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1 Introduction

The Higgs boson [1–3] has been under intense experimental scrutiny since its discovery by
the CERN ATLAS and CMS collaborations in 2012 [4, 5]. Measurements of its properties,
including its production and decay rates, are thus far consistent with the Standard Model
(SM) Higgs boson [6, 7]. Despite these results, there is no strict theoretical requirement for
the Higgs sector to be minimal. In fact, there are several reasons to favor a non-minimal
scalar sector. For example, the SM does provides no explanation for the nature of the
non-luminous “dark” matter that permeates our universe, nor does it explain the flavor
structure, nor the theoretically puzzling hierarchy problem. Another embarrassing problem
for the SM is the unknown origin of the cosmic baryon asymmetry, also known as the
matter-antimatter asymmetry.

“Electroweak baryogenesis” [8–12] is a promising scenario that can generate this asym-
metry. It demands the electroweak phase transition to be first order, providing the necessary
departure from thermodynamic equilibrium (one of the Sakharov conditions [13]). Within the
SM, the occurrence of a first-order phase transition (FOPT) requires the mass of the Higgs
boson to lie below „ 70GeV [14–17], which is evidently inconsistent with the experimental
observation of the Higgs boson mass of „ 125GeV. Extended scalar sectors can accommodate
an FOPT that is, moreover, sufficiently strong to preserve any baryon asymmetry produced.
We note further that the gravitational wave signal from an FOPT at the electroweak scale
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is in the right frequency range to be potentially observable with the LISA gravitational
wave observatory [18–21].

The SM scalar sector can be extended by an arbitrary number of scalars [22–24], but,
arguably, the most minimal options are to add a complex or real singlet scalar field [25–40],
two real singlet fields [41–47], or additional doublet fields [48–57]. The additional fields could
induce a rich set of phenomena at colliders. In particular, if they mix with the SM-like Higgs
boson, their corresponding physical states could be produced singly and decay into fermions
or gauge bosons, yielding a signal in multi-lepton or jet searches for heavy resonances.

In this work, we focus on the Z2-symmetric two real singlet model (TRSM). The
corresponding phenomenology is qualitatively very similar to that of the SM augmented
with a single real scalar (xSM). For example, in both set-ups di-Higgs boson production
can be resonant if an intermediate singlet state is produced on-shell, and rates are enhanced
compared to the SM. Where the TRSM gives genuinely new physics and correspondingly
novel collider phenomenology compared to the xSM is in triple Higgs production. The
tree-level amplitude for this process involving both singlet states can be enhanced by a double
resonance, while the enhancement in the xSM can come from at most a single resonance.

For this reason, we focus on triple Higgs boson production, which is the most challenging of
the multi-Higgs boson production final states contemplated by the experimental collaborations
at the moment. At the CERN Large Hadron Collider (LHC) running at a 14 TeV center-
of-mass, the SM cross section for this process is Op0.1q fb [58], rendering any prospects for
detection dire, at any level of significance. However, it has been shown that triple Higgs
boson production in the TRSM may be enhanced to a level sufficient for observation and
exploration [42]. This requires that some of the new quartic couplings in the potential
are sufficiently large.

Triple Higgs boson production is the first attainable process that allows to directly probe
the quartic Higgs self-coupling in the scalar potential. Its observation would provide a clear
signal for an extended scalar sector, as well as hints on its intricate structure, and possible rôle
in electroweak baryogenesis. In fact, one might expect that there exists a correlation between
enhanced multi-Higgs boson production and a strong FOPT necessary for baryogenesis, as
they both require sufficiently large scalar couplings. Indeed, an FOPT can only arise if the
changes to the SM scalar potential are significant, and previous studies of the electroweak
phase transition in, e.g. the xSM, shows a clear preference for large couplings [38, 59, 60].
This intriguing observation constitutes the main motivation for the present article.

Our goal here is to extend and explore further the parameter space for enhanced triple
Higgs boson production, and cross-correlate this with the parameter space regions that give
rise to a strong FOPT. In doing so, we strive to take all theoretical constraints, and the
most recent experimental bounds, into account. Given the large quartic couplings, care
should be taken that the theory is still perturbative, and under theoretical control, at least
at the scale of the heaviest singlet state. The perturbativity bounds we derive are stronger
than those previously employed in the literature [41, 42]. We thus provide a set of updated
benchmark points for triple Higgs boson production in the Z2-symmetric TRSM, for which
the calculations can be considered to be more robust.

We then study the possibility of an FOPT both in (1) the scenario with the phase transition
induced by the temperature-dependence of the leading-order thermal mass corrections, as
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well as (2) a transition with a radiatively-generated barrier. Surprisingly, we find that the
parameter space for large triple Higgs production boson and for an FOPT do not overlap.
This result is intricately linked to the Z2-symmetric nature of the set-up and the choice of
the vacuum today. Doubly-resonant triple Higgs boson production requires both additional
scalars to mix with the Higgs field, and thus both to have a non-zero vacuum expectation
value (vev) at zero temperature. If we give up on this requirement, and allow for one or
both singlets to have zero vev, an FOPT becomes possible. Like in the xSM, di-Higgs
boson production enhancement is possible if only one added scalar has a non-zero vev at low
temperature. Unlike the xSM however, the TRSM introduces the possibility of an FOPT
resonant di-Higgs boson production.

The present article is organized as follows: in section 2 we discuss the scalar sector
model of the Z2-symmetric two real singlet extension of the SM, discuss the conditions for
large triple Higgs boson production, and their implications for the perturbativety bound.
Section 3 contains our exploration of the parameter space of the model, including a list
of updated benchmark points relevant to triple Higgs boson production. In section 4, we
review the thermal history of the model, and analyze the possibilities for an FOPT both
in the single- and multi-step scenario. We conclude in section 5. Several useful relations
for the model are deferred to appendix A, such as the constraints on the boundedness of
the potential, the connection between the mass and flavor basis, and the renormalization
group equations (RGEs).

2 Triple Higgs production in the two real singlet model

2.1 The two real singlet model

The two-real singlet model (TRSM) comprises of the SM augmented by two real scalar
singlets. The Lagrangian of the scalar sector is then:

Lscalar “ |DµΦ1|
2 ` pBµΦ2q

2 ` pBµΦ3q
2 ´ V pΦiq,

V pΦiq “ ´
ÿ

i

µ2
i pΦ

:
iΦiq `

ÿ

iďj

λijpΦ:
iΦiqpΦ:

jΦjq, (2.1)

with i “ 1, 2, 3, and where Φ1 the SM Higgs field and Φ2,3 the additional scalars. Two
discrete ZpΦ2q

2 b ZpΦ3q
2 symmetries, under which the respective singlets are odd, ensure that

the Lagrangian is quadratic in the new fields. Dµ denotes the covariant derivatives, including
the conventional SM gauge contributions, and the Bµ partial derivatives.

The amplitude for doubly-resonant enhanced triple Higgs production is only non-vanishing
if all scalars mix with each other. We are thus interested in the set-up where all scalars
obtain a vacuum expectation value and possess µ2

i ą 0 for i “ 1, 2, 3. The fields are expanded
around their corresponding vev (in unitary gauge):

Φ1 “

˜

0
v1`φ1?

2

¸

, Φi “
vi ` φi
?
2

for i “ 2, 3. (2.2)

The mass matrix Bϕi
Bϕj

V is off-diagonal and can be diagonalized by a 3 ˆ 3 unitary
matrix R which depends on three mixing angles — see appendix A.2 for explicit expressions.
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Figure 1. Double-resonant triple SM-like Higgs boson (h1) production in a model with two heavy
scalars h3 and h2.

The mass eigenstates, which we denote by hi, and the interaction eigenstates ϕi, are related
via hi “ Rijϕj . The scalar potential in eq. (2.1) depends on 9 parameters: three mass
parameters µi, and six quartic couplings λij . Instead of µi and λij , we can instead use the
three mass eigenstates Mi, three mixing angles θij , and three vevs vi, as the independent
parameters defining the model, with the explicit relations for these given in appendix A.2. We
identify the lightest mass eigenstate M1, with the physical Higgs mass, with the eigenstates
satisfying the ordering M1 ă M2 ă M3. Two parameters are then fixed by observations: the
Higgs vev v1 » 246GeV and the measured physical Higgs boson mass M1 » 125GeV.

