
Conan: Distributed Proofs of Compliance for Anonymous Data
Collection

Mingxun Zhou

Carnegie Mellon University

Pittsburgh, USA

IC3

New York, USA

CyLab Secure Blockchain Initiative

Pittsburgh, USA

mingxunz@andrew.cmu.edu

Giulia Fanti

Carnegie Mellon University

Pittsburgh, USA

IC3

New York, USA

CyLab Secure Blockchain Initiative

Pittsburgh, USA

gfanti@andrew.cmu.edu

Elaine Shi

Carnegie Mellon University

Pittsburgh, PA, USA

rshi@andrew.cmu.edu

Abstract
We consider how to design an anonymous data collection protocol

that enforces compliance rules. Imagine that each client contributes

multiple data items (e.g., votes, location crumbs, or secret shares of

its input) to an abstraction of an anonymous network, which mixes

all clients’ data items so that the receiver cannot determine which

data items belong to the same user. Now, each user must prove to

an auditor that the set it contributed satisfies a compliance predi-

cate, without identifying which items it contributed. For example,

the auditor may want to ensure that no voter voted for the same

candidate twice, or that a user’s location crumbs are not too far

apart in a given time interval.

Our main contribution is a novel anonymous, compliant data

collection protocol that realizes the above goal. In comparison with

naïve approaches such as generic multi-party computation or ear-

lier constructions of collaborative zero-knowledge proofs, the most

compelling advantage of our approach is that each client’s com-

munication and computation overhead do not grow with respect

to the number of clients 𝑛. In this sense, we save a factor of at

least 𝑛 over prior work, which allows our technique to scale to

applications with a large number of clients, such as anonymous

voting and privacy-preserving federated learning.

We first describe our protocol using generic cryptographic prim-

itives that can be realized from standard assumptions. We then

suggest a concrete instantiation called Conan which we implement

and evaluate. In this concrete instantiation, we are willing to employ

SNARKs and the random oracle model for better practical efficiency.

Notably, in this practical instantiation, each client’s additional com-

munication overhead (not counting the overhead of sending its data

items over the anonymous network) is only𝑂 (1). We evaluated our

technique in various application settings, including secure voting,

and secure aggregation protocols for histogram, summation, and

vector summation. Our evaluation results show that in all scenarios,

each client’s additional communication overhead is only 2.2KB or

Online full version: https://eprint.iacr.org/2023/1900.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690264

2.6KB, depending on which SNARK implementation we use. Fur-

ther, each client’s computation only 0.2s - 0.5s for almost all cases,

except for the vector summation application where the data items

are high-dimensional and each client’s computation is 8.5-10.6s.

CCS Concepts
• Security and privacy→ Cryptography.

Keywords
Distributed Zero Knowledge Proofs; Anonymous Data Collection

ACM Reference Format:
Mingxun Zhou, Giulia Fanti, and Elaine Shi. 2024. Conan: Distributed

Proofs of Compliance for Anonymous Data Collection. In Proceedings of the
2024 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’24), October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY,

USA, 15 pages. https://doi.org/10.1145/3658644.3690264

1 Introduction
Anonymous data collection [2, 14, 15, 20, 23, 24, 28, 34, 42, 46–

49, 54] has been used in many privacy-enhancing applications. For

example, in anonymous voting [43] or anonymous surveys [37],

users’ votes and opinions are collected over an anonymous network.

In privacy-preserving federated learning [11], the popular “shuffle

model” [6–8, 10, 16, 17, 30–32, 40] anonymously collects noisy

data from participating clients, such that the server can perform

statistical analysis and learning tasks without learning which client

contributed what data. Previous works have shown that, anonymity

significantly amplifies privacy in the context of differential privacy:

if we fix the amount of noise each client adds to their data, then

the privacy guarantee is proven to be much stronger if the data

collection is performed anonymously rather than in the plain model

without anonymity [6–8, 10, 16, 17, 30–32, 40].

In this paper, we focus on how to check the compliance of the

data contributed by anonymous participants. Specifically, imagine

that each client 𝑖 ∈ [𝑛] submits a set of data items {𝑥𝑖,1, . . . , 𝑥𝑖,𝑚},
and the anonymous network (also called the shuffler) randomly per-

mutes all data items {𝑥𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚] , and sends the unorderedmul-

tiset Multiset({𝑥𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚]) to the data collector (also called

the server). The server wants to ensure that each client 𝑖’s con-

tributions {𝑥𝑖, 𝑗 } 𝑗∈[𝑚] satisfy some compliance predicate 𝐶 . For

example, in an anonymous voting scenario, the server wants to

check that the multiple votes cast by the same voter must vote

for distinct candidates. In a privacy-preserving federated learning

914

https://orcid.org/0000-0001-6034-9245
https://orcid.org/0000-0002-7671-2624
https://orcid.org/0000-0002-5605-1048
https://eprint.iacr.org/2023/1900
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3690264
https://doi.org/10.1145/3658644.3690264
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3658644.3690264&domain=pdf&date_stamp=2024-12-09

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mingxun Zhou, Giulia Fanti, and Elaine Shi

scenario, we might want to check that the data items contributed

by each client satisfies some robustness condition. For example,

in a multi-message shuffle-model protocol for secure summation

or frequency estimation [7, 8, 30, 31], each client adds noise to its

input and submits secret shares of its noisy input to the shuffler.

In this case, we may want to verify that the summation of each

client’s shares lies within some appropriate range.

Enforcing compliance is challenging because the shuffler breaks

linkability among the multiple items contributed by the same client

and mixes them together with all other clients’ contributions. In

particular, breaking up the linkability among the same client’s items

is essential for numerous privacy-preserving protocols [7, 8, 30,

38]. Our goal is to check compliance of each client’s contributions

without breaking anonymity. This means that we cannot reveal

which data items belong to which user, or even whether two data

items belong to the same user. Henceforth, we refer to this task as

an anonymous, compliant data collection protocol.
To get a better feel of this problem, it helps to consider a couple

naïve solutions and see why they do not work.

A flawed solution. A straightforward idea is the following. Sup-

pose that the server receives the unorderedmultisetPool :=Multiset(
{𝑥𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚]) from the shuffler, where {𝑥𝑖, 𝑗 } 𝑗∈[𝑚] are contri-
butions from the 𝑖-th client. Now, the server and the clients run an

audit protocol: each client 𝑖 proves in zero knowledge that it knows

a set of items x′
𝑖
:= (𝑥 ′

𝑖,1
, . . . , 𝑥 ′

𝑖,𝑚
) such that

(1) for 𝑗 ∈ [𝑚], item 𝑥 ′
𝑖, 𝑗

belongs to Pool, e.g., by showing that

there exists a valid Merkle tree proof for 𝑥 ′
𝑖, 𝑗

w.r.t. the Merkle

digest of Pool; and

(2) the set x′
𝑖
satisfy the compliance predicate 𝐶 .

Unfortunately, this approach is flawed due to the following rea-

son. Suppose that the adversary A controls a subset of the clients.

As long as one of the colluding clients 𝑖 submitted compliant data x𝑖
in the data collection phase, all the colluding clients can use client

𝑖’s contribution x𝑖 to pass the audit protocol. In other words, the

problem is that this protocol did not verify the x′
1
, . . . , x′𝑛 purported

in the audit phase is indeed a disjoint partitioning of the Pool of

data items collected earlier — henceforth for convenience, we call

this property set consistency.
Besides the security flaw, the above protocol may also be inef-

ficient since each client needs to privately fetch the Merkle proof

for each data item it contributed. The straightforward approach

is for each client to also download the entire Pool and compute

the Merkle proofs, but this incurs per-client communication that is

linear in 𝑛.

Naïve MPC-based solution. Another generic but inefficient ap-

proach is to use a maliciously secure multi-party computation

(MPC) protocol for the audit, where each client 𝑖’s input is the

set x𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑚), and the server’s input is the unordered

multiset Pool obtained from the shuffler. Now, all parties engage in

an MPC protocol to securely evaluate a circuit which outputs a bit

indicating whether the following conditions are both satisfied: 1)

x1, . . . , x𝑛 is a disjoint partitioning of Pool, and 2) for each 𝑖 ∈ [𝑛],
x𝑖 satisfies the desired compliance predicate 𝐶 .

Unfortunately, generic MPC is expensive. Using known MPC

implementations [26, 39, 44], the per-client communication would

be linear in 𝑛. Although techniques exist for MPC with sublinear

communication (e.g. using Fully Homomorphic Encryption), it is

not clear how to make these techniques work when the server is

potentially malicious, without incurring linear in 𝑛 communication

per client — we discussed other attempts in the Appendix E in the

full version [53].

Question. We ask the following question:

Assuming an underlying anonymous network (modelled as a

shuffler ideal functionality), can one design an efficient anony-
mous, compliant data collection protocol such that each client’s

communication and computation do not grow w.r.t. 𝑛?

1.1 Results and Contributions
We give an affirmative answer to the above question. We design

a novel anonymous, compliant data collection protocol assuming

that the underlying network is anonymous. Our protocol proceeds

in two phases: 1) a data collection phase where each client simply

submits its data items through the anonymous network, and 2) an

audit phasewhere the server and the clients engage in an interactive
protocol to check compliance. Notably, in comparison with other

generic approaches such as those based on MPC [26, 39, 44] or

collaborative ZKP [22, 45], the most compelling advantage of our

approach is that per-client communication and computation do not

grow w.r.t. the number of clients 𝑛, but depend only on the number

of data items each client contributes𝑚 and the circuit for checking

compliance. This is crucial for scaling to applications with large 𝑛,

e.g., anonymous voting or privacy-preserving federated learning.

We make novel contributions both on the theoretical and practi-

cal fronts.

Theoretical contribution: a succinct anonymous, compliant data col-
lection protocol. To state our theoretical contribution, we use generic
cryptographic primitives which can be realized from standard cryp-

tographic assumptions. Specifically, we prove the following theo-

rem where 𝑇 (𝑐), 𝑆 (𝑐), and 𝑉 (𝑐) denote the prover time, proof size,

and verification time of a non-interactive zero-knowledge (NIZK)

proof system when proving a circuit of size 𝑐 .

Theorem 1.1 (Informal). Assume a NIZK scheme with the above
costs, and a committing public-key encryption scheme. Moreover, as-
sume the existence of an anonymous network (modeled as a shuffler
ideal functionality). Then, there exists an anonymous, compliant data
collection protocol that is sound even when all of the clients are cor-
rupted, and 𝑡-anonymous1 when all but a constant number of clients
are corrupted with the following costs:

• Each client’s communication is upper bounded by 𝑂 (𝑚) +
𝑆 (|𝐶 | +𝑂 (𝑚)) +𝑂 (1) and its computation is upper bounded

by 𝑂 (𝑚) + 𝑇 (|𝐶 | + 𝑂 (𝑚)) + 𝑂 (1), where 𝑚 is the length of

the client’s input, and |𝐶 | denotes the size of the circuit that
encodes the compliance predicate 𝐶 .

