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A B S T R A C T   

This study investigates the ef昀椀cacy of saliency mapping algorithms in capturing the visual pri-
orities of building inspectors for structural damage assessment. Our work established a ground 
truth dataset by implementing eye-tracking technology to capture the gaze patterns of building 
inspectors. Further, it enables a detailed evaluation of the saliency models’ ability to re昀氀ect ex-
perts’ visual attention during inspection tasks. Our comparative analysis assesses the performance 
of three saliency models— EnDec, DeepGaze, and SALICON— against this ground truth data, 
using conventional saliency metrics such as Area under the Curve, Similarity, Normalized 
Scanpath Saliency, Correlation Coef昀椀cient, and Kullback-Leibler Divergence. Our 昀椀ndings reveal 
that while the SALICON model demonstrates a marginally better performance and highlights 
areas where these models fall short, particularly in accurately re昀氀ecting the critical visual 
properties of inspectors, this insight is crucial for advancing the 昀椀eld. By highlighting these 
limitations, we have drawn attention to the need for developing more specialized saliency models 
tailored to the unique demands of building inspection tasks. Thus, the study not only ful昀椀lls its 
objectives of comparative analysis but also contributes to the broader discourse on improving 
automated structural inspection systems. This study highlights the need to develop specialized 
computer vision models to address speci昀椀c building inspection challenges. By identifying 
strengths and improvement areas, this research contributes valuable insights and highlights the 
potential and current limitations of applying computer vision techniques to real-world building 
inspection tasks.   

1. Introduction 
Preliminary damage assessment and structural inspection are crucial for routine building inspections or evaluating the damage 

caused by natural disasters [1]. For damage assessment or initial response following post-disaster, it is critical to ensure the safety of 
the built environment [2,3]. Traditional structural inspections are typically conducted by experienced and knowledgeable engineers, 
who make assessments based on visual observations of the damage to a structure, following strict procedures and guidelines. While 
most inspection processes are conducted by manual visual inspection, human resources are often limited following the post-disaster 
recovery process due to safety concerns and the associated cost [4,5]. 

In recent years, unmanned aerial vehicles (UAV) have been used widely for damage assessment and structural inspections [6–8]. 
Previous works have explored the application of UAVs to enhance infrastructure inspection tasks such as building monitoring [9], 
railway inspection [10], structural component recognition [11], and LIDAR-based bridge inspection [12,13]. Further, arti昀椀cial 

* Corresponding author. 
E-mail addresses: rakeh@psu.edu (M.R. Saleem), nap@psu.edu (R. Napolitano).  

Contents lists available at ScienceDirect 

Journal of Building Engineering 
journal homepage: www.elsevier.com/locate/jobe 

https://doi.org/10.1016/j.jobe.2024.110678 
Received 15 February 2024; Received in revised form 20 August 2024; Accepted 4 September 2024   

mailto:rakeh@psu.edu
mailto:nap@psu.edu
www.sciencedirect.com/science/journal/23527102
https://www.elsevier.com/locate/jobe
https://doi.org/10.1016/j.jobe.2024.110678
https://doi.org/10.1016/j.jobe.2024.110678


Journal of Building Engineering 97 (2024) 110678

2

intelligence (AI) based methods have increasingly gained popularity for the past two decades [14–17]. But where should a UAV look 
for damage, and how can it guarantee accurate damage reconnaissance? To achieve this, we need to transfer the expert knowledge of 
human inspectors to UAVs, and the UAV should be capable of identifying the salient damage from a structure. 

Convolutional neural networks (CNNs) have succeeded in 昀椀elds like image recognition and computer vision [4]. Nevertheless, the 
opacity of the CNN model raises concerns about their generalizability and which features contribute to their decisions. Contemporary 
methods and analyses must address the challenge of machine learning interpretability more thoroughly. Current research concentrates 
on a limited array of issues, resulting in sparse practical guidance [18]. Some studies [19] emphasize de昀椀ning taxonomies and un-
derstanding interpretability mechanisms, offering critical reviews of machine learning algorithms. Lipton [20] outlined the de-
昀椀ciencies that should be addressed to ensure that the algorithms perform predictably. Some evaluative aspects have been discussed in 
Refs. [18,21]; however, they do not extensively cover the interpretability of a deep neural network (DNN) model. 

Building upon the foundation of using CNNs for damage detection, recent strides have been made in leveraging saliency maps as a 
means of enhancing detection capabilities [22,23]. Saliency maps provide a visual representation of the most relevant regions within 
an image, thereby offering insights into where the network focuses its attention during the decision-making process. While saliency 
maps have shown promise in various applications, their utilization, speci昀椀cally for damage detection, remains largely unexplored. A 
normal saliency map provides a visual representation of how much each point of an input image stands out with respect to its 
neighboring points. The extent to which saliency maps accurately represent the areas impacting network decisions is still being 
determined [24]. By examining if existing saliency map algorithms can identify the visual features most important to building in-
spectors, this research seeks to enhance the ef昀椀ciency of building inspections. 

To examine the ef昀椀cacy of saliency maps in accurately capturing the critical visual features for building inspection [25], 
eye-tracking technology can serve as a valuable benchmark. By tracking the gaze patterns of experienced human inspectors as they 
assess structural damage, we can establish a ground truth dataset that re昀氀ects the regions of interest deemed signi昀椀cant by human 
experts. This ground truth dataset can then be utilized to evaluate the correspondence between the areas highlighted by saliency maps 
and those attended to by human inspectors. Such comparative analysis not only provides a means to quantify the accuracy of saliency 
maps but also offers insights into potential discrepancies or areas for improvement. In eye tracking research, heat maps and attention 
maps show the average of the continuous 昀椀xation locations where participants focus more on their attention time and are viewed the 
most. Fig. 1 shows a typical saliency predictor with a test image highlighting the saliency map. This work seems to do an in-depth 
exploration to understand the gap between saliency mapping predictors and ground truth 昀椀xation data to capture inspectors’ vi-
sual priorities for building damage assessment. This exploration holds the potential to not only improve the accuracy of damage 
reconnaissance but also to shed light on the intricate features and patterns indicative of structural damage, thus advancing the 昀椀eld of 
automated structural inspection and disaster response. 

This research is a novel contribution as it addresses the performance of various saliency map algorithms within the context of 
building inspections leveraging eye tracking technology. The primary research question centers on comparing the ability of these 
algorithms to identify and represent visual features deemed important by building inspectors during assessments. Findings suggest that 
conventional saliency models do not adequately address the complex requirements of building inspections [26], highlighting the 
necessity for specialized data and models tailored to this domain. This research contributes valuable insights into applying computer 
vision methods in real-world inspection scenarios, with implications for enhancing inspection accuracy and ef昀椀ciency. 

