements
in each mesh, which is equivalent to the damage size in the single-
element damage detection scenario. The data indicate that the median
EMD is directly proportional to the damage size (r = 0.9999, p <
0.001). However, we also observed that the coefficient of variation
(CV) increases as the mesh gets finer. Specifically, the CV values are
20.3% for 64 and 256 element beams, 41.7% for 1024 element beam,
and 34.3% for 4096 element beam. This increased variability suggests
localization becomes more challenging for finer mesh.

Localization accuracy was highest, with the lowest CV, for 64 and
256 element beams. The corresponding single-element damage area is
approximately 6.25 × 10−2 m2 (i.e., 25 cm × 25 cm) and 1.56 × 10−2 m2

(roughly 12 cm × 12 cm), respectively. In contrast, Fig. 11 shows that
localization becomes increasingly challenging with finer meshes, such
as 1024 element beam with an element size of 3.90 × 10−3 m2 (roughly
5 cm × 5 cm) and 4096 element beam with an element size of 9.76 ×
10−4 m2 (approximately 3 cm × 3 cm).

The inverse solver shows that detection is possible with finer mesh
and the median EMD decreases proportional to the element size while
increasing the CV. This reveals that there is a fundamental trade-off:
while finer meshes enable the localization of smaller damage features,
they also introduce greater variability in localization accuracy.

3.7. Practical considerations

While most of the aforementioned experiments were conducted
under the assumption of perfect knowledge of the system and mea-
surement, the following scenarios will probe the effectiveness of the
framework in the presence of uncertainties that arise in real-world
applications (e.g., modeled after DIC). This includes uncertainties in
measurements or mesh geometry. The aim of this section is to further
assess the robustness of the proposed method in practice.

3.7.1. Measurement noise
Noise is an inherent part of any real-world experiment. We add

various degrees of Gaussian white noise to the displacement fields,
allowing for the consideration of noisy measurements in the field. Since
we use both x- and y-displacement components, noise is added to each
component separately, according to its distribution. The following noise
levels are added to the system: {0.5%, 1%, 2%, 4%, 8%, 16%}. As
suggested in a recent study, the measured displacement by the 3DIC
camera had an average of about 3% noise in its values [11].
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Fig. 5. (Left) Visualization of �raw with 136 elements, subject to a downward distributed load !. (Right) EMD map of the frame.

We find that as the noise level increases, the median EMD ap-
proaches the 0.015 m threshold value (indicated again by a red line in
Fig. 14). With localization accuracy declining from 83.8% at 0% noise
to 71.32% at 2% noise to 59.6% at 16% noise. Particularly, the mean
EMD value in low-noise conditions (d 2%) 0.0016 m (std = 0.0040 m)
degrades significantly in high-noise conditions (e 2%) 0.0142 m (std
= 0.0020 m). Dizaji et al. [11] report a similar drop in range 5%3
10% in the localization and detection accuracy when transitioning from
simulation to experiment.

Detailed analysis shows that the localization error often starts in the
columns and gradually expands to the beam as noise increases, with
column EMD values ranging from 0.0105 m to 0.0150 m compared to
beam EMD values of 0.0078 m to 0.0132 m. This differential sensitivity
can be potentially explained by the distributed loading on the beam
imposing noticeable deformation compared to the columns, making
it robust to small measurement variations [50]. Therefore, smaller
displacements in columns make it challenging to diagnose them as
noise increases. These findings suggest that measurements with noise
levels beyond 2% should be carefully studied, and multiple loading
conditions might help to achieve a balanced solution that is robust to
noise, particularly for column damage identification.

3.7.2. Reconstruction from limited measurements
Here we examine how the quality of the solution is impacted by

reducing the measurements to only a portion of the full field, emulating
the effect of surface-level measurement (e.g., DIC) as opposed to subsur-
face nondestructive evaluation techniques. Fig. 15 shows the variation
in displacement measurement density with changes in penetration
depth (�). This depth-dependent density of displacement measurements
enables a comparison between surface and full-field measurements.
Note that for this experiment, we need to work with thicker elements
(beam and columns) compared to the frame in preceding results, so
that increasing the penetration depth adds a significant number of
observations for the solver.

We start the experiment by using the surface displacement � = 0.1 m
(116 vertices) and test with 0.3 m (229 vertices) and 0.5 m (284
vertices). Each vertex has an x- and y-component that will be used in
the inversion process. Also, note that the number of observed points in
� = 0.5 m is equivalent to the full-field case.

