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An SST-IE Framework for Beamforming and Phase

Shift Design in RIS-aided Multi-user Networks
Xiang Huang, Joohyun Cho and Rong-Rong Chen

Abstract—This paper proposes a novel semi-supervised, sep-
arate training, and iterative execution (SST-IE) framework for
joint beamforming and phase shift optimization in RIS-aided
multiuser networks. SST-IE employs three independently trained
neural networks with carefully designed input features and loss
functions, effectively leveraging the strengths of both supervised
and unsupervised learning. Guided by the block coordinate
descent (BCD) algorithm, SST-IE achieves superior sum-rate
performance compared to the BCD algorithm while requiring
significantly fewer iterations. Simulation results show that SST-
IE outperforms representative deep learning and reinforcement
learning (RL) approaches—including a two-stage method and
a Deep Deterministic Policy Gradient (DDPG)-based RL algo-
rithm—particularly in high-SNR regimes, while ensuring fair
rate allocation among users.

Index Terms—Reconfigurable intelligent surface (RIS), beam-
forming, phase shift, semi-supervised learning, block-coordinate
descent (BCD).

I. INTRODUCTION

As wireless systems move to higher frequencies, signals face

increased blockage and attenuation. Reconfigurable intelligent

surfaces (RIS) have emerged as a promising solution [1].

Comprising passive elements that adjust the phase of incident

waves, a RIS can steer reflections to align multipaths construc-

tively at the receiver, improving signal strength and mitigating

propagation loss.

In a RIS-aided single-cell multiuser network, jointly op-

timizing the base station (BS) beamforming matrix W and

RIS phase shifts θ is challenging due to their coupled effect

on the sum-rate. Given fixed RIS phases, optimizing W

reduces to a multiuser MISO precoding problem, for which the

Weighted Minimum Mean Square Error (WMMSE) method is

a standard solution [2]. A low-complexity block coordinate

descent (BCD) algorithm is proposed in [3] that achieves

performance comparable to alternating optimization (AO) with

WMMSE. This BCD method has since been widely adopted

as a baseline in works such as [4], [5]. While effective,

BCD typically requires many iterations to converge, making

it computationally intensive.

In addition to the conventional optimization approaches dis-

cussed above, recent studies have explored machine learning

methods to address the challenges of joint beamforming and

phase shift design [6]–[8]. A common framework, introduced

in [6], employs a two-stage neural network—PhaseNet for θ

and BeamNet for W—jointly trained via unsupervised learn-

ing to maximize sum-rate. This architecture has been extended

to time-varying channels [7] and hybrid beamforming [8].

A Transformer-based two-stage design [9] and reinforcement

learning methods, such as Deep Deterministic Policy Gradient

(DDPG) [10], have also been explored for RIS control.
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In this work, we propose a novel neural network framework

for joint beamforming and phase shift design, termed semi-

supervised, separate training, and iterative execution (SST-IE).

The key innovations of the proposed approach are summarized

below:

• The proposed SST-IE framework employs separate train-

ing of three neural networks: PhaseNet (PN), BeamNet

(BN), and fine-tuning BeamNet (FBN). This separation,

combined with semi-supervised learning, is key to SST-

IE’s effectiveness. To enable independent training, we in-

troduce novel inputs—namely, the symbol-level cascaded

(or effective) channel—for PN and FBN. This design not

only simplifies training but also enables efficient iterative

execution during inference.

• The SST-IE framework leverages semi-supervised learn-

ing with newly designed loss functions to achieve two

key objectives: maximizing the sum-rate via unsupervised

learning and utilizing BCD-generated solutions through

supervised learning. The latter is realized by guiding

PN to produce an effective channel matrix that aligns

with the BCD output, and by training BN to match its

beamforming matrix to that derived from BCD.

• Through iterative execution, SST-IE achieves sum-rate

performance that surpasses the BCD algorithm with

significantly fewer iterations. It also outperforms both

the two-stage deep learning method and the RL-DDPG

approach, while overcoming their single-user transmis-

sion limitation and enabling fair rate allocation across all

users.

Notation: The scalar, vector, and matrix are lowercase, bold

lowercase, and bold uppercase, i.e., a, a, and A, respectively.

The transpose and conjugate transpose operators are denoted

as (·)t , (·)∗. The circularly symmetric complex Gaussian

distribution with mean µ and variance σ2 is denoted as

CN (µ, σ2).

II. PROBLEM SETUP

In this section, we describe the basic problem setup. We

begin with a description of the system model, followed by

beamforming and phase-shift design.

