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This study investigates the efficacy of saliency mapping algorithms in capturing the visual pri-
orities of building inspectors for structural damage assessment. Our work established a ground
truth dataset by implementing eye-tracking technology to capture the gaze patterns of building
inspectors. Further, it enables a detailed evaluation of the saliency models’ ability to reflect ex-
perts’ visual attention during inspection tasks. Our comparative analysis assesses the performance
of three saliency models— EnDec, DeepGaze, and SALICON— against this ground truth data,
using conventional saliency metrics such as Area under the Curve, Similarity, Normalized
Scanpath Saliency, Correlation Coefficient, and Kullback-Leibler Divergence. Our findings reveal
that while the SALICON model demonstrates a marginally better performance and highlights
areas where these models fall short, particularly in accurately reflecting the critical visual
properties of inspectors, this insight is crucial for advancing the field. By highlighting these
limitations, we have drawn attention to the need for developing more specialized saliency models
tailored to the unique demands of building inspection tasks. Thus, the study not only fulfills its
objectives of comparative analysis but also contributes to the broader discourse on improving
automated structural inspection systems. This study highlights the need to develop specialized
computer vision models to address specific building inspection challenges. By identifying
strengths and improvement areas, this research contributes valuable insights and highlights the
potential and current limitations of applying computer vision techniques to real-world building
inspection tasks.

1. Introduction

Preliminary damage assessment and structural inspection are crucial for routine building inspections or evaluating the damage
caused by natural disasters [1]. For damage assessment or initial response following post-disaster, it is critical to ensure the safety of
the built environment [2,3]. Traditional structural inspections are typically conducted by experienced and knowledgeable engineers,
who make assessments based on visual observations of the damage to a structure, following strict procedures and guidelines. While
most inspection processes are conducted by manual visual inspection, human resources are often limited following the post-disaster
recovery process due to safety concerns and the associated cost [4,5].

In recent years, unmanned aerial vehicles (UAV) have been used widely for damage assessment and structural inspections [6-8].
Previous works have explored the application of UAVs to enhance infrastructure inspection tasks such as building monitoring [9],
railway inspection [10], structural component recognition [11], and LIDAR-based bridge inspection [12,13]. Further, artificial
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intelligence (AI) based methods have increasingly gained popularity for the past two decades [14-17]. But where should a UAV look
for damage, and how can it guarantee accurate damage reconnaissance? To achieve this, we need to transfer the expert knowledge of
human inspectors to UAVs, and the UAV should be capable of identifying the salient damage from a structure.

Convolutional neural networks (CNNs) have succeeded in fields like image recognition and computer vision [4]. Nevertheless, the
opacity of the CNN model raises concerns about their generalizability and which features contribute to their decisions. Contemporary
methods and analyses must address the challenge of machine learning interpretability more thoroughly. Current research concentrates
on a limited array of issues, resulting in sparse practical guidance [18]. Some studies [19] emphasize defining taxonomies and un-
derstanding interpretability mechanisms, offering critical reviews of machine learning algorithms. Lipton [20] outlined the de-
ficiencies that should be addressed to ensure that the algorithms perform predictably. Some evaluative aspects have been discussed in
Refs. [18,21]; however, they do not extensively cover the interpretability of a deep neural network (DNN) model.

Building upon the foundation of using CNNs for damage detection, recent strides have been made in leveraging saliency maps as a
means of enhancing detection capabilities [22,23]. Saliency maps provide a visual representation of the most relevant regions within
an image, thereby offering insights into where the network focuses its attention during the decision-making process. While saliency
maps have shown promise in various applications, their utilization, specifically for damage detection, remains largely unexplored. A
normal saliency map provides a visual representation of how much each point of an input image stands out with respect to its
neighboring points. The extent to which saliency maps accurately represent the areas impacting network decisions is still being
determined [24]. By examining if existing saliency map algorithms can identify the visual features most important to building in-
spectors, this research seeks to enhance the efficiency of building inspections.