We point out that if one of the singlets has zero vev vi “ 0 for i “ 2, 3, the corresponding
field ϕi does not mix with the other fields. This scenario does not offer novel collider
phenomenology compared to the xSM. However, as we will see in section 4, it does have
an interesting effect on cosmology, as it allows for an FOPT.

2.2 Resonant triple Higgs boson production

With additional singlets, new diagrams with intermediate scalar states can contribute to
triple Higgs boson production [41]. Although these amplitudes are suppressed by the small
mixing angles, this can be overcome by resonance effects if the intermediate states are
produced on-shell and above the threshold M3 ą M2 ` M1 and M2 ą 2M1. In the TRSM,
double resonances can occur if both extra singlets are resonantly produced, in a contribution
represented by the diagram shown in figure 1.

To be concrete, consider the following triple Higgs boson production channels:

A1 : pp Ñ h3 Ñ h2h1 Ñ h1h1h1, Apaq
2 : pp Ñ ha Ñ h1h1h1, a “ 1, 2, 3. (2.3)

The amplitudes for the above processes factorize into h3 or ha production from a proton-
proton collision, followed by the subsequent decay into three SM Higgs bosons. In the narrow
width approximation for the intermediate ha propagators, the cross-section factorizes as well.
The amplitude for initial ha production can be viewed as the production of the mostly SM
Higgs-like interaction state — this rate is the same as in the SM — projected onto the mass
eigenstates ha: AppÑha “ κa ASM

ppÑh1
[41], where we define the scaling factors as

κa “ Ra1. (2.4)

– 4 –



J
H
E
P
1
1
(
2
0
2
4
)
0
7
7

The second part of the amplitudes depends on the triple and quartic interactions of the
mass eigenstates, which are defined as [41]

L “ ´λ̄abchahbhc ´
1
2 λ̄aabh

2
ahb ´

1
3! λ̄aaabh

3
ahb ` . . . , (2.5)

with

λ̄abc “ pM2
a ` M2

b ` M2
c q

ÿ

j

RajRbjRcj

vj
,

λ̄aaab “ p3!q
ÿ

ijk

M2
k

vivj
RkiRkjpR

2
aiRajRbj ` RaiRbiR

2
ajq, (2.6)

and R the mixing matrix of eq. (A.3). The tree-level amplitudes can then be written as
(up to symmetry factors)

A1 „ pASM
ppÑh1κ3q ˆ

λ̄321λ̄211
D3ppqD2pp1q

, Apaq
2 „ pASM

ppÑh1κaq ˆ
λ̄a111
Dappq

. (2.7)

The inverse propagators are Dappq “ p2 ´ M2
a ` iMaΓa, with p the momentum flowing

through the propagator, and Γa the decay width of ha. On resonance, we have |p2 ´

M2
a | ! |MaΓa|.

The process A1 requires at least two extra singlets, which acquire a vev ensuring non-zero
mixing angles. The amplitude can be doubly enhanced if both the intermediate h3 and h2
states are resonantly produced. Apaq

2 arises in the TRSM (a “ 1, 2, 3 if all scalars have a
vev), but also in the xSM (a “ 1, 2) and the SM (a “ 1). The enhancement is limited to
a single resonance of the intermediate singlet ha state.

For the process A1 to dominate triple Higgs boson production, the resonance enhance-
ment should be large enough to overcome the suppression due to the small mixing angles.
Experimental data constrains the mixing with the SM Higgs field | sin θ12|, | sin θ13| “ Opϵq

with ϵ „ 0.1´0.2 (see [42] and eq. (2.9)), whereas the singlet-singlet mixing can be arbitrarily
large. Expanding in small mixing angles gives

A1 “ Opϵ3q, Ap2q
2 , Ap3q

2 “ Opϵ2q, Ap1q
2 “ Opϵ0q. (2.8)

Away from any resonances, the SM-like Ap1q
2 process dominates up to small Opϵ2q mixing

corrections.

2.2.1 Benchmark plane “BP3”

The collider signatures of the TRSM have been investigated in the literature. In particular,
ref. [41] identified six benchmark planes (BP) of interest for double and triple Higgs boson
production, which were selected to maximize the rates. This was followed up in [42] by a
parameter scan of the BP3 plane for triple Higgs boson production, taking all experimental
constraints into account. The rates are significantly enhanced compared to the SM, but
also much larger than in the xSM.

The benchmark points for triple Higgs boson production in the TRSM provided in [42]
all lie in the so-called BP3 plane, characterized by mixing angles and singlet vevs

θ12 “ ´0.129, θ13 “ 0.226, θ23 “ ´0.899, v2 “ 140GeV, v3 “ 100GeV. (2.9)

The singlet masses are taken in the range M2 “ r125, 500sGeV and M3 “ r255, 650sGeV.
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The leading-order result in the small mixing angles expansion in eq. (2.8) does not yet
yield a very accurate approximation since ϵ is not that small. However, it gives insight into
the qualitative behavior of the amplitudes. At leading order

A19
pM2

1 ` M2
2 ` M2

3 qpM
2
2 ` 2M2

1 q

D3ppqD2pp1qvhv2v3
θ13pv2θ13 ´ v3θ12qˆ

cos θ23 sin θ23pθ13 sin θ23 ´ θ12 cos θ23q. (2.10)

Fixing the angles θ12, θ13, the mixing angle θ23 can be optimized to maximize triple Higgs
boson production. For the benchmark parameters eq. (2.9), this gives |θ23| « ´1.1, not too
far off the benchmark value. For the benchmark points |v3θ12| ă |v2θ13|, and neglecting the
v3θ12 factor in eq. (2.10), the v2 dependence drops out of the equation. To further maximize
the triple Higgs boson production rate one can increase the ratio M3{v3, or in terms of the
couplings in the Lagrangian, increase λ33. For all benchmark points λ33 „ 5´ 7 is chosen.

Last, but not least, the amplitude is resonantly enhanced if the intermediate scalars are
produced on-shell, and the propagators squared can be approximated to have a narrow width.
Parametrically, this enhances the cross section by a factor Mi{Γi for each state hi above
threshold. For both h2 and h3 resonances to occur, the masses should satisfy M3 ą M2 ` M1
and M2 ą 2M1. See figure 3 for the combination of masses of the BM points that mostly
enhance triple Higgs boson production.

2.3 Perturbativity

As discussed in the previous subsection, the benchmark points all have large quartic couplings
— especially λ33 — to enhance the triple Higgs boson signal through resonant production.
This prompts us to check the perturbativity of the theory. We will work with the one-loop
RGE Renormalization Group Evolution (RGE) equations. Our criterion for convergence of
the loop expansion is that the one-loop contribution to a quartic coupling is less than half the
tree-level result.1 This gives a bound on the quartic couplings, which can be translated into a
renormalization scale, beyond which the theory becomes non-perturbative and calculational
control is lost. The thus-defined perturbativity cutoff should be well above the scale of
the triple Higgs boson production process, set by the masses of the heavier singlets. The
perturbativity cutoff is about a factor of seven below the Landau pole, where the quartic
couplings blow up.

The one-loop RGE equations for the quartic couplings are given in appendix A.3. The
running of the quartic couplings is dominated by the contribution of the quartic couplings
themselves, as in the parameter range of interest these are much larger than all SM couplings.
Their RGEs are then of the form

p4πq2βλI
“ aIλ2

I `
ÿ

K,J

bKJλKλJ ` . . . (2.11)

1Our perturbativity cutoff is the scale at which the contributions from two loops and higher become
Op1q. To determine more precisely the convergence of the perturbative series requires going to higher loop
order, which is beyond the scope of this work, but would be necessary for more accurate phenomenological
predictions.
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with I “ ij and i, j “ 1, 2, 3 with j ď i. Taking the couplings on the right-hand side
constant, the solution is

λIpµq « λIpµ0q `
1

p4πq2

˜

aIλ2
Ipµ0q `

ÿ

K,J

bKJλKpµ0qλJpµ0q

¸

ln
ˆ

µ

µ0

˙

, (2.12)

which is the one-loop correction to the coupling. All couplings are defined at the scale of
the Z-boson mass µ0 “ MZ . Demanding the loop contribution to be less than half of the
tree-level coupling gives the perturbativity constraint

˜

aIλIpµ0q `
ÿ

K,J

bKJ
λKpµ0qλJpµ0q

λIpµ0q

¸

ln
ˆ

µ

µ0

˙

ă
1
2p4πq2. (2.13)

The theory becomes non-perturbative at the scale µpert that saturates the equality above.
The theory is already non-perturbative at the electroweak scale if eq. (2.13) has already
been violated for lnpµ{µ0q „ 1. If only one of the couplings is non-perturbatively large, we
can drop the bIJ -terms, and the constraint becomes aIλI ă 8π2. For the TRSM couplings,
the coefficients can be read off from the RGE equations in eq. (A.5): a11 “ 24, a22,33 “ 18
and a12,13,23 “ 4, yielding

λ11 ă
π2

3 « 3.3, λ22, λ33 ă
4π2

9 « 4.4, λ12, λ13, λ23 ă 2π2 « 20. (2.14)

If several couplings are large, the bIJ -terms contribute as well, and the constraints generically
become stronger. We note that, for the mixed couplings with a12,13,23, the stability bounds
eq. (A.1) are stronger given the perturbativity bounds on the diagonal self-couplings. Our
perturbativity constraints of eq. (2.14) are stronger than those used in [41, 42].