2. Related work 
The current state-of-the-art analysis methods do not comprehensively address machine learning interpretability. Instead, they focus 

on a narrow subset of issues, so only limited guidance can be extracted. An attempt to introduce model interpretability and to use it to 
optimize performance was made by Ref. [27]. The approach was successful in reconstructing and visualizing features of the input 
image that had been identi昀椀ed by the intermediate layers of a network. Saliency maps are probably the most popular technique for 
visually explaining CNN’s decision [28]. In the last decade, saliency prediction has been widely studied. As presented in Ref. [29], the 
visualizations provided by this approach help explain the failure of CNNs, identify biases present in the datasets, and prepare models 

Fig. 1. Comparison between a normal 昀椀xation map and conventional saliency map.  
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that are robust against adversarial attacks. Therefore, they offer an improved development process and greater generalization of 
trained models. 

Several eye tracking datasets have been recently constructed and shared in the community to understand visual attention and to 
build computational saliency models. An eye-tracking dataset includes natural images as the visual stimuli and eye movement data 
recorded using eye tracking devices. Most datasets have their own distinguishing features in image selection. For example, POET [30], 
the largest dataset we know by far, contains 6270 images and is only viewed by 昀椀ve subjects. The MIT dataset [31] is more general due 
to its relatively large size, i.e., 1003 images, and the generality of the image source. The OSIE dataset [6] features multiple dominant 
objects in an image to facilitate object and semantic saliency. The experimental requirements inherently limit the scale of the current 
datasets. The present work leverages the SALICON eye tracking dataset, which was not explicitly captured for building damage 
analysis, to train and compute the saliency maps. The ground truth dataset, derived from human expertise while doing building as-
sessments, will serve as a benchmark against which the accuracy of existing saliency datasets and models can be evaluated. 

Methods for comparing saliency maps and ground truth are presented in Ref. [32]. In this study, the authors performed two types of 
randomization tests. The 昀椀rst focused on the randomization of a model, and the second randomized labels in a training dataset to check 
the performance of saliency map algorithms on a correctly labeled test dataset. With the advent of models using deep neural networks 
[28,33–38], the saliency prediction has been improved remarkably. The 昀椀rst model [39] to use ensembles of the deep network (eDN) 
trained from scratch to predict saliency cannot scale to outperform the current state-of-the-art due to limited data. Kummerer et al. 
[38] addressed this issue by reusing existing neural networks trained for image classi昀椀cation to predict 昀椀xation maps. Subsequently, it 
was found that DNN trained on object recognition (AlexNet [40] trained on VGG-16 [41]) could signi昀椀cantly outperform training from 
scratch [36]. Liu et al. [42] presented a multi-resolution CNN trained from image regions centered on 昀椀xation and non-昀椀xation lo-
cations at multi-scales. The SALICON model [43] 昀椀ne-tunes a mixture of deep features from AlexNet, ImageNet [20], and GoogleNet 
[21] for saliency prediction using the SALICON and OSIE datasets. 

3. Methodology 
3.1. Comparison metrics for saliency maps and ground truth datasets 

In this paper, we study saliency metrics functions that take two inputs representing eye 昀椀xations— ground truth 昀椀xation map based 
on task-speci昀椀c eye tracking data and predicted saliency map based on task-agnostic eye tracking data, and output a number assessing 
their similarity or dissimilarity. Given ground truth gaze 昀椀xations, these comparison metrics are used to de昀椀ne scoring functions, 
which take a saliency map prediction as input and return the score, assessing the accuracy of the prediction. We consider the 昀椀ve most 
common saliency evaluation metrics, as shown in Table 1. While some metrics have been designed speci昀椀cally for saliency evaluation 
(AUC [44], normalized scanpath saliency [45]), others have been adapted from signal detection (variants of AUC [46]), image 
matching and retrieval (Similarity [47]), information theory (KL-divergence [47]) and statistics (Pearson’s correlation coef昀椀cient 
[48]). Because of their original intended applications, these metrics expect different input formats: Kullback-Leibler divergence ex-
pects valid probability distributions as input, and Similarity can operate on unnormalized densities and histograms. At the same time, 
Pearson’s Correlation Coef昀椀cient (CC) treats its inputs as random variables. 

The MIT Saliency Benchmark [31] interprets metric scores and different methods. It accepts saliency maps as intensity maps 
without restricting input to any particular form (probabilistic or otherwise). If a metric expects valid probability distributions, we 
simply normalize the input saliency maps without additional modi昀椀cations or optimizations. Different metrics use different formats of 
ground truth for evaluating saliency models. Location-based metrics consider saliency map values at discrete 昀椀xation locations, while 
distribution-based metrics treat ground truth 昀椀xation maps and saliency maps as continuous distributions. To evaluate the perfor-
mance of the saliency metric, Eq. (1) shows the relation that involves comparing predicted saliency maps and ground truth eye 昀椀x-
ations. The fundamental concept behind saliency metrics is to quatitatively assess how well a predicted saliency map corresponds to 
actual human visual attention, as represented by the ground truth eye 昀椀xations. Good saliency models should have high values for 
similarity metrics and low values for dissimilarity metrics.  

Metric = Ϝ(P, GT)                                                                                                                                                          (1) 
where ϝ is a function that takes P as a saliency map and GT as a ground truth and predicts the score for the metric under consideration. 
In this paper, we analyze these 昀椀ve metrics in isolation from the input format and report on the Eye tracking dataset [9]. The only 
distinction we make in terms of the input that these metrics operate on is whether the ground truth is represented as discrete 昀椀xation 
locations or a continuous 昀椀xation map. Accordingly, we categorize metrics as location-based or distribution-based [49]. In this section, 
we discuss the particular advantages and disadvantages of each metric and present visualizations of the metric computations. 

Table 1 
Metrics used for evaluating saliency maps.  