To examine the efficacy of saliency maps in accurately capturing the critical visual features for building inspection [25],
eye-tracking technology can serve as a valuable benchmark. By tracking the gaze patterns of experienced human inspectors as they
assess structural damage, we can establish a ground truth dataset that reflects the regions of interest deemed significant by human
experts. This ground truth dataset can then be utilized to evaluate the correspondence between the areas highlighted by saliency maps
and those attended to by human inspectors. Such comparative analysis not only provides a means to quantify the accuracy of saliency
maps but also offers insights into potential discrepancies or areas for improvement. In eye tracking research, heat maps and attention
maps show the average of the continuous fixation locations where participants focus more on their attention time and are viewed the
most. Fig. 1 shows a typical saliency predictor with a test image highlighting the saliency map. This work seems to do an in-depth
exploration to understand the gap between saliency mapping predictors and ground truth fixation data to capture inspectors’ vi-
sual priorities for building damage assessment. This exploration holds the potential to not only improve the accuracy of damage
reconnaissance but also to shed light on the intricate features and patterns indicative of structural damage, thus advancing the field of
automated structural inspection and disaster response.

This research is a novel contribution as it addresses the performance of various saliency map algorithms within the context of
building inspections leveraging eye tracking technology. The primary research question centers on comparing the ability of these
algorithms to identify and represent visual features deemed important by building inspectors during assessments. Findings suggest that
conventional saliency models do not adequately address the complex requirements of building inspections [26], highlighting the
necessity for specialized data and models tailored to this domain. This research contributes valuable insights into applying computer
vision methods in real-world inspection scenarios, with implications for enhancing inspection accuracy and efficiency.

2. Related work

The current state-of-the-art analysis methods do not comprehensively address machine learning interpretability. Instead, they focus
on a narrow subset of issues, so only limited guidance can be extracted. An attempt to introduce model interpretability and to use it to
optimize performance was made by Ref. [27]. The approach was successful in reconstructing and visualizing features of the input
image that had been identified by the intermediate layers of a network. Saliency maps are probably the most popular technique for
visually explaining CNN’s decision [28]. In the last decade, saliency prediction has been widely studied. As presented in Ref. [29], the
visualizations provided by this approach help explain the failure of CNNs, identify biases present in the datasets, and prepare models
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Fig. 1. Comparison between a normal fixation map and conventional saliency map.
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that are robust against adversarial attacks. Therefore, they offer an improved development process and greater generalization of
trained models.

Several eye tracking datasets have been recently constructed and shared in the community to understand visual attention and to
build computational saliency models. An eye-tracking dataset includes natural images as the visual stimuli and eye movement data
recorded using eye tracking devices. Most datasets have their own distinguishing features in image selection. For example, POET [30],
the largest dataset we know by far, contains 6270 images and is only viewed by five subjects. The MIT dataset [31] is more general due
to its relatively large size, i.e., 1003 images, and the generality of the image source. The OSIE dataset [6] features multiple dominant
objects in an image to facilitate object and semantic saliency. The experimental requirements inherently limit the scale of the current
datasets. The present work leverages the SALICON eye tracking dataset, which was not explicitly captured for building damage
analysis, to train and compute the saliency maps. The ground truth dataset, derived from human expertise while doing building as-
sessments, will serve as a benchmark against which the accuracy of existing saliency datasets and models can be evaluated.

Methods for comparing saliency maps and ground truth are presented in Ref. [32]. In this study, the authors performed two types of
randomization tests. The first focused on the randomization of a model, and the second randomized labels in a training dataset to check
the performance of saliency map algorithms on a correctly labeled test dataset. With the advent of models using deep neural networks
[28,33-38], the saliency prediction has been improved remarkably. The first model [39] to use ensembles of the deep network (eDN)
trained from scratch to predict saliency cannot scale to outperform the current state-of-the-art due to limited data. Kummerer et al.
[38] addressed this issue by reusing existing neural networks trained for image classification to predict fixation maps. Subsequently, it
was found that DNN trained on object recognition (AlexNet [40] trained on VGG-16 [41]) could significantly outperform training from
scratch [36]. Liu et al. [42] presented a multi-resolution CNN trained from image regions centered on fixation and non-fixation lo-
cations at multi-scales. The SALICON model [43] fine-tunes a mixture of deep features from AlexNet, ImageNet [20], and GoogleNet
[21] for saliency prediction using the SALICON and OSIE datasets.

