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1. INTRODUCTION

Widespread adoption of autonomous vehicle (AV) tech-
nology is crucial to reducing accidents caused by human
errors and ultimately enhancing road safety. The extent
of adoption of such technologies highly depends on users’
satisfaction with the output; if the system fails to meet
their expectations, they may opt to disable the feature
altogether (Hasenjäger and Wersing, 2017). On the other
hand, surveys demonstrate that drivers have different com-
fort and performance preferences Hartwich et al. (2018),
therefore it may not be possible to execute behaviors that
fit all, which highlights the importance of customizable au-
tonomous vehicle behaviors. However, driving is a safety-
critical task, where rules of the road govern the safety
standards. Any autonomous vehicle must consistently pri-
oritize safety by following the traffic rules at all times.

Various approaches exist in the literature for the person-
alization of autonomous vehicles. Studies by Huang et al.
(2022); Lefèvre et al. (2016); Kuderer et al. (2015) utilize
driving data to mimic the driving style of users. Driving
demonstrations are a valuable source to infer naturalistic
driving information but surveys suggest that people have
different preferences when they are in the driver’s seat
compared to when they are passengers (Basu et al., 2017).
Given that everybody is essentially a passenger in fully
autonomous vehicles, imitation learning methods may
fall short of satisfying user expectations. Alternatively,
Schrum et al. (2024) introduce tuning options to adjust the
aggressiveness level of the autonomous vehicle on top of
demonstrations from the user. While this approach offers
! This work was supported in part by NSF TI # 2303564.

some flexibility, a recent study from Haselberger et al.
(2024) confirms that user preferences are dynamic and can
vary depending on various factors such as weather condi-
tions or oncoming traffic. Dynamic changes in preferences
may require frequent adjustments in aggressiveness level,
which may decrease user satisfaction.

Asking users comparison questions is a prominent tech-
nique in preference learning (Fürnkranz and Hüllermeier,
2003). Karagulle et al. (2024a,c) attempt the customiza-
tion problem as a preference learning problem from pair-
wise comparison questions of behaviors. These works pro-
vide safety guarantees by incorporating formal methods
with preference learning. Given a scenario and its spec-
ifications that describe scenario-specific traffic rules and
comfort standards, they learn new semantics for the spec-
ifications that represent user preferences. While Karagulle
et al. (2024a) pre-define a question set offline, Karagulle
et al. (2024c) adaptively select the next question based on
question-answer pairs so far. They leave the controller syn-
thesis from the new semantics as a direct extension of their
work. Although these works cover hidden and dynamic
preferences that cannot be observed from demonstrations,
scenario-specific rule descriptions do not include all as-
pects of the driving task. For instance, consider a scenario
where the ego vehicle approaches a pedestrian crossing
while a pedestrian crosses the road. Scenario specifications
include components related to the longitudinal behavior
but do not necessarily include specifications for the lateral
behavior. Therefore, we need to consider specifications
related to latent variables that help generate a naturalistic
behavior in the controller synthesis problem from these
specifications. Specifications related to latent variables
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may be hard-coded as additional rules or constraints. This
task requires domain-expert knowledge and is prone to
issues like overlooking some aspects.

In this work, we focus on generating safe, customized, and
naturalistic behaviors that are one step closer to being
approved and used by potential AV users. To this end, we
propose a method for custom-and-correct-by-construction
controller synthesis by combining human feedback from
two modalities; preferences learned by asking pairwise
questions (Karagulle et al., 2024c,a), and driving demon-
strations from users. Our framework, called 4C, is summa-
rized in Figure 1. To ensure safety and express preferences,
we utilize Weighted Signal Temporal Logic (WSTL), in-
troduced by Mehdipour et al. (2021). Weights in a WSTL
formula are learned through “Safe Preference Learning”
module. Then, these weights are fed into the controller
synthesis problem. Synthesizing controllers that satisfy
specifications expressed in temporal logic is an active
research area with different temporal logic syntaxes and
different control approaches. Wolff et al. (2013) intro-
duce an automaton-guided controller for Linear Temporal
Logic, Sadraddini and Belta (2015) present a robust Model
Predictive Control (MPC) problem with Signal Temporal
Logic constraints, and Saha and Julius (2016) introduce
a Mixed-Integer Linear Programming (MILP) Approach
for Metric Temporal Logic constraints. In this work, we
leverage a recent toolbox PyTeLo developed by Cardona
et al. (2023), where the MPC problem with WSTL is recast
as a MILP with an efficient implementation.