Metrics Location-based Distribution-based 
Similarity Area under ROC curve [44,46,50] Similarity [47] 

Normalized scanpath saliency [44,48,50–52] Pearson’s correlation coef昀椀cient [44,46,48] 
Dissimilarity – Kullback-leibler divergence [47,51]  
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3.2. Location-based metrics 
3.2.1. Area under ROC curve (AUC) 

Given the goal of predicting where viewers will focus their attention on an image, a saliency map can distinguish between pixels 
that attract gaze and those that do not, effectively acting as a pixel-level classi昀椀cation tool. This concept introduces a metric for 
assessing the effectiveness of saliency maps. According to signal detection theory, the Receiver Operating Characteristic (ROC) curve is 
a tool that evaluates the balance between true positives and false positives across different levels of sensitivity [53]. The area under this 
ROC curve, AUC, is the predominant measure for evaluating saliency maps. Essentially, the saliency map is analyzed as a binary 
classi昀椀er that identi昀椀es 昀椀xations at different threshold levels, generating a ROC curve by comparing the rate of true positives and false 
positives for each threshold level. The way true and false positives are computed varies across different AUC methodologies. Alter-
natively, AUC can be viewed as an indicator of a model’s accuracy on a 2AFC task, where the model must choose between two potential 
points on an image, identifying which one is more likely to be the 昀椀xation [54]. 
3.2.2. Normalized scanpath saliency (NSS) 

Normalized Scanpath Saliency is a measure between a saliency map and a set of 昀椀xations computed as the average normalized 
saliency at 昀椀xation locations along a subject’s scan path [55]. The absolute saliency values are part of the normalization calculations. 
Given a saliency map P and a binary map of 昀椀xation locations QB: 

NSS (P,QB) =
1
N
3

i
Pi × QB

i (2)  

where P = P-μ(P)
σ(P) and N = 3

i
QB

i 

where i indexes the ith pixel and N is the total number of 昀椀xated pixels. A positive value indicates correspondence between maps 
above chance, and a negative NSS indicates anti-correspondence. For instance, a unity score corresponds to 昀椀xations falling on por-
tions of the saliency map with a saliency value of one standard deviation above average. 

3.3. Distribution-based metrics 
3.3.1. Similarity (SIM) 

The similarity metric measures the similarity between two distributions, viewed as histograms. It has gained popularity in the 
saliency community as a simple comparison between pairs of saliency maps. After normalizing the input maps, SIM is computed as the 
sum of the minimum values at each pixel. For a saliency map P and a continuous 昀椀xation map QD: 

SIM (P,QD)=
3

i
min(Pi,QD

i
) (3) 

iterating over discrete pixel locations i. Note that the model with the sparser saliency map has a lower histogram intersection with 
the ground truth map. SIM is very sensitive to missing values, penalizing predictions that fail to account for all ground truth density. 
The downside of a distribution metric like SIM is that the choice of the Gaussian sigma (or blur) in constructing the 昀椀xation and 
saliency maps affects model evaluation. 
3.3.2. Pearson’s correlation coef昀椀cient (CC) 

Pearson’s Correlation Coef昀椀cient, also called linear correlation coef昀椀cient, is a statistical method used generally in the sciences to 
measure correlated or dependent two variables. It is one of the most common methods used for numerical variables, and its values are 
between −1 and +1, where −1 means negative correlation, +1 means positive correlation, and 0 means no correlation. CC can be used 
to interpret saliency and 昀椀xation maps, P and QD, as random variables to measure their linear relationship [56]. 

CC(P,QD)=
σ
(P,QD)

σ(P) × σ
(QD) (4) 

where σ(P, QD) is the covariance of P and QD. CC is symmetric and penalizes false positives and negatives equally. Large positive CC 
values occur at locations where the saliency map and ground truth 昀椀xation map have similar magnitudes. 
3.3.3. Kullback-leibler divergence (KLD) 

Unlike SIM, Kullback-Leibler is a statistical measurement from information theory that measures and quanti昀椀es the differences 
between two probability distributions. Although KL divergence is a popular method, choosing a statistical distance check can 
sometimes be challenging. In saliency literature, depending on how the saliency predictions and ground truth 昀椀xations are interpreted 
as distributions, different KLD computations are possible. Analogous to our other distribution-based metrics, our KLD metric takes as 
input a saliency map P and a ground truth 昀椀xation map QD and evaluates the loss of information when P is used to approximate QD: 

KLD (P,QD) =
3

i
QD

i log
(∊ +

QD
i∊ + Pi

)

(5)  

where ∊ is a regularization constant. KL-Judd is an asymmetric dissimilarity metric, with a lower score indicating a better approxi-
mation of the ground truth by the saliency map. The pixels where the ground truth value QDi is non-zero, but Pi is close to or equal to 
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zero, a large quantity is added to the KLD score, making the regions brighter in the KLD visualization. However, KLD is so sensitive to 
zero-values that a sparse set of predictions is penalized harshly, signi昀椀cantly worse than chance. 

3.4. Qualitative evaluation of saliency 
Most saliency papers include side-by-side comparisons of different saliency maps computed for the same images (as in Fig. 3). 

Visualizations of saliency maps are often used to highlight improvements over previous models. A few anecdotal images might be 
utilized to showcase model strengths and weaknesses. Bruce et al. [57] discussed the problems with visualizing saliency maps, 
particularly the strong effect of contrast on the perception of saliency models. We propose supplementing saliency map examples with 
visualizations of metric computations (as shown in Figs. 5 and 6) to provide an additional means of comparison that is more tightly 
linked to the underlying model performance than the saliency maps themselves. 

4. Evaluation setup 
4.1. Data collection 

We use an eye tracking dataset for building façade inspection as the ground truth dataset for this paper [58]. This dataset contains 
eye tracking data of ten participants for two building structures, recorded using Tobii Pro Glasses 3 [59] with a 100 Hz sampling rate, 
1920 x 1080 resolution @ 25 fps, and four infrared cameras. Participants were allowed to view and walk around the structure freely to 
capture dynamic gaze data. The free viewing task is most commonly used for saliency modeling, requiring a few additional as-
sumptions [49]. Pro Glasses 3 allows one-point calibration of gaze patterns and attention 昀椀lters to compensate for dynamic eye 
movements due to the nature of the data collection setup (wearable eye tracking). 

The gaze data collected will serve as the ground truth 昀椀xation map. An important step was to generate discrete and continuous 
昀椀xation maps for saliency metrics since some of them calculate the similarity score based on 昀椀xation location while others calculate 

Fig. 2. Saliency metrics are compared on how well they approximate ground truth eye movements, represented as discrete 昀椀xation locations or a continuous 昀椀xation 
map for (a) nparticipant = 1 and (b) nparticipant = 10. 
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based on 昀椀xation distribution. Fig. 2 shows an example of a 昀椀xation map (distribution-based) and 昀椀xation locations (location-based). 
To generate 昀椀xation points, the collected gaze data was 昀椀rst denormalized and converted to image coordinates such that they cor-
responded to the input image. Finally, the results are compared with the existing saliency maps to compare the differences with the 
ground truth data and compute the scores based on the 昀椀xation location. 