Dropping the mixed bIJ -terms, eq. (2.11) can be solved exactly. The solution blows
up at the scale µpole:

aIλIpµ0q lnpµpole{µ0q “ p4πq2. (2.15)

Comparing with eq. (2.13) we see that the Landau pole and the non-perturbativity scale
are related via lnpµpole{µpertq “ 2 or

µpole « 7.4µpert. (2.16)

For all benchmark points in [41, 42] the quartic couplings at the scale µ0 “ MZ are
in the range

λ22pµ0q “ 3.5´ 4.5, λ33pµ0q “ 5.9´ 6.9, λ23pµ0q “ 3.9´ 6.1. (2.17)

These values violate eq. (2.14), and clearly the theory is non-perturbative already at the
electroweak scale. The Landau pole for these point is below the TeV scale.
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Relevant HiggsBounds Experimental Analyses

Processes Experiment Int. Luminosity arXiv ref.
gg Ñ S Ñ W`W´, ZZ ATLAS 139 fb´1 2004.14636 [61]

gg Ñ S Ñ ZZ ATLAS 139 fb´1 2009.14791 [62]
gg Ñ S Ñ h1h1 Ñ pbb̄qpτ`τ´q CMS 137 fb´1 2106.10361 [63]
pbb̄, τ`τ´, W`W´, ZZ, γγqpbb̄q 35.9 fb´1 1811.09689 [64]

gg Ñ S Ñ h1h1 Ñ ATLAS 36.1 fb´1 1906.02025 [65]
pbb̄, τ`τ´, W`W´, γγq2

gg Ñ S Ñ h1h1 Ñ pbb̄qpγγq ATLAS 36.1 fb´1 1807.04873 [66]
gg Ñ S Ñ W`W´, ZZ ATLAS 36.1 fb´1 1808.02380 [67]

pp Ñ S Ñ ZZ (incl. VBF) CMS 35.9 fb´1 1804.01939 [68]
gg Ñ S Ñ h1h1 Ñ pbb̄qpbb̄q CMS 35.9 fb´1 1806.03548 [69]
gg Ñ S Ñ h1h1 Ñ pbb̄qpbb̄q ATLAS 36.1 fb´1 1806.03548 [69]

Table 1. The most constraining experimental analyses on new scalar particles in the HiggsBounds
library, found during our scan for viable points over the parameter space of the TRSM. In the process
description (first column), the particle S denotes either of the h2 or h3 scalars, S “ th2, h3u.

3 Updated scan for benchmark points

We have performed a parameter scan over the phase space of the TRSM in order to find
new benchmark points for enhanced triple Higgs boson production, for which the theory
is perturbative at the EW scale eq. (2.17). As we saw in section 2.2, the points in the
BP3 plane defined in [41] require large quartic couplings for enhanced triple Higgs boson
production, and break the condition given in eq. (2.17). Hence, in this study, our scan is
not limited to this plane, but instead covers the full parameter space. We thus perform
a more comprehensive search over the masses and vevs of the singlets, as well as over the
corresponding mixing angles. We check that all points are in the perturbative regime, and
that the scalar potential is bounded from below as in eq. (A.1).

To enforce the fulfillment of the state-of-the-art experimental constraints, we have
employed the HiggsTools package [70, 71]. The package HiggsTools is a toolbox for
comparing a wide class of new physics models to all available experimental results from searches
for new scalar particles and measurements of the 125 GeV SM-like Higgs boson at colliders. It
is composed of the sub-libraries: HiggsSignals and HiggsBounds. HiggsSignals compares
model predictions to a full set of current measurements of the 125 GeV Higgs properties.
Using all available correlation information, it computes and returns a χ2 value that quantifies
the agreement of the model predictions with the measurements. The viable points in our scans
are compatible at 95% confidence level (C.L.) with respect to the SM (i.e. 2σ).2 HiggsBounds

2The χ2 is calculated for the SM, and we ask for any “viable” point to be within 2σ of that value.
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tests model predictions against a database of experimental results from searches for new
particles. Depending on the parameter point, the most constraining processes are used
to compare a theoretical prediction with experimental bounds. The model predictions for
all of these selected limits are then required to lie below the observed limit to obtain an
approximate overall 95% C.L. exclusion bound. The most constraining experimental bounds
applicable are listed in table 1.

For the actual scan we have generated 530, 000 random points over the phase space
defined by M2, M3, v2, v3, θ12, θ13, θ23. The ranges considered are as follows:

M2 P r255, 700s GeV, M3 P r350, 900s GeV,

v2 P r0, 1000s GeV, v3 P r50, 1000s GeV. (3.1)

For the mixing angles θ12, θ13, θ23 we impose the following limits on the scaling factors [41, 72]
of eq. (2.4):

0.95 ď κ1 ď 1.00, 0.0 ď κ2 ď 0.25, 0.0 ď κ3 ď 0.25. (3.2)

To fulfill this task we have used the Python-based scripts which can be found in [73].
These programs allow us to calculate all the corresponding self couplings which are then
stored in the “run card” file in the format required by our implementation of the TRSM
for MadGraph5_aMC@NLO available in [74]. This file is then provided to MadGraph5_aMC@NLO
to calculate the required cross-section, see below.

Using the scalar couplings we test the boundedness from below and the perturbativity of
the theory for energy scales ranging from µ0 “ MZ « 91GeV up to µ “ 900GeV. Then, the
experimental tests listed in table 1 are evaluated using HiggsTools. Between 20% and 30%
of the total number of points passed these initial tests. More concretely, from our 530, 000
random phase space points only 115, 056 passed the first round of theory plus experimental
constraints, this is about 22% of the total produced.

For each of the surviving 115, 056 TRSM instances we evaluated the cross section σ3h1

for the triple Higgs boson production pp Ñ h1h1h1 using [74]. We then performed one more
test to select the points with enhanced triple Higgs production by demanding a cross-section
to be at least 100 times as large as the one in the SM σSM

3h1
:

σ3h1 ą 100σSM
3h1 , (3.3)

and found that only 140 of our TRSM phase space points fulfill this last condition.
We have studied the contribution from the channel pp Ñ h3 Ñ h2h1 Ñ h1h1h1 to the

total cross section σ3h1 . The results are shown in figure 2. The points with the largest
enhancement for σ3h1 are also those where the channel pp Ñ h3 Ñ h2h1 Ñ h1h1h1 dominates.
This is the same effect as reported in [42]. It should be noted though, that our present scan
is more comprehensive in terms of the coverage of the parameter space, whereas the one in
our previous study was restricted to the BP3 plane [42], and in addition, includes points
for which the perturbativity constraints are not satisfied. Figure 3 presents a new version
of the distribution of points in the M2 ´ M3 plane which give enhanced triple Higgs boson
production as defined in eq. (3.3). Finally, we applied the perturbativity tests of eq. (2.14), and
determined the scales at which perturbativity gets violated and when we hit the Landau pole.
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Figure 2. Enhancement of the triple Higgs boson production cross section σppp Ñ h1h1h1q at
13.6 TeV, given in terms of multiples of the SM value, and the resonant fraction contribution from
pp Ñ h3 Ñ h2h1 Ñ h1h1h1. Only points with a factor 10 enhancement or greater are shown. The
density of points increases from the dark blue to yellow shade.

Moreover, we determined the energy µpole at which the RGE leads to divergent values
for the self-couplings. The theoretical correlation expected between µpert and µpole is given in
eq. (2.16). This relationship is reasonably obeyed in practice for most of our points, although
we found that for few of our benchmark scenarios µpole „ 8µpert. The full set of BM points,
including the resonance fraction and the values of µpert and µpert{µpole are provided in the
supplementary material. A sample is demonstrated in table 2.