Base Station

User area

RIS

X

Fig. 1: A RIS-aided single-cell multiuser Network.

A. System model

As shown in Fig. 1, the system comprises a BS with M
antennas, K single-antenna users, and a RIS with N unit-cells.
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The signal sl from BS to user l is beamformed by the vector

wl ∈ C
M×1. The beamforming matrix W = [w1, · · · ,wK ] ∈

C
M×K . The channel from BS to RIS is G ∈ C

N×M , and

from RIS to user k is h
∗
k ∈ C

1×N . We consider a narrowband

channel model [3]. The channels G and hk can be written as

G =L1

(
√

ε/(ε+ 1) aN (ϑ)aM (ϕ)∗ +
√

1/(ε+ 1) Ḡ
)

hk =L2,k

(
√

ε/(ε+ 1) aN (ξk) +
√

1/(ε+ 1) h̄k
)

,
(1)

where L1 and L2,k are the path gains from the BS to

RIS and from the RIS to user k, respectively. ε = 10 is

the Rician factor. Ḡ and h̄k denote the non-line-of-sight

(NLOS) components with elements drawn from CN (0, 1).
Let aN (ϑ) and aN (ξk) denote the RIS receive and transmit

steering vectors, and aM (ϕ) the BS transmit steering vector.

Here, ϑ (ξk) represents the angle of arrival (departure) at

the RIS, and ϕ the angle of departure at the BS. Since

uniform linear arrays (ULAs) are assumed at both the BS

and RIS, the steering vector with L antennas is defined as

aL(ϑ) =
1√
L

[

1; · · · ; ejπ(L−1)sin(ϑ)
]

∈ C
L×1. The RIS phase

shift matrix is defined as Θ=diag(θ1, ..., θN )∈C
N×N , where

θr = ejψr ,r ∈ {1, 2, ..., N}, and ψr is the steering direction

of the r-th RIS element. The received signal at user k is

yk=h
∗
kΘG

∑K

l=1
wlsl+nk=θ

∗diag(h∗
k)G

∑K

l=1
wlsl+nk,

where θ = [θ1, · · · , θN ]∗ ∈ C
N×1 and the noise nk ∼

CN (0, σ2
k). The cascaded channel for user k is defined as

Hk = diag(h∗
k)G ∈ C

N×M . The effective channel between

BS and user k via RIS is defined as f
∗
k = h

∗
kΘG = θ∗Hk ∈

C
1×M . We also define F = [f∗1 ; · · · ; f

∗
K ] ∈ C

K×M as the

combined effective channel matrix.

B. Beamforming and phase-shift design

Our goal is to optimize W and Θ so that the sum-rate is

maximized. The sum-rate maximization is formulated as

max
W,θ

f(W,θ) =
∑K

k=1
log(1 + γk)

s.t. |θn| = 1, ∀n = 1, . . . , N,
∑K

l=1
|wl|

2 f PT ,
(2)

where PT is BS’s transmit power. We denote γk as the signal

to interference plus noise ratio (SINR) of user k, given by

γk = |f∗kwk|
2/
(
∑K

l=1,l ̸=k |f
∗
kwl|

2 + σ2
k

)

.

III. THE PROPOSED SST-IE

In this section, we first detail the semi-supervised separate

training strategy for the three key components—PN, BN,

and FBN—of the proposed SST-IE design, highlighting how

it addresses the limitations of the two-stage method and

ensures fair user rate allocation. We then describe the iterative

execution process and introduce a permutation enhancement

technique to further improve performance.

A. Semi-supervised separate training (SST)

Given a channel realization and assuming the cascaded chan-

nels {Hk}
K
k=1 are known, we first prepare the BCD-generated

solutions [3] as training data for supervised training purpose.

These solutions are denoted as {(W
(j)
BCD,θ

(j)
BCD)|j ∈ J =

{0, 25, 100, 500}}, where each pair corresponds to the out-

puts at the j-th iteration of the BCD algorithm. The initial

beamforming matrix W
(0)
BCD = Wini is computed using the

combined effective channel matrix Fini, which is constructed

from a randomly generated phase shift θrnd as

Fini = [θ∗rndH1; · · · ;θ
∗
rndHK ],

Wini = F
∗
ini(FiniF

∗
ini)

−1.
(3)

After normalizing Wini to satisfy the power constraint, we

run one iteration of BCD algorithm to obtain θ
(0)
BCD. The

remaining solution pairs are generated through subsequent

iterations of the BCD algorithm. For brevity, we omit the

explicit dependency of these solution pairs on specific channel

realizations in the following discussion.

