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An SST-IE Framework for Beamforming and Phase
Shift Design in RIS-aided Multi-user Networks
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Abstract—This paper proposes a novel semi-supervised, sep-
arate training, and iterative execution (SST-IE) framework for
joint beamforming and phase shift optimization in RIS-aided
multiuser networks. SST-IE employs three independently trained
neural networks with carefully designed input features and loss
functions, effectively leveraging the strengths of both supervised
and unsupervised learning. Guided by the block coordinate
descent (BCD) algorithm, SST-IE achieves superior sum-rate
performance compared to the BCD algorithm while requiring
significantly fewer iterations. Simulation results show that SST-
IE outperforms representative deep learning and reinforcement
learning (RL) approaches—including a two-stage method and
a Deep Deterministic Policy Gradient (DDPG)-based RL algo-
rithm—particularly in high-SNR regimes, while ensuring fair
rate allocation among users.

Index Terms—Reconfigurable intelligent surface (RIS), beam-
forming, phase shift, semi-supervised learning, block-coordinate
descent (BCD).

I. INTRODUCTION

As wireless systems move to higher frequencies, signals face
increased blockage and attenuation. Reconfigurable intelligent
surfaces (RIS) have emerged as a promising solution [1].
Comprising passive elements that adjust the phase of incident
waves, a RIS can steer reflections to align multipaths construc-
tively at the receiver, improving signal strength and mitigating
propagation loss.

In a RIS-aided single-cell multiuser network, jointly op-
timizing the base station (BS) beamforming matrix W and
RIS phase shifts 8 is challenging due to their coupled effect
on the sum-rate. Given fixed RIS phases, optimizing W
reduces to a multiuser MISO precoding problem, for which the
Weighted Minimum Mean Square Error (WMMSE) method is
a standard solution [2]. A low-complexity block coordinate
descent (BCD) algorithm is proposed in [3] that achieves
performance comparable to alternating optimization (AO) with
WMMSE. This BCD method has since been widely adopted
as a baseline in works such as [4], [5]. While effective,
BCD typically requires many iterations to converge, making
it computationally intensive.

In addition to the conventional optimization approaches dis-
cussed above, recent studies have explored machine learning
methods to address the challenges of joint beamforming and
phase shift design [6]-[8]. A common framework, introduced
in [6], employs a two-stage neural network—PhaseNet for 6
and BeamNet for W—jointly trained via unsupervised learn-
ing to maximize sum-rate. This architecture has been extended
to time-varying channels [7] and hybrid beamforming [8].
A Transformer-based two-stage design [9] and reinforcement
learning methods, such as Deep Deterministic Policy Gradient
(DDPQG) [10], have also been explored for RIS control.

The authors are with the Dept. of ECE, University of Utah, USA. The work
is supported in part by NSF grants CNS-2229562 and ECCS-2153875.

In this work, we propose a novel neural network framework
for joint beamforming and phase shift design, termed semi-
supervised, separate training, and iterative execution (SST-IE).
The key innovations of the proposed approach are summarized
below:

o The proposed SST-IE framework employs separate train-
ing of three neural networks: PhaseNet (PN), BeamNet
(BN), and fine-tuning BeamNet (FBN). This separation,
combined with semi-supervised learning, is key to SST-
IE’s effectiveness. To enable independent training, we in-
troduce novel inputs—namely, the symbol-level cascaded
(or effective) channel—for PN and FBN. This design not
only simplifies training but also enables efficient iterative
execution during inference.

e The SST-IE framework leverages semi-supervised learn-
ing with newly designed loss functions to achieve two
key objectives: maximizing the sum-rate via unsupervised
learning and utilizing BCD-generated solutions through
supervised learning. The latter is realized by guiding
PN to produce an effective channel matrix that aligns
with the BCD output, and by training BN to match its
beamforming matrix to that derived from BCD.

o Through iterative execution, SST-IE achieves sum-rate
performance that surpasses the BCD algorithm with
significantly fewer iterations. It also outperforms both
the two-stage deep learning method and the RL-DDPG
approach, while overcoming their single-user transmis-
sion limitation and enabling fair rate allocation across all
users.