It is interesting to note at this point, that, within the narrow width approximation, we
expect the kinematic distributions of the double-resonant process pp Ñ h3 Ñ h2h1 Ñ h1h1h1
to only depend on the masses and widths of the scalar particles. The couplings κ123 and κ112,
i.e. those involving h3 ´ h2 ´ h1 and h2 ´ h1 ´ h1, respectively, merely rescale the rate for
the process. This fact could be exploited in a phenomenological analysis, potentially allowing
for a model-independent extraction of constraints. We leave this prospect to future work.

4 Thermal history of the TRSM

It is well-known that loop corrections from particles in the plasma at finite temperature
change the shape of the scalar field potential. As a result, the zero-temperature vacuum, in
which all three scalar fields have a vev in our model, is not the vacuum state in the early
universe. To end up in today’s vacuum, one or more PT(s) had to occur. These PT(s) can
be of different types. In an FOPT the vev of one or several fields makes a discontinuous
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Figure 3. Scatter plot of the values of M2 and M3 for the 140 points with triple Higgs boson
production cross section over 100 times the SM value. The black solid line denotes the region where
double resonant production is kinematically viable, i.e. the boundary M3 “ M2 ` M1.

jump, due to a barrier in the potential. Instead, when the fields move continuously from the
high-temperature phase to the zero-temperature phase, this is a second-order or cross-over
PT. The electroweak PT in the SM is a cross-over [15–17, 75–77], but in many BSM models
the transition can be of a first-order type, see e.g. [20] and references therein for examples.

An FOPT is phenomenologically very interesting for two reasons: it can source a gravita-
tional wave signal possibly observable by LISA, and it can provide the out-of-equilibrium
dynamics necessary for electroweak baryogenesis. Both require the FOPT to be strong; for
baryogenesis in particular, the SM Higgs vev should obtain a large value in the transition and

ϕ1
T

Á 1, (4.1)

at the time of the transition [8, 78, 79]. Here the ϕi denote the temperature-dependent
classical field values with ϕipT “ 0q “ vi.

It would be interesting to correlate the parameter space of enhanced triple Higgs produc-
tion in the TRSM (and enhanced collider phenomenology in general) with the parameters
for which a (sufficiently strong) FOPT can occur. For this, we study the effective potential
at finite temperature using the framework of thermal field theory. As has become clear in
recent years, accurate quantitative statements about PTs require careful many-loop com-
putations [80–83]. However, to determine if an FOPT can occur in the TRSM, as a first
approximation we can rely on much simpler expressions for the finite-temperature potential,
that can be obtained from standard references, such as [84, 85], or textbooks [86, 87].
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Benchmark points for enhanced triple Higgs production

M2 M3 v2 v3 θ12 θ13 θ23
σ

σSM
Res. Frac. µpert

µpert
µpole

259.0 495.0 215.8 180.8 6.191 0.163 5.691 306.025 0.955 2.7 ˆ102 7.3
270.6 444.7 122.4 847.2 0.268 0.030 0.522 302.361 0.929 1.8 ˆ102 7.3
268.6 452.7 137.8 784.8 0.263 0.023 0.645 275.616 0.954 2.4ˆ 102 7.3
272.6 480.7 928.3 143.7 3.098 2.9 2.375 267.245 0.948 1.4ˆ 102 7.2
269.0 409.8 138.0 599.4 0.244 0.004 0.773 266.439 0.976 2.4ˆ 102 7.2
269.1 486.9 227.5 307.9 0.074 6.149 2.631 157.583 0.956 4.3ˆ 102 8.0
259.2 577.0 289.0 275.6 0.137 6.148 2.324 145.470 0.781 1.2ˆ 104 7.2
283.7 575.0 259.4 330.4 0.137 6.152 2.299 122.546 0.779 3.0 ˆ103 7.2
264.3 469.3 207.3 359.5 0.285 6.277 0.692 119.121 0.999 5.4 ˆ103 7.3
266.5 461.9 653.1 229.0 2.889 3.046 1.015 112.794 0.863 5.3 ˆ104 8.0
259.2 399.7 444.5 217.0 2.917 3.046 1.047 103.717 0.973 1.2 ˆ105 8.0

Table 2. Sample of selected benchmark points obtained during our scan. The first five points
correspond to those with the overall highest cross-section σ (reported in terms of the ratio σ{σSM,
where σSM is the SM cross section). The remaining six points are selected to illustrate the spectrum
of scales µpert found during our analysis. The masses M2, M3, vacuum expectation values v2 and v3
and scale µpert are given in GeV. The 9th column refers to the fractional contribution of the channel
pp Ñ h3 Ñ h2pÑ h1h1qh1 to σ, it has been estimated as a first approximation by ignoring interference
effects. As explained before, here we only present a subset of points for the purposes of illustration,
we provide a complete list in the supplementary material.

4.1 The finite temperature effective potential

The one-loop TRSM effective potential at finite temperature is:

VT pϕi, T q “ V pϕiq ` VCWpϕiq ` Vc.t.pϕiq ` VT, 1´looppϕi, T q, (4.2)

with ϕi the field values defined in eq. (2.2) (with ϕi “ vi in the vacuum today). V pϕiq is
the tree-level potential of eq. (2.1), VCW the standard zero-temperature one-loop ‘Coleman-
Weinberg’ potential and Vc.t. the corresponding counterterms. The temperature-corrections
are captured by VT, 1´loop, which is given by

VT,1´looppϕ, T q “
T 4

2π2

«

ÿ

α“Φi,W,Z

nαJBrm
2
αpϕiq{T

2s ` ntJF rm
2
t pϕiq{T

2s

ff

, (4.3)

where the masses m2
α follow from the tree-level potential.

The first sum gives the contribution of all bosonic degrees of freedom and runs over the
scalars Φi and the W and Z bosons. We neglect the Goldstone bosons, as their contribution
is challenging to treat, since their mass squared can be negative, and their contribution to
the PT is typically subdominant [88]. The second term arises from the fermionic degrees of
freedom; we only include the top quark here, as the contributions of the lighter fermions
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can be neglected. nα and nt denote the number of degrees of freedom for each species. The
functions JB,F are given by

JB,F py
2q “

ż 8

0
dkk2 log r1¯ exp r´

a

k2 ` y2ss, (4.4)

with the minus sign for bosons and the plus sign for fermions.
At temperatures large compared to the mass, the functions JB,F can be expanded in

m2
αpϕiq{T

2 as

JBpm
2
α{T

2q “ ´
π4

45 `
π2

24
m2

α

T 2 ´
π

6
m3

α

T 3 ´
1
32

m4
α

T 4

ˆ

log m2
α

16π2T 2 ´
3
2 ` 2γE

˙

¨ ¨ ¨ ,

JF pm
2
α{T

2q “
7π4

360 ´
π2

24
m2

α

T 2 ´
1
32

m4
α

T 4

ˆ

log m2
α

π2T 2 ´
3
2 ` 2γE

˙

¨ ¨ ¨ , (4.5)

where γE is the Euler-Mascheroni constant, and we have discarded an infinite sum of terms
of higher order in m2

α{T
2. The mα-independent term contributes to the total energy of the

universe, but is not relevant for the PT, so we ignore it. The virtue of the high-temperature
expansion is that it allows us to obtain some analytical understanding of the effect of the
separate terms in the effective potential. We will use this in section 4.2 to investigate the
possibility of PTs at leading order. However, the effective potential in the high-temperature
expansion has to be treated with care. In particular, fields with masses m2

αpϕiq Á T 2 get
Boltzmann-suppressed. The full one-loop thermal function of eq. (4.3) takes this suppression
into account, but the potential corresponding to eq. (4.5) does not. In section 4.3, we will
study the evolution of the fields as given by eq. (4.3), without the high-temperature expansion.

4.2 Leading order phase transitions

We will first consider the potential with only the leading-order thermal mass corrections in
eq. (4.5) included. The phase transition dynamics crucially depend on the zero-temperature
minimum of the potential, which we will refer to as ‘the vacuum’. We will show in this
subsection that if all scalars obtain a vev — the case of interest for triple Higgs boson
phenomenology — then none of the phase transitions is first-order. Instead, if one or both
of the singlets remain at zero field value, a first-order phase transition (FOPT) is possible;
for completeness, we discuss this case in section 4.2.3.