Fig. 1. The goal of this work is to design a custom-and-
correct-by-construction controller based on multi-
modal human feedback data; user demonstrations and
indicated preferences to pairwise questions

We demonstrate the performance of the proposed ap-
proach by synthetic experiments and a pilot human sub-
ject study. Our synthetic experiments illustrate the dis-
tinct effects of demonstrations and learned WSTL se-
mantics over the generated behavior. The human subject
study is conducted on a simple simulator that consists
of a monitor, a steering wheel, and throttle/brake ped-
als that implements the proposed framework represented
in Figure 1. The pilot human subject study shows that
integrating two modalities helps obtain more naturalistic
trajectories while guaranteeing safety.

2. PRELIMINARIES AND PROBLEM STATEMENT

We model an autonomous vehicle with a discrete-time
system of the form

xt+1 = ft(xt, ut), st = ht(xt), x0 = xo, (1)

where xt ∈ X ⊆ Rn is the n−dimensional state at time
t, ut ∈ U ⊆ Rp is the control input, st ∈ S ⊆ Rk is

the output with ht : X $→ S, and x0 ∈ X is the initial
state. We are interested in controlling this system over a
horizon [0, T ]. Then, x maps t ∈ [0, T ] ⊆ Z+ to X . We
assume for a given scenario, we have specifications that
are related to some of the states. Information related to
specifications at time t is represented with st. A sequence
x = x0x1 . . . xT is a state trajectory of System (1) if
x0 = xo and there exists a sequence of control inputs
u = u0u1 . . . uT−1 that generates x (i.e., xt+1 ∈ X , ut ∈ U ,
and xt+1 = ft(xt, ut) for all t ∈ [0, T − 1]). A sequence
s = h0(x0)h1(x1) . . . hT (xT ) is an output trajectory of
System (1) if x = x0x1 . . . xT is a state trajectory.

We define task specifications using Weighted Signal Tem-
poral Logic (WSTL) formulas given by grammar φ =
& | µ | ¬φ | φ1 ∧w φ2 | φ1Uw1,w2

[a,b] φ2, where & is the

Boolean true, µ is a predicate of the form gµ(st) ≥ 0,
where gµ : Rk $→ R, ¬ is the negation operator, ∧ is
conjunction, and U is the until operator, where a, b ∈ Z+. 1

Until is a temporal operator with the time interval [a, b],
and semantically means that φ1 should hold until φ2 starts
to hold in the time interval [a, b]. Weights w,w1, w2 express
the importance of subtasks or time instances. If the time
interval is omitted, it reads as [0,∞). The set of all well-
formed STL formulas is denoted as F . WSTL has quali-
tative and quantitative semantics. If a signal s satisfies a
formula φ at time t, it is shown as st |= φ. If it violates at
t, it is shown as st *|= φ. When time t is omitted, i.e. s |= φ,
it reads for t = 0. We say φ is realizable by the system (1)
if there exists an output trajectory s such that s |= φ. The
quantitative semantics of WSTL formulas are denoted as
r : S×F × [0,∞) $→ Re and defined recursively as follows:

r(s,&, t) =∞
r(s, µ, t) = gµ(st)

r(s,¬φ, t) =−r(s,φ, t),
r(s,φ1 ∧w φ2, t) =min

(
w1r(s,φ1, t), w2r(s,φ2, t)

)
,

r(s,φ1Uw1,w2

[a,b] φ2, t)= max
t′∈[t+a,t+b]