The proposed SST leverages BCD solutions to guide su-

pervised training, which operates alongside an unsupervised

learning objective aimed at maximizing the sum-rate. This

combination of supervised guidance and unsupervised opti-

mization enables SST-IE to achieve performance that can even

surpass the BCD algorithm itself.

1) Training of PN

During the separate training for PN, a pre-defined beam-

forming matrix W is required. Here, we select W across

the BCD solutions {W
(j)
BCD, j ∈ J}, and introduce a new

input,
[

H1W| · · · |HKW
]

∈ C
K×N×K , where each HkW ∈

C
N×K represents the symbol-level cascaded channel for user

k, and [· · · | · · · | · · · ] denotes the depth-wise stacking. In

HkW = [Hkw1, · · · ,HkwK ], each Hkwl ∈ C
N×1 repre-

sents the aggregated vector channel from symbol sl to user k
via RIS. Specifically, the n-th element of Hkwk corresponds

to the desired signal path from sk to user k through the n-

th RIS element, while that of Hkwl (l ̸= k) corresponds to

interference from sl.
In contrast, PhaseNet in the two-stage design [6] does not

account for beamforming and uses only the cascaded chan-

nels {Hk}
K
k=1 as input. The symbol-level cascaded channels

{HkW}Kk=1 introduced here incorporate the beamforming

matrix, making this a key distinction between the two-stage

design and the proposed SST-IE. Moreover, our proposed PN

input is a three-dimensional (3D) feature, while the input in

[6] is two-dimensional (2D).
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Fig. 2: Network structure of PN. (In the RB 3D block, the output of
the SE 3D block is added to the RB 3D input via a skip connection.
If C1 = C2, the input is directly added to the output; otherwise, it
is first transformed to match C2 before addition. The sum is then
passed through LeakyReLU activation.)

As shown in Fig. 2, the input to PN is a 3D matrix of size

K×N ×K. PN consists of LPS 3D residual blocks (RBs)

followed by two fully connected (FC) layers. The first RB has
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two input channels, corresponding to the real and imaginary

parts. Each of the first LPS − 1 RBs has CPS output channels,

while the final RB has 2 output channels. The final FC layer

produces N outputs, representing the RIS phase angles ψ.

Each 3D RB consists of two 3D convolutional (Conv3D)

layers. Let C1 and C2 denote the number of input and output

channels, respectively. The second Conv3D layer is followed

by a 3D Bnorm layer and a squeeze-and-excitation (SE) 3D

block, as described in [11].

With the symbol-level cascaded channels corresponding to

W
(j)
BCD as input to the PN, the output is denoted by θ̂(j). The

loss L1 in (4), with weights w1 and w2, consists of two terms.

The first term, f(W
(j)
BCD, θ̂

(j)), corresponds to unsupervised

learning, aiming to maximize the sum-rate achieved by using

W
(j)
BCD and the phase shift generated by the PN, θ̂(j). The

second term is for supervised learning, aiming to minimize the

the normalized mean square error (NMSE) between the F̂
(j)

and F
(j)
BCD, which are the combined effective channel matrix

calculated from the PN output θ̂(j) and the BCD solution

θ
(j)
BCD, respectively.

L1=−
w1

|J |

∑

j∈J

f(W
(j)
BCD, θ̂

(j))
︸ ︷︷ ︸

unsupervised

+
w2

|J |

∑

j∈J

NMSE(F̂(j),F
(j)
BCD)

︸ ︷︷ ︸

supervised

(4)

2) Training of BN and FBN

During the Separate training of BN, a pre-determined phase

shift θ is required. Here, we select θ across the BCD solutions

{θ
(j)
BCD, j ∈ J}. The input to BN is [θ∗H1; · · · ;θ

∗
HK ] ∈

C
K×M , where each row θ∗Hk ∈ C

1×M is the effective

channel for user k. Here,
[
· · · ; · · · ; · · ·

]
denotes row-wise

concatenation. The output is Ŵ
(j). The loss L2 in (5),

weighted by γ1 and γ2, comprises an unsupervised term and

a supervised term: the sum-rate objective f(Ŵ(j),θ
(j)
BCD) and

the NMSE between Ŵ
(j) and W

(j)
BCD,

L2 = −
γ1
|J |

∑

j∈J

f(Ŵ(j),θ
(j)
BCD)