Fig. 16 shows that median EMD value improves modestly by in-
creasing penetration depth: 2.08 × 10−3 m at � = 0.1 m, 1.97 × 10−3 m at
� = 0.3 m, and 1.93 × 10−3 m at � = 0.5 m. The localization accuracy,
defined as the percentage of elements below EMD < 0.0039 m remains
consistent: 82.9% for both surface- and intermediate-level depths and a
slight increase to 84.2% using the full-depth information. The 0.0039 m
threshold was calculated for this frame and defined, as before, as the

EMD value of a single-damaged frame to an undamaged frame.
In this experiment, surface measurements capture most of the in-

formation in the full field, suggesting that increasing the measurement
depth does not systematically affect the EMD value (r = −0.001,
p = 0.725). While there is an increase in the number of correctly
localized elements as the penetration depth � increases, however, the
relatively similar median and EMD scores suggest that there is not
much additional information that can be gleaned from the full-field
displacement.

Our results support the use of surface deformations as a proxy to
full-field measurement in this scenario, achieving 82.9% accuracy with
only 40.8% of the measurement points. This observation is on par with
the literature where the authors report robust localization and detection
of subsurface damage using DIC surface measurement [11]. However,
the results should be evaluated for specific problem requirements to be
used in non-destructive schemes.

3.7.3. Problem geometry and size
So far, we have studied a single-story, single-span frame for dam-

age localization, as shown in Fig. 5 (left). To demonstrate that our
algorithm is robust against changing mesh geometry and size, we now
investigate two additional scenarios: a fixed-fixed beam and a multi-
span multi-story frame, as shown in Fig. 17. The columns are fixed at
their lowest part (y = 0 m).

Due to the increased number of elements, this two-story and three-
span frame is a more difficult inverse problem. To control the effect of
variation in detection resolution (average element size), we included
results for a fixed-fixed beam with 440 elements, a single-story frame
(SSF) with 450 elements, and a multi-story frame (MSF) with 540
elements.

We assume a distributed downward vertical loading on the top
and second floor of the MSF, resulting in the shown EMD map in
Fig. 17 (bottom), where the elements on the first and second floors have
relatively low EMD.

We notice that elements with larger EMD are mostly located near
the edges and corners, perhaps due to the complex loading and stress
patterns in these areas. These locations, where beams and columns
intersect, experience complex stress states because of the interaction
of multiple force transfer mechanisms such as bending moments, shear
transfer, and geometric discontinuity. This complexity poses a chal-
lenge for the inverse solver to accurately disentangle and back-calculate
the sensitivity of multiple interacting elements, ultimately leading to
reduced localization accuracy in these regions.

Additionally, we examine a beam with two fixed ends at x = 0 m and
4 m, shown in Fig. 17 (top). The beam is under 1 kN/m downward point
loading. Compared to both the single-story frame and MSF, Fig. 18
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Fig. 6. Comparative examples of small, medium, and large EMD values. Solutions are zoomed-in to aid with visualizing the damage location. Ground Truth, �GT, shown on the
left and optimized, �opt im, on the right.

shows consistently lower EMDs (median = 0.00076 m) for the beam.
This is compared to both the SSF (median = 0.0019 m) and MSF
(median = 0.0030 m). The higher localization accuracy of the beam
case can be attributed to its simpler geometry and straightforward load
path. However, even in this simpler case, we find that damages closer to
the beam’s boundary are less likely to be accurately localized, i.e., have
a higher EMD. This observation is consistent with what we observed
with the SSF and MSF, where damages in low displacement regions are
less likely to be identified.

We observe a significant difference in EMD distributions across the
three structures. The results show that increasing the geometrical com-
plexity influences the localization accuracy, with the largest disparity
observed between the beam and MSF.

3.7.4. Measurement and mesh error tolerance
Another limiting assumption of this work is that we generate the tar-

get displacement field and run the inverse solver using the same mesh.
This assumption is problematic in practice, as measurements of real-
world objects are discrete. In such cases, the Finite Element (FE) model
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Fig. 7. EMD distributions for varying damage radii, incrementally increasing by
enlarging the radius R and damaging adjacent elements around the arbitrarily chosen
initial damaged element’s centroid.

Fig. 8. EMD distributions for cases with multiple simultaneous damages across the
system.