(
min

(
w1

t′−t−a+1r(s,φ2, t
′),

w2
t′−t−a+1 min

t′′∈[t,t′)
r(s,φ1, t

′′)
))
,

(2)
where Re is the extended real domain. Weights of WSTL
formulas are in the positive quadrant, that is, w ∈ R+

and w1, w2 ∈ Rb−a+1
+ . Restricting weights to the positive

quadrant guarantees the soundness property. Soundness
is defined as follows: r(s,φ, t) > 0 =⇒ st |= φ
and r(s,φ, t) < 0 =⇒ st *|= φ. Similarly to the
qualitative semantics, r(s,φ) reads for t = 0. We say φ
is strictly realizable by the system in (1) if there exists
an output trajectory s such that r(s,φ) > 0. The STL
and WSTL syntaxes are defined for infinite signals, slight
modifications are done for the finite signals along with time
interval adjustments (De Giacomo and Vardi, 2013).

An extension to WSTL is Parametric Weighted Signal
Temporal Logic (PWSTL), in which a subset of weights are
unknown. We denote the PWSTL formulas as φW where
W is the set of unknown weights. A valuation w for W
makes a WSTL formula. With a slight abuse of notation,
we denote WSTL formulas constructed with valuation w

1 Other common predicates with ≤, <,> and = relations, as well as
other operators such as ∨,! and ! can be expressed in the usual
way. Details can be found in Mehdipour et al. (2021).
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for W as φW=w. The valuation w can be inferred using
works like Karagulle et al. (2024a,c). Both works require
a pre-generated signal set SQ = {s1, . . . , sK} to choose
pairwise comparison questions of the form q = (si, sj). In
this work, we want to solve the following problem:

Problem 1. Given a scenario with specifications φ, a set of
demonstrations (x̄, ū), and a set of example trajectories
SQ to ask pairwise preference questions from, find a
controller that generates output trajectories that represent
preferences while satisfying φ.

3. METHODOLOGY

We propose a two-step approach to solve Problem 1 as
illustrated in Figure 1. In the first step, we leverage
the method developed by Karagulle et al. (2024c) to
learn the most likely weight valuation w∗ for the given
PWSTL formula φW by adaptively asking questions to
the user. In particular, the weight set is discretized into
M points and the weight is assumed to be a discrete
random variable with uniform initial distribution. With
each question-answer pair, the posterior probability of the
weight valuations are updated via Bayesian inference, and
the most likely weight is returned. Then, the following
proposition forms the basis for correctness for control
synthesis:

Proposition 1. Given w∗ learned by the methods in Karag-
ulle et al. (2024a,c), let x∗, u∗, s∗ be the solution of the
following problem:

x∗, u∗, s∗ = arg min
x ∈ XT , u ∈ UT ,

s ∈ ST

−r(s,φW=w∗)

s.t. (1) holds for all t ∈ [0, T ]

(3)

where T is the time horizon of the problem. If φ is strictly
realizable, then the solution s∗ |= φ.

Proof. It follows from the safety guarantees in Karagulle
et al. (2024a) and the soundness of WSTL.

Proposition 1 shows that the solution to Problem (3)
guarantees a custom-and-correct-by-construction behavior
when started from xo and the control sequence u∗ is
applied. However, since this behavior only follows an
objective based on s, the latent dimensions in x may
result in unnaturalistic behavior. To address this, we
incorporate driving demonstrations. Demonstrations and
comparison signals enter the 4C block and output the
desired behavior. For a given demonstration x̄ chosen from
a set of demonstrations X̄ , the second step of the approach
solves
x∗, u∗, s∗ = arg min

x ∈ XT , u ∈ UT ,

s ∈ ST

J(x, x̄)− λr(s,φW=w∗)

s.t. (1) holds for all t ∈ [0, T ]
r(s,φ) > 0.

(4)

where J(x, x̄) is the cost function related to demonstra-
tions, and λ ≥ 0 is a hyperparameter to tune the effect of
preferences over the generated trajectory.

By constraining the weighted robustness as positive, we
ensure that specifications are satisfied.