Notation: The scalar, vector, and matrix are lowercase, bold
lowercase, and bold uppercase, i.e., a, a, and A, respectively.
The transpose and conjugate transpose operators are denoted
as (1)t , (-)*. The circularly symmetric complex Gaussian
distribution with mean p and variance o? is denoted as

CN (p, 0?).
II. PROBLEM SETUP
In this section, we describe the basic problem setup. We

begin with a description of the system model, followed by
beamforming and phase-shift design.

Base Station

(0,0) G e CNXM 2 * RIS

(200, 0)
Fig. 1: A RIS-aided single-cell multiuser Network.
A. System model

As shown in Fig. 1, the system comprises a BS with M
antennas, K single-antenna users, and a RIS with IV unit-cells.
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The signal s; from BS to user [ is beamformed by the vector
w; € CM*1 The beamforming matrix W = [wy,--- ,wg| €
CMxK _ The channel from BS to RIS is G € CV*M  and
from RIS to user k is hj € C'*N . We consider a narrowband
channel model [3]. The channels G and hj can be written as

G =Li(ve/(e+1) an(W)am(p)” +V1/(e +1) G)
hy, =L27;€(\/€/(€ + 1) aN(gk) + 1/(6 + 1) flk>,

where L, and L, are the path gains from the BS to
RIS and from the RIS to user k, respectively. ¢ = 10 is
the Rician factor. G and hj denote the non-line-of-sight
(NLOS) components with elements drawn from CAN(0,1).
Let ay(9¥) and an (&) denote the RIS receive and transmit
steering vectors, and ays () the BS transmit steering vector.
Here, ¥ (§) represents the angle of arrival (departure) at
the RIS, and ¢ the angle of departure at the BS. Since
uniform linear arrays (ULAs) are assumed at both the BS
and RIS, the steering vector with L antennas is defined as
ap(v) = %[1; ooy edm (L= Dsin(®)] e CLX1, The RIS phase
shift matrix is defined as © =diag(61, ..., 0n) € CV >N, where
0, = e/¥rr € {1,2,...,N}, and 1), is the steering direction
of the r-th RIS element. The received signal at user k is

ey

K K
ye=h;OG ZH w;s+ny, =0*diag(h})G ZH WS+,

where 6 = [0y,---,0n]" € CNX! and the noise ny ~
CN(0,0%). The cascaded channel for user k is defined as
H; = diag(h})G € CN*M_ The effective channel between
BS and user k via RIS is defined as f; = h;©G = 0"H,, €
C™*M_ We also define F = [f};---;f}] € CEXM as the
combined effective channel matrix.

B. Beamforming and phase-shift design

Our goal is to optimize W and © so that the sum-rate is
maximized. The sum-rate maximization is formulated as

K
I%%gf(w, 0) = Zk:l log(1 + k)

K 2)
st. |0, =1,Vn=1,...,N, 25—1 wil? < Pr,

where Pr is BS’s transmit power. We denote ;, as the signal
to interference plus noise ratio (SINR) of user k, given by

* K *
T = |fkwk|2/(2l:1,l7£k fiwil* + o).
III. THE PROPOSED SST-IE

In this section, we first detail the semi-supervised separate
training strategy for the three key components—PN, BN,
and FBN—of the proposed SST-IE design, highlighting how
it addresses the limitations of the two-stage method and
ensures fair user rate allocation. We then describe the iterative
execution process and introduce a permutation enhancement
technique to further improve performance.