As can be seen from eqs. (4.3) and (4.5), at leading order in mα{T , the effect of the
thermal plasma is to give the scalar fields an effective thermal mass. Explicitly, the masses
(in the symmetric phase) are [89, 90]:

m2
1pT q “ ´µ2

1 `
T 2

48
`

3g2
1 ` 9g2

2 ` 2p6y2
t ` 12λ1 ` λ12 ` λ13q

˘

,

m2
2pT q “ ´µ2

2 `
T 2

24 p4λ12 ` λ23 ` 6λ2q , (4.6)

m2
3pT q “ ´µ2

3 `
T 2

24 p4λ13 ` λ23 ` 6λ3q ,

resulting in an effective finite-temperature potential:

Veff,LOpϕi, T q “
1
2
ÿ

i

m2
i pT qϕ2

i `
1
4
ÿ

iďj

λijϕ2
i ϕ2

j . (4.7)
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From these expressions, we can immediately understand why one or more PT(s) occur as
the universe cools down. At high temperature the thermal corrections can make some
or all of the masses positive, and the global minimum at early times differs from the
zero-temperature vacuum.

Note that for the updated benchmark points discussed in section 3, the global minimum
does not always lie at the origin at high temperatures in the perturbative regime. Firstly, the
scale where the masses become positive may lie above the perturbativity cut-off. Secondly,
depending on the couplings, some of the thermal masses in eq. (4.6) can be negative, leading
to a period of ‘symmetry non-restoration’ [85, 91–95]. In the TRSM at least the Higgs
thermal mass is always positive, because of the large top quark Yukawa contribution and
the boundedness of the negative couplings eq. (A.1), and thus the electroweak symmetry
always gets restored at high temperature. For concreteness, we will consider the case where
all thermal masses are positive at temperatures below the perturbativity cutoff, and track
the field dynamics as the universe cools down and all fields obtain a vev. If one or multiple
thermal masses are already negative at the perturbativity scale, the analysis still applies, but
starting from the point where there are already some non-zero vevs. As we will show, one
can never have two minima (and thus a FOPT) at the same time, irrespective of the order
in which extrema appear. Our results thus do not depend on the assumption that at high
temperature all masses are positive and the symmetry is fully restored.

The PT dynamics in the TRSM mirrors that of the xSM, analyzed in e.g. [30, 32, 88, 96–
99]. In the well-studied two-step scenario [48], only the Higgs field has a non-zero vev in
the vacuum ph, sq “ pvh, 0q. Depending on the parameters, it is possible to have a two-
step transition, where the first transition p0, 0q Ñ p0, sq is continuous, but the 2nd step
p0, sq Ñ ph, 0q is an FOPT. However, if both fields have a vev in the zero-temperature
vacuum ph, sq “ pvh, vsq, at leading order all possible transitions are second order/cross
over as they are always from a saddle point or maximum to a minimum. This has also
been demonstrated in [30, 100].

Our findings can be understood intuitively. As the temperature drops, the thermal mass
of one of the fields, say x1, first becomes negative. A new minimum appears starting at
the origin and moving continuously to larger field values along the x1-direction as m2

1pT q

decreases, while the origin becomes a saddle. The x1 field thus obtains a continuously growing
vev in a smooth non-first-order transition. At later times, a second field, say x2, will develop
a negative mass (the mass matrix is evaluated at a nonzero x1-vev). The new minimum
first appears at the same point as the old minimum, and will then continuously move away
along the x2 direction, while the previous minimum becomes a saddle. This continues until
all three fields have a vev. The full series of transitions

p0, 0, 0q Ñ px1, 0, 0q Ñ px1, x2, 0q Ñ px1, x2, x3q (4.8)

is continuous, as each time the new minimum appears, it emerges from the previous one
which in turn becomes a saddle. This sequence of events relies on all fields only appearing
quadratically in the potential, as a consequence of gauge symmetry and the Z2-symmetries
in eq. (4.7).
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In the rest of this subsection, we will prove the above statements more rigorously. We
will find the extrema of the potential, and determine when they are real (i.e. when they exist)
and when they are minima. This analysis reveals an important property: in the limit of an
extremum becoming a real solution, it emerges from another solution that already existed
before, and the corresponding transition is continuous.

4.2.1 Extrema

We start from the finite-temperature potential eq. (4.7), but denote the scalars as xi instead
of ϕi, where xi is the ith field to obtain a vev:

V px1, x2, x3q “
1
2
ÿ

i

m2
i x2

i `
1
4
ÿ

i,j

cijx2
i x2

j , (4.9)

with cij “ cji. The normalization of cij is slightly different than before, explicitly λii “ cii and
λij “ 2cij for the diagonal and non-diagonal couplings respectively; this convention simplifies
the expressions in this subsection. Here and in the following repeated indices do not imply
summation. The extrema are the points for which all derivatives of the potential vanish:

@k, Bxk
V “ m2

kxk `
ÿ

i

cikx2
i xk “ 0. (4.10)

Because of the Z2 symmetry, we can focus on the extrema with non-negative vev without
loss of generality. The extremum condition then has two solutions for each k:

xk “ 0 _ m2
k `

ÿ

i

cikx2
i “ 0. (4.11)

There are then four qualitatively different extrema, shown in the left panel of figure 4, which
we refer to as the ‘origin’, and as the ‘axial’, ‘planar’, and ‘bulk’ extremum respectively.

• Origin: x0 ” p0, 0, 0q.

• Axial extremum x1 ” px1, 0, 0q with

x1 “

b

´m2
1{c11. (4.12)

• Planar extremum x12 ” px1, x2, 0q with

x1 “

d

c12m2
2 ´ c22m2

1
c11c22 ´ c2

12
, x2 “

d

c12m2
1 ´ c11m2

2
c11c22 ´ c2

12
. (4.13)

• Bulk extremum x123 ” px1, x2, x3q with

x1 “

a

pc2
23 ´ c22c33qm2

1 ` pc12c33 ´ c13c23qm2
2 ` pc13c22 ´ c12c23qm2

3?
D

,

x2 “

a

pc12c33 ´ c13c23qm2
1 ` pc2

13 ´ c11c33qm2
2 ` pc11c23 ´ c12c13qm2

3?
D

,

x3 “

a

pc13c22 ´ c12c23qm2
1 ` pc11c23 ´ c12c13qm2

2 ` pc2
12 ´ c11c22qm2

3?
D

, (4.14)
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where
D “ c11c22c33 ` 2c12c13c23 ´ c2

13c22 ´ c11c2
23 ´ c2

12c33, (4.15)

is the determinant of cij .

The other axial (x2, x3) and planar (x13, x23) solutions are obtained by relabeling the field
indices, as the potential is invariant under these permutations.

The extremum is a minimum if the eigenvalues of the Hessian of the potential hkl, i.e.
the mass matrix, evaluated at the extremum are all positive, with

hklpx1, x2, x3q ” Bxk
Bxl

V px1, x2, x3q “

˜

m2
k `

ÿ

i

cikx2
i

¸

δkl ` 2cklxkxl. (4.16)

The Hessian is block diagonal for the axial, planar, and bulk extrema. We can analyze the
upper-left block — the 1ˆ 1 block for x1, the 2ˆ 2 block for x12 and 3ˆ 3-matrix for x123 —
by rescaling the fields x2

i Ñ yi with yi ą 0, and calculating the Hessian for the yi-coordinates.
For the directions of non-zero field value xi ą 0, i.e. for the blocks of the Hessian mentioned
above, the rescaling is a monotonically increasing function and will not affect the sign of
the eigenvalues. The rescaled hessian is

h̄klpy1, y2, y3q “
1
2ckl. (4.17)

We demand that x123 is today’s vacuum. The eigenvalues of the rescaled Hessian should then
be positive. Sylvester’s criterion, stating that a square Hermitian matrix is positive definite
if and only if all the leading principal minors are positive, then gives

cii ą 0, & Cij ” ciicjj ´ c2
ij ą 0, & D ą 0, (4.18)

for i ‰ j.

4.2.2 Phase transition dynamics

Let us now look at the extrema in more detail, and discuss the possible PTs between them.
We start at high temperature with all thermally corrected masses m2

1, m2
2, and m2

3 positive
and will analyze how the bulk minimum, today’s vacuum, is reached. Without loss of
generality, we assume that x1 first becomes non-zero, then x2, and finally x3. This means
m2

1 becomes negative first, followed by the mass of x2 evaluated at x1, followed by the mass
of x3 evaluated at x12. As mentioned above, if at the perturbativity scale already one or
more of the masses are negative, the dynamics discussed in this subsection equally apply if
we just start at a later point in the field trajectory from the origin to the final minimum
with non-zero vevs for all fields.