1
We define 𝑡 -anonymity in Section 3.3 to mean that the adversary only learns the

multiset of the (𝑛 − 𝑡) honest clients’ data items even when it controls the server and

𝑡 clients (0 ≤ 𝑡 ≤ 𝑛 − 1).

915

Conan: Distributed Proofs of Compliance for Anonymous Data Collection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

• The server’s computation is upper bounded by 𝑛 · 𝑉 (|𝐶 | +
𝑂 (𝑚)) +𝑂 (𝑛 ·𝑚) +𝑂 (𝑛) and its communication is bounded

by 𝑛 · 𝑆 (|𝐶 | +𝑂 (𝑚)) +𝑂 (𝑛 ·𝑚) +𝑂 (𝑛).
• The protocol has only 3 rounds of client-server interaction, and
there is no client-client interaction.

Note that throughout, the 𝑂 (1) term in the client’s communica-

tion and computation actually spells out to 𝜔

(
log𝜆

log(𝑛−𝑡)

)
where 𝑡

is the number of corrupted clients. So in fact, each client’s commu-
nication and computation decrease as the number of honest clients
grows — see also our evaluation results Figure 3. Intuitively, this is

because with a larger 𝑛, the mixing effect of the anonymous net-

work allows us to achieve the same level of security with cheaper

cost (and jumping ahead, using a smaller number of decoy terms).

Similarly, the 𝑂 (𝑛) additive term in the server’s communication

and computation spells out to 𝑛 · 𝜔
(

log𝜆

log(𝑛−𝑡)

)
.

Practical instantiation and concrete efficiency. For our practical
implementation, we do not restrict ourselves to using only standard

assumptions for better efficiency. Specifically, wewill instantiate the

NIZKs using Succinct Non-Interactive Zero-Knowledge Arguments

of Knowledge (SNARKs), and we allow the random oracle model.

In this case, we can state even tighter bounds on the cost, that is,

• Each client’s extra communication (besides sending the data

items to the shuffler) is only 𝑂 (1);
• Each client’s computation is 𝑂 (|𝐶 |) where 𝑂 (·) hides a loga-
rithmic factor;

• The server’s communication and computation are upper bounded

by 𝑂 (𝑛𝑚) +𝑂 (𝑛).
We created an implementation of our protocol which we call

Conan (short for COmpliant N ANonoymous
2
). Our code is open

sourced at https://github.com/wuwuz/conan-open. We evaluated

our technique in various application settings, including secure vot-

ing, and secure aggregation protocols for histogram, summation,

and vector summation — see Section 1.2 for more details about

these applications. Our evaluation results show that in all scenarios,

each client’s additional communication overhead is only 2.2 KB or

2.6 KB, depending on whether we use Groth16 [35] or Plonk [29]

to instantiate the SNARK. Further, each client’s computation only

0.2s to 0.5s for almost all cases, except for the vector summation

application where the data items are high-dimensional and as a

result, each client’s computation is 8.5-10.6s.

New techniques. Interestingly, our techniques are inspired by

techniques from the distributed differential privacy (DP) litera-

ture [8], which is also related to Ishai et al.’s result for building cryp-

tographic protocols for anonymous communication networks [38].

Importantly, we stress that although we use DP-inspired techniques,

we actually prove cryptographically strong notions of security, not
differential privacy. We give an informal overview of our ideas in

Section 2.

Definitional contribution. We also make a new conceptual con-

tribution by formulating the anonymous, compliant data collection

problem and the corresponding security definitions. We believe that

2
In our protocol, the server plays Detective Conan [5] and will detect any cheating

behavior.

this abstraction can be useful in numerous application scenarios —

see Section 1.2 for more discussion.

Extension: attributing blame. In our basic anonymous, compliant

data collection protocol, there is no recourse if the audit phase fails.

In reality, it may be desirable for the server to identify a subset of

the cheating clients that caused the protocol to fail. We propose an

extension of our basic protocol that supports identifiable abort, such
that should the audit fail, the auditor can run an additional “blame

protocol” to catch a subset of the cheating clients (see the details

in the Appendix C for one application (shuffle-DP sum) We prove

that our extension preserves 𝑡-anonymity, while guaranteeing that

the server can identify a subset of corrupted clients in the case of

an abort and also no honest client is falsely accused. We further

evaluate the extension protocol in our experiments. The results

show that the additional per-client communication and computa-

tion overheads are within reasonable bounds, being 1.0 MB and

4.6s, respectively.

1.2 Potential Applications
We discuss some potential applications of our anonymous, compli-

ant data collection protocol. These are also the applications used in

our experimental evaluation (Section 7):

• Privacy-preserving federated analytics in the shuffle model. In
privacy-preserving federated analytics, an untrusted server

wants to learn some statistics over of 𝑛 clients’ inputs, without

compromising each client’s privacy. Earlier work [7, 8, 30, 31]

showed that the multi-message shuffle-model is a promising

approach for designing differentially private aggregation pro-

tocols. In this model, each client uses multiple messages that

jointly encodes its data, and send them to a trusted shuffler. The

shuffler mixes all data items and send them to the server who

then performs statistical analytics on the received data. Our

work can be viewed as a cryptographic protocol that upgrades

a traditional shuffler without compliance checking to a robust
shuffler with compliance checking. Therefore, an immediate ap-

plication of our work is to make multi-message shuffle-model

protocols [7, 8, 8, 30, 31] robust to data corruption attacks.

In our evaluation (Section 7), we implement the multi-message

shuffle-model protocols proposed by Balle et al. [8]. Specifically,

each client adds noise to its input, splits the noisy input into

random shares, and sends the shares to the shuffler. We use

our Conan protocol to verify that each user’s noisy input (i.e.,

the summation of its shares) is within some appropriate range.

• Secure histogram protocol. Imagine that each user has watched a

set of movies. A server wants to compute the popularity of each

movie (i.e., how many users have watched it). To achieve this,

each user sends all the movies it has watched to the shuffler,

and the shuffler randomly permutes all entries and sends them

to the server. Note that in this protocol, the server learns only

the resulting histogram and nothing else. In the above secure

histogram protocol, we can use our Conan protocol to ensure

that each client cannot submit duplicate entries.

• Anonymous Condorcet voting. We also consider an anonymous

Condorcet voting [52] scenario in our evaluation. Specifically,

each user has a ranking among the candidates. Based on this

ranking, the user submits to the shuffler a set of votes that

916

https://github.com/wuwuz/conan-open

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mingxun Zhou, Giulia Fanti, and Elaine Shi

encodes its preference over every pair of candidates. For ex-

ample, if the ranking is 𝐴 > 𝐵 > 𝐶 > 𝐷 , the votes submitted

are 𝐴 > 𝐵, 𝐴 > 𝐶 , 𝐴 > 𝐷 , 𝐵 > 𝐶 , 𝐵 > 𝐷 and 𝐶 > 𝐷 . After

obtaining the shuffled votes, the server can tally for each pair

of candidates, how many votes rank each candidate over the

other, and this will be used to decide the outcome of the elec-

tion. It is not hard to see that the server learns only the result

of the tally and nothing else. In such an application, we can use

our Conan protocol to ensure that each user submits only one

vote for each pair of candidates; moreover, the votes submitted

by each user should be internally consistent, i.e., its rankings

should not form a cycle.

1.3 Additional Related Work
Since our work can be viewed as an efficient distributed ZKP

protocol over an anonymous network where the witness is par-

titioned across multiple clients, we review other related notions

of distributed ZKPs and explain why they fail to solve our prob-

lem. A line of work considered distributed zero-knowledge proofs

(ZKP) where the witness is partitioned or secretly-shared across 𝑛

provers [22, 45]. Although these works can be used in our context

for the clients to jointly generate a compliance proof, the commu-

nication overhead per client would be at least linear in 𝑛. Another

line of work [41, 50, 51] considered how to use a cluster of ma-

chines to accelerate the prover of a ZKP system. However, these

approaches are not applicable to our setting because they do not

address the privacy requirement. Prio [18] and others [3, 12, 21]

considered statistic aggregation protocols where there are multiple

servers and each client sends secret-shared versions of its input to

the servers. Their compliance checking protocols can be considered

as distributed ZKP protocols where the prover knows the statement

and each verifier (the servers) only knows a secret share of the

statement. In their model, there is a single prover and multiple

verifiers, whereas there are multiple provers and one verifier in our

model. So they can be considered as the dual of our model. Bell

et al. [9] proposed ACORN, a robust secure aggregation protocol

with input validation. One building block they used is a protocol for

multiple clients to collectively prove that their committed values

are correlated in the correct manner. However, their protocol is

restricted to a specific relation (i.e., the sum of all provers’ secret

witnesses is equal to a public value) and does not fit our setting.

2 Technical Roadmap
We give a high-level overview of our novel techniques.

First attempt: representing sets as polynomials for set consistency
check. Recall that the flawed solution mentioned earlier is unsound

because it fails to check the “set consistency” property, i.e., it cannot

guarantee that the purported sets x1, . . . , x𝑛 in the audit phase are a

disjoint partitioning of the shuffled Pool the server received during

the data collection phase.

As a first attempt to fix this problem, we can use the polyno-

mial interpolation technique to prove set consistency [29]. Suppose

each client 𝑖 represents its set of items x𝑖 := (𝑥𝑖,1, . . . , 𝑥𝑖,𝑚) using
a polynomial 𝑓𝑖 (𝑥) = (𝑥 − 𝑥𝑖,1) · . . . · (𝑥 − 𝑥𝑖,𝑚). During the au-

dit, each client commits to its purported set x𝑖 . Next, the server
sends a random challenge 𝑟 , and each client responds with 𝑓𝑖 (𝑟),

and proves in zero-knowledge that 1) the committed x𝑖 satisfies
the predicate 𝐶 , and 2) the purported outcome 𝑓𝑖 (𝑟) is correct w.r.t.
the committed x𝑖 . The server now verifies all clients’ proofs. More-

over, to verify set consistency, the server additionally checks that∏
𝑖 𝑓𝑖 (𝑟) =

∏
𝑎∈Pool (𝑟 − 𝑎). This technique is a perfect fit for our

distributed setting: every client can compute their polynomial eval-

uations locally without communicating with other clients, making

this technique efficient in both communication and computation.

Unfortunately, even though this approach indeed enforces the

set consistency check, it breaks privacy. Specifically, the server can

perform a “subset-style” attack: it can pick a subset 𝑋 ∗ ⊆ Pool, and

test if a some client 𝑖’s 𝑓𝑖 (𝑟) agrees with
∏

𝑎∈𝑋 ∗ (𝑟 −𝑎). This allows
the server to learn if client 𝑖’s set x𝑖 = 𝑋 ∗.