A. Semi-supervised separate training (SST)

Given a channel realization and assuming the cascaded chan-
nels {Hy }X_| are known, we first prepare the BCD-generated
solutions [3] as training data for supervised training purpose.
These solutions are denoted as {(W]gJC)D,OéJC)D)U e J =
{0,25,100,500}}, where each pair corresponds to the out-
puts at the j-th iteration of the BCD algorithm. The initial

beamforming matrix WéOC)D = Wj,; is computed using the
combined effective channel matrix F,,,;, which is constructed
from a randomly generated phase shift 6,.,4 as
Wini = F:(nz(Flan;knz)_l

After normalizing W,; to satisfy the power constraint, we
run one iteration of BCD algorithm to obtain 0](3%)]3. The
remaining solution pairs are generated through subsequent
iterations of the BCD algorithm. For brevity, we omit the
explicit dependency of these solution pairs on specific channel
realizations in the following discussion.

The proposed SST leverages BCD solutions to guide su-
pervised training, which operates alongside an unsupervised
learning objective aimed at maximizing the sum-rate. This
combination of supervised guidance and unsupervised opti-
mization enables SST-IE to achieve performance that can even
surpass the BCD algorithm itself.

1) Training of PN

During the separate training for PN, a pre-defined beam-
forming matrix W is revuired. Here, we select W across
the BCD solutions {Wl(ngD, j € J}, and introduce a new
input, [HyW| .- [HgW| € CK*N*K where each H,W €
CN*K represents the symbol-level cascaded channel for user
k, and [---]|---|---] denotes the depth-wise stacking. In
H,W = [Hywy, -, Hywg], each Hyw; € CV*! repre-
sents the aggregated vector channel from symbol s; to user k
via RIS. Specifically, the n-th element of H;wy, corresponds
to the desired signal path from s; to user k through the n-
th RIS element, while that of Hyw; (I # k) corresponds to
interference from s;.

In contrast, PhaseNet in the two-stage design [6] does not
account for beamforming and uses only the cascaded chan-
nels {Hj} | as input. The symbol-level cascaded channels
{H, W} | introduced here incorporate the beamforming
matrix, making this a key distinction between the two-stage
design and the proposed SST-IE. Moreover, our proposed PN
input is a three-dimensional (3D) feature, while the input in
[6] is two-dimensional (2D).

3)
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[H Wil -+ [Hx W]
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Fig. 2: Network structure of PN. (In the RB 3D block, the output of
the SE 3D block is added to the RB 3D input via a skip connection.
If C1 = (3, the input is directly added to the output; otherwise, it
is first transformed to match C5 before addition. The sum is then
passed through LeakyReLU activation.)

As shown in Fig. 2, the input to PN is a 3D matrix of size
K x N x K. PN consists of Lps 3D residual blocks (RBs)
followed by two fully connected (FC) layers. The first RB has
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two input channels, corresponding to the real and imaginary
parts. Each of the first Lps — 1 RBs has Cpg output channels,
while the final RB has 2 output channels. The final FC layer
produces N outputs, representing the RIS phase angles .
Each 3D RB consists of two 3D convolutional (Conv3D)
layers. Let C; and Cs denote the number of input and output
channels, respectively. The second Conv3D layer is followed
by a 3D Bnorm layer and a squeeze-and-excitation (SE) 3D
block, as described in [11].

With the symbol-level cascaded channels corresponding to
WU, as input to the PN, the output is denoted by 6U). The
loss £1 in (4), with weights wy and ws, consists of two terms.
The first term, f (W](;C)D,é( 7)), corresponds to unsupervised
learning, aiming to maximize the sum-rate achieved by using
W](;CD and the phase shift generated by the PN, 601, The
second term is for supervised learning, aiming to minimize the
the normalized mean square error (NMSE) between the FO)
and FngC)D, which are the combined effective channel matrix
calculated from the PN output 61 and the BCD solution
0](3JC)D, respectively.