3. Methodology

3.1. Comparison metrics for saliency maps and ground truth datasets

In this paper, we study saliency metrics functions that take two inputs representing eye fixations— ground truth fixation map based
on task-specific eye tracking data and predicted saliency map based on task-agnostic eye tracking data, and output a number assessing
their similarity or dissimilarity. Given ground truth gaze fixations, these comparison metrics are used to define scoring functions,
which take a saliency map prediction as input and return the score, assessing the accuracy of the prediction. We consider the five most
common saliency evaluation metrics, as shown in Table 1. While some metrics have been designed specifically for saliency evaluation
(AUC [44], normalized scanpath saliency [45]), others have been adapted from signal detection (variants of AUC [46]), image
matching and retrieval (Similarity [47]), information theory (KL-divergence [47]) and statistics (Pearson’s correlation coefficient
[48]). Because of their original intended applications, these metrics expect different input formats: Kullback-Leibler divergence ex-
pects valid probability distributions as input, and Similarity can operate on unnormalized densities and histograms. At the same time,
Pearson’s Correlation Coefficient (CC) treats its inputs as random variables.

The MIT Saliency Benchmark [31] interprets metric scores and different methods. It accepts saliency maps as intensity maps
without restricting input to any particular form (probabilistic or otherwise). If a metric expects valid probability distributions, we
simply normalize the input saliency maps without additional modifications or optimizations. Different metrics use different formats of
ground truth for evaluating saliency models. Location-based metrics consider saliency map values at discrete fixation locations, while
distribution-based metrics treat ground truth fixation maps and saliency maps as continuous distributions. To evaluate the perfor-
mance of the saliency metric, Eq. (1) shows the relation that involves comparing predicted saliency maps and ground truth eye fix-
ations. The fundamental concept behind saliency metrics is to quatitatively assess how well a predicted saliency map corresponds to
actual human visual attention, as represented by the ground truth eye fixations. Good saliency models should have high values for
similarity metrics and low values for dissimilarity metrics.

Metric = F(P, GT) )

where r is a function that takes P as a saliency map and GT as a ground truth and predicts the score for the metric under consideration.
In this paper, we analyze these five metrics in isolation from the input format and report on the Eye tracking dataset [9]. The only
distinction we make in terms of the input that these metrics operate on is whether the ground truth is represented as discrete fixation
locations or a continuous fixation map. Accordingly, we categorize metrics as location-based or distribution-based [49]. In this section,
we discuss the particular advantages and disadvantages of each metric and present visualizations of the metric computations.

Table 1
Metrics used for evaluating saliency maps.
Metrics Location-based Distribution-based
Similarity Area under ROC curve [44,46,50] Similarity [47]
Normalized scanpath saliency [44,48,50-52] Pearson’s correlation coefficient [44,46,48]
Dissimilarity - Kullback-leibler divergence [47,51]
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3.2. Location-based metrics

3.2.1. Area under ROC curve (AUC)

Given the goal of predicting where viewers will focus their attention on an image, a saliency map can distinguish between pixels
that attract gaze and those that do not, effectively acting as a pixel-level classification tool. This concept introduces a metric for
assessing the effectiveness of saliency maps. According to signal detection theory, the Receiver Operating Characteristic (ROC) curve is
a tool that evaluates the balance between true positives and false positives across different levels of sensitivity [53]. The area under this
ROC curve, AUG, is the predominant measure for evaluating saliency maps. Essentially, the saliency map is analyzed as a binary
classifier that identifies fixations at different threshold levels, generating a ROC curve by comparing the rate of true positives and false
positives for each threshold level. The way true and false positives are computed varies across different AUC methodologies. Alter-
natively, AUC can be viewed as an indicator of a model’s accuracy on a 2AFC task, where the model must choose between two potential
points on an image, identifying which one is more likely to be the fixation [54].