Novel idea: preventing leakage with decoy terms. Our main novel

idea is to introduce decoy terms to provably prevent the afore-

mentioned leakage. Specifically, during the audit phase, instead of

sending 𝑓𝑖 (𝑟) directly to the server, client 𝑖 generates random decoy

terms 𝑦𝑖,1, . . .𝑦𝑖,𝑑 , and sends 𝑝𝑖 := 𝑓𝑖 (𝑟) ·
∏

𝑗∈[𝑑] 𝑦𝑖, 𝑗 to the server,
where the term

∏
𝑗∈[𝑑] 𝑦𝑖, 𝑗 masks the true value of 𝑓𝑖 (𝑟). Further,

each client sends its decoy terms 𝑦𝑖,1, . . .𝑦𝑖,𝑑 to a trusted shuffler

(denoted F
shuffle

). The shuffler F
shuffle

randomly permutes all de-

coy terms, and sends an unordered set 𝑌 of all clients’ decoy terms

to the server. Instead of checking that

∏
𝑖 𝑝𝑖 =

∏
𝑎∈Pool (𝑟 − 𝑎), the

server now checks

∏
𝑖 𝑝𝑖 =

∏
𝑎∈Pool (𝑟 − 𝑎) ·

∏
𝑦′∈𝑌 𝑦′. Intuitively,

the “subset-style” attack is now much harder for the server: the

server needs to find both the subset 𝑋 ∗ and a correct subset of

decoy terms 𝑌 ∗ to break an individual client’s privacy. Formally, we

show that for an appropriate choice of the field size, it suffices to

set the number of decoy terms 𝑑 = poly log 𝜆 to achieve negligibly

small security failure probability.

New proof techniques. Henceforth, letH ⊆ [𝑛] denote the set of
honest clients, and we use the notation Multiset({𝑦𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑑])
to denote the shuffled decoy terms {𝑦𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑑] .

To prove that the protocol satisfies zero-knowledge, a key step is

to argue that evenwhen the server has seenMultiset({𝑦𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑑])
for each honest client 𝑖 ∈ H , the randomizing term

∏
𝑗∈[𝑑] 𝑦𝑖, 𝑗 still

serves as a good mask for the partial product

∏
𝑗∈[𝑚] (𝑟 − 𝑥𝑖, 𝑗), i.e.,

the mask

∏
𝑗∈[𝑑] 𝑦𝑖, 𝑗 is sufficient for hiding which subset of Pool

belong to client 𝑖 .

To show this, we rely on a technical lemma shown by Balle

et al. [8] in the context of a secure summation protocol over an

anonymous network. Specifically, imagine that 𝑛 clients each have

an input denoted 𝑥1, 𝑥2, . . . , 𝑥𝑛 from an additive graph of size 𝑞

They want to jointly compute the summation of their private values

without leaking each individual’s input. Ishai et al. [38] suggested

a simple protocol: each client splits its private input into 𝑑 additive

shares, and sends all shares to a shuffler which mixes all 𝑛 ·𝑑 shares,

and presents them to a server. The server simply sums up all the

shares it receives. Ishai et al. [38] showed that if we set the number

of shares to 𝑑 = 𝑂 (log𝑞 + 𝜎 + log𝑛), then for any input vectors

(𝑥1, . . . , 𝑥𝑛) and (𝑥 ′
1
, . . . , 𝑥 ′𝑛) such that

∑
𝑖∈[𝑛] 𝑥𝑖 =

∑
𝑖∈[𝑛] 𝑥

′
𝑖
, the

views of the adversary have statistical distance bounded by 2
−𝜎

.

Balle et al. [8] observed that the bound by Ishai et al. [38] is not

tight when 𝑛 ≥ 19. In particular, the number of shares 𝑑 grows

with 𝑛, which is counterintuitive since having more parties should

917

Conan: Distributed Proofs of Compliance for Anonymous Data Collection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

intuitively strengthen the privacy guarantees, allowing us to use

a smaller number of shares. Thus, Balle et al. showed a stronger

version of the theorem where the number of shares 𝑑 only needs

to be 𝑑 > 2 + 2𝜎+log
2
𝑞

log
2
𝑛−log

2
𝑒
to get 2

−𝜎
statistical distance.

We now give an informal proof roadmap. Fix the Pool of data

items, and consider two different ways to partition Pool across the

𝑛 clients. Specifically, imagine that in world 0, the partitioning is

{𝑥𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚] , and inworld 1, the partitioning is {𝑥 ′𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚] .
Let 𝑧𝑖 =

∏
𝑗∈[𝑚] (𝑟−𝑥𝑖, 𝑗)

∏
𝑗∈[𝑑] 𝑦𝑖, 𝑗 and 𝑧

′
𝑖
=
∏

𝑗∈[𝑚] (𝑟−𝑥 ′𝑖, 𝑗)
∏

𝑗∈[𝑑] 𝑦
′
𝑖, 𝑗

be the masked partial product from each client 𝑖 , where the decoy

terms {𝑦𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑑] and {𝑦′𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑑] are all chosen indepen-
dently at random. We want to show that(

{𝑧𝑖 }𝑖∈[𝑛] ,Multiset({𝑦𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑑])
)

≈
(
{𝑧′𝑖 }𝑖∈[𝑛] ,Multiset({𝑦′𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑑])

)
where ≈ denotes statistical indistinguishability. To show this, ob-

serve that conditioned on 𝑧𝑖 = 𝑧′
𝑖
for all 𝑖 ∈ [𝑛] in the two worlds,

it must be that

∏
𝑖∈[𝑛], 𝑗∈[𝑑] 𝑦𝑖, 𝑗 =

∏
𝑖∈[𝑛], 𝑗∈[𝑑] 𝑦

′
𝑖, 𝑗
. Using Balle et

al.’s theorem, we have that conditioned on 𝑧𝑖 = 𝑧′
𝑖
for all 𝑖 ∈ [𝑛], the

terms Multiset({𝑦𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑑]) and Multiset({𝑦′
𝑖, 𝑗
}𝑖∈[𝑛], 𝑗∈[𝑑])

are statistically indistinguishable.

Our technical sections later will formalize the above intuition.

Specifically, to make the proof formal, we need to 1) add compu-

tationally sound reasoning for the cryptographic primitives used;

2) change the above argument to work for the subset of honest

parties rather than all parties; and 3) correctly set parameters of

the scheme to get negligibly small security failure. We defer the

details to Appendix A.

Concretely efficient upgrade to the malicious-server setting. The
protocol mentioned so far achieves anonymity only if the server is

semi-honest. To get rid of this assumption, one approach is to use

standard theoretical techniques for converting an honest-verifier

ZKP to a malicious-verifier ZKP [19], or to rely on a random coin

toss protocol to jointly generate the server’s challenge. However,

these generic techniques are not concretely efficient. Instead, we

propose a new upgrade that incurs minimal additional overhead

in comparison with the semi-honest-server setting. We defer the

detailed description to Section 6.

3 Formal Problem Definition
3.1 Notations

Shuffler notation. We use the notation F
shuffle

to denote a shuf-

fler ideal functionality
3
. Assume there are 𝑛 clients and each

client 𝑖 submits to F
shuffle

a multiset of 𝑚 data items denoted

x𝑖 := (𝑥𝑖,1, . . . , 𝑥𝑖,𝑚), then Fshuffle
outputs an unordered multiset

of all the data items, that is, {𝑥𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚] . Henceforth, we
use the notation Multiset(x1, . . . , x𝑛) to denote the multiset of

{𝑥𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚] .

Remark 3.1.
3
Our F

shuffle
functionality is widely-used in cryptography (e.g. [38]) and distributed

differential privacy (e.g., [10]), and has practical deployments in real-world systems [1].

A separate line of work constructs shufflers from various trust assumptions like trusted

hardware [10, 36] or MPC [25]. Anonymous networks like Tor are also used as heuristic

realizations of Fshuffle.

Notation for NP relation. Henceforth, we use the notationR𝑖 (x𝑖 ,𝑤𝑖)
to represent the NP relation corresponding to the compliance predi-

cate that the server wants to check for each client 𝑖 , where x𝑖 is the
data items contributed by client 𝑖 , and𝑤𝑖 is the witness. Specifically,

R𝑖 (x𝑖 ,𝑤𝑖) = 1 means that x𝑖 is in the NP language, i.e., it satisfies

the compliance predicate. In the most general form, this compliance

predicate need not be the same for all clients.

Henceforth, given x := (x1, . . . , x𝑛), and w := (𝑤1, . . . ,𝑤𝑛), and
NP relations R := (R1, . . . ,R𝑛), we use the short-hand R(x,w) = 1

to mean that for every 𝑖 ∈ [𝑛], R𝑖 (x𝑖 ,𝑤𝑖) = 1.

3.2 Syntax
An anonymous, compliant data collection has the following syntax:

• pp← Setup(1𝜆, 𝑛, R):
• Pool or ⊥ ← Π(pp, x1, . . . , x𝑛,𝑤1, . . . ,𝑤𝑛): All parties have
the input pp and moreover, each client 𝑖 has a list of data

items x𝑖 := {𝑥𝑖, 𝑗 } 𝑗∈[𝑚] , and witness 𝑤𝑖 . The client and the

server then engage in a protocol, such that at the end of the

protocol, the server either outputs a multiset Pool of data items,

or outputs ⊥ indicating failure.

Completeness. Completeness is a natural correctness require-

ment, it stipulates the following: for any 𝜆, 𝑛 ∈ N, any R, for any

x = (x1, . . . , x𝑛), any w = (𝑤1, . . . ,𝑤𝑛) such that R(x,w) = 1,

given an honest execution of Π,

Pr

[
pp← Setup(1𝜆, 𝑛, R), Π(pp, x,w) = Multiset(x1, . . . , x𝑛)

]
= 1

3.3 Security Definitions
Henceforth, let C ⊆ [𝑛] denote the set of corrupt clients, and let

H = [𝑛]\C denote the set of honest clients. Consider the following

random experiment denoted Expt
𝑛,A,R (1𝜆):

• run pp← Setup(1𝜆, 𝑛, R), and A receives pp;

• A outputs {x𝑖 ,𝑤𝑖 }𝑖∈H which is required to satisfy R𝑖 (x𝑖 ,𝑤𝑖)
for any 𝑖 ∈ H ;

• run the protocol Π with A who controls the set C of clients

and possibly the server, where the honest clients use the inputs

{x𝑖 ,𝑤𝑖 }𝑖∈H .