As it can be deduced from Equation (2), the terms with
WSTL specifications are not linear. However, it is possible

to make them mixed-integer linear constraints by using
PyTeLo developed by Cardona et al. (2023). Therefore,
as long as the model is linear, and the cost term J(x, x̄)
is linearly representable, Problem 3 is a MILP. In the
case where the model is not linear, linearizing the f(·)
with respect to a state helps obtain linear constraints.
The time horizon of this problem is the full length of
the generated trajectory. In other words, this problem can
be seen as a trajectory generation problem rather than
receding horizon control, as we do not have a time horizon
to shift over the timeline. The generated trajectory can
be used as a reference trajectory for the online control
problem. When it is used as a trajectory to follow, we
should consider potential shifts in the behavior due to
model mismatch, and ensure the satisfaction of temporal
logic formulas in the presence of this mismatch. Various
works address this problem for different temporal logics
(Liu and Ozay, 2016; Fainekos et al., 2009).

4. EXPERIMENTS

In this section, we first analyze the effect of demonstrations
and varying preferences on generating naturalistic behav-
iors using synthetic data. Following this, we will discuss the
results of the pilot human subject study. Both experiments
share key design elements, including the driving scenario,
and the state-space model.

Driving scenario: We generate a simple scenario in which
the ego vehicle approaches an intersection while a pedes-
trian crosses the street. The formula the ego vehicle should
satisfy depends on the distance to the pedestrian d, the
position of the ego vehicle p = [px py]

T
, the acceleration

of the vehicle a, and the jerk of the vehicle ȧ. The specifi-
cation is φ = φrule ∧φdestination ∧φcomfort, where φrule =
!(d ≥ 2) represents the traffic rule for this scenario, that
is the distance to the pedestrian should always be greater
than 2 meters, φdestination = !![0,10](p ∈ P) represents
the goal specification for the vehicle where P represents
the goal region, and φcomfort = !(a ≤ 10 ∧ ȧ ≤ 30)
represents additional comfort specifications. Note that the
comfort specifications are trivial to satisfy in daily driving
situations (de Winkel et al., 2023).

Implementation details: We use the bicycle model for the
ego vehicle. The simple diagram of variables related to
bicycle kinematics can be found in Figure 2, and the details
of the model can be found in (Polack et al., 2017).

The state variables are x = [px py v θ]
T
, where v is the

speed and θ is the orientation of the vehicle. The control
inputs are u = [a δ]

T
, with δ is the steering angle. The

continuous kinematics of the center of mass of the vehicle
are

f(x, u) = ẋ =





ṗx
ṗy
v̇
θ̇



 =





v cos(θ + β)
v sin(θ + β)

a
v/L ∗ tan(δ) ∗ cos(β)



 , (5)

where β = arctan(LR tan(δ)/L) is the slip angle of the
vehicle, L is the length of the vehicle from the rear wheel
to the front wheel, and LR is the distance from the rear
wheel to the center of mass. The model is continuous-time
nonlinear, and we need to approximate it as linear-time
discrete model to fit into Problem (3). The linearization
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Fig. 2. The bicycle kinematics model. ICR represents the
Instantaneous Center of Rotation and CoM represents
the Center of Mass.

point depends on the demonstration’s initial state, as an
example, with x′ = [0, 0, 0.5, 0], u′ = [0, 0], and ∆t = 0.1,
the discrete-time linear model becomes xt+1 = Adxt +
Bdut + fd with matrices

Ad =





1 0 0.1 0
0 1 0 0.05
0 0 1 0
0 0 0 1



 , Bd =





0.005 0
0 0.025
0.1 0
0 0.017



 , fd =





0.05
0
0.5
0



 .