o |J|Zf (Wicp, )

unsupervised

2) Training of BN and FBN

During the Separate training of BN, a pre-determined phase
shift_ 0 is required. Here, we select 6 across the BCD solutions
{6{),,7 € J}. The input to BN is [0*H,;--- ;0*Hg] €
CEXM  where each row 0*H;, € CY*M g the effective
channel for user k. Here, [ ce ey } denotes row-wise
concatenation. The output is W), The loss Ly in (5),
weighted by 7; and 79, comprises an unsuperv1sed term and
a supervised term: the sum-rate objective f(W () O]gJC)D) and
the NMSE between W) and W](;C)D,

Z £( w) gBJC)D
%,i

jed

| J|ZNMSE (FOD R @)

supervised

Ly = 2 N " NMSE(WW, Wil)

jed

IJ\ IJI

unsupervised supervised

&)

Once BN has already been well trained, we proceed with
the separate training of FBN. We select a pair (0, W) from
{652, W) j € J}, where W@ is the output from the
trained BN given the input derived from OéjC)D. For each
such pair (Bé]C)D, W), the input feature to FBN is de-
fined as [OI(BC)DH w0 ;Oéjc)];HKW(j)] € CEXK  where
OEQ;H;CW( 7) is referred to as the symbol-level effective chan-
nel for user k. These quantities depend on the beamforming
matrix and are therefore distinct from the traditional effective
channels. The corresponding output of FBN is denoted by
Wéj ). The loss function L3, defined in (6) and weighted by

a1, consists of a single unsupervised term

=)W

jeJ

]) 0(])
3 =
IJI

BCD)

(6)

unsupervised

FBN is designed to refine W) generated by BN. It consists
of Lg sub-networks, where the ¢-th sub-network produces an
increment AW, @) ysed to update the beamforming matrix as
W§]) W(])1 + nAW(J) with 7 set to 0.01. The process is

initialized with W = W) and the final output of FBN is
given by Wl(:J ) = VV(LJF).
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Fig. 3: Network structure of BN and the i-th FBN sub-network.
(The 2D RB shares the same structure as the 3D RB, with minor
adjustments to accommodate 2D dimensions.)

As shown in Fig. 3, the input to BN is a 2D matrix of
size K x M. BN consists of Lgr 2D RBs and one FC layer.
Each RB has Cgg output channels and the FC layer produces
2M K outputs representing the real and imaginary parts of
W € CM*K FBN comprises Ly sub-networks, each sharing
the same structure, as shown in Fig. (3). The input to the i-th
FBN sub-network is a 2D matrix of size K x K. For the first
sub-network, the input is the symbol-level effective channel
[OéJC)Dle(j); OEJC)DHKW(j)}, where W(()J) =W,

B. Ensure fair rate allocation via SST

We observe that the BCD algorithm [3] designs the phase
shifts to shape the combined effective channel matrix F
(75 ;5] € CE*M guch that one row—corresponding
to some user k—dominates with a significantly higher ef-
fective channel gain ||f;||? than the others. The algorithm
then allocates the least power to this user in its beamforming
design, assigning more power to users with weaker effective
channels. This strategy promotes a more balanced distribution
of individual transmission rates across users.

In contrast, the PhaseNet in the two-stage approach of [6]
also produces a dominant row in F, but its position remains
fixed regardless of the strength of the cascaded channels
{H }< |. Moreover, the two-stage method allocates all power
to this fixed user, restricting its ability to support only the
single user with the strongest effective channel.

The proposed SST framework employs semi-supervised
learning to develop a power allocation strategy inspired by
the behavior of the BCD algorithm. During PN training, the
second term in the loss function £; (see (4)) encourages
alignment between the learned combined effective channel
matrix F) and the BCD counterpart F](;CD, capturing the
implicit principle BCD uses to select the dominant row. For
BN training, the loss L5 (see (5)) incorporates an NMSE
term between W) and WBJC)D to encourage balanced power
allocation across users. Rather than imitating BCD, these
components guide SST to learn more effective strategies,
leading to improved sum-rate performance and fairer user rate
distribution.