3.2.2. Normalized scanpath saliency (NSS)

Normalized Scanpath Saliency is a measure between a saliency map and a set of fixations computed as the average normalized
saliency at fixation locations along a subject’s scan path [55]. The absolute saliency values are part of the normalization calculations.
Given a saliency map P and a binary map of fixation locations Q&

NSS (P, @) = ZP x QP 2

where P = P;’(‘l(f;) and N = Q¢
3

where i indexes the ith pixel and N is the total number of fixated pixels. A positive value indicates correspondence between maps
above chance, and a negative NSS indicates anti-correspondence. For instance, a unity score corresponds to fixations falling on por-
tions of the saliency map with a saliency value of one standard deviation above average.

3.3. Distribution-based metrics

3.3.1. Similarity (SIM)

The similarity metric measures the similarity between two distributions, viewed as histograms. It has gained popularity in the
saliency community as a simple comparison between pairs of saliency maps. After normalizing the input maps, SIM is computed as the
sum of the minimum values at each pixel. For a saliency map P and a continuous fixation map Q°:

SIM (P, Q%) me (P, Q") 3)

iterating over discrete pixel locations i. Note that the model with the sparser saliency map has a lower histogram intersection with
the ground truth map. SIM is very sensitive to missing values, penalizing predictions that fail to account for all ground truth density.
The downside of a distribution metric like SIM is that the choice of the Gaussian sigma (or blur) in constructing the fixation and
saliency maps affects model evaluation.

3.3.2. Pearson’s correlation coefficient (CC)

Pearson’s Correlation Coefficient, also called linear correlation coefficient, is a statistical method used generally in the sciences to
measure correlated or dependent two variables. It is one of the most common methods used for numerical variables, and its values are
between —1 and +1, where —1 means negative correlation, +1 means positive correlation, and 0 means no correlation. CC can be used
to interpret saliency and fixation maps, P and QP, as random variables to measure their linear relationship [56].

o(P.Q)
o(P) x (@)

where 6(P, QP) is the covariance of P and QP. CC is symmetric and penalizes false positives and negatives equally. Large positive CC
values occur at locations where the saliency map and ground truth fixation map have similar magnitudes.

CcC(PQ’) = @

3.3.3. Kullback-leibler divergence (KLD)

Unlike SIM, Kullback-Leibler is a statistical measurement from information theory that measures and quantifies the differences
between two probability distributions. Although KL divergence is a popular method, choosing a statistical distance check can
sometimes be challenging. In saliency literature, depending on how the saliency predictions and ground truth fixations are interpreted
as distributions, different KLD computations are possible. Analogous to our other distribution-based metrics, our KLD metric takes as
input a saliency map P and a ground truth fixation map Q° and evaluates the loss of information when P is used to approximate Q:

KLD (P,Q") ZQD10g<E+ & ) 5)

€+ P

where € is a regularization constant. KL-Judd is an asymmetric dissimilarity metric, with a lower score indicating a better approxi-
mation of the ground truth by the saliency map. The pixels where the ground truth value Q? is non-zero, but P; is close to or equal to
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zero, a large quantity is added to the KLD score, making the regions brighter in the KLD visualization. However, KLD is so sensitive to
zero-values that a sparse set of predictions is penalized harshly, significantly worse than chance.

3.4. Qualitative evaluation of saliency

Most saliency papers include side-by-side comparisons of different saliency maps computed for the same images (as in Fig. 3).
Visualizations of saliency maps are often used to highlight improvements over previous models. A few anecdotal images might be
utilized to showcase model strengths and weaknesses. Bruce et al. [57] discussed the problems with visualizing saliency maps,
particularly the strong effect of contrast on the perception of saliency models. We propose supplementing saliency map examples with
visualizations of metric computations (as shown in Figs. 5 and 6) to provide an additional means of comparison that is more tightly
linked to the underlying model performance than the saliency maps themselves.