4.2. Methods for comparing saliency maps 
To visualize saliency evaluation metrics and highlight their differences in metric behaviors, we used different saliency models for 

which code is available online. The results were reproduced from these models trained on the SALICON dataset [60]. These models 
include 1) a Contextual encoder-decoder network for visual saliency prediction [61], 2) head pose estimation using CNN and adaptive 
gradient methods [62], and 3) Saliency in context [43]. These models were chosen due to their simplicity and were most common in 
generating saliency maps without requiring additional training but 昀椀ne-tuning the models to generate saliency maps. 
4.2.1. Encoder decoder model 

Kroner et al. [61] proposed a CNN architecture based on semantic segmentation with modi昀椀ed modules to predict 昀椀xation density 
maps of the input image. Their approach leverages object-speci昀椀c features to replicate human behavior under free viewing conditions. 
They adapted from the popular VGG16 architecture [63] as an image encoder by reusing the pre-trained convolutional layers to extract 
complex features. To restore the original image resolution on the decoder end, extracted features were upsampled and processed 
through a series of convolution layers. The actual implementation of the EnDec model and training was done on SALICON before 
昀椀ne-tuning the weights towards 昀椀xation prediction on either of the datasets MIT1003 [64] or CAT2000 [65] with the same optimi-
zation parameters. For our evaluation, the pre-trained model was 昀椀ne-tuned and tested using SALICON weights. The results and 
discussion are provided in section 5 in detail. 
4.2.2. DeepGaze model 

Patacchiola et al. [62] originally proposed a CNN-based model for head pose estimation using adaptive gradient methods. They 
implement an object detection framework for the face detector and a CNN network for the head pose estimator. The graphical rep-
resentation of their CNN models has two convolution layers, two subsampling layers, and two fully connected layers. Originally, their 
work involved training on the AFLW dataset for face detection and was tested using various methods. They had a major challenge 
regarding increasing pose estimation error for the face detector when it returned a frame that was not well centered on the subject’s 
face. 
4.2.3. SALICON model 

Jiang et al. [43] proposed a visual attention method by introducing a novel method for collecting extensive human attention data 
during natural image exploration. Unlike existing datasets focusing on images and task-speci昀椀c annotations, SALICON emphasizes 
capturing the dynamics of human attention shifts. Employing a mouse-contingent multi-resolution approach inspired by studies of 
peripheral vision, it facilitates the simulation of natural viewing behaviors using a standard mouse, thus allowing for the collection of 
data on an unprecedented scale. This approach has been validated in both laboratory and online settings, resulting in a 
proof-of-concept dataset from the COCO image dataset. The dataset’s potential to improve visual understanding and saliency model 
training has been demonstrated through its application in saliency prediction, proving to be a valuable ground truth resource for 
algorithm evaluation. With ongoing data collection efforts, SALICON is poised to signi昀椀cantly contribute to the 昀椀elds of visual un-
derstanding and computer vision by providing a comprehensive resource for studying and modeling human visual attention. 

5. Results and 昀椀ndings 
We evaluate the performance of these models on existing saliency metrics for assessing building damage using eye tracking data, 

which is built upon the existing work of Saleem et al. [9]. To this end, we perform 1) 昀椀ne-tuning and training of saliency models with 
different pre-trained weights, 2) compare the ef昀椀ciency of individual models among other saliency models, and 3) evaluate the results 
for two different building sites. 

These experiments aim to quantify the ef昀椀cacy of conventional saliency models in detecting salient damage features and to 

Fig. 3. Saliency maps corresponding to three different models.  
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understand if future studies are needed to acquire more speci昀椀c data and models for building industry-speci昀椀c tasks. Most saliency 
models include a side-by-side comparison of saliency maps and benchmark the results in tabular form. Visualization of saliency models 
is often used to highlight improvements over previous models. This work will highlight the saliency map for visualization and provide 
metrics’ quantitative measures to understand the models’ performances better. For instance, Fig. 2 shows an input image and how well 
it approximates human ground truth eye movements. Fig. 2a indicates the gaze information for one participant showing their 昀椀xations 
on the lower part of the building with few outliers on the upper part; Fig. 2b indicates the cumulative, discrete 昀椀xation location 
distributed entirely over the entire façade. However, the 昀椀xation map highlights the region of interest in the lower part of the building 
below the window frame. 

The present work will not discuss individual participants’ gaze data since the prior work of Saleem et al. [9]. discussed the indi-
vidual behavior and analysis of gaze patterns comprehensively. This study will focus on how different models generate saliency maps 
and how different saliency metrics will impact the evaluation overall. A Python package based on TensorFlow was used to compare 
saliency mapping algorithms, and an out-of-the-box implementation was provided. Fig. 3 compares the three different models, i.e., 
EnDec, DeepGaze, and SALICON. 

This paper seeks to compare the effectiveness of models trained with task-agnostic eye tracking data to ground truth 昀椀xation maps 
based on task-speci昀椀c eye tracking data. The task-agnostic models were 昀椀ne-tuned with SALICON pe-trained weights. SALICON is 
currently the largest public dataset for saliency prediction and contains 10,000 training images and 5000 validation and testing images 
taken from the COCO dataset. The dataset contains images from the building site with various scenes of different lighting conditions. 
Although the eye tracking information was collected, the scene-viewing task was unrelated to damage assessment. A comparison of the 
昀椀ne-tuned saliency map on different pre-trained weights, such as the SALICON [60], MIT300 [31], and OSIE [66] datasets, is shown in 
Fig. 4. 

5.1. Location-based metrics analysis 
The AUC metric evaluates a saliency map’s predictive power by how many ground truth 昀椀xations it captures in successive level sets. 

To compute AUC, the saliency map is treated as a binary classi昀椀er of 昀椀xation at various threshold values, and an ROC curve is swept 
out. Thresholding the saliency map produces the level sets in the rightmost column. For each level set, the actual positive rate is the 
proportion of 昀椀xations landing in the level set (green points in the rightmost column). The false positive rate is the proportion of image 
pixels in the level set not covered in 昀椀xations. Five level sets corresponding to points on the ROC curve were included, and the AUC 
score for the saliency map is the area under the ROC curve. 

Judd et al. [41] proposed their AUC variant, called AUC-Borji [14], depicted in Fig. 5. A saliency map visualization and its cor-
responding AUC curve for evaluating saliency as a 昀椀xations classi昀椀er is indicated in the top row where TP and FP indicate true positives 
and false positives, respectively. In this context, the TP rate, also known as sensitivity or recall, represents the proportion of actual 
positives the model correctly identi昀椀es. The FP rate represents the proportion of actual negatives that are incorrectly identi昀椀ed as 
positives by the model. The ROC curve is a graphical representation of the trade-off between the TP and FP rates at various threshold 
settings of a binary classi昀椀er. 