Soundness. Soundness requires that for any 𝑛 that is polynomi-

ally bounded in 𝜆, any C ⊆ [𝑛], any R (where the circuits for

checking the NP relations are polynomially bounded in 𝜆), for any

non-uniform PPT adversary A that controls the set C of corrupt

clients (but not the server), there exists a negligible function negl(·),
such that in the above randomized experiment Expt

𝑛,A,R (1𝜆), ex-
cept with 1 − negl(𝜆) probability, if the server did not reject out-

putting ⊥, the multiset Pool it outputs must satisfy the following:

(1) Multiset(𝑥H) ⊆ Pool;

(2) there exists a disjoint partitioning {x𝑗 } 𝑗∈C ofPool\Multiset({x𝑖 }𝑖∈H),
such that for any 𝑗 ∈ C, there exists some 𝑤 𝑗 such that

R 𝑗 (x𝑗 ,𝑤 𝑗) = 1.

The first condition says that honest clients’ contributions must

show up in Pool, and the second condition says that for the corrupt

clients’ contributions, there must be a way to partition these data

items among the corrupt clients C, such that every corrupt client

𝑗 ∈ C submitted a compliant multiset of data items.

918

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mingxun Zhou, Giulia Fanti, and Elaine Shi

𝑡-anonymity. 𝑡-anonymity requires that for any non-uniform

PPT adversary A who controls at most 𝑡 clients and possibly the

server, there exists a PPT simulator (SimSetup, SimProt) such that

for any 𝑛 that is polynomially bounded in 𝜆, any R (where the

circuits for checking the NP relations are polynomially bounded

in 𝜆), the adversary’s view in the above real-world experiment

Expt
𝑛,A,R (1𝜆) is computationally indistinguishable from the out-

put of the following ideal experiment.

• run (pp, st) ← SimSetup(1𝜆, 𝑛, R), and A receives pp;

• A outputs {x𝑖 ,𝑤𝑖 }𝑖∈H which is required to satisfy R𝑖 (x𝑖 ,𝑤𝑖)
for any 𝑖 ∈ H ;

• output the simulated view SimProt(st,Multiset({x𝑖 }𝑖∈H)).
Notice that the simulator only sees Multiset({x𝑖 }𝑖∈H) of honest
clients’ contributions. This implies that a computationally bounded

adversaries does not learn who contributed which data items.

Remark 3.2 (𝑡-anonymity in the presence of a semi-honest server).
Later, as a stepping stone, we will first construct a scheme that

satisfies 𝑡-anonymity in the presence of a semi-honest server. In

this model, we assume that the adversary controls a subset of the

clients, and possibly the server. The server is guaranteed to behave

honestly, but the adversary can observe the server’s view including

its internal coins and all the messages it sends and receives. On the

other hand, the corrupted clients can behave arbitrarily including

in a manner dependent on the server’s internal coins.

4 Preliminaries
4.1 Technical Lemma for Secure Summation
As mentioned, the most interesting technique in our construction

and proof is the introduction of decoy terms to allow a privacy-

preserving set consistency check. To prove the security of this

approach, we rely on a technical lemma from Balle et al. [8], which

is derived from a simple secure summation protocol first proposed

by Ishai et al. [38].

Imagine that there are 𝑛 parties each with an input 𝑥𝑖 ∈ Z𝑞 .
Each party 𝑖 splits its input 𝑥𝑖 into 𝑑 random, additive shares and

sends them to a shuffler. The server receives all the shares from

the shuffler and sums them up. The lemma shows that as long as

the server only sees the unordered, shuffled shares, it learns only

the sum of the inputs and nothing else, ignoring a small statistical

security loss. Balle et al. [8] observed that the lemma also works

when the inputs are from a finite abelian group. We will formally

state the lemma in the context of the case when the inputs are from

a multiplicative abelian group.

Lemma 4.1 ([8]). Suppose that 𝑛 ≥ 19, 𝑑 ≥ 3, and 𝜎 ≥ 1. Let G
be a multiplicative abelian group of order 𝑞. Suppose we are given
two arbitrary vectors (𝜇1, . . . , 𝜇𝑛) ∈ G𝑛 and (𝜇′

1
, . . . , 𝜇′𝑛) ∈ G𝑛 , such

that
∏

𝑖∈[𝑛] 𝜇𝑖 =
∏

𝑖∈[𝑛] 𝜇
′
𝑛 . Now, for 𝑖 ∈ [𝑛], randomly sample

(𝑦𝑖,1, . . . , 𝑦𝑖,𝑑) such that 𝜇𝑖 =
∏

𝑗∈[𝑑] 𝑦𝑖, 𝑗 . Similarly, randomly sam-
ple (𝑦′

𝑖,1
, . . . , 𝑦′

𝑖,𝑑
) such that 𝜇′

𝑖
=
∏

𝑗∈[𝑑] 𝑦
′
𝑖, 𝑗
. Then, the two multisets

Multiset({𝑦𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑑]) andMultiset({𝑦′
𝑖, 𝑗
}𝑖∈[𝑛], 𝑗∈[𝑑]) have sta-

tistical distance at most 2−𝜎 where

𝜎 =
(𝑑 − 1) (log

2
𝑛 − log

2
𝑒) − log

2
|𝑞 |

2

4.2 Cryptographic Building Blocks
We use the following primitives in our construction.

Non-interactive commitment. A non-interactive commitment al-

gorithm commit(1𝜆, 𝑥 ; 𝑟) takes in a security parameter 1
𝜆
, a mes-

sage 𝑥 ∈ {0, 1}ℓ (𝜆) , and a random string 𝑟 ∈ {0, 1}𝜆 , and outputs

a committed value 𝐶 . Henceforth let the message length ℓ (𝜆) be a
polynomial function in 𝜆. We require that a non-interactive com-

mitment scheme satisfy the following properties:

• Computationally hiding. For any 𝑥,𝑦 ∈ {0, 1}ℓ (𝜆) , it must be

that commit(1𝜆, 𝑥) and commit(1𝜆, 𝑦) are computationally in-

distinguishable. We write commit(1𝜆, 𝑥) to denote the ran-

domized algorithm that first samples 𝑟
$←{0, 1}𝜆 and then calls

commit(1𝜆, 𝑥 ; 𝑟).
• Perfectly binding. There does not exist 𝜆, (𝑥, 𝑟) and (𝑥 ′, 𝑟 ′)
where 𝑥 ≠ 𝑥 ′, such that commit(1𝜆, 𝑥 ; 𝑟) = commit(1𝜆, 𝑥 ′; 𝑟 ′).

Non-interactive zero-knowledge. A non-interactive argument sys-

tem for a family of NP relations {R𝜆}𝜆 indexed by 𝜆 consists of the

following (possibly randomized) algorithms:

• crs← Gen(1𝜆): samples and outputs a common reference string

denoted crs.

• 𝜋 ← P(crs, 𝑥,𝑤): takes in the common reference string crs, a

statement 𝑥 and a witness 𝑤 such that R𝜆 (𝑥,𝑤) = 1, outputs a

proof 𝜋 .

• 0 or 1← V(crs, 𝑥, 𝜋): takes in the common reference string crs,

a statement 𝑥 , and a purported proof 𝜋 , outputs either 0 or 1

indicating “reject” or “accept”.

We require the following properties:

(1) Completeness. For any 𝜆, for any (𝑥,𝑤) such that R𝜆 (𝑥,𝑤) = 1,

it holds that

Pr

[
crs← Gen(1𝜆), 𝜋 ← P(crs, 𝑥,𝑤) :

𝑉 (crs, 𝑥, 𝜋) = 1] = 1

(2) Soundness. For any non-uniform probabilistic polynomial-time

(PPT) prover 𝑃∗, there exists a negligible function negl(·), such
that

Pr

[
crs← Gen(1𝜆), (𝑥, 𝜋) ← 𝑃∗ (crs) :

𝑉 (crs, 𝑥, 𝜋) = 1 but 𝑥 ∉ R𝜆] ≤ negl(𝜆)

In the above, we use 𝑥 ∉ R𝜆 to mean that there does not exist a

𝑤 such that R𝜆 (𝑥,𝑤) = 1.

(3) Knowledge soundness. For any non-uniform deterministic algo-

rithm A, there exist a non-uniform polynomial-time extractor

XA and a negligible function negl(·) such that for any auxiliary
string 𝑧,

Pr

[
crs← Gen(1𝜆), ((𝑥, 𝜋);𝑤) ← (A||XA) (crs, 𝑧) :

V(crs, 𝑥, 𝜋) = 1 ∧ R𝜆 (𝑥,𝑤) = 0] ≤ negl(𝜆)

(4) Zero-knowledge. Intuitively, a non-interactive argument system

is computationally zero-knowledge if one can simulate the proof

of a true statement without knowing the witness. Formally,

a non-interactive argument system satisfies adaptive multi-

theorem computational zero-knowledge, iff there exists a PPT

919

Conan: Distributed Proofs of Compliance for Anonymous Data Collection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

simulator (𝑆1, 𝑆2), such that for any non-uniform PPT adversary

A, there exists a negligible function negl(·) such that

Pr

[
crs← Gen(1𝜆) : A𝑃 (crs,·,·) (1𝜆, crs) = 1

]
negl(𝜆)
≈ Pr

[
(crs, 𝜏) ← 𝑆1 (1𝜆) : A𝑆 (𝜏,·,·) (1𝜆, crs) = 1

]
where 𝜏 is a trapdoor, and 𝑆 (𝜏, 𝑥,𝑤) is the following oracle:

upon receiving (𝜏, 𝑥,𝑤), it checks whether R𝜆 (𝑥,𝑤) = 1. If so,

output 𝑆2 (𝜏, 𝑥), which simulates a proof without knowing the

witness; otherwise, output ⊥. Moreover, the notation

negl(𝜆)
≈

means that the left-hand side and the right-hand side differ by

at most negl(𝜆).

5 Warmup: Protocol for a Semi-Honest Server
We first present a protocol assuming a semi-honest server; however,

a subset of the clients may be under the control of the adversary and

behave arbitrarily maliciously. Later in Section 6, we will discuss

how to upgrade the protocol to the malicious-server setting with

minimal additional overhead.

5.1 Construction
We assume a prime-order field F whose size is superpolynomial in

the security parameter 𝜆. Suppose that each data item is encoded in

the field F, i.e., each x𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑚) ∈ F𝑚 . Our protocol relies

on an underlying anonymous network modelled as a shuffler ideal

functionality denoted F
shuffle

— see Section 3.1.

Protocol. During the setup, we call the NIZKs’ setup and outputs

the resulting common reference strings as the public parameter.

Our protocol then proceeds with a data collection phase and an

audit phase as follows:

(1) Data collection phase. All clients send their data items over

an anonymous network to the server. More formally, every

client 𝑖 ∈ [𝑛] sends its data items x𝑖 := (𝑥𝑖,1, . . . , 𝑥𝑖,𝑚) to
F
shuffle

, and F
shuffle

sends Multiset(x1, . . . , x𝑛) to the server.

(2) Audit phase.4 Each client proves compliance to the server

without identifying which data items it has contributed using

the following protocol.