4. Evaluation setup

4.1. Data collection

We use an eye tracking dataset for building facade inspection as the ground truth dataset for this paper [58]. This dataset contains
eye tracking data of ten participants for two building structures, recorded using Tobii Pro Glasses 3 [59] with a 100 Hz sampling rate,
1920 x 1080 resolution @ 25 fps, and four infrared cameras. Participants were allowed to view and walk around the structure freely to
capture dynamic gaze data. The free viewing task is most commonly used for saliency modeling, requiring a few additional as-
sumptions [49]. Pro Glasses 3 allows one-point calibration of gaze patterns and attention filters to compensate for dynamic eye
movements due to the nature of the data collection setup (wearable eye tracking).

The gaze data collected will serve as the ground truth fixation map. An important step was to generate discrete and continuous
fixation maps for saliency metrics since some of them calculate the similarity score based on fixation location while others calculate

Input image

Fixation map

i)

Fig. 2. Saliency metrics are compared on how well they approximate ground truth eye movements, represented as discrete fixation locations or a continuous fixation
map for (a) Nparticipant = 1 and (b) Npasticipant = 10.
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based on fixation distribution. Fig. 2 shows an example of a fixation map (distribution-based) and fixation locations (location-based).
To generate fixation points, the collected gaze data was first denormalized and converted to image coordinates such that they cor-
responded to the input image. Finally, the results are compared with the existing saliency maps to compare the differences with the
ground truth data and compute the scores based on the fixation location.

4.2. Methods for comparing saliency maps

To visualize saliency evaluation metrics and highlight their differences in metric behaviors, we used different saliency models for
which code is available online. The results were reproduced from these models trained on the SALICON dataset [60]. These models
include 1) a Contextual encoder-decoder network for visual saliency prediction [61], 2) head pose estimation using CNN and adaptive
gradient methods [62], and 3) Saliency in context [43]. These models were chosen due to their simplicity and were most common in
generating saliency maps without requiring additional training but fine-tuning the models to generate saliency maps.

4.2.1. Encoder decoder model

Kroner et al. [61] proposed a CNN architecture based on semantic segmentation with modified modules to predict fixation density
maps of the input image. Their approach leverages object-specific features to replicate human behavior under free viewing conditions.
They adapted from the popular VGG16 architecture [63] as an image encoder by reusing the pre-trained convolutional layers to extract
complex features. To restore the original image resolution on the decoder end, extracted features were upsampled and processed
through a series of convolution layers. The actual implementation of the EnDec model and training was done on SALICON before
fine-tuning the weights towards fixation prediction on either of the datasets MIT1003 [64] or CAT2000 [65] with the same optimi-
zation parameters. For our evaluation, the pre-trained model was fine-tuned and tested using SALICON weights. The results and
discussion are provided in section 5 in detail.

4.2.2. DeepGaze model

Patacchiola et al. [62] originally proposed a CNN-based model for head pose estimation using adaptive gradient methods. They
implement an object detection framework for the face detector and a CNN network for the head pose estimator. The graphical rep-
resentation of their CNN models has two convolution layers, two subsampling layers, and two fully connected layers. Originally, their
work involved training on the AFLW dataset for face detection and was tested using various methods. They had a major challenge
regarding increasing pose estimation error for the face detector when it returned a frame that was not well centered on the subject’s
face.

4.2.3. SALICON model

Jiang et al. [43] proposed a visual attention method by introducing a novel method for collecting extensive human attention data
during natural image exploration. Unlike existing datasets focusing on images and task-specific annotations, SALICON emphasizes
capturing the dynamics of human attention shifts. Employing a mouse-contingent multi-resolution approach inspired by studies of
peripheral vision, it facilitates the simulation of natural viewing behaviors using a standard mouse, thus allowing for the collection of
data on an unprecedented scale. This approach has been validated in both laboratory and online settings, resulting in a
proof-of-concept dataset from the COCO image dataset. The dataset’s potential to improve visual understanding and saliency model
training has been demonstrated through its application in saliency prediction, proving to be a valuable ground truth resource for
algorithm evaluation. With ongoing data collection efforts, SALICON is poised to significantly contribute to the fields of visual un-
derstanding and computer vision by providing a comprehensive resource for studying and modeling human visual attention.