The AUC score for the EnDec model is 0.54 (45ç angle), which means the model cannot identify salient features and perform class 
separation between true positives and true negatives [45]. For area under the curve metrics, the ROC curve is very important. The 
closer it is to the top left corner, the higher the test accuracy because the top left corner has the highest sensitivity with a false positive 
rate of 0. The natural distribution of 昀椀xations on an image tends to have higher density near the center, and therefore, models that 
incorporate center bias into their predictions would achieve a high AUC score. A model predicting the center portion of an image 
achieves a lower score of 0.5 and would likely perform worse since center bias is present in prediction and the model can not 
differentiate between true positives and false positives. Similarly, the bottom rows indicate the level sets and their corresponding 
threshold levels. Here, the green dots represent the true positive 昀椀xations, and the red dots represent the false positive 昀椀xations on 
individual levels set to illustrate their behavior. Different AUC implementations differ in calculating a true positive or false positive 
[46]. 

For the DeepGaze and SALICON model, the AUC curve is shown in Fig. 6, along with the TP and FP rate, where the AUC score for 
DeepGaze is 0.45 and SALICON is 0.62. Similarly, the curve for DeepGaze falls below 0.5, meaning that DeepGaze has failed and 
negatively correlates with the 昀椀xation map. On the other hand, SALICON models has a score of 0.62, with salient features highlighted 

Fig. 4. Saliency maps generated based on (a) SALICON, (b) MIT1003, and (c) OSIE pretrained weights.  
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close to the 昀椀xation map. It is interesting to note that although the SALICON model is trained based on the MIT300 dataset with gaze 
data, the task-free nature of data is inef昀椀cient for our case study. Therefore, the current saliency models perform poorly for our 
building inspection tasks even though the score is closer to +1. 

NSS measures similarity based on 昀椀xation location between a saliency map and 昀椀xation map (human ground truth). Fig. 7 visually 
illustrates the NSS technique comparing EnDec, DeepGaze, and SALICON models. Like AUC, the higher the NSS score, the higher the 
similarity, and vice versa. NSS usually normalizes a saliency map by the standard deviation of the saliency values. NSSEnDec has center 
bias with more similarity in the center according to the threshold scale, but in addition to this, the 昀椀xations are quite dispersed overall. 
NSSDeepGaze has highly similar 昀椀xation points, but there is no such relation with the 昀椀xation map since the model highlights the salient 
features on the window frame of the actual image. NSSSALICON shows a good similarity between the saliency map and ground truth 
昀椀xations, highlighting the damaged regions on the test structure. Also, NSSSALICON has an average positive score of 0.3477 compared to 
the other two models with negative scores. Table 2 shows comprehensive quantitative results and compares all the metrics under 

Fig. 5. AUC visualization of EnDec model with different level set.  

Fig. 6. Comparison of AUC curves for (a) DeepGaze and (b) SALICON model.  
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consideration. 
Table 2 compares saliency models for two building sites, and the sample size is changed from individual participants to all par-

ticipants. Individual participants indicate average scores for the location-based metrics compared to the total sample size. It should be 

Fig. 7. Normalized Scanpath Saliency map (nparticipants = 10).  

Table 2 
Performance score of location-based saliency metrics for different models.  

Sample Space Saliency Models Building-1 Building-2 
NSS ↑ AUC-Borji ↑ NSS ↑ AUC-Borji ↑ 

Individual participant EnDec −0.0679 0.4419 0.9606 0.6577 
DeepGaze −0.2991 0.4748 0.6295 0.5715 
SALICON 0.1646 0.4970 0.1075 0.4954 

All participants EnDec −0.0088 0.4753 0.8036 0.6284 
DeepGaze −0.2328 0.4791 0.4601 0.5475 
SALICON 0.1810 0.5009 0.1862 0.4999  

Fig. 8. Comparison of distribution-based metrics.  
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noted that for location-based metrics, the score must be high, which corresponds to higher correlation and similarity between two 
entities. From our results, we noticed that AUC-Dorji has an average score of 0.5, while the NSS score is lower for building 1 and higher 
for building 2. A score of greater than 0.8 means higher similarity and correlation; lower than that means the results are insigni昀椀cant 
and there is no strong similarity. From our results, our argument validates that conventional saliency maps cannot be used to train a 
model for building inspection since there is no similarity among salient features generated by available models for damage assessment. 
Further, the results clearly show the SALICON model’s performance over the other two. Although the metric score is higher for 
SALICON based compared to the EnDec and DeepGaze model, the score is close to 0 for NSS, while AUC-Borji has 0.5, which states it is 
not a strong correlation between the saliency map and the 昀椀xation map. 
5.2. Distribution-based analysis 

Location-based metrics described so far score saliency models on how accurately they predict discrete 昀椀xation locations. Suppose 
the ground truth 昀椀xation locations are interpreted as a possible sample from some underlying probability distribution. In that case, 
another approach is to predict the underlying distribution directly instead of the 昀椀xation locations. Although it is challenging to predict 
ground truth distribution, Gaussian blurring the 昀椀xation locations into a 昀椀xation map often approximates it. This section describes 
distribution-based metrics that score saliency models on how accurately they approximate the continuous 昀椀xation map. Taking the 
comparison further, we evaluated and compared the differences for metrics such as SIM, CC, and KL divergence. 

SIM has gained popularity in the saliency community as a simple comparison between pairs of saliency maps and computed the sum 
of pixel minimums between the predicted saliency map and the ground truth human 昀椀xations. A similarity score 1 indicates that the 
predicted map is identical to the ground truth data. The CC metric measures the linear coef昀椀cient between the saliency and 昀椀xations 
maps, with a score between −1 and +1. CC treats false positives and negatives symmetrically, but SIM places less emphasis on false 
positives than false negatives. As a result, all three saliency maps have low SIM and CC scores, resulting in a negative correlation 
between the ground truth 昀椀xation map and respective saliency models. Unlike SIM and CC, KLD measures the dissimilarity between the 
saliency map and the ground truth data and is much more sensitive to false negatives than SIM or CC. Fig. 8 visually illustrates the 
comparison among the three metrics (SIM, CC, and KLD) and how they compute similarity and dissimilarity among different models. 
SIM and CC metrics measure the similarity between the saliency map and the ground truth 昀椀xation map. SIM measures the histogram 
intersection between two maps, while CC measures cross-correlation. 