C. Iterative execution

During evaluation, we adopt an iterative framework that se-
quentially incorporates PN, BN, and FBN. In contrast, the
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TABLE I: Network parameters of K =4, M =8, N =96

SST-IE Nets BN PN FBN
# of parameters 3258464 340336 407592
kernel size (3.3) 3,11,3) -
padding (1,1) (1,5,1) -

# of Sub-nets Lgr =4 Lps =4 Ly =4
hidden features Cgr = 200 Cps = 8 Crgr = 500
Loss weights wi, w2 = 5,10 | y1,72=1,1 a1 =10

For (K =4, M =4, N = 16), only Cps differs, set to 24.

two-stage approach invokes PhaseNet and BeamNet only once.
In our design, the input to PN is based on the symbol-level
cascaded channel H; W, rather than the cascaded channel
H;. used in [6], enabling natural integration into an iterative
process. As illustrated in Fig. 4, each iteration applies PN,
followed by BN and FBN.

Initially, the input to PN is [H; W] -« |Hxg W]
The output of PN at the ¢-th iteration, denoted as é(t),
is then multiplied by the cascaded channel to produce
[0WH,;--- ;0 H], which serves as the input to BN. The
output of BN, W(t), is then combined with the effective
channel to form [0OH,W®);... ;0OHW®)], which is
used as the input to FBN. The output of FBN, denoted
as VAVI(J), is combined with the cascaded channel to form
[H1Wét)|---|HKVAV§t)], which serves as the input to PN
in the (¢ 4+ 1)-th iteration. This iterative process continues,
progressively enhancing the sum-rate performance through
joint optimization of @ and W.

f—————
|[H1Wini| E|

I W

L wo
x7(t
L HeW|

Fig. 4: Iterative execution.

D. Permutation enhancement for iterative execution

In addition, we adopt a permutation-based strategy to enhance
the sum-rate performance of SST-IE. Given a randomly gener-
ated 6,.,4, we compute the initial beamforming matrix W ,,;
as defined in (3). We then generate all K! permutations of
the columns of W,;, resulting in K! distinct initial power
allocations across users. The iterative execution process is run
for each permuted W;,,;, and the configuration yielding the
highest sum-rate is selected. We observe that this permuta-
tion enhancement significantly improves SST-IE performance,
while offering negligible gains for the BCD algorithm.

IV. SIMULATION RESULTS

Fig. 1 illustrates the layout of the simulated multi-user net-
work, where the BS and RIS are positioned at (Om,Om)
and (200m, 10m), respectively. We consider K = 4 users
randomly distributed within a circular area centered at
(200m, 30m) with a radius of 10 m. Two system configurations
are evaluated: 1) M = 8 base station antennas and N = 96
RIS unit-cells; 2) M = 4 and N = 16. Assuming a bandwidth
of By = 180 kHz, the thermal noise power is computed as
—185 + 10log(Bo) = —132.45 dBm.

We generate 76544 channel realizations for training, each
consisting of G and {h, }%_, as defined in the channel model
in (1) of the paper. Channel generation follows the setup in [3]
with user locations randomly selected within a 10-meter-radius
circle (see Fig. 1). For each realization, G and {h;}& | are
multiplied to form the cascaded channels {H},}%_,. To support
supervised learning in the proposed SST-IE, we generate
four BCD solution pairs {ngDﬁé]C)D} per each sample,
corresponding to iterations j € {0, 25,100,500}. Each sample
thus includes the cascaded channels and four associated BCD-
generated beamforming and phase shift solutions. The batch
size is set to 256, and to allow the network to learn across all
four solution pairs, the effective batch size is 1024. We train
the networks for 400 epochs using the Adam optimizer with
an initial learning rate of 0.001.