5. Results and findings

We evaluate the performance of these models on existing saliency metrics for assessing building damage using eye tracking data,
which is built upon the existing work of Saleem et al. [9]. To this end, we perform 1) fine-tuning and training of saliency models with
different pre-trained weights, 2) compare the efficiency of individual models among other saliency models, and 3) evaluate the results
for two different building sites.

These experiments aim to quantify the efficacy of conventional saliency models in detecting salient damage features and to
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Fig. 3. Saliency maps corresponding to three different models.
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understand if future studies are needed to acquire more specific data and models for building industry-specific tasks. Most saliency
models include a side-by-side comparison of saliency maps and benchmark the results in tabular form. Visualization of saliency models
is often used to highlight improvements over previous models. This work will highlight the saliency map for visualization and provide
metrics’ quantitative measures to understand the models’ performances better. For instance, Fig. 2 shows an input image and how well
it approximates human ground truth eye movements. Fig. 2a indicates the gaze information for one participant showing their fixations
on the lower part of the building with few outliers on the upper part; Fig. 2b indicates the cumulative, discrete fixation location
distributed entirely over the entire facade. However, the fixation map highlights the region of interest in the lower part of the building
below the window frame.

The present work will not discuss individual participants’ gaze data since the prior work of Saleem et al. [9]. discussed the indi-
vidual behavior and analysis of gaze patterns comprehensively. This study will focus on how different models generate saliency maps
and how different saliency metrics will impact the evaluation overall. A Python package based on TensorFlow was used to compare
saliency mapping algorithms, and an out-of-the-box implementation was provided. Fig. 3 compares the three different models, i.e.,
EnDec, DeepGaze, and SALICON.

This paper seeks to compare the effectiveness of models trained with task-agnostic eye tracking data to ground truth fixation maps
based on task-specific eye tracking data. The task-agnostic models were fine-tuned with SALICON pe-trained weights. SALICON is
currently the largest public dataset for saliency prediction and contains 10,000 training images and 5000 validation and testing images
taken from the COCO dataset. The dataset contains images from the building site with various scenes of different lighting conditions.
Although the eye tracking information was collected, the scene-viewing task was unrelated to damage assessment. A comparison of the
fine-tuned saliency map on different pre-trained weights, such as the SALICON [60], MIT300 [31], and OSIE [66] datasets, is shown in
Fig. 4.

5.1. Location-based metrics analysis

The AUC metric evaluates a saliency map’s predictive power by how many ground truth fixations it captures in successive level sets.
To compute AUC, the saliency map is treated as a binary classifier of fixation at various threshold values, and an ROC curve is swept
out. Thresholding the saliency map produces the level sets in the rightmost column. For each level set, the actual positive rate is the
proportion of fixations landing in the level set (green points in the rightmost column). The false positive rate is the proportion of image
pixels in the level set not covered in fixations. Five level sets corresponding to points on the ROC curve were included, and the AUC
score for the saliency map is the area under the ROC curve.

Judd et al. [41] proposed their AUC variant, called AUC-Borji [14], depicted in Fig. 5. A saliency map visualization and its cor-
responding AUC curve for evaluating saliency as a fixations classifier is indicated in the top row where TP and FP indicate true positives
and false positives, respectively. In this context, the TP rate, also known as sensitivity or recall, represents the proportion of actual
positives the model correctly identifies. The FP rate represents the proportion of actual negatives that are incorrectly identified as
positives by the model. The ROC curve is a graphical representation of the trade-off between the TP and FP rates at various threshold
settings of a binary classifier.

The AUC score for the EnDec model is 0.54 (45° angle), which means the model cannot identify salient features and perform class
separation between true positives and true negatives [45]. For area under the curve metrics, the ROC curve is very important. The
closer it is to the top left corner, the higher the test accuracy because the top left corner has the highest sensitivity with a false positive
rate of 0. The natural distribution of fixations on an image tends to have higher density near the center, and therefore, models that
incorporate center bias into their predictions would achieve a high AUC score. A model predicting the center portion of an image
achieves a lower score of 0.5 and would likely perform worse since center bias is present in prediction and the model can not
differentiate between true positives and false positives. Similarly, the bottom rows indicate the level sets and their corresponding
threshold levels. Here, the green dots represent the true positive fixations, and the red dots represent the false positive fixations on
individual levels set to illustrate their behavior. Different AUC implementations differ in calculating a true positive or false positive
[46].

