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Abstract 

Multi-material additive manufacturing has enabled the fabrication of components with highly 
tailored mechanical responses. However, as both manufacturing processes and constituent materials 
become more sophisticated, the large number of process variables makes design increasingly 
challenging. Here, we investigate the design space for multi-material thermoplastic composites 
produced by a commercially available fused filament fabrication printer. We consider the uniaxial 
compression of neat materials with sample geometry and toolpath variations, as well as composites 
comprised of a soft elastic matrix with stiff reinforcement material in different reinforcement fractions 
and geometries. We find that some changes to the toolpath can have a significant impact on the 
compressive behavior of the samples due to the high anisotropy of the filaments. The composite 
geometries were found to exhibit different specific strengths relative to reinforcement fraction, and 
their compressive behavior matched qualitatively but not quantitatively to predictions from finite 
element analysis. To understand the performance space, we analyzed the experimental dataset with 
truncated Singular Value Decomposition. Surprisingly, despite the complexity of the system, 97.8% of 
the variance in stress-strain curves of our samples was captured by the first component and 99.9% by 
the first two. The shape of the components indicates that while the stress-strain curves of samples 
may vary quantitatively, very limited modes are controllable with the design variables considered here. 
In effect, the strength of the composite could be controlled by manipulating reinforcement mass 
fraction, but the shape of the nonlinear behavior was largely baked into the constituent materials 
despite changing the reinforcement geometry. This result has important consequences that must be 
considered early in the design process when developing new multi-material systems to achieve 
tailored mechanical responses. 
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Introduction 

Additive manufacturing (AM) has enabled the rapid manufacturing of personalized designs for 
ergonomic improvements in comfort, performance, and cost. This can be seen in applications such as 
personalized prosthetics,1 braces,2 athletic wear,3 and footwear.4 The unique geometries of each 
individual can be measured in 3D to capture the individual’s shape and print form-fit parts.5 Most of 
these applications include the requirement for not just a geometric fit but also prescribed behavior 
under compressive loading. This revolution has been made possible by advances in both 
computational design and precision in the additive manufacturing processes.  

Material response, such as compliance behavior, can be increasingly tailored by spatially 
varying geometry throughout a part. For example, compression behavior can be tuned for anisotropic 
behavior6 or a honeycomb structure can be tailored by altering the wall thickness and depth for energy 
absorption across a part.7 By expanding the design space to include multiple materials, such as those 
with different elastic moduli, the achievable design space is further broadened.8 Spatially varying multi-
material designs can thus achieve performance that is unobtainable using a single material structure 
and provide new opportunities for functionally graded parts.9,10 

Printed thermoplastic polyurethane (TPU) allows for the AM fabrication of complex geometry 
for impact13 and compression.14,15 Its tensile behavior in fused filament fabricated (FFF) parts has 
been studied extensively.16,17 With the right chemistry, even dissimilar polymers can bond during the 
FFF printing process.18,19 Consequently, many multi-material parts have leveraged TPU for its 
flexibility in conjunction with other, stiffer materials.20–22 This existing literature provides a convincing 
picture of TPU’s utility in FFF, as it can be readily printed, is compatible with other polymer filaments, 
and is more flexible than other materials such as polylactic acid (PLA) or acrylonitrile butadiene (ABS). 
However, little work has been conducted on compressive behavior of FFF printed TPUs,23,24 and even 
less on TPU composites produced by multi-material FFF; to our knowledge, only one study on 
compressive behavior of FFF TPU/TPU composites exists in the literature.25 

Optimization of AM during part manufacturing is a challenging task due to the vast space of 
process variables.26 This has led to increased interest in data science methods to analyze 
experimental observations and design new materials or processing routes.27 Linear projection 
schemes such as Principal Component Analysis (PCA) or the closely related Singular Value 
Decomposition (SVD) are commonly used for dimensionality reduction when modeling and visualizing 
high dimensional data.28,29 For instance, PCA has been used for visualizing the design space in many 
engineering problems, such as understanding the process-structure relationships in AM,30 predicting 
the cohesive energy of compounds,29 and understanding the effects of shape and other physical 
factors on airfoil design31–33 and turbine blades.34 These strategies allow for more human-friendly 
visualizations of high-dimensional data, facilitating understanding of complex design spaces. 