Fig. 8 shows the behavior of SIM and CC and how they are affected by false negatives and false positives. SIM penalizes false 
negatives signi昀椀cantly more than false positives, but CC treats both symmetrically. Due to its symmetric computation, CC can not 
distinguish whether the differences between maps are due to false positives or false negatives. The corresponding score also highlights 
that CC performs better and scores better than SIM, which is consistently higher for the SALICON model. The results in Table 3 suggest 
that although the SALICON model has higher correlation and similarity compared to the other two models and performs better than 
expected for location-based metrics, the score is still lower or close to 0 which validates our argument that the saliency map generated 
using these models cannot be relied upon for 昀椀xation. There is no similarity of saliency maps with the actual 昀椀xation maps. 

6. Conclusion and future work 
This paper provides a comparative analysis of saliency mapping algorithms and the effectiveness of models trained with task- 

agnostic eye tracking data to ground truth 昀椀xation maps in capturing visual priorities for building inspection. We compared the 
performance of three different models, i.e., EnDec, DeepGaze, and SALICON, with the ground truth data and provided a visual rep-
resentation of the most relevant regions within an image. By tracking the gaze patterns of experienced human inspectors as they assess 
structural damage, we can establish a ground truth dataset that re昀氀ects the regions of interest deemed signi昀椀cant by human experts. 
This ground truth dataset can then be utilized to evaluate the correspondence between the areas highlighted by saliency maps and 
those attended to by human inspectors. Despite looking at many saliency metrics, we compare the performance only for 昀椀ve common 
methods: the area under the curve, similarity, scan path saliency, correlation coef昀椀cient, and kullback-leibler. The results suggest that 
although the SALICON model has higher correlation and similarity compared to the other two models and performs better than ex-
pected for location-based metrics, the score is still lower or close to 0 which validates our argument that the saliency map generated 
using these models cannot be relied upon for 昀椀xation. There is no similarity of saliency maps with the actual 昀椀xation maps. This proves 
our argument that conventional saliency models are not suitable for our application in identifying damage and generating a saliency 
map. 

This result underscores the imperative for developing advanced, domain-speci昀椀c saliency models tailored to meet the unique 
requirements of building inspection tasks. Furthermore, the 昀椀ndings suggest the creation of specialized datasets that more accurately 
re昀氀ect the complexity of structural assessments, thereby enhancing the 昀椀delity of saliency models in practical applications. The im-
plications of this study extend beyond the structural inspection and civil engineering domain, offering valuable insights into the 
potential for human-machine collaboration in the broader 昀椀eld of automated disaster response and infrastructure maintenance. By 
bridging the gap between computational predictions and expert human judgment, we can signi昀椀cantly advance our capabilities in 
early damage detection, risk assessment, and the prioritization of repair efforts, ultimately contributing to the resilience and safety of 
the built environment. 
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[17] Y.J. Cha, W. Choi, O. Büyüköztürk, Deep learning-based crack damage detection using convolutional neural networks, Comput. Aided Civ. Infrastruct. Eng. 32 
(5) (May 2017) 361–378, https://doi.org/10.1111/MICE.12263. 

[18] L.H. Gilpin, D. Bau, B.Z. Yuan, A. Bajwa, M. Specter, L. Kagal, Explaining explanations: an overview of interpretability of machine learning. International 
Conference on Data Science and Advanced Analytics, Jul. 2018, pp. 80–89, https://doi.org/10.1109/DSAA.2018.00018. 

[19] S. Chakraborty, et al., “Interpretability of Deep Learning Models: A Survey of Results,” 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced 
& Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/ 
SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Jun. 2017, pp. 1–6, https://doi.org/10.1109/UIC-ATC.2017.8397411. 

[20] Z.C. Lipton, The mythos of model interpretability, Queue 16 (3) (Jun. 2018) 31–57, https://doi.org/10.1145/3236386.3241340. 
[21] Y. Gao, K.M. Mosalam, Deep learning visual interpretation of structural damage images, J. Build. Eng. 60 (Nov. 2022) 105144, https://doi.org/10.1016/J. 

JOBE.2022.105144. 
[22] M.A.A.K. Jalwana, N. Akhtar, M. Bennamoun, A. Mian, CAMERAS: enhanced resolution and sanity preserving class activation mapping for image saliency. 

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun. 2021, pp. 16322–16331, https://doi.org/10.1109/ 
CVPR46437.2021.01606. 

[23] K. Chen, G. Reichard, X. Xu, A. Akanmu, Automated crack segmentation in close-range building façade inspection images using deep learning techniques, 
J. Build. Eng. 43 (Nov. 2021) 102913, https://doi.org/10.1016/J.JOBE.2021.102913. 

[24] A. Silva, J. de Brito, Do we need a buildings’ inspection, diagnosis and service life prediction software? J. Build. Eng. 22 (Mar. 2019) 335–348, https://doi.org/ 
10.1016/J.JOBE.2018.12.019. 

[25] M. Fu, R. Liu, Q. Liu, How individuals sense environments during indoor emergency way昀椀nding: an eye-tracking investigation, J. Build. Eng. 79 (Nov. 2023) 
107854, https://doi.org/10.1016/J.JOBE.2023.107854. 

[26] M. Choi, S. Kim, S. Kim, Semi-automated visualization method for visual inspection of buildings on BIM using 3D point cloud, J. Build. Eng. 81 (Jan. 2024) 
108017, https://doi.org/10.1016/J.JOBE.2023.108017. 

[27] M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks arXiv:1311.2901v3 [cs.CV] 28 nov 2013, Computer Vision–ECCV 2014 8689 
(PART 1) (2014) 818–833, https://doi.org/10.1007/978-3-319-10590-1_53. 

[28] K. Szczepankiewicz, et al., Ground truth based comparison of saliency maps algorithms, Sci. Rep. 13 (1) (Dec. 2023), https://doi.org/10.1038/S41598-023- 
42946-W. 

[29] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-CAM: visual explanations from deep networks via gradient-based localization, Int. J. 
Comput. Vis. 128 (2) (Feb. 2020) 336–359, https://doi.org/10.1007/S11263-019-01228-7/FIGURES/21. 

[30] D.P. Papadopoulos, A.D.F. Clarke, F. Keller, V. Ferrari, Training object class detectors from eye tracking data, Lect. Notes Comput. Sci. 8693 (PART 5) (2014) 
361–376, https://doi.org/10.1007/978-3-319-10602-1_24/COVER. LNCS. 