• First, each client samples 𝑑 random decoy terms𝑦𝑖,1, . . . , 𝑦𝑖,𝑑
from F\{0}, and sends {𝑦𝑖,1, . . . , 𝑦𝑖,𝑑 } to Fshuffle

, which in

turn sends Multiset({𝑦𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑑]) to the server.

• Additionally, client 𝑖 sends a commitment com𝑖 of (x𝑖 , 𝜌𝑖)
to the server where 𝜌𝑖 :=

∏
𝑗∈[𝑑] 𝑦𝑖, 𝑗 .

• Next, the server sends a random challenge 𝑟 ∈ F to all clients.

• Now, each client 𝑖 sends 𝑧𝑖 := 𝜌𝑖 ·
∏

𝑗∈[𝑚] (𝑥𝑖, 𝑗 − 𝑟) to the

server, along with a NIZK proof attesting to the following

facts: 1) 𝑧𝑖 is computed correctly using the tuple (x𝑖 , 𝜌𝑖)
under the commitment com𝑖 , and the data items x𝑖 under
the commitment com𝑖 satisfy the compliance predicate.

• Finally, the server outputsMultiset(x1, . . . , x𝑛) if all 𝑛 NIZK

proofs verify, andmoreover,

∏
𝑖∈[𝑛] 𝑧𝑖 =

∏
𝑖∈[𝑛], 𝑗∈[𝑚] (𝑥𝑖, 𝑗−

𝑟) ·∏𝑖∈[𝑛], 𝑗∈[𝑑] 𝑦𝑖, 𝑗 ; otherwise, it outputs ⊥. Notice that
the server can efficiently compute

∏
𝑖∈[𝑛], 𝑗∈[𝑚] (𝑥𝑖, 𝑗 − 𝑟)

4
Here, we focus on the case when the audit phase is run only once. Our protocol can

be extended to run multiple audit phases on the same collected data with different

predicates naturally.

and

∏
𝑖∈[𝑛], 𝑗∈[𝑑] 𝑦𝑖, 𝑗 , since it knows Multiset(x1, . . . , x𝑛)

and Multiset({𝑦𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑑]).
We give a formal protocol description in Figure 1 where the NP

relation for the NIZK proofs are defined below.

NP relation for the NIZK proofs. In Figure 1, we use NIZK𝑖 to

denote a NIZK scheme for the NP relation 𝑅𝑖 :

• Public statement (𝑧𝑖 , com𝑖 , 𝑟): the client’s masked evaluation

𝑧𝑖 , the commitment com𝑖 , and the evaluation point 𝑟 ;

• Private witness (x𝑖 , 𝛾𝑖 ,𝑤𝑖 , 𝜌𝑖): the client’s data items x𝑖 , wit-
ness𝑤𝑖 , the randomness 𝛾𝑖 used in the commitment, as well

as the product of client 𝑖’s decoy terms 𝜌𝑖 .

• 𝑅𝑖 ((𝑧𝑖 , com𝑖 , 𝑟), (x𝑖 , 𝛾𝑖 ,𝑤𝑖 , 𝜌𝑖)) = 1 iff

– R𝑖 (x𝑖 ,𝑤𝑖) = 1;

– commit((x𝑖 , 𝜌𝑖);𝛾𝑖) = com𝑖 ; and

–
∏

𝑗∈[𝑚] (𝑥𝑖, 𝑗 − 𝑟) · 𝜌𝑖 = 𝑧𝑖 .

Parameter choices. Throughout, we use 𝜆 to denote the security

parameter, and we assume that 𝑛 is upper bounded by a fixed

polynomial in 𝜆. We set the field size of F to be superpolynomial in

𝜆. Let 𝜎 = 𝜔 (log 𝜆) be a super-logarithmic function in the security

parameter. Assume 𝑛 clients and at most 𝑡 corrupted clients, by

setting the number of decoy terms per client as

𝑑 ≥
2𝜎 + log

2
|F|

log
2
(𝑛 − 𝑡) − log

2
𝑒
+ 2, (1)

the statistical security loss is upper bounded by 2
−𝜎

which is negli-

gibly small in 𝜆 since 𝜎 = 𝜔 (log 𝜆). Additionally, the cryptographic
primitives we employ introduce a separate computational security
loss that is also negligibly small in 𝜆. Note that Equation (1) also

shows that the number of decoy terms per client 𝑑 decreases as 𝑛

grows. Further, if we set the field size to be exp(log𝑐 𝑛) for some

constant 𝑐 > 1, then 𝑑 is upper bounded by 𝑂 (log𝑐 𝜆).

Remark 5.1 (Parameter choices depend on the number of honest

clients). Our choice of 𝑑 in Equation (1) assumes that there are at

least 19 honest clients — this is inherited from the technical lemma

(Lemma 4.1) proven by Balle et al. [8]. Note that the total number

of clients 𝑛 can be much larger than 19, i.e., security holds even

when a large majority of the clients can be maliciously corrupted.

However, if there are fewer than 19 honest clients, we can set the

number of decoys 𝑑 to be 𝑑 =
⌈
1.5 log

2
(|F|) + log

2
𝑛 + 𝜎

⌉
due to the

lemma of Ishai et al. [38] to achieve the same level of security loss.

In Appendix A, we prove the following theorem.

Theorem 5.2 (Protocol for a semi-honest server). Suppose that |F|
is superpolynomial in 𝜆, 𝑛 − 𝑡 ≥ 19 and 𝑑 = 𝜔

(
log |F |+log𝜆
log(𝑛−𝑡)

)
. Further,

suppose that the underlying NIZK satisfies completeness, soundness,
and zero-knowledge, and the commitment scheme comm is perfectly
binding and computationally hiding. Then, the protocol described in
this section satisfies completeness, soundness, and 𝑡-anonymity in the
presence of a semi-honest server.

In our implementation, we will use a prime field F𝑝 where 𝑝 is

a 254-bit prime. Suppose we want to achieve a statistical security

failure probability of 2
−80

. Then, with 100, 1000, and 10000 honest

clients, we can choose 𝑑 = 82, 𝑑 = 51, and 𝑑 = 37, respectively.

920

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mingxun Zhou, Giulia Fanti, and Elaine Shi

Setup(1𝜆, 𝑛, R):. For 𝑖 ∈ [𝑛], run crs𝑖 ← NIZK𝑖 .Gen(1𝜆). Output pp := {crs𝑖 }𝑖∈[𝑛] . a

Π(pp, x1, . . . , x𝑛,𝑤1, . . . ,𝑤𝑛).
(1) Data collection phase: Every client 𝑖 ∈ [𝑛] sends x𝑖 to Fshuffle

, and F
shuffle

sends Multiset(x1, . . . , x𝑛) to the server.

(2) Audit phase:
• Each client 𝑖:

– Sample y𝑖 = (𝑦𝑖,1, . . . , 𝑦𝑖,𝑑)
$← {F/{0}}𝑑 and let 𝜌𝑖 :=

∏
𝑗∈[𝑑] 𝑦𝑖, 𝑗 .

– Send (𝑦𝑖,1, . . . , 𝑦𝑖,𝑑) to Fshuffle
, which sends Multiset({𝑦𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑑]) to the server.

– Send com𝑖 = commit((x𝑖 , 𝜌𝑖);𝛾𝑖) directly to the server where 𝛾𝑖 denotes sampled random coins.

• Server:
– Sample a random challenge 𝑟

$← F and broadcast 𝑟 to all clients.

• Each client 𝑖:
– Parse x𝑖 := (𝑥𝑖,1, . . . , 𝑥𝑖,𝑚), and compute 𝑧𝑖 := 𝜌𝑖 ·

∏
𝑗∈[𝑚] (𝑥𝑖, 𝑗 − 𝑟).

– Parse pp := (crs1, . . . , crs𝑛), and call 𝜋𝑖 ← NIZK𝑖 .P(crs𝑖 , (𝑧𝑖 , com𝑖 , 𝑟), (x𝑖 , 𝛾𝑖 ,𝑤𝑖 , 𝜌𝑖)).
– Send (𝑧𝑖 , 𝜋𝑖) to the server.

• Server: Output Multiset(x1, . . . , x𝑛) if the following checks pass, else output 0:
– NIZK verification: For 𝑖 ∈ [𝑛], NIZK𝑖 .V(crs𝑖 , (𝑧𝑖 , com𝑖 , 𝑟), 𝜋𝑖) = 1.

– Set consistency check:
∏

𝑖∈[𝑛] 𝑧𝑖 =
∏

𝑖∈[𝑛], 𝑗∈[𝑚] (𝑥𝑖, 𝑗 − 𝑟) ·
∏

𝑖∈[𝑛], 𝑗∈[𝑑] 𝑦𝑖, 𝑗 . The server can compute both sides of the

equation knowing 𝑧1, . . . , 𝑧𝑛 ,Multiset({𝑥𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚]), and Multiset({𝑦𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑑]). Also, check all 𝑦𝑖, 𝑗 ’s are not 0.

a
The CRS for the NIZK scheme can be shared if it is instantiated with a SNARK scheme with a universal CRS.

Figure 1: Our anonymous, compliant data collection protocol for a semi-honest server.

Cost analysis. Based on the above parameter choices, we can

now give the asymptotic performance bounds. Suppose we use

a SNARK scheme to realize the underlying NIZK, and suppose

that the SNARK scheme has 𝑂 (𝑐) prover time for proving a size-

𝑐 circuit, 𝑂 (1) proof size and verification time. Further, suppose

the commitment scheme comm has 𝑂 (𝑚) computation time and

commitment size for a message of size 𝑂 (𝑚). Then, the above

protocol satisfies the following performance bounds:

• Each client 𝑖 incurs 𝑂 (|R𝑖 |) computation and 𝑂 (𝑚) + 𝑂 (1)
communication (see also Remark 5.3), where the notation |R𝑖 |
denotes the size of the circuit that checks the NP relation R𝑖 .
Specifically, the 𝑂 (𝑚) part comes from sending the 𝑚 data

items to the shuffler and committing to them again during the

audit, and the 𝑂 (1) accounts for sending the decoy terms to

the shuffler and all other communication.

• The server’s computation and communication are upper bounded

by 𝑂 (𝑛𝑚) +𝑂 (𝑛).

Remark 5.3 (Regarding client communication). The client com-

munication includes sending the𝑚 data items to the shuffler during

data collection, and sending one commitment and one ZKP in the

audit phase. If we use a perfectly binding commitment, the commit-

ment size is linear in𝑚 for committing to a length-𝑚message. In our

actual implementation, we use a random-oracle-based commitment

scheme that the commitment size is 𝑂 (1) even for committing to a

length-𝑚 message; and we use a SNARK whose proof size is also

𝑂 (1). In this case, the client’s extra communication overhead (be-

sides sending the𝑚 data items to the shuffler) is actually bounded

by 𝑂 (1). Later in Section 6, we will argue that our security proofs

still hold when we replace the commitment scheme with a random-

oracle-based one (see also Appendix B in the full version [53] for

details).