In this work, two different grades of TPU with highly contrasting mechanical properties were 
integrated into solid multi-material composite parts to understand the effects of the structural and 
process parameters on the material performance under compressive loading. Relatively few studies 
have been published on the compressive behavior of TPU in either single- or multi-material FFF 
components, and very few on the compressive behavior of TPU/TPU composites in general. In our 
study, the components are reinforced by two different patterns with varying geometric features that 
span a wide range of reinforcement ratios. The patterns were fabricated on a commercially available 
3D printer, and their mechanical strength was evaluated. The stress-strain curves representing the 
mechanical behavior of the parts were analyzed by SVD in an effort to quantitatively describe the 
complexity of the materials and fabrication process. 



Materials and Methods 

Materials 

 

Figure 1. Schematic representation of the variations to sample geometry and toolpath considered in this study. For 
single material designs, we varied build orientation, perimeter ring, and raster pattern as shown. For multi-material 
composites, we investigated layers and spherical inclusions of reinforcement material. TPU-80A is represented in the 
renderings as translucent and TPU-74D is represented as dark gray, corresponding to their physical appearance.  

 
Table 1. Material properties from the manufacturer are based on the neat, unprinted material, and the tensile modulus 
and elongation are based on manufacturer-printed parts.37,38 Orientations used in this study are illustrated in (Figure 
1). 

Identifier TPU-80A TPU-74D 
Name Essentium TPU 80A LF Essentium TPU 74D 

Shore Hardness 80A 73D 
Specific Gravity 1.11 g/cm3 1.23 g/cm3 
Build Direction XY YX ZX XY YX ZX 

Tensile Modulus (MPa) 22 18 17 340 314 316 
Elongation at break, % 640 517 471 730 73 110 

 
Thermoplastic polyurethane (TPU) was selected as the most elastic printable material available 
because it can be produced with vastly different hardness. By selecting two different TPU materials 
rather than two distinct polymers, it is less likely to run into miscibility issues in bonding. Materials were 
purchased from Essentium in filament form with a diameter of 2.85 mm. Some selected properties of 
the two materials are outlined in (Table 1). Most importantly, the two grades of TPU have vastly 
different hardness, with TPU-80A having a Shore hardness of 80A and TPU-74D having a Shore 
hardness of 73D. The difference between these materials is also shown by tensile modulus varying 
by more than 15x (varying slightly in different directions). 

Note that the orientations described in this text refer to the build orientation rather than solid 
mechanics notation; all mechanical behaviors in this work are uniaxial compressive loading. The XY 
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build orientation refers to a flat tensile bar with printed roads aligned in the load direction, YX refers to 
a flat tensile bar with printed roads aligned perpendicular to the load direction, and ZX refers to a 
vertically printed tensile bar. Our typical load case best resembles ZX but in compression. We also 
perform limited tests of the YX case. See (Figure 1) for a schematic representation of these directions. 

Material was dried in a vacuum oven at 70°C for a minimum of 8 hours and stored in closed 
air-tight containers to minimize variation in the material due to moisture content.35,36 While printing, the 
material was stored in a dry box (PolyBox edition II). The material was redried as needed when the 
material exhibited observable bubbles while printing. Note that we did not verify these tensile 
properties independently; we only performed compression tests in this study. 
 
Sample design and fabrication 

A variety of disk-shaped specimens with a 40 mm diameter and 20 mm height were designed for 
compression testing. Neat samples of TPU-80A and TPU-74D were prepared in addition to composites 
with one of two basic reinforcement geometries, which are shown in (Figure 1). The first composite 
design was a quasi-1D pattern (i.e., varying only in the build axis) consisting of printed layers with 
uniform thickness within each sample. Overall sample geometry remained constant, while the amount 
of reinforcing TPU-74D within the TPU-80A matrix varied. Thus, the single design variable for layered 
composites was the reinforcement layer thickness. The second composite design used a body-
centered cubic lattice of spherical inclusions, with a lattice site in the center of the sample’s bottom 
face (since spheres are centered at lattice sites, the spheres on the bottom are only half-spheres). 
The distance between the centers of neighboring spheres was held constant at 10 mm while the radius 
of the spheres varied. Thus, the single design variable for the spherical reinforcement was the 
diameter of spherical inclusions. 

 
Table 2. Selected printing parameters are used in the Cura slicer to generate printer gcode. 