︸ ︷︷ ︸

unsupervised

+
γ2
|J |

∑

j∈J

NMSE(Ŵ(j),W
(j)
BCD)

︸ ︷︷ ︸

supervised

(5)

Once BN has already been well trained, we proceed with

the separate training of FBN. We select a pair (θ,W) from

{(θ
(j)
BCD,Ŵ

(j)), j ∈ J}, where Ŵ
(j) is the output from the

trained BN given the input derived from θ
(j)
BCD. For each

such pair (θ
(j)
BCD,Ŵ

(j)), the input feature to FBN is de-

fined as [θ
(j)∗

BCDH1Ŵ
(j); · · · ;θ

(j)∗

BCDHKŴ
(j)] ∈ C

K×K , where

θ
(j)∗

BCDHkŴ
(j) is referred to as the symbol-level effective chan-

nel for user k. These quantities depend on the beamforming

matrix and are therefore distinct from the traditional effective

channels. The corresponding output of FBN is denoted by

Ŵ
(j)
F . The loss function L3, defined in (6) and weighted by

α1, consists of a single unsupervised term

L3 = −
α1

|J |

∑

j∈J

f(Ŵ
(j)
F ,θ

(j)
BCD)

︸ ︷︷ ︸

unsupervised

. (6)

FBN is designed to refine Ŵ
(j) generated by BN. It consists

of LF sub-networks, where the i-th sub-network produces an

increment △W
(j)
i used to update the beamforming matrix as

Ŵ
(j)
i = Ŵ

(j)
i−1 + η△W

(j)
i with η set to 0.01. The process is

initialized with Ŵ
(j)
0 = Ŵ

(j) and the final output of FBN is

given by Ŵ
(j)
F = Ŵ

(j)
LF

.

2nd  RB 2D 

th RB 2D 

Linear 

BN The -th sub-network of FBN

1st RB 2D 

th RB 2D 

Linear 

Linear 

Linear 

LeakyReLU & BNorm 1D

LeakyReLU & BNorm 1D

LeakyReLU & BNorm 1D

Fig. 3: Network structure of BN and the i-th FBN sub-network.
(The 2D RB shares the same structure as the 3D RB, with minor
adjustments to accommodate 2D dimensions.)

As shown in Fig. 3, the input to BN is a 2D matrix of

size K ×M . BN consists of LBF 2D RBs and one FC layer.

Each RB has CBF output channels and the FC layer produces

2MK outputs representing the real and imaginary parts of

W ∈ C
M×K . FBN comprises LF sub-networks, each sharing

the same structure, as shown in Fig. (3). The input to the i-th
FBN sub-network is a 2D matrix of size K ×K. For the first

sub-network, the input is the symbol-level effective channel

[θ
(j)∗

BCDH1Ŵ
(j); · · · ;θ

(j)∗

BCDHKŴ
(j)], where Ŵ

(j)
0 = Ŵ

(j).

B. Ensure fair rate allocation via SST

We observe that the BCD algorithm [3] designs the phase

shifts to shape the combined effective channel matrix F =
[f∗1 ; · · · ; f

∗
K ] ∈ C

K×M such that one row—corresponding

to some user k—dominates with a significantly higher ef-

fective channel gain ∥fk∥
2 than the others. The algorithm

then allocates the least power to this user in its beamforming

design, assigning more power to users with weaker effective

channels. This strategy promotes a more balanced distribution

of individual transmission rates across users.

In contrast, the PhaseNet in the two-stage approach of [6]

also produces a dominant row in F, but its position remains

fixed regardless of the strength of the cascaded channels

{Hk}
K
k=1. Moreover, the two-stage method allocates all power

to this fixed user, restricting its ability to support only the

single user with the strongest effective channel.

The proposed SST framework employs semi-supervised

learning to develop a power allocation strategy inspired by

the behavior of the BCD algorithm. During PN training, the

second term in the loss function L1 (see (4)) encourages

alignment between the learned combined effective channel

matrix F̂
(j) and the BCD counterpart F

(j)
BCD, capturing the

implicit principle BCD uses to select the dominant row. For

BN training, the loss L2 (see (5)) incorporates an NMSE

term between Ŵ
(j) and W

(j)
BCD to encourage balanced power

allocation across users. Rather than imitating BCD, these

components guide SST to learn more effective strategies,

leading to improved sum-rate performance and fairer user rate

distribution.