5.2 Anonymity for a Semi-Honest Adversary
We now prove a key lemma that is needed for proving anonymity

in the presence of a semi-honest server. This key lemma represents

the most interesting step in our security proof, since it captures the

statistical steps of reasoning why the decoy terms give us strong

privacy. We defer the full proof of anonymity for a semi-honest

server to Appendix A.

Key lemma for anonymity. Intuitively, the lemma says that sup-

pose the zero-knowledge proofs and commitments leak nothing,

then the server cannot distinguish whether the honest clients’ in-

puts are {𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚] ∈ F |H | ·𝑚 or {𝑥 ′
𝑖, 𝑗
}𝑖∈H, 𝑗∈[𝑚] ∈ F |H | ·𝑚 ,

as long asMultiset({𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚]) = Multiset({𝑥 ′
𝑖, 𝑗
}𝑖∈H, 𝑗∈[𝑚]).

In other words, the server cannot learn how the permuted data

items are partitioned across the honest clients. This intuition can

be captured by the following lemma.

Lemma 5.4 (Key lemma for proving anonymity). Given a secu-
rity parameter 𝜎 = 𝜔 (log 𝜆), and assume |F| is superpolynomial

in 𝜆, 𝑛 − 𝑡 ≥ 19, and 𝑑 ≥
⌈

2𝜎+log
2
|F |

log
2
(𝑛−𝑡)−log

2
𝑒
+ 2

⌉
. Let H denote the

set of honest clients. Fix arbitrary {𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚] ∈ F |H | ·𝑚 and
{𝑥 ′

𝑖, 𝑗
}𝑖∈H, 𝑗∈[𝑚] ∈ F |H | ·𝑚 such that Multiset({𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚]) =

Multiset({𝑥 ′
𝑖, 𝑗
}𝑖∈H, 𝑗∈[𝑚]), and fix some 𝑟 ∉ {𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚] also

from F. Then, the following distributions have negligibly small in 𝜆

statistical distance:

921

Conan: Distributed Proofs of Compliance for Anonymous Data Collection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

• Distribution 0: Sample {𝑦𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑑] at random from F, output
the following terms:

Multiset({𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚]), 𝑟 , Multiset({𝑦𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑑]),
for each 𝑖 ∈ H : 𝑧𝑖 :=

∏
𝑗∈[𝑚] (𝑥𝑖, 𝑗 − 𝑟) ·

∏
𝑗∈[𝑑] 𝑦𝑖, 𝑗

• Distribution 1: Same as Distribution 0 except that each 𝑥𝑖, 𝑗 is
replaced with 𝑥 ′

𝑖, 𝑗
.

Proof. To prove the key lemma, we shall rely on Lemma 4.1,

the technical lemma from Balle et al. [8].

First, consider the following hybrid experiment which is equiva-

lent to Distribution 1 except that the order in which the random

variables are sampled is changed.

Experiment Hyb
0
:

• First, sample {𝑧𝑖 }𝑖∈H at random from F/{0}.
• Next, for each 𝑖 ∈ H , compute 𝜇𝑖 := 𝑧𝑖/

∏
𝑗∈[𝑚] (𝑥𝑖, 𝑗 − 𝑟),

basically 𝜇𝑖 corresponds to the product of the terms {𝑦𝑖, 𝑗 } 𝑗∈[𝑑] .
• Next, for each 𝑖 ∈ H , sample {𝑦𝑖, 𝑗 } 𝑗∈[𝑑] at random subject to

the constraint that their product is 𝜇𝑖 .

• Finally, compute and output the following terms:

Multiset({𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚]), 𝑟 ,
Multiset({𝑦𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑑]), {𝑧𝑖 }𝑖∈H

Experiment Hyb
1
: same as Hyb

0
except that each 𝑥𝑖, 𝑗 is replaced

with 𝑥 ′
𝑖, 𝑗
. Hyb

1
is equivalent to Distribution 1 except that the order

in which the random variables are sampled is changed.

The key lemma follows directly from the following claim.

Claim 5.5. Hyb
0
andHyb

1
have statistical distance negligibly small

in 𝜆.

It suffices to show that conditioned on any fixed {𝑧𝑖 }𝑖∈H , Hyb0
and Hyb

1
are statistically close. SinceMultiset({𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚]) =

Multiset({𝑥 ′
𝑖, 𝑗
}𝑖∈H, 𝑗∈[𝑚]), we have∏

𝑖∈H

𝑧𝑖∏
𝑗∈[𝑚] (𝑥𝑖, 𝑗 − 𝑟)

=
∏
𝑖∈H

𝑧𝑖∏
𝑗∈[𝑚] (𝑥 ′𝑖, 𝑗 − 𝑟)

.

Then, we can directly apply Lemma 4.1 and get that the statistical

distance of the distribution of Multiset({𝑦𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑑]) in Hyb
0

and Hyb
1
is bounded by 2

−𝜎
where

𝜎 =
1

2

(𝑑 − 2) (log
2
(𝑛 − 𝑡) − log

2
𝑒) − 1

2

log
2
(|F| − 1) .

Therefore, fixing 𝜎 = 𝜔 (log 𝜆), when 𝑑 ≥
⌈

2𝜎+log
2
|F |

log
2
(𝑛−𝑡)−log

2
𝑒
+ 2

⌉
, the

statistical distance ofA’s view betweenHyb
0
andHyb

1
is bounded

by 2
−𝜎

which is negligibly small in 𝜆. □

Completing the proof of anonymity against a semi-honest server.
As mentioned, the key lemma essentially shows that the server

does not learn how the data items are partitioned across the honest

clients, assuming that the zero-knowledge proofs and commitments

are perfectly secret. In reality, however, the cryptographic primi-

tives satisfy only computational notions of security. Therefore, to

formally prove anonymity in the presence of a computationally

bounded adversary, we need to go through a sequence of hybrid ex-

periments, such that we first replace the zero-knowledge proofs and

commitments with simulated ones using the security of the crypto-

graphic primitives, and then apply Lemma 5.4 to switch the honest

clients’ inputs from {𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚] to {𝑥 ′𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚] where the
latter is an arbitrary partition ofMultiset({𝑥𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚]). After-
wards, the view of the adversary in the hybrid experiment can be

fully simulated by a simulator that only knows the multiset of the

honest clients’ inputs. We present the full proof in Appendix A.

5.3 Proof of Soundness
We now prove a key lemma that captures the essential statistical

reasoning in the soundness proof, when we imagine that all the

cryptographic primitives were ideal. The full soundness proof re-

quires a computationally sound treatment of the cryptographic

primitives used, and we defer the full soundness proof to Appen-

dix A.

Key lemma for soundness. Wenow state the key lemma (Lemma 5.6)

needed for proving soundness. To better understand the lemma

below, it helps to imagine that {𝑥𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚] (represented by

{x1, . . . , x𝑘 } in Lemma 5.6) represent the data items the server has

obtained during the data collection phase, and {x′
1
, . . . , x′

𝑘
} (rep-

resented by {x1, . . . , x𝑘 } in Lemma 5.6) represent the data items

the clients commit to during the audit. Moreover, imagine that

𝛼 =
∏

𝑖∈[𝑛], 𝑗∈[𝑑] 𝑦𝑖, 𝑗 , and 𝛼 ′ =
∏

𝑖∈[𝑛] 𝜌𝑖 . Recall that during the

audit (Figure 1), the clients submit the decoy terms {𝑦𝑖, 𝑗 } and com-

mit to {𝑥 ′
𝑖, 𝑗
}𝑖∈[𝑛], 𝑗∈[𝑚] and {𝜌𝑖 }𝑖∈[𝑛] . This is why in Lemma 5.6

below, we imagine that {𝑥𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚] , {𝑥 ′𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑚] , 𝛼 , 𝛼
′

are fixed; however, the challenge 𝑟 is randomly chosen.

Lemma 5.6 (Key lemma for proving soundness). Let F be a finite
field. Let 𝑥1, . . . , 𝑥𝑘 ∈ F, 𝛼 ∈ F\{0}, and let 𝑥 ′

1
, . . . , 𝑥 ′

𝑘
, 𝛼 ′ ∈ F.

Suppose that Multiset(𝑥1, . . . , 𝑥𝑘) ≠ Multiset(𝑥 ′
1
, . . . , 𝑥 ′

𝑘
). Then,

Pr

𝑟
$←F

𝛼 ·
∏
𝑖∈[𝑘]

(𝑟 − 𝑥𝑖) = 𝛼 ′ ·
∏
𝑖∈[𝑘]

(𝑟 − 𝑥 ′𝑖)
 ≤

𝑘

|F| .

Proof. Since Multiset(𝑥1, . . . , 𝑥𝑛) ≠ Multiset(𝑥 ′
1
, . . . , 𝑥 ′𝑛), the

polynomials 𝐹 (𝑅) = ∏
𝑖∈[𝑛] (𝑅 − 𝑥𝑖) and 𝐹 ′ (𝑅) = ∏

𝑖∈[𝑛] (𝑅 − 𝑥𝑖)
are not the same. In the case of 𝛼 ≠ 𝛼 ′, since 𝐹 (𝑅) and 𝐹 ′ (𝑅)
are both monic polynomials, 𝛼𝐹 (𝑅) and 𝛼 ′𝐹 ′ (𝑅) are two different

polynomials. In the case of 𝛼 = 𝛼 ′, 𝛼𝐹 (𝑅) and 𝛼 ′𝐹 ′ (𝑅) are different
because 𝐹 (𝑅) ≠ 𝐹 ′ (𝑅). Therefore, the lemma follows from a direct

application of the Schwartz-Zippel lemma. □

Intuitively, the above key lemma for soundness says that as long

as the corrupted clients use inconsistent data items in the audit

phase, the audit will fail with overwhelming probability regardless

of how the corrupted clients generate their decoys.

Completing the soundness proof. The full proof of soundness

makes use of the perfect binding property of the commitment

scheme and the soundness of the zero-knowledge proof, and then

reaches a step where applying the key lemma, i.e., Lemma 5.6 would

be sufficient. We defer the full proof to Appendix A.

6 A Simple Upgrade to the Malicious-Server
Setting

In this section, we propose a simple upgrade with minimal over-

head that lifts our warmup protocol to the malicious-server setting.

922

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mingxun Zhou, Giulia Fanti, and Elaine Shi

Specifically, for soundness, we always assume an honest server;

however, we want our anonymity guarantees to hold even when the

server can be malicious. In this setting, the challenge for proving

anonymity is that the server may not choose the challenge 𝑟 at

random
5
. To upgrade our protocol to the malicious-server setting,

one naïve way is the use a generalization of the transformation

described by Damgård [19] that converts an honest-verifier zero-

knowledge proof to a malicious-verifier zero-knowledge proof. An-

other naïve way is to use a random coin toss protocol to jointly gen-

erate the server’s challenge. However, these standard approaches

result in relatively high concrete overhead. Instead, we propose a

simple upgrade with minimal overhead.