Nozzle diameter 0.5 mm 
Layer height 0.4 mm 
Bed temperature 45 °C 
Print speed 750 mm/min 

 TPU-80A TPU-74D 
Nozzle temperature 225 °C 235 °C 

 
Sample fabrication was performed on a Lulzbot Taz Pro with dual-head extrusion. Toolpaths 

were generated using the Cura (Lulzbot Cura SteamEngine 3.6.23). Some relevant printing 
parameters used to generate toolpaths for the fabricated samples are shown in (Table 2). All samples 
used fully dense designs (i.e., 100% infill) and were printed flat on the print bed with aligned infill and 
material retraction off. Perimeters were turned off unless otherwise specified. When they were used, 
three layers were used for walls (so the use of a perimeter implies three concentric filament rings 
throughout this study). Renderings of the actual toolpaths used in this study are available in SI for 
selected geometries. 

Both TPU materials were challenging to print with FFF, requiring extensive process tuning to 
achieve reliable prints. A raft was required to overcome poor bed adhesion in TPU-74D. A purge tower 
was employed to assist in switching between filaments in the multi-material geometries. Lastly, the 
flexibility of the TPU materials resulted in under-extrusion caused by the material buckling when 
compressed into the nozzle, slipping on the extruder gear, material degradation restricting material 
flow over time, and stretching as it was pulled from the filament spool. An extrusion multiplier was 
added to help compensate for the under-extrusion of the material; however, due to inconsistencies in 
the material flow restriction, some under-extrusion was still observed, specifically in the highly elastic 



TPU-80A. Note that this leads to samples that are not fully dense despite using 100% infill in the 
design. 

Overall, we include data from 74 samples representing 18 different designs and/or process 
parameters. This is an average of 4 samples per design, but the mode is 3, with a minimum of 1 and 
a maximum of 14; the exact number of replica samples for each design is given in the SI. In short, we 
decided to fabricate more replicas of some designs due to high variability in the fabrication process, 
and for the case of the single replica (the only case with less than 3), we could only fabricate one 
suitable sample due to the challenges with printing TPU-80A. 

 
Uniaxial compression testing 

An Instron 8511 servo-hydraulic test frame operated by an Instron 8800 controller and equipped with 
a 20 kN actuator and 22 kN load cell was used for compression testing the printed samples. The 
specimens were centrally positioned between two flat platens and loaded in position control at a rate 
of 1 cm/min. The compression tests were performed by loading and unloading in a single run, with 
cyclic loading repeated three times during the compression test for each sample. Force-displacement 
curves were obtained for each sample, which were converted to engineering stress and engineering 
strain based on the nominal cross-section and height. We will refer to these post-processed data (i.e., 
paired engineering stress and engineering strain) as stress-strain curves. 

 
Data preparation 

We applied a preloading of 0.2 MPa to account for compliance at the start of compression; this 
accounts for at most 2% of the maximum stress and as little as 0.8%. To compute statistics, we 
resampled the strain data at the same stress values using linear interpolation. Mean and standard 
deviation were thus computed on strain data for a given stress across multiple samples. 
 
Finite Element Analysis 

Finite Element Analysis was performed using FeNICS, an open-source solver.39,40 Tetrahedral 
meshes were generated using gmsh.41 Following relevant literature,42,43 the constitutive model was a 
compressible Yeoh hyperelastic model with the following form:44 

𝑊 =#𝐶!"(𝐼#̅ − 3)!
$
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+
𝜅
2
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where 𝑊 is the strain energy,	𝐽	is the volume ratio, 𝐼# is the first invariant of the Cauchy-Green strain 
tensor, and 𝐶! and 𝜅 are empirical parameters to be fitted. Dirichlet boundary conditions were applied 
at the top and bottom surface of the cylindrical sample, with nodes at the bottom surface Γ' fixed to 
𝒖 = 0 and nodes at the top surface Γ( fixed to 𝒖 = (0, 0, −𝛿) where 𝛿 is the fixed displacement to 
enforce a target strain. This 𝛿 was then gradually increased using the preceding 𝒖 as an initial guess. 
The reaction force 𝑅) was obtained by integrating 𝜎))(𝒖) over the surface Γ(. 