C. Iterative execution

During evaluation, we adopt an iterative framework that se-

quentially incorporates PN, BN, and FBN. In contrast, the
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TABLE I: Network parameters of K = 4, M = 8, N = 96

SST-IE Nets BN PN FBN

# of parameters 3258464 340336 407592

kernel size (3,3) (3,11,3) –

padding (1,1) (1,5,1) –

# of Sub-nets LBF = 4 LPS = 4 LF = 4

hidden features CBF = 200 CPS = 8 CFBF = 500

Loss weights w1, w2 = 5, 10 γ1, γ2 = 1, 1 α1 = 10

For (K = 4, M = 4, N = 16), only CPS differs, set to 24.

two-stage approach invokes PhaseNet and BeamNet only once.

In our design, the input to PN is based on the symbol-level

cascaded channel HkW, rather than the cascaded channel

Hk used in [6], enabling natural integration into an iterative

process. As illustrated in Fig. 4, each iteration applies PN,

followed by BN and FBN.

Initially, the input to PN is [H1Wini| · · · |HKWini].
The output of PN at the t-th iteration, denoted as θ̂(t),

is then multiplied by the cascaded channel to produce

[θ̂(t)H1; · · · ; θ̂
(t)
HK ], which serves as the input to BN. The

output of BN, Ŵ
(t), is then combined with the effective

channel to form [θ̂(t)H1Ŵ
(t); · · · ; θ̂(t)HKŴ

(t)], which is

used as the input to FBN. The output of FBN, denoted

as Ŵ
(t)
F , is combined with the cascaded channel to form

[H1Ŵ
(t)
F | · · · |HKŴ

(t)
F ], which serves as the input to PN

in the (t + 1)-th iteration. This iterative process continues,

progressively enhancing the sum-rate performance through

joint optimization of θ and W.

PN BN

FBN

Fig. 4: Iterative execution.

D. Permutation enhancement for iterative execution

In addition, we adopt a permutation-based strategy to enhance

the sum-rate performance of SST-IE. Given a randomly gener-

ated θrnd, we compute the initial beamforming matrix Wini

as defined in (3). We then generate all K! permutations of

the columns of Wini, resulting in K! distinct initial power

allocations across users. The iterative execution process is run

for each permuted Wini, and the configuration yielding the

highest sum-rate is selected. We observe that this permuta-

tion enhancement significantly improves SST-IE performance,

while offering negligible gains for the BCD algorithm.

IV. SIMULATION RESULTS

Fig. 1 illustrates the layout of the simulated multi-user net-

work, where the BS and RIS are positioned at (0m, 0m)
and (200m, 10m), respectively. We consider K = 4 users

randomly distributed within a circular area centered at

(200m, 30m) with a radius of 10 m. Two system configurations

are evaluated: 1) M = 8 base station antennas and N = 96
RIS unit-cells; 2) M = 4 and N = 16. Assuming a bandwidth

of B0 = 180 kHz, the thermal noise power is computed as

−185 + 10 log10(B0) = −132.45 dBm.

We generate 76544 channel realizations for training, each

consisting of G and {hk}
K
k=1 as defined in the channel model

in (1) of the paper. Channel generation follows the setup in [3]

with user locations randomly selected within a 10-meter-radius

circle (see Fig. 1). For each realization, G and {hk}
K
k=1 are

multiplied to form the cascaded channels {Hk}
K
k=1. To support

supervised learning in the proposed SST-IE, we generate

four BCD solution pairs {W
(j)
BCD,θ

(j)
BCD} per each sample,

corresponding to iterations j ∈ {0, 25, 100, 500}. Each sample

thus includes the cascaded channels and four associated BCD-

generated beamforming and phase shift solutions. The batch

size is set to 256, and to allow the network to learn across all

four solution pairs, the effective batch size is 1024. We train

the networks for 400 epochs using the Adam optimizer with

an initial learning rate of 0.001.

In Fig. 5a, we compare the performance of SST-IE with

the conventional optimization-based BCD algorithm [3] and

the neural network based two-stage method [6], averaged over

256 validation channel realizations, under the setting K = 4,

M = 8, and N = 96. For fair comparison, the PhaseNet and

BeamNet in the two-stage method use architectures similar to

the PN and BN in SST-IE. The number in parentheses indicates

the number of iterations: for example, BCD (500) and SST-

IE (10) refer to BCD and SST-IE executed with 500 and 10

iterations, respectively. We use ζ to denote the ratio of the

simulation time of a method to that of SST-IE (2).