Intuition. The construction in Section 5.1 provides anonymity

only in the presence of a semi-honest server, relies on the facts

that 1) the challenge 𝑟 is chosen independently of the decoy terms

{𝑦𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑑] — however, 𝑟 need not be chosen uniformly at ran-

dom; and 2) the challenge 𝑟 is not equal to any of the data items

{𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚] . However, a malicious server may choose 𝑟 based

on its guess of the data items {𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚] or the decoy terms

{𝑦𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑑] that have already been revealed. For example, a

malicious server can intentionally pick a challenge 𝑟 that equals

one of the messages. Then, the server learns the source of that

particular message, because the client who submitted it will have a

polynomial evaluation of 0. Therefore, the intuition of our upgrade

is to ensure that even a malicious server cannot choose the chal-

lenge 𝑟 that collides with any honest client’s data item, or depends

on the decoy terms. For the former, we can split the field F into

two halves and enforce the data items and the challenge 𝑟 to be

sampled from different halves. For the latter, we require the server

to commit to 𝑟 upfront, so 𝑟 cannot be chosen based on the decoy

terms.

Upgrade to the malicious-server setting. In the upgraded protocol,

the server commits to the challenge 𝑟 upfront. Next, the clients

commits to their data items and submits the decoy terms using an

extractable commitment scheme, and the server then opens 𝑟 . The

clients check if the opening 𝑟 is valid, and that 𝑟 must be sampled

from a different half of the field than the messages.

• Assume we use a prime-order field F𝑝 . We will encode the

clients’ messages𝑥𝑖, 𝑗 using the first half of the field {0, . . . , ⌊𝑝/2⌋}.
• At the beginning of the audit phase, the server picks a random

challenge 𝑟 from {⌊𝑝/2⌋ + 1, . . . , 𝑝 − 1}, and it computes 𝑟̃ :=

commit(𝑟 ; coins) where coins denotes the random coins used

in the commitment scheme
6
. The server sends 𝑟̃ to all clients

over a broadcast channel (see Remark 6.1).

• Now, run the earlier protocol in Figure 1 except with the fol-

lowing modifications. First, the clients now use an extractable

commitment scheme when committing to (x𝑖 , 𝜌𝑖)7 Second, in-
stead of directly sending the challenge 𝑟 to all clients, the server

now sends opening 𝑟, coin to all clients. All clients check that

commit(𝑟 ; coins) = 𝑟̃ and that 𝑟 ≥ ⌊𝑝/2⌋ + 1. They continue

with the protocol if the check passes, and else they abort.

5
Notice that the Fiat-Shamir heuristic [27] does not work in our setting, because the

provers are distributed.

6
This commitment need not be extractable.

7
The common reference string (CRS) of the extractable commitment scheme is included

in the CRS of our protocol.

For completeness, we describe the full protocol formally in Fig-

ure 2. We prove that this upgraded protocol satisfies soundness and

𝑡-anonymity in the presence of a malicious server. See Appendix B

of the online full version [53] for details.

Remark 6.1 (Necessity of the broadcast channel). Note that the

broadcast channel is needed to ensure that the server sends the

same challenge 𝑟 to all clients. Otherwise, there is an explicit attack

where the server can distinguish between the following two cases:

1) client 1 has 𝑥 and client 2 has 𝑥 ′; and 2) the two clients data items

are swapped. The server can send 𝑟1 to client 1 and 𝑟2 to client 2,

and from its view, it can recover the product (𝑥 − 𝑟1) · (𝑥 ′ − 𝑟2) in
the former case; or the product (𝑥 ′ − 𝑟1) · (𝑥 − 𝑟2) in the latter case.

The server can then learn the source of the data items, violating the

anonymity property. One way to instantiate the broadcast channel

is to have the server send 𝑟̃ to all clients; all clients then sign 𝑟̃ using

a threshold signature scheme. The server aggregates all clients’

signatures and sends the aggregated signature to all clients. The

clients accept the challenge 𝑟̃ if the aggregated signature verifies.

Remark 6.2 (Necessity of using extractable commitment scheme

for clients’ data items). When we make this change, the sound-

ness proof becomes more challenging. Our earlier soundness proof

(Lemma 5.6) relies on the fact that the malicious clients cannot

choose the committed {𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚] values and the decoy terms

{𝑦𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑑] that depend on the challenge 𝑟 . However, now the

server has committed some challenge 𝑟 upfront, we effectively need

to argue that it is not possible for malicious clients to commit to

values that are related to the committed challenge 𝑟 . To deal with

this issue, we require that the clients commit to their data items

{𝑥𝑖, 𝑗 } using an extractable commitment scheme which is easy to

construct assuming a common reference string (see Appendix B.1

in our full version [53]).

Cost analysis. In comparison with the semi-honest-server pro-

tocol in Section 5, this new upgrade introduces minimal overhead,

and all the asymptotic bounds for the semi-honest-server protocol

still hold for the upgraded protocol. More specifically, in compari-

son with the semi-honest-server protocol, each client incurs only

𝑂𝜆 (1) additive overhead in terms of client computation and band-

width. Further, the server needs to incur only 𝑂𝜆 (1) additional
computation relative to the scheme in Section 5, broadcast an ad-

ditional message of size 𝑂𝜆 (1) to all clients, and send 𝑂𝜆 (1) extra
information to each client over a point-to-point channel.

In the Appendix B of our online full version [53], we prove the

following theorem.

Theorem 6.3 (Protocol for a malicious server). Suppose that |F| is
superpolynomial in 𝜆, 𝑛 − 𝑡 ≥ 19 and 𝑑 = 𝜔

(
log |F |+log𝜆
log(𝑛−𝑡)

)
. Further,

suppose that the underlying NIZK satisfies completeness, soundness,
and zero-knowledge, the commitment scheme used by the server is
perfectly binding and computationally hiding, and the commitment
scheme used by the client is computationally hiding and extractable.
Then, the protocol described in this section satisfies completeness,
soundness, and 𝑡-anonymity in the presence of a malicious server.

7 Implementation and Evaluation
Implementation. We use gnark [13], an open-sourced NIZK li-

brary to create an implementation of our protocol. We separate the

923

Conan: Distributed Proofs of Compliance for Anonymous Data Collection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Setup(1𝜆, 𝑛, R):. Same as before.

Π(pp, x1, . . . , x𝑛,𝑤1, . . . ,𝑤𝑛).
(1) Data collection phase: Same as before, except that now we require that each data item 𝑥𝑖, 𝑗 ∈ {0, . . . , ⌊𝑝/2⌋}.
(2) Audit phase:

• Server:
– Sample a random challenge 𝑟

$←{⌊𝑝/2⌋ + 1, . . . , 𝑝 − 1};
– Let 𝑟̃ := commit(𝑟 ; coins) for some randomly sampled coins;

– Send 𝑟̃ to all clients over a broadcast channel.

• Each client 𝑖:
– Sample y𝑖 = (𝑦𝑖,1, . . . , 𝑦𝑖,𝑑)

$← {F/{0}}𝑑 and let 𝜌𝑖 :=
∏

𝑗∈[𝑑] 𝑦𝑖, 𝑗 .
– Send (𝑦𝑖,1, . . . , 𝑦𝑖,𝑑) to Fshuffle

, which sends Multiset({𝑦𝑖, 𝑗 }𝑖∈[𝑛], 𝑗∈[𝑑]) to the server.

– Send com𝑖 = commit((x𝑖 , 𝜌𝑖);𝛾𝑖) to the server where 𝛾𝑖 denotes sampled random coins and commit is an extractable

commitment scheme.

• Server:
– Send the opening (𝑟, coins) to all clients.

• Each client 𝑖:
– Check that (𝑟, coin) is a correct opening of 𝑟̃ , and further, check that 𝑟 ∈ {⌊𝑝/2⌋ + 1, . . . , 𝑝 − 1}. Abort if the check fails.

– Parse x𝑖 := (𝑥𝑖,1, . . . , 𝑥𝑖,𝑚), and compute 𝑧𝑖 := 𝜌𝑖 ·
∏

𝑗∈[𝑚] (𝑥𝑖, 𝑗 − 𝑟).
– Parse pp := (crs1, . . . , crs𝑛), and call 𝜋𝑖 ← NIZK𝑖 .P(crs𝑖 , (𝑧𝑖 , com𝑖 , 𝑟), (x𝑖 , 𝛾𝑖 ,𝑤𝑖 , 𝜌𝑖)).
– Send (𝑧𝑖 , 𝜋𝑖) to the server.

• Server: Output Multiset(x1, . . . , x𝑛) if the following checks pass, else output 0:
– For 𝑖 ∈ [𝑛], NIZK𝑖 .V(crs𝑖 , (𝑧𝑖 , com𝑖 , 𝑟), 𝜋𝑖) = 1.

–
∏

𝑖∈[𝑛] 𝑧𝑖 =
∏

𝑖∈[𝑛], 𝑗∈[𝑚] (𝑥𝑖, 𝑗 − 𝑟) ·
∏

𝑖∈[𝑛], 𝑗∈[𝑑] 𝑦𝑖, 𝑗 . The server can easily compute both sides of the equation knowing

Multiset(x1, . . . , x𝑛) and Multiset(y1, . . . , y𝑛). Also check that all 𝑦𝑖, 𝑗 are non-zero.

Figure 2: Our anonymous, compliant data collection protocol for a malicious server. The modifications are highlighted in blue.

implementation into two phases, which include the audit phase

and the blame phase that can catch the non-compliant clients. We

omit the evaluations of the blame phase here and refer the read-

ers to the Appendix D of the full version [53] for the results. We

assume a semi-honest server throughout the experiments. We use

a prime field F𝑟 with 𝑟 being a 254-bit prime associated with the

BN254 elliptic curve. We use a security parameter of 𝜆 = 80. We

instantiate our protocol with two proof schemes, Groth16 [35] and

Plonk [29]. Groth16 requires a per-circuit setup and Plonk has a

universal setup. We use the MiMC hash [4] for the commitment

scheme with a 254-bit random salt. The experiments are run on

single server with a 2.4GHz Intel Xeon E5-2680 CPU and a 256 GB

RAM.

7.1 Application Settings and Parameters Used in
our Evaluation

We evaluate the application scenarios mentioned earlier in Sec-

tion 1.2. Here, we provide more details about the parameters we

choose for all applications. Unless otherwise noted, we assume there

are 1000 clients with 500 corrupted clients. This matches the com-

mon settings in shuffle-model data analytics and federated learning

scenarios, such as in [8, 33, 40]. We list the concrete settings for

each application here.