Two separate material models were obtained by fitting to experimental data for the neat TPU-
74 and TPU-80 samples with 40 mm diameter. Fitting was performed using Bayesian Optimization 
with the open-source dragonfly package.45 The best-fitting model parameters were: 

𝜃(*+,-.: {𝐶#" = 16.839	MPa, 𝐶&" = 24.458	GPa, 𝐶$" = 109.74	MPa, 𝜅 = 48.226	MPa} 
𝜃(*+,/": {𝐶#" = 0.81818	MPa, 𝐶&" = −1.0000	MPa, 𝐶$" = 7.7778	MPa, 𝜅 = 6.0000	MPa} 

These material parameters were then applied to simulations of the composite geometries. 
 



Dimensionality reduction 

Truncated SVD is a dimensionality reduction technique by which the original, high-dimensional data 
are projected onto a linear basis set. The basis set is truncated to include only the components with 
the top-k greatest eigenvalues to effectively reduce the dimensionality of the data. Since the limiting 
factor in our compression experiments was the maximum force of our load cell, we chose to consider 
strain values at fixed stress. We, therefore, interpolated the strain data from each sample at fixed 
stress values between zero and the minimum maximum strain across all the samples (9.16 MPa) for 
consistency. The SVD was then performed on these vectors of resampled strain values, with every 
test specimen having data at each of the given stress values. SVD was performed using scikit-learn.46 

Results and discussion 

Neat samples 

 
Figure 2. Images of experimental samples produced by FFF: (a) neat sample of TPU-80A, (b) neat sample of TPU-
74D, (c) composite sample with layered reinforcement, (d) composite sample with spherical inclusions. Images taken 
during the compression of neat samples of (e) TPU-80A and (f) TPU-74D at different times, t. The initial height of the 
sample h0 is indicated by white bars since the final displacement is relatively small in the case of TPU-74D. 

 
Cyclic loading was applied to samples of each neat material with 40 mm diameter and standard print 
settings. Hysteresis was observed between the first and second cycles, with the softer TPU-80A 
exhibiting hardening, likely due to densification, while the stiffer TPU-74D exhibited slight softening 
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behavior. Only minimal hysteresis was observed in subsequent loading cycles, so the analysis in the 
remainder of this study considered only the loading part of the second cycle. Some sample load-
unload curves are shown in the SI. 

Using this protocol, we evaluated the effect of different geometries and toolpaths on the 
mechanical properties of neat samples. The first set are neat samples with different diameters (30 
mm, 40 mm, and 50 mm), while the rest are all nominally the same geometry (40 mm diameter and 
20 mm height) and the same processing parameters as given in (Table 2). However, we explored the 
effect of different raster patterns during infill, different build orientations, and the use of perimeter rings 
(◯). The influence of toolpath will need to be considered when designing composite geometries since 
it is impossible to utilize the same toolpath for all composite designs. 
 

 
Figure 3. Compression test results for neat samples. (a) TPU-80A samples and (b) TPU-74D samples with different 
diameters but otherwise identical slicer settings. (c) TPU-80A and (d) TPU-74D samples with different slicer settings 
as indicated in (Figure 1): perimeter ring, perpendicular raster pattern, and YX build orientation. Data in all panels have 
been resampled at equivalent stress as described in methods and truncated to the highest common stress. 
 

The effects of different geometries and toolpaths are shown in (Figure 3). Compression data 
were analyzed for different sample diameters for neat materials in panels a-b. In short, the effect of 
the sample diameter (⌀) on compressive behavior was minimal (within uncertainty bands). Toolpath 
variations are shown in (Figure 3)c-d. For TPU-80A, both the perpendicular raster pattern (⟂) and YX 
build orientation resulted in slightly reduced stiffness compared to baseline, while the perimeter rings 
resulted in increased stiffness. For TPU-74D, the differences between the toolpaths were insignificant. 
We conclude that under-extrusion of TPU-80A leads to greater discrepancy in the densification 
behaviors with different toolpaths, while the easier-to-print TPU-74D shows less deviation. 



Among these experiments, the most significant effect was observed by adding perimeter rings 
for the TPU-80A samples. We expected this to change the densification behavior as the material will 
be stronger in tension along the filament compared to the bonding between filaments. We suspect that 
the perimeter rings reduce cross-section expansion during compression. Therefore, this may be an 
artifact of using engineering stress instead of true stress. 
 