[31] MIT/Tuebingen saliency benchmark. https://saliency.tuebingen.ai/. (Accessed 6 February 2024). 
[32] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, B. Kim, Sanity checks for saliency maps, Adv. Neural Inf. Process. Syst. (Oct. 2018) 9505–9515, 2018- 

December, https://arxiv.org/abs/1810.03292v3. (Accessed 7 February 2024). 
[33] L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid scene analysis, IEEE Trans. Pattern Anal. Mach. Intell. 20 (11) (1998) 1254–1259, 

https://doi.org/10.1109/34.730558. 
[34] C. Koch, S. Ullman, Shifts in selective visual attention: towards the underlying neural circuitry, Hum. Neurobiol. 4 (4) (1985) 219–227, https://doi.org/ 

10.1007/978-94-009-3833-5_5/COVER. 
[35] J. Tilke, K. Ehinger, F. Durand, A. Torralba, Learning to predict where humans look. IEEE International Conference on Computer Vision, 2009, pp. 2106–2113, 

https://doi.org/10.1109/ICCV.2009.5459462. 
[36] M. Kümmerer, L. Theis, M. Bethge, Deep gaze I: boosting saliency prediction with feature maps trained on ImageNet. International Conference on Learning 

Representations, 2014. 
[37] M. Cornia, L. Baraldi, G. Serra, R. Cucchiara, “A deep multi-level network for saliency prediction,”, in: Proceedings - International Conference on Pattern 

Recognition vol. 0, Jan. 2016, pp. 3488–3493, https://doi.org/10.1109/ICPR.2016.7900174. 
[38] M. Kummerer, T.S.A. Wallis, L.A. Gatys, M. Bethge, Understanding low- and high-level contributions to 昀椀xation prediction, Proceedings of the IEEE 

International Conference on Computer Vision (Dec. 2017) 4799–4808, https://doi.org/10.1109/ICCV.2017.513, 2017-October. 
[39] E. Vig, M. Dorr, D. Cox, Large-scale optimization of hierarchical features for saliency prediction in natural images. Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, Sep. 2014, pp. 2798–2805, https://doi.org/10.1109/CVPR.2014.358. 
[40] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classi昀椀cation with deep convolutional neural networks, Adv. Neural Inf. Process. Syst. 25 (2012) [Online]. 

Available: http://code.google.com/p/cuda-convnet/. (Accessed 7 February 2024). 
[41] K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 3rd international conference on learning representations, 

ICLR 2015 - conference track proceedings. https://arxiv.org/abs/1409.1556v6, Sep. 2014. (Accessed 7 February 2024). 
[42] N. Liu, J. Han, D. Zhang, S. Wen, T. Liu, Predicting eye 昀椀xations using convolutional neural networks, in: Proceedings of the IEEE Computer Society Conference 

on Computer Vision and Pattern Recognition, Oct. 2015, pp. 362–370, https://doi.org/10.1109/CVPR.2015.7298633, 07-12-June-2015. 
[43] M. Jiang, S. Huang, J. Duan, Q. Zhao, “SALICON: saliency in context,”, in: Proceedings of the IEEE Computer Society Conference on Computer Vision and 

Pattern Recognition, Oct. 2015, pp. 1072–1080, https://doi.org/10.1109/CVPR.2015.7298710, 07-12-June-2015. 
[44] A. Borji, H.R. Tavakoli, D.N. Sihite, L. Itti, Analysis of scores, datasets, and models in visual saliency prediction, Proceedings of the IEEE International 

Conference on Computer Vision (2013) 921–928, https://doi.org/10.1109/ICCV.2013.118. 
[45] O. Le Meur, T. Baccino, Methods for comparing scanpaths and saliency maps: strengths and weaknesses, Behav. Res. Methods 45 (1) (Jul. 2013) 251–266, 

https://doi.org/10.3758/S13428-012-0226-9/TABLES/2. 
[46] U. Engelke, et al., Comparative study of 昀椀xation density maps, IEEE Trans. Image Process. 22 (3) (2013) 1121–1133, https://doi.org/10.1109/ 

TIP.2012.2227767. 
[47] N. Riche, M. Duvinage, M. Mancas, B. Gosselin, T. Dutoit, Saliency and human 昀椀xations: state-of-the-art and study of comparison metrics, Proceedings of the 

IEEE International Conference on Computer Vision (2013) 1153–1160, https://doi.org/10.1109/ICCV.2013.147. 
[48] A. Borji, D.N. Sihite, L. Itti, Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study, IEEE Trans. Image Process. 22 

(1) (2013) 55–69, https://doi.org/10.1109/TIP.2012.2210727. 
[49] Z. Bylinskii, T. Judd, A. Oliva, A. Torralba, F. Durand, What do different evaluation metrics tell us about saliency models? IEEE Trans. Pattern Anal. Mach. Intell. 

41 (3) (Mar. 2019) 740–757, https://doi.org/10.1109/TPAMI.2018.2815601. 
[50] O. Le Meur, T. Baccino, Methods for comparing scanpaths and saliency maps: strengths and weaknesses, Behav. Res. Methods 45 (1) (Jul. 2012) 1–16, https:// 

doi.org/10.3758/S13428-012-0226-9. 
[51] N. Wilming, T. Betz, T.C. Kietzmann, P. König, Measures and limits of models of 昀椀xation selection, PLoS One 6 (9) (Sep. 2011) e24038, https://doi.org/ 

10.1371/JOURNAL.PONE.0024038. 
[52] Q. Zhao, C. Koch, Learning a saliency map using 昀椀xated locations in natural scenes, J. Vis. 11 (3) (Mar. 2011) 9, https://doi.org/10.1167/11.3.9, 9. 
[53] M. Green, J.A. Swets, S. Detection Theory, J.A. Nevin, Signal detection theory and operant behavior: a review of david M. Green and john A. Swets’ signal 

detection theory and Psychophysics.1, J. Exp. Anal. Behav. 12 (3) (May 1969) 475–480, https://doi.org/10.1901/JEAB.1969.12-475. 
[54] M. Kümmerer, T.S.A. Wallis, M. Bethge, Information-theoretic model comparison uni昀椀es saliency metrics, Proc Natl Acad Sci U S A 112 (52) (Dec. 2015) 

16054–16059, https://doi.org/10.1073/PNAS.1510393112/SUPPL_FILE/PNAS.201510393SI.PDF. 
[55] R.J. Peters, A. Iyer, L. Itti, C. Koch, Components of bottom-up gaze allocation in natural images, Vision Res 45 (18) (Aug. 2005) 2397–2416, https://doi.org/ 

10.1016/J.VISRES.2005.03.019. 