In Fig. 5a, we compare the performance of SST-IE with
the conventional optimization-based BCD algorithm [3] and
the neural network based two-stage method [6], averaged over
256 validation channel realizations, under the setting K = 4,
M =8, and N = 96. For fair comparison, the PhaseNet and
BeamNet in the two-stage method use architectures similar to
the PN and BN in SST-IE. The number in parentheses indicates
the number of iterations: for example, BCD (500) and SST-
IE (10) refer to BCD and SST-IE executed with 500 and 10
iterations, respectively. We use ( to denote the ratio of the
simulation time of a method to that of SST-IE (2).

Notably, the two-stage method, despite having the shortest
simulation time (¢ = 0.20), yields the worst sum-rate per-
formance—especially in the range Pr = 10 ~ 20 dBm. In
this regime, SST-IE (2) achieves a substantial gain (nearly
5.5 at Pr = 20 dBm) over the two-stage method, though
with roughly 5x longer simulation time. SST-IE (2) also
outperforms BCD (100), while being about 27x faster. Further
improvement is seen with SST-IE (10), which gains around 1.8
at Pp = 20 dBm over SST-IE (2), at the cost of a 3.8x increase
in simulation time. SST-IE (10) also slightly outperforms BCD
(500). With 50 iterations, SST-IE achieves a notable sum-rate
gain—exceeding BCD (500) by 0.7—while being about 7x
faster. Although BCD (100) with permutation enhancement
offers only a marginal gain over BCD (100), it incurs about
23x more simulation time. In contrast, permutation signifi-
cantly benefits SST-IE (10), offering a gain of about 1.4 at
Pr = 20 dBm. The main takeaway from Fig. 5a is that SST-
IE (10) offers an effective trade-off between complexity and
sum-rate in the high-SNR regime.

In Fig. 5a, we compare BN-FBN and the conventional
optimization-based WMMSE algorithm [2] under the itera-
tive execution framework by replacing the trained BN and
FBN modules with the WMMSE algorithm, while keeping
the trained PN module fixed. In this setting, WMMSE and
PN iteratively refine both beamforming and phase shifts—
referred to as (PN+WMMSE)-IE. The performance curves for
(PN+WMMSE)-IE (10) and (50), corresponding to 10 and 50
iterations, are shown in green. While (PN+WMMSE)-IE (50)
slightly outperforms SST-IE (50) in sum-rate, it incurs much
higher inference time—approximately 269x slower than SST-
IE (50). These results show that BN-FBN achieves comparable
performance to WMMSE when paired with the same PN under
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Fig. 5: Performance comparisons.

iterative execution.

In Fig. 5b, we compare the performance of SST-IE with
BCD, RAUB-TF [9], and RL-DDPG [10] under a smaller
system with K = 4, N = 16, and M = 4, averaged
over 256 validation channel realizations. RAUB-TF is a two-
stage unsupervised learning method based on a Transformer
architecture, while RL-DDPG employs reinforcement learning
via the Deep Deterministic Policy Gradient algorithm. Results
show that both RAUB-TF and RL-DDPG significantly under-
perform compared to SST-IE (10). While RAUB-TF offers
faster inference—about 5.5 times faster than SST-IE (10)—its
sum-rate performance is substantially lower. RL-DDPG also
yields inferior performance and suffers from approximately
5.5 times longer inference time compared to SST-IE(10). We
note that the RL-DDPG (100) shown in Fig. 5b is obtained
using 100 time-steps per channel realization. Both RAUB-
TF and RL-DDPG tend to allocate most transmit power to
a single user, limiting their sum-rate performance. In contrast,
SST-IE and BCD promote more balanced power allocation
across users, improving multi-user throughput. Notably, SST-
IE(10) and SST-IE(50) outperform BCD(500) in sum-rate by
approximately 0.2 and 0.3, respectively, while achieving 54.6x
and 12.8x faster simulation times.