Composite samples 
 
Next, we introduce multi-material composite samples. Each composite sample has a diameter of 40 
mm and a height of 20 mm, and the slicer settings were fixed throughout, with a “parallel” raster pattern 
and no perimeter rings. Increasing the amount of TPU-74D reinforcement material should increase 
the overall strength of the composite compared to neat TPU-80A, eventually approaching the strength 
of neat TPU-74D. Here, we seek to establish the degree to which the behavior of the composite can 
be controlled independently of this reinforcement fraction by manipulating reinforcement geometry. 
 

 
Figure 4. Compression test results for composite samples with different reinforcement geometries. (a) Layered 
reinforcements and (b) spherical reinforcements on a lattice. Data have been resampled and truncated to common 
stress values as described above. (c) Linear interpolation of different reinforcement styles over the full range of 
reinforcement volume fraction. Spheres are only shown to 60% as they become nonsensical at high volume fraction. 
 

For composite samples with layered reinforcements, the layer thickness of TPU-74D was 
manipulated while keeping a constant number and arrangement of layers. The reinforcement fraction 
for spheres was manipulated by varying the radius of inclusions. The resulting compression data are 

e 



shown in (Figure 4) for each reinforcement type. In the weakest cases, the samples exhibit a shallow 
slope before densification, similar to the neat TPU-80A samples, while the strongest cases exhibit a 
steeper slope that is also more linear, similar to the neat TPU-74D samples. The middle cases exhibit 
a blend of these behaviors, as expected. 

To compare the observed compression behavior between the two reinforcement types, it is 
necessary to consider the reinforcement volume fraction, as reported in (Figure 1). Note that the layer 
reinforcement designs have roughly twice the reinforcement material in each sample compared to the 
sphere reinforcements. This necessitates a more detailed comparison that considers (nearly) 
equivalent volume fractions of the reinforcement material. We probe these differences between 
reinforcement geometries in (Figure 4c), which shows the sphere reinforcement, layer reinforcement, 
and neat samples interpolated to many different volume fractions. 

At moderate volume fractions, sphere reinforcements provide a higher slope at low strain but 
grow to a lower slope at high strain compared to the layer reinforcements. This can be seen in the 
50% curve for spheres (second to last, teal-blue color), whose stress grows faster than the 50% curve 
for layers but ultimately approaches a similar value at around 15% strain. Both reinforcement types 
outpace the expected behavior obtained by interpolating from neat samples, reaching neat TPU-74D 
well ahead of 100% interpolated volume fraction. The shape of these curves is due to the different 
compaction behavior of spherical inclusions compared to horizontal layers of TPU-74D in the 
composites. Spheres on a lattice will span the sample in the load axis faster than the layer samples, 
providing greater stiffness at lower strain. Meanwhile, the stiffness of the TPU-74D in the layer 
reinforcements will not become relevant until the compliant TPU-80A begins to densify, at which point 
the TPU-74D will start to dominate the response. 
 
Finite Element Analysis 

 
Figure 5. Result of the FEA on composite geometries for (a) layer geometries and (b) sphere geometries. Solid lines 
are the simulation results while dashed lines are experimental data reproduced from (Figure 4). 

 
Calibrated constitutive models were obtained for each of the neat TPU materials as described in the 
(Materials and Methods). The calibrated models were deployed to simulate the performance of the 
composites shown in the preceding sections. The results in (Figure 5) show that the model 
successfully captures the qualitative behavior of the composites (e.g., approximate ratios of strength 
between different geometries) but does not quantitatively match the experimental results. In particular, 
the experimental composite samples were stiffer than the models would suggest. The discrepancy is 
likely due to the strong influence of the toolpath, which has not been included in the continuum 
simulation model; it is fundamentally impossible to achieve an identical toolpath when fabricating 



samples with different reinforcement geometries (i.e., one toolpath cannot fabricate spheres of 
different radii). 

To be clear, our FEA model treats the bonded filaments as a single continuous body with 
isotropic properties. With FFF, this is not the case, as bonded filaments will result in a highly anisotropic 
material that fails first at interfaces between filaments (such as between layers). In our analysis, we 
are considering the continuum results to be descriptive of the effect of reinforcement geometry, while 
interfaces between filaments and between layers are intrinsically tied to the toolpath. Thus, when we 
say the discrepancy is related to the toolpath, we mean that the discrepancy between the FEA results 
and the experimental results is indicative of the bonding interfaces that have not been included in the 
FEA model. We chose this simplified FEA approach as a first step to isolate the effects of 
reinforcement geometry. 