Origin. The Hessian of the potential at the origin x0 “ p0, 0, 0q is

hklpx0q “ m2
kδkl. (4.19)

At high temperature, when all quadratic mass terms are positive m2
k ą 0, the origin is a

minimum of the potential. The origin is then also the only extremum, as the axial, planar
and bulk extrema eqs. (4.12)–(4.14) do not have a real solution, i.e., do not yet exist.
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Axial extremum. As m2
1 becomes negative, a new extremum emerges at x1 given in

eq. (4.12). The Hessian eq. (4.16) at this axial extremum is diagonal

hpx1q “ diagp´2m2
1, m2

2 ´ m2
1c12{c11, m2

3 ´ m2
1c13{c11q. (4.20)

With the sign flip of m2
1 the origin has become a saddle, while the first eigenvalue of the Hessian

at x1 is positive. With m2
2, m2

3 still positive and large enough all other eigenvalues are positive
as well, and x1 is (temporarily) the global minimum of the potential. The axial extremum
and the extremum at the origin coincide at the moment the former becomes real, that is

lim
m2

1Ñ0´
x1 “ x0. (4.21)

As the temperature drops further, m2
1 becomes more negative and the extrema separate

continuously from each other. The transition from x0 to x1 is thus a continuous PT from
a saddle point to a minimum, not an FOPT.

Finally, we note that there can never be two axial minima at the same time. For
m2

i , m2
j ă 0 the xi, xj extrema both exist. A necessary condition for both axial extrema to

be a minimum is that hjjpxiq ą 0 and hiipxjq ą 0, which can only be satisfied for cij ą 0,
which then implies Cij ă 0, which is at odds with our choice of vacuum eq. (4.18). Therefore,
there cannot be an FOPT between different axial minima.

Planar extremum. The planar extremum comes into existence when x12 in eq. (4.13)
becomes real, which requires

c12m2
1 ´ c11m2

2 “ ´h22px1qc11 ą 0, & c12m2
2 ´ c22m2

1 “ ´h11px2qc22 ą 0, (4.22)

where we have used C12 ą 0. For c12 ą 0 both conditions can only be satisfied for negative
mass m2

2 ă 0, while in the opposite case c12 ă 0 the x12 extremum already emerges when
m2

2 is still positive, provided it is small enough m2
2 ă |m2

1c12|{c11.
The Hessian at x12 is block diagonal. The eigenvalues of the upper-left 2ˆ 2 block are

positive if the upper-left 2 ˆ 2 block of the rescaled Hessian eq. (4.17) is positive, which
is ensured by eq. (4.18). Thus x12 is a minimum if the third eigenvalue is positive as well,
which reads

h33px12q “ m2
3 ´

c13c22h11px2q ` c23c11h22px1q

C12
“ h33px1q `

ρ

C12
h22px1q ą 0, (4.23)

with ρ ” c12c13 ´ c23c11. This is satisfied for large enough m2
3.

Just as the axial minimum emerged from the origin, the planar minimum coincides with
the axial extremum when it forms

lim
h22px1qÑ0´

x12 “ x1. (4.24)

As the temperature drops, h22px1q gets more negative and the extrema separate from each
other continuously. The first condition in eq. (4.22) implies that the moment x12 becomes
real, the axial extremum x1 turns into a saddle, as h22px1q — the mass of x2 evaluated at x1

— becomes negative. Likewise, the second condition implies x2 is a saddle. The origin also
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still is a saddle, as its Hessian has at least one negative eigenvalue. Until the bulk minimum
becomes real, the planar extremum x12 is the global minimum of the potential. The transition
from x1 to x12 is a continuous PT from a saddle point to a minimum.

It remains to be shown that there can be no FOPT between x12 and x3, and between
x12 and x13; these possibilities do not arise in the set-up with a single singlet such as the
xSM. We use a proof by contradiction to show that such FOPTs do not arise.

Let’s start with planar to axial (or axial to planar) transitions x12 Ø x3. Assume that
x12 and x3 are both real minima. This implies positive eigenvalues of their respective Hessian,
h33px12q ą 0 and hiipx3q ą 0 for i “ 1, 2, 3, and in addition m2

3 ă 0 for the x3 extremum to
exist. It is possible to find an algebraic relation connecting these quantities using eq. (4.20)
(by permutation of indices) and eq. (4.23):

´m2
3

D

c33
` C12h33px12q “ σh11px3q ` ρh22px3q, (4.25)

with σ ” c12c23 ´ c13c22 and as before ρ “ c12c13 ´ c23c11. Since D, C12 ą 0 by our choice of
vacuum eq. (4.18), the left-hand side of this equation is positive. As we will now show, our
starting assumption that x12, x3 are minima implies that ρ, σ ă 0 and the right-hand side is
negative — we run into a contradiction. The proof depends on the sign of c12:

1. If c12 ą 0, all thermal masses have to be negative for x12 and x3 has to exist, and c13 ă 0
for h11px3q has to be positive. Positive Hessian factors h11px3q, h22px3q then dictate
that h33px1q, h33px2q ă 0 are negative for C13 ą 0. Now combining the right-most
expression in eq. (4.23) with the first condition in eq. (4.22) gives ρ ă 0. By permutation
of indices in eq. (4.23) we also conclude that σ ă 0.

2. If c12 ă 0, m2
1, m2

3 have to be negative and m2
2 positive for x12 and x3 has to exist, and

c13 ą 0 for h11px3q ą 0. The sign of c23 is still free. If c23 ą 0, it is easily checked that
ρ, σ ă 0 as all individual terms are negative. If c23 ă 0, demanding h11px3q, h22px3q

both positive limits m2
2 ą |m2

3c23|{c33 ą |m2
1c23|{c13; combining with eq. (4.22) then

gives ρ, σ ă 0.

We thus conclude that in all cases x3 and x12 cannot be minima at the same time, as this
violates eq. (4.25), and there is thus no FOPT between them.

Finally, we consider a possible planar to planar transition x12 Ñ x13. For both extrema to
be a minimum, h33px12q ą 0 in eq. (4.23), and a similar relation follows by permutation of the
indices for h22px13q ą 0. Keeping in mind eq. (4.22) both can only be satisfied simultaneously if

ρ2 ´ C12C13 “ ´c11D ą 0. (4.26)

However, the positivity of the determinant D ą 0 forbids this possibility. There are thus
no planar to planar FOPT transitions.

Bulk extremum. For the transition to the bulk minimum, the reasoning and results are
similar to the preceding ones. The x123 solution becomes real for m2

3 small enough, and
it emerges from the planar extremum:

lim
h33px12qÑ0´

x123 “ x12. (4.27)
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Figure 4. Visualization of possible phase transitions. To the left is the case of the low-temperature
vev at x123. To the right is the case of low-temperature vev at x12.

That is, in the limit of x123 becoming real, it emerges from x12, which therefore needs to
be real as well. As we saw before, if x12 is a real solution, then the axial extrema and the
origin are not minima. Demanding that the x3 component of x123 in eq. (4.14) to be real
gives h33px12q ă 0, indicating that the planar extremum x12 now is a saddle as well. Using
the symmetry of the potential under permutations of the field order, we can draw the same
conclusion for the other two components of x123. As h33px12q becomes more negative, the
bulk minimum separates from the planar extremum, and becomes the global minimum of
the potential, as we have demanded from the start, cf. eq. (4.18).

We have already seen that two axial, two planar, and an axial and planar extrema can
never be minima at the same time and that the origin is not a minimum once the other
extrema emerge. Now our final analysis of the bulk minimum reveals that once it comes into
existence, the planar (but also all other) extrema are not minima. Hence, as depicted in the
left panel of figure 4, all possible transitions are smooth and continuous, and no FOPT arises.
This conclusion on the absence of an FOPT is based on the bulk minimum being the zero
temperature vacuum of theory, and on only including the leading-order thermal corrections
in eq. (4.7). In the next subsections, we will relax those assumptions.

4.2.3 Axial or planar minimum as today’s vacuum

In this section we drop our assumption that the zero-temperature vacuum is the bulk
extremum, and focus instead on the possibility of an axial or planar minimum today; this
corresponds to respectively none or only one of the additional singlets having a vev at zero
temperature. We do not attempt a full analysis of the parameter space, but we limit the
discussion to point out the conditions that allow for an FOPT. For the sake of readability,
we will denote today’s vacuum by simply ‘vacuum’ in this section.