The details about the derivation of Ad, Bd and fd can
be found in Karagulle et al. (2024b). The output vari-

able is s = [d a ȧ px py]
T
. The distance to pedestrian

is dt = ‖ppedt − pt‖, where ppedt is the position of the
pedestrian at time t. We choose the time horizon T of the
problem as the time length of the demonstration. For the
cost function J(x, X̄ ) = ‖x − x̄‖1, a weighted L1 norm
is used to scale the state elements in J(x, X̄ ) = ‖x −
x̄‖1,α =

∑
i∈{1,...,4}

∑
t∈T αi|xi

t − x̄i
t|, where xi

t repre-

sents the ith entry of xt. We define the weight multiplier
as α = [0.2 0.4 0.05 0.5]. We choose the demonstration
we will use as the most preferred one in X̄ , i.e., x̄ ∈
argmaxx∈X̄ r(l(x),φW=w). The state and input domains
are set as x ∈ [−5, 140] m, y ∈ [1, 6.5] m, v ∈ [0, 30] m/s,
θ ∈ [−π,π] rad, a ∈ [−10, 15] m/s2, ȧ ∈ [−30, 30] m/s3

and δ ∈ [−1, 1]rad. Finally, for the safe preference learning,
we use the set of existing demonstrations for the same sce-
nario, generated by professional drivers using the simulator
in Karagulle et al. (2024c).

4.1 Synthetic Experiments

In this section, we analyze the effect of different feedback
modalities with two different setups: the influence of
preferences over the generated trajectory when (i) the
demonstration satisfies φ, (ii) when the demonstration
violates φ. These demonstrations are generated using
CARLA (Dosovitskiy et al., 2017), following the physics
of the CARLA vehicles. We adjust λ to modify the effect
of the weighted robustness value on the cost function.

First, we examine the case (i) for four different instances
with three different weight valuations. Instance (a) occurs
when the cost function does not include the weighted
robustness term, that is λ = 0, instance (b) and (c) is when
λ = 100 and λ = 103, respectively. Instance (d) represents
the case where the demonstration is excluded from the

controller synthesis problem, meaning J(x, x̄) = 0. Weight
valuation w1 represents the case where all weights are 1,
corresponding to the traditional STL robustness. Weight
valuations w2 and w3 are synthetically obtained through
the safe preference learning module from Karagulle et al.
(2024c). For w2, we randomly pick a weight valuation wH

that is not among M = 1000 discretization points and
assume it represents the weight valuation of a hypothetical
person. This hypothetical person answers each question
based on the order induced by the weighted robustness
value. Specifically, when asked to compare si and sj , they
choose si if r(si,φW=wH ) > r(sj ,φW=wH ) and sj other-
wise. For w3, the hypothetical person selects the answer
with the smaller weighted robustness value, choosing si if
r(sj ,φW=wH ) > r(si,φW=wH ) and vice versa.

Figure 3 shows results for case (i). In instance (a), we
observe the same behavior for all weight valuations. Since
the weighted robustness does not affect the cost, this
observation is expected. The slight shift of the generated
trajectories from the demonstration can be attributed to
the differences in the vehicle models of the demonstra-
tion and the controller synthesis problem. As λ increases,
we see more deviation from the demonstration to maxi-
mize the weighted robustness value. Notably, although the
demonstration ends before the pedestrian, the trajectory
generated with w3 passes the intersection even before the
pedestrian arrives. The flexibility in the specifications al-
lows for such diversity in behaviors. In instance (d), where
we exclude the demonstration from the controller synthe-
sis, vehicles maximize their weighted robustness values by
either slowing down or steering toward the edges of the
lane to maximize their distance from the pedestrian. These
behaviors are less likely to be seen on the road compared
to ones in instances (b) and (c).

Second, we study case (ii) for instance (c), and same
weight valuations. The 4C block guarantees that the
generated trajectories satisfy the formula even though the
demonstration violates it. Figure 4 shows the violating
demonstration and generated trajectories for all weight
valuations when λ = 103. It is clear that at t = 12, the
demonstration is violating φrule. Generated trajectories do
not follow the same pattern and satisfy φ.

4.2 Pilot Human Subject Study

In this set of experiments, we conduct a pilot study with
four participants to test if the generated trajectories reflect
the preferences of the users. Our supplementary goal is to
gather observational data and feedback from participants
for future studies to be used in potential extensions.
Therefore, the population size and the diversity of the
participants are kept intentionally limited, and the results
of this study are not representative of broad conclusions.