The best example of the discrepancy is the 4 mm sphere geometry, where the simulated 
behavior is much more compliant at low strain compared to the experiment. The 2 mm sphere 
geometry gives the best match, which also corresponds to the smallest reinforcement volume fraction. 
Meanwhile, all the layered geometries in (Figure 5a) show poor agreement between the simulation 
and experiment, but by a consistent margin. This inconsistency between the two reinforcement styles 
is further evidence of the influence of the toolpath, as each build slice in the layer designs has the 
same toolpath no matter the reinforcement thickness, while the sphere designs have toolpaths in each 
slice that depend on the size of the spheres. 
 
Dimensionality reduction 

The objective of this study is to probe the degree to which the compressive behavior of fully dense 
thermoplastic composites can be tuned by adjusting reinforcement geometry. In examining the many 
variations of similar compression curves above by eye, the answer to this question remains unclear; 
though the overall strength of different samples varies, they all exhibit a similar nonlinear behavior that 
is difficult to tell apart. We now seek to address this question via a data-driven approach, namely, the 
application truncated SVD to all the stress-strain curves. 

The number of dimensions to retain in truncated SVD projection can be determined by 
evaluating the explained variance ratio. In essence, each vector component of the right singular matrix 
captures a certain amount of overall variance in the data when it is used in the projection. In our SVD, 
the first component captured 97.8% of the total variance in strain data, while the second component 
captured an additional 2.1%. In other words, we can represent 99.9% of the total variance in the strain 
curves (interpolated to consistent, fixed stress values) by linearly projecting onto only the first two 
vector components of the SVD shown in (Figure 6). 

 

 
Figure 6. First and second components from SVD on the resampled experimental stress data. 

 



The two-dimensional design space obtained from truncated SVD enables us to understand 
how the reinforcement geometry, reinforcement volume fraction, and toolpath affect the mechanical 
response of the fabricated samples. The embedding of all samples into this space is shown in (Error! 
Reference source not found.a). First, we observe that the TPU-74D and TPU-80A define opposite 
ends of the primary vector component, v1. From its shape in (Figure 6), we think of v1 as a proxy for 
strength, as it captures more than 98% of the variance in the compression data and closely resembles 
the shape of each stress-strain curve. Within this landscape, there is a cloud of data with different 
strengths because of different reinforcement geometry and toolpaths. 

 

 
Figure 7. (a) Projection of the experimental stress-strain curves into 2D space using truncated SVD depicts the 
distribution of the samples having different structural properties and processing histories. (b) Reconstructed stress-
strain curves embedded in-place into the low-dimensional SVD space. Each curve is a linear reconstruction from the 
2D coordinates at its center. Grey curves have a Euclidean distance greater than 0.20 away from the nearest 
experimental data point, while the rest are colored according to a 2D Steiger colormap. 

 
Next, we investigate the second component, v2. This component explains less than 2% of the 

overall variance in the stress-strain curves and is associated with greater compliance at low strain; 
positive v2 accentuates the nonlinearity inherent in low strain from v1, while negative v2 counteracts it 
and results in less initial compliance (more linear). A good example of the difference between high and 
low v2 is the addition of perimeters to neat TPU-74D samples, which reduces the v2 component and 
is shown in (Figure 3) to increase the linearity of the compressive behavior without greatly affecting 
the overall strength.  

The experimental data define a shallow arc through the design space. We visualize this 
through reconstructions of the stress-strain curves on a grid in SVD space, shown in (Error! 
Reference source not found.b). Colored curves appear near to at least one experimental curve, 
while grey curves are in the unphysical region. From this visualization, it becomes clear that some 
regions have shapes that are not permitted by the physics of uniaxial compression, while others are 
feasible but aren’t represented in the experimental data. New reinforcement geometries might be able 
to access these regions. 



 
Figure 8. (a) Centroids of each group of samples in the low-dimensional SVD space. Experimental data are shown with 
filled symbols while simulation data are shown with open symbols. Note that the aspect ratio differs from (Error! 
Reference source not found.), such that the magnitudes of the eigenvalues are not depicted here. (b) Reconstructions 
of the full stress-strain curves from the neat samples in panel (a) with standard deviations within each sample group 
indicated by shaded bands. (c) Reconstructions of the full stress-strain curves from the composite samples in panel (a) 
with standard deviations within each sample group indicated by shaded bands. Simulation results are again shown with 
open symbols. 