In Fig. 5c, we compare the performance of different algo-
rithms in supporting multi-user transmission. For each channel
realization, the users’ individual rates are ranked from the
highest to the lowest. The ranked rates are then averaged
over 256 validation channel realizations to facilitate the com-
parison. At Pr = 20 dBm, we observe that the two-stage
method supports only single-user transmission, with an aver-
age individual rate of 10.6 for the top-ranked user per channel
realization, and O for the others. In contrast, both the BCD and
SST-IE methods enable multi-user transmissions, with more
balanced ranked individual rates across users. Specifically,
SST-IE (50) offers not only a higher sum-rate than BCD (500),
but also higher ranked individual rates for all four of them.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a novel SST-IE framework for joint
optimization of BS transmit beamforming and RIS phase shifts
in RIS-aided networks. Notably, SST-IE achieves sum-rate
performance that surpasses the BCD algorithm using as few
as 10 online iterations. By leveraging semi-supervised learning

and separately training its core modules, SST-IE simplifies the
training process while promoting fair rate allocation across
users—a key improvement over existing two-stage neural
network designs and the RL-DDPG approach, both of which
tend to concentrate power on a single user. Moreover, SST-IE
outperforms the RL-DDPG method with significantly lower
training complexity. Future work will explore extending the
semi-supervised learning strategy beyond BCD-labeled data
and investigating alternative network architectures to further
improve performance and reduce execution-phase iterations.

REFERENCES

[1] Q. Wu, S. Zhang, B. Zheng, C. You, and R. Zhang, “Intelligent reflecting
surface-aided wireless communications: A tutorial,” IEEE Transactions
on Communications, vol. 69, no. 5, pp. 3313-3351, 2021.

Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted
mmse approach to distributed sum-utility maximization for a mimo
interfering broadcast channel,” IEEE Transactions on Signal Processing,
vol. 59, no. 9, pp. 4331-4340, 2011.

H. Guo, Y.-C. Liang, J. Chen, and E. G. Larsson, “Weighted sum-
rate maximization for reconfigurable intelligent surface aided wireless
networks,” IEEE transactions on wireless communications, vol. 19,
no. 5, pp. 3064-3076, 2020.

Y. Zhao, F. Lin, K. Liu, and J. Zhang, “Ris-aided rate optimization
research for ps-swipt system,” in 2023 IEEE 11th International Confer-
ence on Information, Communication and Networks (ICICN). 1EEE,
2023, pp. 149-154.

Y. Wang, L. Fang, S. Cai, Z. Lian, Y. Su, and Z. Xie, “Low-complexity
algorithm for maximizing the weighted sum-rate of intelligent reflecting
surface-assisted wireless networks,” IEEE Internet of Things Journal,
vol. 11, no. 6, pp. 10490-10499, 2023.

H. Song, M. Zhang, J. Gao, and C. Zhong, “Unsupervised learning-
based joint active and passive beamforming design for reconfigurable
intelligent surfaces aided wireless networks,” IEEE communications
letters, vol. 25, no. 3, pp. 892-896, 2020.

J. Cho, X. Huang, and R.-R. Chen, “Two time-scale learning for
beamforming and phase shift design in RIS-aided networks,” in /CC
2022-1EEE International Conference on Communications. 1EEE, 2022,
pp. 2627-2632.

Y. Jiao, Y. Han, X. Li, and S. Jin, “Unsupervised learning-based joint
precoding and phase shift design for RIS-assisted mmWave commu-
nication systems,” in 2022 14th International Conference on Wireless
Communications and Signal Processing (WCSP). 1EEE, 2022, pp. 303—
308.

Y. Cui, G. Wang, D. Wu, P. He, R. Wang, and Y. Liu, “Ris-assisted
unsupervised beamforming in internet of vehicles,” IEEE Transactions
on Vehicular Technology, 2024.

C. Huang, R. Mo, and C. Yuen, “Reconfigurable intelligent surface as-
sisted multiuser MISO systems exploiting deep reinforcement learning,”
IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp.
1839-1850, 2020.

J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132-7141.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

Authorized licensed use limited to: The University of Utah. Downloaded on July 25,2025 at 17:04:57 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