Fig. 9. EMD distributions as a function varying initial values, starting from 0.1 and
incrementally increasing by 0.1 steps to reach �max = 1.0.

often has more elements/nodes than the measurements. Conversely,
DIC systems provide high-resolution measurements of the displacement
field, where the FE model may have fewer elements than the number of
measurements. We emulate the effects of resolution mismatch between
the measured data and the model in two different experiments here to
investigate the implications in real-world scenarios.

As shown in Fig. 19 (left), we first investigate the conventional
approach, where the measured data is discrete, thus providing fewer
measurements to reconstruct the solution. For this, we use 136 ele-
ments (104 nodes) to generate the target displacement and recover the

Fig. 10. Mean values of optimized structure found with different initial values when
there is no damage in the frame.

solution with 241 elements (181 nodes). Note that the total number of
measurements of the target displacement field is 104 × 2 because we
measure the x- and y-displacement for each node. For the optimization
process, we update the FE mesh with 241 elements, meaning we use
208 measurements to recover 241 unknowns. The discrepancy between
the existing elements and nodes arises because we use a triangular
mesh, leading to some overlapping and non-overlapping nodes.

Fig. 19 (left) shows the result for the conventional approach, sug-
gesting that we can recover damage existing in all regions of the
original frame (used for obtaining measurements) with high accuracy.
We use the ground truth mesh to display the solutions because the
original damaged elements were assigned to it.

Secondly, we investigate a case more relevant to our argument in
this work based on the idea of DIC data collection. As shown in Fig. 20
(right), in the case where the measurement resolution is higher than
the FE mesh used for recovering �, we still achieve a comparable
EMD to the traditional case. We use 362 measurements to recover
136 unknowns. Additionally, by comparing the EMDs in Fig. 20, we
observe that the median EMDs are comparable for both scenarios, at
0.1334 ± 0.0056 m for the upsampling (fewer measurement) case and
0.1344 ± 0.0030 m for the downsampling (more measurement) case.
However, a Kolmogorov3Smirnov test shows that the EMD distributions
are statistically different (D = 0.248, p < 0.001), indicating that while
median EMD values are comparable, the resulting distributions differ
from each other, such as differences in the spread and the tail, as seen
in Fig. 20.

This section focused on whether a mismatch between the GT and
optimized mesh results in significantly lower damage localization ac-
curacy. According to Fig. 20, there is no noticeable change in the
median EMDs, indicating that the solver is robust to a small mismatch
between the number of measurements and unknowns in the FE model
at the tested scale. The results are promising for the tested problem.
However, it should be noted that as long as the number of linearly
independent measurements is larger than the number of unknowns, we
will arrive at a unique solution. If this condition is violated, we may
have a potentially infinite number of solutions [5].

3.7.5. Measurement mismatch
We finally examine the implications of using displacement mea-

surements measured and evaluated at imprecise nodal points of the
FE model. This assumption introduces a notable limitation, particularly
when the actual measurement locations do not perfectly align with the
FE model’s nodal coordinates. To assess the impact of this misalign-
ment, we introduce Gaussian white noise with a standard deviation of
1� to the x- and y-components of nodal coordinates. The standard devi-
ation values, �, are varied across a range: 0.5%, 1%, 2%, 4%, and 8%.
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Fig. 11. Examples of small, medium, and large EMD values for the fixed-fixed beam consisting of 1024 elements. Solutions are zoomed in to aid with visualizing the damage
location. Ground Truth, �GT, shown on the left and optimized, �opt im, on the right.

Fig. 12. Illustration of (top) a fixed-fixed beam consisting of 64 elements, subjected
to a downward point load, P . (bottom) a multi-story frame (MSF) consisting of 540
elements subject to downward distributed load ! on the second and first floors.

Fig. 13. EMD distributions for the fixed-fixed beam in Fig. 12 as the number of
elements in the model increases.

Fig. 14. EMD distributions in response to increasing input measurement noise, incre-
mented in multiples of 2 (e.g., 1, 2, 4, 8, 16).
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Fig. 15. Illustration of the effect of penetration depth on selected vertices. The sampled vertices are color-coded to reflect various levels of penetration depth. As the penetration
becomes deeper, the number of highlighted sampling points increases, indicating a greater extent of measured displacement.

Fig. 16. EMD distributions as a function of varying penetration depth �. As � increases,
the number of measurements approaches the observable full-field data.