 
Due to the large number of samples in (Error! Reference source not found.), we produced 

another projection where each geometry was represented by the centroid of all samples with that 
geometry. These are shown in (Error! Reference source not found.a), while reconstructions of their 
stress-strain curves are shown in (Error! Reference source not found.b-c). In the v1 direction, the 
extremes are defined by neat TPU-74 and TPU-80A materials; this effect can be observed in the 
reconstructed curves with TPU-74D appearing at the far left and TPU-80A appearing at the far right. 
In the v2 direction, the extremes are defined by TPU-80A with perimeters and TPU-80A with YX build 
orientation. The difference can again be seen in the reconstructed curves, with TPU-80A perimeters 
being nearly linear even at low strain and TPU-80A YX showing the greatest compliance at the lowest 
strain of any geometry. 

We also projected the simulated stress-strain curves from (Figure 5) onto the SVD components 
defined by the experimental data. Here, the simulated curves represented by open symbols in (Error! 
Reference source not found.a), appear confined to a quasi-1D curve within the 2D design space. 
Based on the preceding analysis, variation in the v2 direction is almost entirely the result of toolpath 
variation. Thus, this confinement supports the idea that variation in the toolpath is responsible for the 



poor agreement between simulation and experiment in (Figure 5). Reviewing the reconstructions in 
(Error! Reference source not found.b) shows that moving in the -v2 direction leads to less 
compliance at low strain (i.e., more linear behavior), matching the experimental curves in (Figure 5). 

Conclusion 

In this study, we explored the design space of multi-material TPU/TPU composites manufactured by 
FFF additive manufacturing and tested under uniaxial compressive loading. We manufactured a total 
of 74 samples across 18 different designs comprising some with no reinforcements, spherical 
reinforcements, and layer reinforcements, and explored the effect of different toolpaths by including 
perimeter rings, alternating raster patterns, and different build orientations, with other factors held 
constant. Due to the non-linear behavior of the TPUs and the many variations of geometric and 
process variables, many stress-strain curves were obtained. Constitutive models for the TPU materials 
were calibrated using Bayesian Optimization, and Finite Element Analysis was performed to predict 
the behavior of the composites. Finally, we analyzed the experimental data using truncated SVD to 
elucidate the response space. 

Overall, only minor effects on the compressive behavior were observed when testing different 
variations of neat material samples. The purpose of these tests was to establish a baseline amount of 
variance expected from changes to sample geometry and toolpath within a dense sample of neat 
material before introducing the multi-material composite parts. The one standout case was the 
perimeter filament rings, which resulted in stiffer, more linear compressive behavior. When considering 
the response space of multi-material composites, spherical inclusions provided greater strength 
compared to layer reinforcements of equal reinforcement fraction. This supports the observation that 
toolpaths with perimeter rings have a proportionally greater effect on overall compressive strength due 
to how tension in the perimeter filament affects densification. As a consequence, TPU FFF parts 
designed for compressive loading could benefit from additional perimeter walls to take advantage of 
the tensile strength of the filament. It is not clear from our study whether there is an optimal number 
of such perimeter walls or if the strongest samples would result from infill with concentric shells. 

Surprisingly, despite the complexity of the system, 97.8% of the variance in stress-strain 
curves of our samples was captured by the first component and 99.9% by the first two. The shape of 
these vectors indicates that while the behavior of samples varies quantitatively, limited modes are 
controllable with the design variables considered here. In effect, the strength of the composite could 
be controlled by manipulating reinforcement mass fraction, but the shape of the nonlinear behavior 
was baked into the constituent materials despite changing the reinforcement geometry. This was true 
in both the simulations (subject only to geometrical variations) and the experimental results (subject 
also to significant process variation, including toolpath). 

In the future, further tuning may be required to better control the extrusion rate of each material 
and obtain more insight into geometry-specific behaviors. From our initial results, it seems clear that 
nozzle diameter, layer height, and other aspects of the design will also play a role in the overall strength 
of the parts, but introducing these will greatly expand the scope of work and complexity of the resulting 
analysis. It would also be interesting to explore more complex reinforcement geometries, which will 
impact the mechanical response both directly through the nominal geometry as well as incidentally 
through the effect of the toolpath. While simulation was not successful in capturing the quantitative 
response of the composites, it may assist in identifying geometries to obtain more novel response 
modes (i.e., through data-driven design). 
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