The simulator used in the study is shown in Figure 5.
It consists of a wide monitor and a set of steering wheel
and pedals, Logitech G920. The simulation environment is
based on CARLA.

The study is conducted under HUM#00221976, and the
protocol is as follows: (i) we record multiple demonstra-
tions for the scenario, and allow participants to discard
the ones they do not like. By the end of this step, we have
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Fig. 3. Synthesized trajectories for case (i): the case where demonstration satisfies φ for different instances: The
pedestrian is shown in black with circle markers, the demonstration is shown in blue with square markers. Generated
trajectories with w1, w2, and w3 are shown in red with triangle markers, pale blue with diamond markers, and
orange with star markers, respectively. Markers denote positions at each second and we also every four seconds.
The solid line represents the start of the sidewalk and the dashed line represents the lane limit.

Fig. 4. Synthesised trajectories for case (ii): the case where
demonstration violates φ for different instances.

Fig. 5. The simulator used in the pilot human subject
study. The throttle/brake pedals are on the floor.

a set of demonstrations X̄ , that consists of at least one
demonstration that the subject is satisfied with, (ii) we
show pairs of videos of different behaviors for the same
scenario. We instruct them to imagine they are passengers
in a vehicle driving as the shown behaviors and ask them to
choose their preferred behavior. We continue to show new
pairs until either the question budget is reached, which
is 20, or the threshold maximum a-posteriori probability
is achieved, which is 0.99. The output of this step is the
learned weight valuation w∗ for φW , (iii) we find their
most preferred demonstration x∗ based on the learned
weight valuation, as x∗ = argmaxx∈X̄ r(x,φW=w∗), and
generate two trajectories based on x∗ and w∗: xg, which is
generated with λ = 100, and xr, which is generated with

λ = 1 with J(x, x̄). (iv) The generated trajectories and
their demonstration are replayed using a low-level PID
controller to compensate for the simplified dynamics in
the synthesis problem against CARLA’s physics model,
and we ask them to compare: (a) xg to xr and (b) xg

to x∗. Subjects are not informed which trajectory is their
generated trajectories or their demonstrations.

Generated trajectories for subjects can be seen in Figure 6.
Results of step (iv) show that three out of four subjects
prefer xg over xr, as they find xr unnatural, and three
out of four subjects prefer their demonstration over xg,
as they note that the demonstration seems smoother.
One potential reason for these preferences is the model
mismatch and the performance of the low-level controller.
The mismatch between the linear model and CARLA
physics means the CARLA car cannot fully follow the
generated trajectory, leading to a jerkier motion. Since the
demonstrations are recorded using CARLA vehicles, they
naturally follow those trajectories smoothly.

5. CONCLUSION, LIMITATIONS, FUTURE WORK

This work addresses generating safe and natural AV be-
haviors that meet user preferences, by combining two
modalities of human feedback: demonstrations and pair-
wise preferences. Pairwise preferences help construct per-
sonalized temporal logic semantics, which defines scenario-
specific rules, to be used in the control synthesis step, and
demonstrations include latent behaviors that are not de-
scribed in the temporal logic formula. The safety guaran-
tees of the personalized temporal logic semantics result in
safe-and-custom-by-construction behaviors, while demon-
strations yield more natural behaviors. We conduct a set of
synthetic experiments to show the effect of different modal-
ities and also include a pilot study to show how human
subjects perceive the generated trajectories. This work is
limited in terms of the number of scenarios and number of
subjects, and results show that the method is promising.
Finally, preference learning with pairwise questions re-
duces the reasoning behind choices into a boolean answer,
which is useful from a computational perspective. On the
other hand, capturing actual reasoning might require a
richer source of feedback. As such, we plan to incorporate
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Fig. 6. Demonstrations and generated trajectories of human subjects in the study.

feedback in the form of natural language by leveraging
large language models in our future work. Finally, we will
consider applications of the proposed framework on other
safety-critical cyber-physical-human systems.
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