Axial vacuum. We take x1 as the vacuum. This scenario is not favorable for multi-Higgs
boson production enhancement, but we will see that it accommodates an FOPT. Let us
consider the transition

x2 Ñ x1. (4.28)
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With all Cij ă 0 negative, none of the planar extrema are minima as the appropriate block
of the rescaled Hessian eq. (4.17) for the xij solution has determinant Cij ă 0, and thus
negative eigenvalues. The bulk extremum is neither the vacuum, as eq. (4.18) no longer holds.
Lastly, we require that V px1q ă V px2q at zero temperature. The mass m2

2 goes negative
before m2

1, and the extremum x2 emerges first. The setup is qualitatively similar to the last
step of a two-step transition in the xSM. Indeed, the additional x3-scalar of the TRSM does
not obtain a vev and is just a spectator during the PT.

As is known from the xSM literature, the axial-axial transition can be first-order. For
this to happen both axial extrema should be minima, and their respective Hessian hpx1q

and hpx2q in eq. (4.20) should have positive eigenvalues. Since C12 ă 0 — unlike the bulk
vacuum — this is now possible, provided that

m2
1, m2

2 ă 0, C12 ă 0, m2
3 ą m2

1c13{c11, m2
2c23{c22. (4.29)

With negative masses the planar extremum x12 also exists, but is a saddle point in the
px1, x2q plane. It follows that there can be an FOPT between the two axial minima through
the barrier formed by the potential near x12.

Planar vacuum. Consider now that the planar extremum x12 is the vacuum, which requires
C12 ą 0. From the collider point of view, this represents mixing between the Higgs field
and only one added scalar, leading to a phenomenology similar to the xSM and a possible
enhancement of di-Higgs boson production. For the phase transition, however, there are
two distinct possibilities for an FOPT that are unique to the TRSM and have no equivalent
in the xSM.

We first discuss the axial to planar transition. As shown in the previous subsection, the
planar extremum and the axial extrema from which it emerges — for example x12 and x1, x2

— cannot be minima at the same time. This leaves us with the transition

x3 Ñ x12. (4.30)

If the bulk extremum is the vacuum, x3 and x12 cannot be minima at the same time, since
the left- and right-hand side of eq. (4.25) would then have a different sign. For c12 ą 0 this
conclusion was based on D, C13, C23 all positive, while for c12 ą 0 we only used a positive
determinant D. However, with the planar vacuum, we can flip the sign of the left-hand side
of eq. (4.25) by taking the determinant negative (for c12 ą 0 there is also the possibility
to flip the sign of the right-hand side with C13, C23 negative). The determinant of the cij

matrix can be expressed as

D “ c33C12 ` c13σ ` c23ρ ă 0. (4.31)

For definiteness, we take all Cij ą 0 and c12 ą 0 and all masses negative, the same parameters
as in case 1 discussed below eq. (4.25); as we saw previously, x3 and x12 can then be both
minima if in addition c13 ą 0 and c23 ą 0, which gave ρ, σ ă 0. The determinant can be
negative and eq. (4.25) can be satisfied as well for

0 ă h33px12q ă
Dm2

3
c33C12

. (4.32)
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When x3 is a minimum, the other planar extrema x13, x23 do not exist yet. The bulk
extremum eq. (4.14) is however real since all masses m2

i are negative. C12 ą 0 and D ă 0
imply that the first two eigenvalues of the scaled Hessian in eq. (4.17) are positive, while
the third is negative, meaning that the bulk extremum is a saddle point. We conclude that
there can be an FOPT between x3 and x12 with the barrier formed by the potential near the
bulk saddle. An illustration of this case is on the right-hand panel of figure 4. As mentioned
before, this case is particularly interesting for LHC phenomenology as a low-temperature
vacuum where the Higgs field and one other field have a non-zero vev can lead to an observed
enhancement of di-Higgs boson production.

Finally, we point out the possibility of a planar to planar FOPT, of the type

x13 Ñ x12. (4.33)

For the bulk vacuum, we saw that the condition eq. (4.26) prohibits both planar extrema
to be a minimum. However, for the planar vacuum, we can again avoid this by taking the
determinant eq. (4.31) negative. For the same parameters as above, the bulk extremum
is a saddle which can create a barrier between the two minima at x12 and x13, allowing
for an FOPT between them.

4.3 Phase transitions in the full one-loop effective potential

Let us now go beyond the leading order finite-temperature effect in the potential. In the high-
temperature expansion, the next contribution comes from the term in eq. (4.5) proportional
to m3

α in JB. A barrier can thus be generated by the interplay between positive quadratic
and quartic terms, and a negative cubic term. This scenario is typically referred to as a
‘radiatively-generated barrier’, and it is the relevant mechanism for e.g. the one-step PT in
the xSM. Because of the rather large couplings of our BM points, and the mass hierarchies
existing at zero temperature, we have to be careful not to include contributions of fields with
mpϕiq Á T in eq. (4.5). We therefore work instead with the full one-loop thermal function of
eq. (4.3), in which heavy fields become automatically Boltzmann-suppressed.

Note that the cubic terms correspond to IR-divergent diagrams [84, 101]. This IR-
divergence is associated with loop contributions from massless modes, and it gets cured by
a resummation of these masses — this procedure is often referred to as Arnold-Espinosa
or daisy resummation [102]. Here, we will refrain from including this correction, as its
usual implementation critically relies on the high-temperature expansion. Introducing the
resummation term for fields that should be Boltzmann-suppressed, would result in an
unphysical leftover dependence on the heavy field.

In order to look for FOPT(s), we numerically determine the values of the scalar fields
in the global minimum of the potential of eq. (4.2) as a function of the temperature, using
the function NMinimize of Mathematica. If we find any discontinuities in the values of the
scalar fields, we can interpret that as an indication that an FOPT might occur. We use
running couplings, which we evaluate at the scale µT ” 1.25πT , corresponding to the scale
that we use in the Coleman-Weinberg potential. This implies that, as we increase T , we
approach the scales µpert and µpole. For µT Á µpert we can not expect our analysis to be
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reliable, and the PT would have to be studied on the lattice.3 We will therefore focus on
points where the PT(s) take place below this scale.4

A complication in the evaluation of the potential is that the squared masses entering in
eq. (4.3) and in the CW term are not necessarily positive. When taken at face value, these
terms lead to imaginary contributions in the potential. These imaginary parts have been
demonstrated to be associated with the decay rate of the quantum state [106], and it has also
been argued that the imaginary contributions of the CW-potential largely get canceled out by
the imaginary contributions of eq. (4.3) and the daisy-resummation term [107], which resums
the massless modes. Since we can not consistently include the daisy-resummation term, we
inevitably have to deal with a complex potential. In the literature, different strategies are
chosen to tackle this complication, for example, taking the real part of the potential [107]
or the absolute values of the masses [108]. Unfortunately, these treatments lack a robust
theoretical motivation and they lead to unphysical kinks in the potential (see figure 1 of [97]),
and consequently in the evolution of the background field. Imaginary parts in the potential
can be avoided altogether by adhering to a strict perturbative expansion around the leading
order minimum of the effective potential [104, 105, 109–111]. This approach requires a careful
tracking of the temperature- and field-dependent masses of the fields, and the construction of
an appropriate effective field theory for the (light) fields taking part in the PT. This more
precise, but also more elaborate approach would be necessary to obtain reliable predictions
when we expect an FOPT to occur. As we are currently still investigating whether an FOPT
occurs, we will resort to the somewhat ad hoc approach of plugging in the absolute values
of the mass into eq. (4.2). We find this approach to be numerically better behaved than
taking the real part, as the evolution of the Higgs field, which is our main interest, does
not suffer from large numerical (unphysical) jumps.