For the DeepGaze and SALICON model, the AUC curve is shown in Fig. 6, along with the TP and FP rate, where the AUC score for
DeepGaze is 0.45 and SALICON is 0.62. Similarly, the curve for DeepGaze falls below 0.5, meaning that DeepGaze has failed and
negatively correlates with the fixation map. On the other hand, SALICON models has a score of 0.62, with salient features highlighted

Salicon Mit1 003 Chii

Fig. 4. Saliency maps generated based on (a) SALICON, (b) MIT1003, and (c) OSIE pretrained weights.
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Fig. 5. AUC visualization of EnDec model with different level set.
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Fig. 6. Comparison of AUC curves for (a) DeepGaze and (b) SALICON model.

close to the fixation map. It is interesting to note that although the SALICON model is trained based on the MIT300 dataset with gaze
data, the task-free nature of data is inefficient for our case study. Therefore, the current saliency models perform poorly for our
building inspection tasks even though the score is closer to +1.

NSS measures similarity based on fixation location between a saliency map and fixation map (human ground truth). Fig. 7 visually
illustrates the NSS technique comparing EnDec, DeepGaze, and SALICON models. Like AUC, the higher the NSS score, the higher the
similarity, and vice versa. NSS usually normalizes a saliency map by the standard deviation of the saliency values. NSSgy ec has center
bias with more similarity in the center according to the threshold scale, but in addition to this, the fixations are quite dispersed overall.
NSSpeepGaze has highly similar fixation points, but there is no such relation with the fixation map since the model highlights the salient
features on the window frame of the actual image. NSSsaricon shows a good similarity between the saliency map and ground truth
fixations, highlighting the damaged regions on the test structure. Also, NSSgaricon has an average positive score of 0.3477 compared to
the other two models with negative scores. Table 2 shows comprehensive quantitative results and compares all the metrics under
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L TP

Fig. 7. Normalized Scanpath Saliency map (Nparticipants = 10).

Table 2
Performance score of location-based saliency metrics for different models.
Sample Space Saliency Models Building-1 Building-2
NSS 1 AUGC-Borji 1 NSS 1 AUG-Borji 1
Individual participant EnDec —0.0679 0.4419 0.9606 0.6577
DeepGaze —0.2991 0.4748 0.6295 0.5715
SALICON 0.1646 0.4970 0.1075 0.4954
All participants EnDec —0.0088 0.4753 0.8036 0.6284
DeepGaze —0.2328 0.4791 0.4601 0.5475
SALICON 0.1810 0.5009 0.1862 0.4999
consideration.

Table 2 compares saliency models for two building sites, and the sample size is changed from individual participants to all par-
ticipants. Individual participants indicate average scores for the location-based metrics compared to the total sample size. It should be

S

Enda

DeepGaze

SALICON

-..;

Fig. 8. Comparison of distribution-based metrics.



M.R. Saleem and R. Napolitano Journal of Building Engineering 97 (2024) 110678

noted that for location-based metrics, the score must be high, which corresponds to higher correlation and similarity between two
entities. From our results, we noticed that AUC-Dorji has an average score of 0.5, while the NSS score is lower for building 1 and higher
for building 2. A score of greater than 0.8 means higher similarity and correlation; lower than that means the results are insignificant
and there is no strong similarity. From our results, our argument validates that conventional saliency maps cannot be used to train a
model for building inspection since there is no similarity among salient features generated by available models for damage assessment.
Further, the results clearly show the SALICON model’s performance over the other two. Although the metric score is higher for
SALICON based compared to the EnDec and DeepGaze model, the score is close to 0 for NSS, while AUC-Borji has 0.5, which states it is
not a strong correlation between the saliency map and the fixation map.