M.R. Saleem and R. Napolitano                                                                                                                                                                                    

https://doi.org/10.1177/1475921717737051/ASSET/IMAGES/LARGE/10.1177_1475921717737051-FIG8.JPEG
https://doi.org/10.1111/MICE.12263
https://doi.org/10.1109/DSAA.2018.00018
https://doi.org/10.1109/UIC-ATC.2017.8397411
https://doi.org/10.1145/3236386.3241340
https://doi.org/10.1016/J.JOBE.2022.105144
https://doi.org/10.1016/J.JOBE.2022.105144
https://doi.org/10.1109/CVPR46437.2021.01606
https://doi.org/10.1109/CVPR46437.2021.01606
https://doi.org/10.1016/J.JOBE.2021.102913
https://doi.org/10.1016/J.JOBE.2018.12.019
https://doi.org/10.1016/J.JOBE.2018.12.019
https://doi.org/10.1016/J.JOBE.2023.107854
https://doi.org/10.1016/J.JOBE.2023.108017
https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1038/S41598-023-42946-W
https://doi.org/10.1038/S41598-023-42946-W
https://doi.org/10.1007/S11263-019-01228-7/FIGURES/21
https://doi.org/10.1007/978-3-319-10602-1_24/COVER
https://saliency.tuebingen.ai/
https://arxiv.org/abs/1810.03292v3
https://doi.org/10.1109/34.730558
https://doi.org/10.1007/978-94-009-3833-5_5/COVER
https://doi.org/10.1007/978-94-009-3833-5_5/COVER
https://doi.org/10.1109/ICCV.2009.5459462
http://refhub.elsevier.com/S2352-7102(24)02246-0/sref36
http://refhub.elsevier.com/S2352-7102(24)02246-0/sref36
https://doi.org/10.1109/ICPR.2016.7900174
https://doi.org/10.1109/ICCV.2017.513
https://doi.org/10.1109/CVPR.2014.358
http://code.google.com/p/cuda-convnet/
https://arxiv.org/abs/1409.1556v6
https://doi.org/10.1109/CVPR.2015.7298633
https://doi.org/10.1109/CVPR.2015.7298710
https://doi.org/10.1109/ICCV.2013.118
https://doi.org/10.3758/S13428-012-0226-9/TABLES/2
https://doi.org/10.1109/TIP.2012.2227767
https://doi.org/10.1109/TIP.2012.2227767
https://doi.org/10.1109/ICCV.2013.147
https://doi.org/10.1109/TIP.2012.2210727
https://doi.org/10.1109/TPAMI.2018.2815601
https://doi.org/10.3758/S13428-012-0226-9
https://doi.org/10.3758/S13428-012-0226-9
https://doi.org/10.1371/JOURNAL.PONE.0024038
https://doi.org/10.1371/JOURNAL.PONE.0024038
https://doi.org/10.1167/11.3.9
https://doi.org/10.1901/JEAB.1969.12-475
https://doi.org/10.1073/PNAS.1510393112/SUPPL_FILE/PNAS.201510393SI.PDF
https://doi.org/10.1016/J.VISRES.2005.03.019
https://doi.org/10.1016/J.VISRES.2005.03.019


Journal of Building Engineering 97 (2024) 110678

13

[56] O. Le Meur, P. Le Callet, D. Barba, Predicting visual 昀椀xations on video based on low-level visual features, Vision Res 47 (19) (Sep. 2007) 2483–2498, https://doi. 
org/10.1016/J.VISRES.2007.06.015. 

[57] N.D.B. Bruce, C. Wloka, N. Frosst, S. Rahman, J.K. Tsotsos, On computational modeling of visual saliency: examining what’s right, and what’s left, Vision Res 
116 (Nov. 2015) 95–112, https://doi.org/10.1016/J.VISRES.2015.01.010. 

[58] “An Eye Tracking Dataset for Building Façade Inspection”, doi: 10.5281/ZENODO.7125956. 
[59] “Tobii Pro Glasses 3 | Latest in Wearable Eye Tracking - Tobii.” Accessed: Feb. 06, 2024. [Online]. Available: https://www.tobii.com/products/eye-trackers/ 

wearables/tobii-pro-glasses-3?creative=639361858008&keyword=tobii%20glasses&matchtype=p&network=g&device=c&utm_source=google&utm_ 
medium=cpc&utm_campaign=&utm_term=tobii%20glasses&gad_source=1&gclid=CjwKCAiA8YyuBhBSEiwA5R3-EzROe5QhfR2VQIGigK4- 
XaAZphXYIimpL0a9XY7idQGVxwxeV8K8oBoC3NYQAvD_BwE. 

[60] Salicon. http://salicon.net/. (Accessed 6 February 2024). 
[61] A. Kroner, M. Senden, K. Driessens, R. Goebel, Contextual encoder–decoder network for visual saliency prediction, Neural Network. 129 (Sep. 2020) 261–270, 

https://doi.org/10.1016/J.NEUNET.2020.05.004. 
[62] M. Patacchiola, A. Cangelosi, M. Patacchiola, A. Cangelosi, Head pose estimation in the wild using Convolutional Neural Networks and adaptive gradient 

methods, PatRe 71 (Nov. 2017) 132–143, https://doi.org/10.1016/J.PATCOG.2017.06.009. 
[63] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations, 2014. 
[64] T. Judd, F. Durand, A. Torralba, A benchmark of computational models of saliency to predict human 昀椀xations [Online]. Available: https://dspace.mit.edu/ 

handle/1721.1/68590, Jan. 2012. (Accessed 6 February 2024). 
[65] A. Borji, L. Itti, “CAT2000: a large scale 昀椀xation dataset for boosting saliency research,”. https://arxiv.org/abs/1505.03581v1, May 2015. (Accessed 6 February 

2024). 
[66] J. Xu, M. Jiang, S. Wang, M.S. Kankanhalli, Q. Zhao, “Predicting human gaze beyond pixels,”, J. Vis. 14 (1) (Jan. 2014) 28, https://doi.org/10.1167/14.1.28, 

28. 

M.R. Saleem and R. Napolitano                                                                                                                                                                                    

https://doi.org/10.1016/J.VISRES.2007.06.015
https://doi.org/10.1016/J.VISRES.2007.06.015
https://doi.org/10.1016/J.VISRES.2015.01.010
http://salicon.net/
https://doi.org/10.1016/J.NEUNET.2020.05.004
https://doi.org/10.1016/J.PATCOG.2017.06.009
http://refhub.elsevier.com/S2352-7102(24)02246-0/sref63
https://dspace.mit.edu/handle/1721.1/68590
https://dspace.mit.edu/handle/1721.1/68590
https://arxiv.org/abs/1505.03581v1
https://doi.org/10.1167/14.1.28