Notably, the two-stage method, despite having the shortest

simulation time (ζ = 0.20), yields the worst sum-rate per-

formance—especially in the range PT = 10 ∼ 20 dBm. In

this regime, SST-IE (2) achieves a substantial gain (nearly

5.5 at PT = 20 dBm) over the two-stage method, though

with roughly 5× longer simulation time. SST-IE (2) also

outperforms BCD (100), while being about 27× faster. Further

improvement is seen with SST-IE (10), which gains around 1.8

at PT = 20 dBm over SST-IE (2), at the cost of a 3.8× increase

in simulation time. SST-IE (10) also slightly outperforms BCD

(500). With 50 iterations, SST-IE achieves a notable sum-rate

gain—exceeding BCD (500) by 0.7—while being about 7×

faster. Although BCD (100) with permutation enhancement

offers only a marginal gain over BCD (100), it incurs about

23× more simulation time. In contrast, permutation signifi-

cantly benefits SST-IE (10), offering a gain of about 1.4 at

PT = 20 dBm. The main takeaway from Fig. 5a is that SST-

IE (10) offers an effective trade-off between complexity and

sum-rate in the high-SNR regime.

In Fig. 5a, we compare BN-FBN and the conventional

optimization-based WMMSE algorithm [2] under the itera-

tive execution framework by replacing the trained BN and

FBN modules with the WMMSE algorithm, while keeping

the trained PN module fixed. In this setting, WMMSE and

PN iteratively refine both beamforming and phase shifts—–

referred to as (PN+WMMSE)-IE. The performance curves for

(PN+WMMSE)-IE (10) and (50), corresponding to 10 and 50

iterations, are shown in green. While (PN+WMMSE)-IE (50)

slightly outperforms SST-IE (50) in sum-rate, it incurs much

higher inference time—approximately 269× slower than SST-

IE (50). These results show that BN-FBN achieves comparable

performance to WMMSE when paired with the same PN under
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iterative execution.

In Fig. 5b, we compare the performance of SST-IE with

BCD, RAUB-TF [9], and RL-DDPG [10] under a smaller

system with K = 4, N = 16, and M = 4, averaged

over 256 validation channel realizations. RAUB-TF is a two-

stage unsupervised learning method based on a Transformer

architecture, while RL-DDPG employs reinforcement learning

via the Deep Deterministic Policy Gradient algorithm. Results

show that both RAUB-TF and RL-DDPG significantly under-

perform compared to SST-IE (10). While RAUB-TF offers

faster inference—about 5.5 times faster than SST-IE (10)—its

sum-rate performance is substantially lower. RL-DDPG also

yields inferior performance and suffers from approximately

5.5 times longer inference time compared to SST-IE(10). We

note that the RL-DDPG (100) shown in Fig. 5b is obtained

using 100 time-steps per channel realization. Both RAUB-

TF and RL-DDPG tend to allocate most transmit power to

a single user, limiting their sum-rate performance. In contrast,

SST-IE and BCD promote more balanced power allocation

across users, improving multi-user throughput. Notably, SST-

IE(10) and SST-IE(50) outperform BCD(500) in sum-rate by

approximately 0.2 and 0.3, respectively, while achieving 54.6×

and 12.8× faster simulation times.

In Fig. 5c, we compare the performance of different algo-

rithms in supporting multi-user transmission. For each channel

realization, the users’ individual rates are ranked from the

highest to the lowest. The ranked rates are then averaged

over 256 validation channel realizations to facilitate the com-

parison. At PT = 20 dBm, we observe that the two-stage

method supports only single-user transmission, with an aver-

age individual rate of 10.6 for the top-ranked user per channel

realization, and 0 for the others. In contrast, both the BCD and

SST-IE methods enable multi-user transmissions, with more

balanced ranked individual rates across users. Specifically,

SST-IE (50) offers not only a higher sum-rate than BCD (500),

but also higher ranked individual rates for all four of them.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a novel SST-IE framework for joint

optimization of BS transmit beamforming and RIS phase shifts

in RIS-aided networks. Notably, SST-IE achieves sum-rate

performance that surpasses the BCD algorithm using as few

as 10 online iterations. By leveraging semi-supervised learning

and separately training its core modules, SST-IE simplifies the

training process while promoting fair rate allocation across

users—a key improvement over existing two-stage neural

network designs and the RL-DDPG approach, both of which

tend to concentrate power on a single user. Moreover, SST-IE

outperforms the RL-DDPG method with significantly lower

training complexity. Future work will explore extending the

semi-supervised learning strategy beyond BCD-labeled data

and investigating alternative network architectures to further

improve performance and reduce execution-phase iterations.
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