5.2. Distribution-based analysis

Location-based metrics described so far score saliency models on how accurately they predict discrete fixation locations. Suppose
the ground truth fixation locations are interpreted as a possible sample from some underlying probability distribution. In that case,
another approach is to predict the underlying distribution directly instead of the fixation locations. Although it is challenging to predict
ground truth distribution, Gaussian blurring the fixation locations into a fixation map often approximates it. This section describes
distribution-based metrics that score saliency models on how accurately they approximate the continuous fixation map. Taking the
comparison further, we evaluated and compared the differences for metrics such as SIM, CC, and KL divergence.

SIM has gained popularity in the saliency community as a simple comparison between pairs of saliency maps and computed the sum
of pixel minimums between the predicted saliency map and the ground truth human fixations. A similarity score 1 indicates that the
predicted map is identical to the ground truth data. The CC metric measures the linear coefficient between the saliency and fixations
maps, with a score between —1 and +1. CC treats false positives and negatives symmetrically, but SIM places less emphasis on false
positives than false negatives. As a result, all three saliency maps have low SIM and CC scores, resulting in a negative correlation
between the ground truth fixation map and respective saliency models. Unlike SIM and CC, KLD measures the dissimilarity between the
saliency map and the ground truth data and is much more sensitive to false negatives than SIM or CC. Fig. 8 visually illustrates the
comparison among the three metrics (SIM, CC, and KLD) and how they compute similarity and dissimilarity among different models.
SIM and CC metrics measure the similarity between the saliency map and the ground truth fixation map. SIM measures the histogram
intersection between two maps, while CC measures cross-correlation.

Fig. 8 shows the behavior of SIM and CC and how they are affected by false negatives and false positives. SIM penalizes false
negatives significantly more than false positives, but CC treats both symmetrically. Due to its symmetric computation, CC can not
distinguish whether the differences between maps are due to false positives or false negatives. The corresponding score also highlights
that CC performs better and scores better than SIM, which is consistently higher for the SALICON model. The results in Table 3 suggest
that although the SALICON model has higher correlation and similarity compared to the other two models and performs better than
expected for location-based metrics, the score is still lower or close to 0 which validates our argument that the saliency map generated
using these models cannot be relied upon for fixation. There is no similarity of saliency maps with the actual fixation maps.

6. Conclusion and future work

This paper provides a comparative analysis of saliency mapping algorithms and the effectiveness of models trained with task-
agnostic eye tracking data to ground truth fixation maps in capturing visual priorities for building inspection. We compared the
performance of three different models, i.e., EnDec, DeepGaze, and SALICON, with the ground truth data and provided a visual rep-
resentation of the most relevant regions within an image. By tracking the gaze patterns of experienced human inspectors as they assess
structural damage, we can establish a ground truth dataset that reflects the regions of interest deemed significant by human experts.
This ground truth dataset can then be utilized to evaluate the correspondence between the areas highlighted by saliency maps and
those attended to by human inspectors. Despite looking at many saliency metrics, we compare the performance only for five common
methods: the area under the curve, similarity, scan path saliency, correlation coefficient, and kullback-leibler. The results suggest that
although the SALICON model has higher correlation and similarity compared to the other two models and performs better than ex-
pected for location-based metrics, the score is still lower or close to 0 which validates our argument that the saliency map generated
using these models cannot be relied upon for fixation. There is no similarity of saliency maps with the actual fixation maps. This proves
our argument that conventional saliency models are not suitable for our application in identifying damage and generating a saliency
map.

This result underscores the imperative for developing advanced, domain-specific saliency models tailored to meet the unique
requirements of building inspection tasks. Furthermore, the findings suggest the creation of specialized datasets that more accurately
reflect the complexity of structural assessments, thereby enhancing the fidelity of saliency models in practical applications. The im-
plications of this study extend beyond the structural inspection and civil engineering domain, offering valuable insights into the
potential for human-machine collaboration in the broader field of automated disaster response and infrastructure maintenance. By
bridging the gap between computational predictions and expert human judgment, we can significantly advance our capabilities in
early damage detection, risk assessment, and the prioritization of repair efforts, ultimately contributing to the resilience and safety of
the built environment.
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