Let us first focus on the PT of the Higgs field. By inspecting all 140 BM points, and
focusing on temperatures where the couplings are perturbative, we find no hints of an FOPT.
A representative evolution of the vevs of the fields as a function of the temperature is
illustrated by figure 5. The vevs are found by using the function NMinimize in Mathematica.
The fields s1 and s2 obtain a vacuum expectation value first (because their thermal mass
becomes negative first, or because the thermal corrections become Boltzmann-suppressed),
which makes them too massive to contribute significantly to the PT of the Higgs field. For the
BM point displayed in figure 5 for example, at T “ 200GeV the two eigenvalues of the mass
matrix are 605GeV and 472GeV, resulting in Boltzmann-suppression of their contributions.
Also, for non-zero values of the Higgs field, these mass eigenvalues are roughly constant, so
these fields can not contribute to the cubic barrier of the Higgs field. The Higgs PT then
proceeds in a manner very close to the case in the SM, although the existence of the other two
fields affects its quartic coupling, which would even reduce the strength of the PT — if it was
first-order — which is inversely proportional to the Higgs quartic coupling, see e.g. [112–114].
In all cases, we see that the Higgs field obtains a vev at a temperature of T „ 200GeV, and

3Strictly speaking, PT(s) with couplings satisfying our perturbativity bounds still become non-perturbative
in the IR. It has, however, been demonstrated that a perturbative study with enough orders included can
reproduce the lattice calculations [103–105].

4It should be noted that even for PT(s) at temperatures with µT Á µpert we still do not find indications of
an FOPT
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Figure 5. Evolution of the field expectation values in the minimum of the potential for a representative
third BM point in table 2. The Higgs field is represented by gray solid, ϕ2 by dashed pink, and ϕ3 by
dotted cyan.

that the other fields then have a vev close to their zero-temperature values. We thus find no
indication that the TRSM can explain electroweak baryogenesis in the regime where triple
Higgs boson production is significantly enhanced.

Our results are in line with, and complement the results of [88], where the EWPT in the
singlet-majoron model was studied. In an extensive parameter scan, the authors find that,
for the parameter space corresponding to SM with a single additional singlet, there are no
strong first-order phase transitions with a zero-temperature non-zero singlet vev. Note that
ref. [36] does find a region with an FOPT and a non-zero singlet vev at zero temperature.
Note that the singlet is light in this study, which is therefore not in tension with our results.

One can still hope that the PT of the new scalars is first-order, possibly resulting in
an observable GW signal. We don’t find any indications of this in any of the BM points,
although the absolute value in the mass term results in some numerical jumps in the values
of the fields, so our numerical results are not entirely conclusive. The absence of such a PT
at leading order, demonstrated in section 4.2 does not make such a transition plausible.

5 Conclusions

We set out to connect Higgs phenomenology at colliders with the electroweak phase transition
in the early universe. For definiteness, we choose the two-real singlet extension of the SM
(TRSM) with Z2 symmetry as an example model. Compared to the SM, the TRSM enhances
multi-Higgs boson production, a process which is under investigation in the ongoing Run 3
and the upcoming high-luminosity run of the LHC. Moreover, extensions of the Higgs sector
similar to the TRSM are known to generate the cosmological first-order phase transition
required to produce the observed matter-antimatter asymmetry of the universe.

What sets the TRSM apart from SM extensions with a single additional field is that
triple Higgs production can be enhanced by a double resonance. This requires both new
scalars to have a vev. Rates can be further boosted if some of the quartic singlet couplings
are large, see eq. (2.7). Demanding that the couplings are still perturbative at least up to the
energy scale of the heaviest singlet state eq. (2.13), results in stricter bounds than previously
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used in the TRSM literature eq. (2.14). This has motivated us to find a new set of 140
benchmark points that enhance the cross-section of triple Higgs boson production within
current experimental constraints and theoretical bounds. The new benchmark points can
be found in the supplementary material and a subset is presented in table 2. In the future,
it might be interesting to update the TRSM benchmark points of [41] for di-Higgs boson
production and triple-Higgs productions with different mass hierarchies as well, given the
perturbativity bounds introduced in this paper.

Previous studies of the electroweak phase transition in BSM models such as the xSM
have shown that the chance of the transition being first order — in the SM it is a crossover

— is better for large scalar couplings. A first-order phase transition (FOPT) arises if there
is a sufficiently large barrier between separate minima of the potential at some moment in
the cosmological history. Such a barrier (which may already exist at zero temperature) can
be generated and deformed due to high-temperature effects, giving rise to an FOPT. These
effects may come from the temperature-dependence of the leading order thermal masses, or
via radiative corrections. We have shown analytically in section 4.2, that the first option
does not generate the needed barrier if both added scalars attain a non-zero vev at low
temperatures. As for a radiatively induced barrier, no analytical proof is available, but our
numerical study shows that no FOPT occurs for any of the BM points. Therefore, the Z2
TRSM parameter space for triple Higgs boson production and that of FOPT appear to be
mutually exclusive. To have an FOPT, at least one scalar should have a zero field value at low
temperatures. In this scenario, resonant di-Higgs boson production is still possible, enhancing
the di-Higgs boson cross-section at the LHC, as one would find within the xSM [115–118].

Lastly, we point out two ways to achieve both an FOPT and enhanced triple Higgs
boson production. The first is to add additional scalar(s) to the Z2 symmetric TRSM.
Then, two scalars can have a non-zero vev at low temperatures, contributing to triple Higgs
resonance production, and the other(s) can have a zero vev at low temperatures, facilitating
an FOPT. Another way is to allow Z2 symmetry-breaking terms to the TRSM. It has been
shown that the xSM without Z2-symmetry can exhibit an FOPT while enhancing di-Higgs
boson production [38, 59, 60], so similarly, breaking the Z2 symmetry in TRSM would be
expected to accommodate the possibility of both an FOPT and triple Higgs boson production
enhancement. We leave both of these possibilities for future work.
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A Useful relations for the TRSM

A.1 Boundedness of the potential

The potential is bounded from below if the following conditions on the couplings are
satisfied [42]:

λ11, λ22, λ33 ą 0,

λ̄12 ” λ12 ` 2
a

λ11λ22 ą 0,

λ̄13 ” λ13 ` 2
a

λ11λ33 ą 0,

λ̄23 ” λ23 ` 2
a

λ22λ33 ą 0,
a

λ11λ23 `
a

λ22λ13 `
a

λ33λ12 `
a

λ11λ22λ33 `

b

λ̄12λ̄13λ̄23 ą 0.

(A.1)

A.2 Mass and flavor basis

The mass and flavor states are related by
¨

˚

˝

h1
h2
h3

˛

‹

‚

“ R

¨

˚

˝

ϕ1
ϕ2
ϕ3

˛

‹

‚

, (A.2)

with the rotation matrix R given by

R “

¨

˚

˝

c12c13 ´s12c13 ´s13
s12c23 ´ c12s13s23 c12c23 ` s12s13s23 ´c13s23
c12s13c3 ` s12s23 c12s23 ´ s12s13c23 c13c23

˛

‹

‚

, (A.3)

with cij “ cos θij and sij “ sin θij .
The λij and the µi parameters in the scalar potential in eq. (2.1) are given in terms of

the angles, masses and vacuum expectation values by

λii “
1
2v2

i

ÿ

k

M2
k R2

ki, λij “
1

vivj

ÿ

k

M2
k RkiRkj , ´µi “ v2

i λii `
1
2
ÿ

k‰i

v2
kλik, (A.4)

where the mixed couplings λij are defined for i ă j.

A.3 RGEs

The one-loop RGEs for the quartic couplings are

p4πq2βλ11 “ 24λ2
11 `

λ2
22
2 `

λ2
33
2 `

3
8g4

1 `
9
8g4

2 `
3
4g2

1g2
2 ´ 6y4

t ´ 4λ11γΦ1 ,

p4πq2βλ22 “ 18λ2
22 ` 2λ2

12 `
λ2

23
2 ,

p4πq2βλ33 “ 18λ2
33 ` 2λ2

13 `
λ2

23
2 ,

p4πq2βλ12 “ 4λ2
12 ` 12λ12λ11 ` 6λ12λ22 ` λ13λ23 ´ 2λ12γΦ1 ,

p4πq2βλ13 “ 4λ2
13 ` 12λ13λ11 ` 6λ13λ33 ` λ12λ23 ´ 2λ13γΦ1 ,

p4πq2βλ23 “ 4λ2
23 ` 6λ23λ22 ` 6λ23λ33 ` 4λ12λ13, (A.5)
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with βλ “ µBλ{Bµ and γΦ1 “

´

3g2
1

4 `
9g2

2
4 ´ 3y2

t

¯

. The running of the gauge couplings and
the top quark is as in the SM

p4πq2βgi “ big
3
i ,

p4πq2βyt “
9
2y3

t ´ yt

ˆ

2
3g2

1 ` 9g2
3

˙

´ ytγΦ1 , (A.6)

with bi “ p41{6,´19{6,´7q for i “ 1, 2, 3.
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