Sampling at the perturbed coordinates can be challenging as some
coordinates may fall outside the predefined geometry of the FE mesh.
To address this, we recalibrate components that deviate beyond the ge-
ometry, leading to new noise percentages of 0.29%, 0.62%, 1.13%, 2.33%,
3.85%, 6.51%. Fig. 21 shows that as the mismatch noise increases, the
median shifts towards the baseline red line, indicating that fewer
elements are localized accurately. Quantitatively, at 0.29% noise, the
localization accuracy is 86.03%. As the noise level increases to 2.33%
noise, the localization accuracy drops to 72.06% and remains fairly
consistent thereafter.

Results imply that for noise levels above 2%, the solver tends to con-
verge to an undamaged solution. Hence, as the coordinates mismatch
increases, the results become less reliable, and some may have already
diverged.

4. Conclusions

In this study, we demonstrated the use of a differentiable-physics-
based inverse solver to localize element-level damage in a single-story
frame with 83.3% accuracy. We found that our approach could reliably
identify and localize damage at an element-level accuracy with a 72%

accuracy considering measurement and mesh alignment noise. We use
the EMD evaluation metric that helped us identify the locations where
the framework generates reliable results and identify locations where
the solutions may be less certain. Additionally, compared to previous
studies that typically modeled frames with few elements [4,50,51],
our method is able to accommodate structures with a large number of
parameters, here we show frames with up to 540 elements, and beam
with up to 4096 elements. This represents a significant advancement in
terms of model complexity and resolution.

We evaluated the robustness of the inverse solver under a variety
of conditions to emulate real-world use. These tests include different
damage configurations, initialization, noise levels in measurements,
changes in system geometry, and variations in model resolution. De-
spite the inherent challenges associated with these conditions, the
solver was robust to most of these perturbations. However, it is impor-
tant to note that real-world noise levels, especially in the 3%35% range,
posed significant challenges. Furthermore, it is essential to note that
our methodology and system have primarily been tested with synthetic
data. The generated data, while instrumental in providing controlled
conditions for initial testing, may not capture important effects present
in real-world SHM applications.

While our results are promising, there are several limitations to
our approach that need to be acknowledged. Firstly, the study is
restricted to damaged elements, rather than discontinuities that might
be associated with fracture. Secondly, the linear elasticity assumption
inherent in our methodology might be an oversimplification for some
structures.

Third, we relied on a local optimizer (gradient descent) in our
framework. Although we implemented several techniques to tackle the
ill-posedness of the problem, the nature of local optimization means
that there is a substantial likelihood of arriving at solutions that diverge
from the ground truth. Moreover, the assumption of exhaustive knowl-
edge of loading and boundary conditions can be a potential limitation
in real-world scenarios.

Considering these points, we argue that differentiable physics is
a promising new tool to augment conventional finite element model
updating techniques. It enables fast and scalable inversion of structural
systems at the element-level, which pairs well with high-resolution, pre-
cise measurements provided by modern full-field sensing techniques.

Structures 71 (2025) 108142 

11 



B.R. Farnod et al.

Fig. 17. EMD maps for (top) a fixed-fixed beam subject to a point load and (bottom) the multi-story frame (MSF) subjected to traction loading on the first and second floors.

Fig. 18. Comparison between the EMD distributions of different structural geometries.

Gradient descent makes the solver highly scalable, with the resolution
demonstrated here likely being sufficient to provide an initial assess-
ment of a structure’s condition. Additionally, our results suggest that
the differentiable physics depends only on having a representative,
rather than exact, representation of the system.

In the future, we hope to further explore the limitations of the
approach and implement it in a controlled laboratory environment.
This could involve constructing scaled-down replicas of structural el-
ements like cantilever beams, fixed-fixed beams, and a down-sized
single-story single-span frame. Future studies could consider testing for
various static loading scenarios where the effects of induced loads on
the structure with different directions, magnitudes, and durations can
be studied. Additionally, the laboratory setting will allow for precise
control over lighting conditions, including light intensity, orientation,
and the presence of shadows, which can influence the accuracy of
DIC measurements. Furthermore, it might be of interest to investigate
the effectiveness of combining dynamic vibration data, such as mode
shapes, with static displacement to increase the method’s robustness
and accuracy. These laboratory-scale experiments play a crucial role
in validating the proposed method and understanding its strengths and
limitations in practice.
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Fig. 19. Zoomed-in EMD map showing (left) upsampling and (right) downsampling scenarios.

Fig. 20. Comparison of EMD distributions between upsampled (discrete) and down-
sampled (continuous) measurement scenarios.

Fig. 21. EMD distribution for scenarios with varying degrees of misalignment between
the measurement nodes and the constructed FE model.
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