Secure histogram protocol. We implement a simple anonymous

histogram protocol.

• Each client has 60 data items from a domain of {0, 1, . . . , 9999}.
• The clients send their data items to the shuffler, who shuffles

the data items and sends them to the server. The server then

computes the histogram of the data items.

• Constraint: The contribution from each client cannot include

repeated data items.

Shuffle-DP summation protocol. We implement the shuffle-DP

summation protocol from Balle et al. [8].

• Each client has an integer secret value 𝑣𝑖 in [0, 1000]. The client
adds a noise𝑦𝑖 to 𝑣𝑖 , where𝑦𝑖 is a Polya noise as specified in [8],

which ensures the final sum value satisfies 𝜀-shuffle-DP with

𝜀 = 1.0. Each client will split its noisy value 𝑣𝑖 + 𝑦𝑖 into 60

additive shares (ensuring 80-bit statistical security) and the

server sums up all the shares.

• Constraint: The contribution of each client to the final sum,

i.e., 𝑣𝑖 + 𝑦𝑖 , is less than 1500.
8

Secure vector summation protocol with 𝐿2 norm constraint. We

extend the secure summation protocol from Balle et al. [8] to sum

8
We choose 1500 because the probability that an honest client’s noise being more than

500 is small enough. This is only for demonstration and can be adjusted according to

other scenarios.

924

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mingxun Zhou, Giulia Fanti, and Elaine Shi

vectors with an 𝐿2 norm constraint, which applies to update aggre-

gation in federated learning.

• Each client has a 50-dimension vector ®𝑥𝑖 . The client splits

the corresponding value in each dimension of its vector to 60

additive shares and the server sums all the shuffled shares. A

client’s shares across different dimensions are unlinkable.

• Constraint: The 𝐿2 norm of each client’s vector, i.e., ∥ ®𝑥𝑖 ∥2, is
no more than 1000.

Secure Condorcet voting protocol. In Condorcet voting [52], each

client’s preference is a ranking list of candidates and a candidate is

chosen if it beats every other candidate in a pairwise comparison.

For example, if there are three candidates Alice, Bob, and Charlie, a

client’s preference can be Bob > Alice > Charlie. Then, if there are

five voters, where Bob is preferred over Alice from three voters and

is preferred over Charlie from four voters, Bob will be the winner.

• We implement a secure Condorcet voting protocol with 10

candidates and 1000 voters.

• Each voter has a secret ranking among the 10 candidates, rep-

resented as a permutation of 1 to 10.

• Given a ranking (𝑐1, . . . , 𝑐10), a voterwill submit 45 comparison

pairs to the shuffler, i.e., {(𝑐𝑖 , 𝑐 𝑗)}1≤𝑖≤10,𝑖< 𝑗≤10, indicating that
it prefers 𝑐𝑖 over 𝑐 𝑗 .

• Constraint: Each voter’s submitted pairs form a valid ranking.

7.2 Audit Phase Costs
We measure the computation and the communication cost for the

use cases and show the results in Table 1. For each task, we re-

peat the experiment five times and report the average results. The

amortized server time shows the server’s total computation time

amortized by the number of clients. Since the clients also need

to store the public parameters of the NIZK to generate the proof,

the public parameter size captures each client’s storage costs. The

per-client communication cost counts only the additional overhead

incurred by the audit, and does not include the overhead of sending

the original data items to the shuffler. Moreover, we also measure

the number of constraints needed for each task after we compile

the circuit to the R1CS constraint system. The constraint number

can be viewed as a proxy for the complexity of each task.

Communication cost. We observe that the per-client communica-

tion cost is dominated by the decoys used to mask the polynomial

evaluations, which is independent of the concrete use cases. There-

fore, the use cases have nearly the same communication cost when

the underlying proof systems are the same. Recall that each client

needs to send 𝑑 = 𝜔

(
log𝜆

log(𝑛−𝑡)

)
decoys to the shuffler, so given

more honest clients, the decoys sent to the shuffler per client are

less. To better demonstrate the communication cost, we plot the

communication overhead for our protocol in Fig 3 given different

honest client numbers and two different proof systems. The plot

shows the results from the Shuffle-DP summation use case. while

the other cases have nearly identical communication costs. With

our parameter setting, each client will not send more than 60 decoys

to the server. The client will also send one commitment, one field

element denoting the masked local polynomial evaluation and one

Figure 3: Per-client communication overhead. The number
of corrupted clients is fixed to 500. The per-client commu-
nication decreases with a larger 𝑛 since with more honest
clients, the client needs to send fewer decoy terms.

NIZK proof to the server. Therefore, given a wide range of client

numbers, the communication cost is no more than 6KB.

Client time. As shown in Table 1, the client time depends on the

concrete use cases, and the Groth16-based instantiation is faster

than the Plonk-based instantiation in general. We observe that

the proof generation time is the dominant factor of the clients’

computation time, and the more constraints it takes to describe the

compliance rule, the more time it takes for the client to generate

the proof. The constraint numbers for the histogram, voting and

Shuffle-DP sum use cases are around 1.6×104 to 3.6×104, depending
on the proof systems. The per client time ranges from 0.2s to 0.5s.

The vector sum use cases have more constraints, around 10
6
, and

the per client time is around 8.5s and 10.6s for the Groth16 and

Plonk instantiations, respectively.

Server time. The server computation is highly efficient – the

amortized computation time (the total server time divided by the

number of clients) is no more than 11ms for all use cases. This is

because verifying a proof in Groth16 or Plonk only takes𝑂𝜆 (1) time,

and the server only needs to evaluate the polynomial evaluation

besides the proof verification, which takes 𝑂𝜆 (𝑛𝑚) time in total.

Storage cost. The public parameter size reflects the storage cost of

each client and also scale with the constraint number. The Groth16

system has smaller public parameters that are no more than 5MB

for the histogram, voting and shuffle-DP summation use cases, and

no more than 200MB for the vector summation. The Plonk system

has larger public parameters that are 10.8 - 22.5MB for the three

simpler cases and around 700MB for the vector sum use case.

Shuffle Cost. We did not report the shuffle cost in the tables since

different use cases could rely on different shuffler implementations

and the costs could vary. For example, an MPC-based shuffle proto-

col like Clarion [25] can shuffle 10
5
messages within 10 seconds,

which will be sufficient for our histogram use cases. A trusted-

hardware-based algorithm [10, 36] will be significantly more effi-

cient, taking less than one second to shuffle the same number of

messages.

925

Conan: Distributed Proofs of Compliance for Anonymous Data Collection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Use Case # Constraints Public Param Client Time Amortized Server Time Communication Per Client

Based on Groth16
Histogram 2.4 × 104 4.0MB 0.2s 3.2ms 2.2KB

Voting 1.6 × 104 2.4MB 0.2s 3.1ms 2.2KB

Shuffle-DP Sum 2.4 × 104 4.2MB 0.2s 2.5ms 2.2KB

Vector Sum 9.9 × 105 163.3MB 8.5s 3.7ms 2.2KB

Based on Plonk
Histogram 3.2 × 104 22.5MB 0.5s 2.7ms 2.6KB

Voting 2.1 × 104 10.8MB 0.3s 3.0ms 2.6KB

Shuffle-DP Sum 3.6 × 104 22.5MB 0.4s 2.7ms 2.6KB

Vector Sum 1.3 × 106 721.4MB 10.6s 6.0ms 2.6KB

Table 1: The computation and memory costs of 𝐶𝑜𝑛𝑎𝑛 protocol. “# Constraints” stands for number of constraints in the corresponding
constraint system after compiling the program with gnark [13]. “Client Time” denotes the average of the clients’ computation time. “Amortized
Server Time” denotes the amortized computation time that the server spends on each individual client.

Use Cases Compliance Commitment Consistency Total

Histogram 3540 2.0 × 104 61 2.4 × 104
Voting 109 1.6 × 104 46 1.6 × 104
DP Sum 4.0 × 103 2.0 × 104 61 2.4 × 104

Vector Sum 2.0 × 104 9.9 × 105 3001 9.9 × 105

Table 2: Breakdown of the constraints required by each component
during the proof generation process for each task. The results are
based on the implementation with Groth16 proof system.

7.3 Blame Phase Costs
We also evaluate the extension of our protocol with identifiable

abort (see Appendix C in the full version [53]). for the Shuffle-DP

Sum use case. Specifically, we use F
shuffle

plus Private Information

Retrieval (PIR) for instantiating the enhanced F ∗
shuffle

functionality,

which works assuming a semi-honest server.

In summary, the per client time is 4.6s, the amortized server

time is 27.2ms, and the communication cost is 1.0MB. The costs

remain reasonable for the use case. We list the implementation and

evaluation details in Appendix D of the full version [53].

Acknowledgment
This workwas supported in part by the National Science Foundation

under grants 1705007, 2128519, 2044679, CNS-1718074 and CCF-

2338772. This work was also in part supported by a grant from ONR,

a grant from the DARPA SIEVE program under a subcontract from

SRI, a gift from Cisco and Samsung MSL. We also thank Chainlink

Labs, Ripple Labs, and IC3 industry partners for their generous

support, as well as the CyLab Secure Blockchain Initiative.

References
[1] 2022. Cobalt: Telemetry with built-in privacy. https://fuchsia.googlesource.com/

fuchsia/+/refs/heads/main/src/cobalt/.

[2] Masayuki Abe. 1999. Mix-Networks on Permutation Networks. In ASIACRYPT.
[3] Surya Addanki, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky, and Antigoni Polychro-

niadou. 2022. Prio+: Privacy preserving aggregate statistics via boolean shares.

In SCN. Springer.
[4] Martin Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and Tyge

Tiessen. 2016. MiMC: Efficient Encryption and Cryptographic Hashing with

Minimal Multiplicative Complexity. Cryptology ePrint Archive, Paper 2016/492.

https://eprint.iacr.org/2016/492 https://eprint.iacr.org/2016/492.

[5] Gosho Aoyama. [n. d.]. Case Closed. https://en.wikipedia.org/wiki/Case_Closed.

[6] Victor Balcer and Albert Cheu. 2019. Separating local & shuffled differential

privacy via histograms. arXiv preprint arXiv:1911.06879 (2019).
[7] Borja Balle, James Bell, Adria Gascon, and Kobbi Nissim. 2019. Improved Sum-

mation from Shuffling. arXiv:1909.11225 [cs.CR]

[8] Borja Balle, James Bell, Adria Gascón, and Kobbi Nissim. 2020. Private summation

in the multi-message shuffle model. In CCS.
[9] James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meiklejohn, Mariana

Raykova, and Cathie Yun. 2023. ACORN: Input Validation for Secure Aggregation.

In USENIX Security.
[10] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-

nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard

Seefeld. 2017. Prochlo: Strong privacy for analytics in the crowd. In SOSP.
[11] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Bren-

dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017.

Practical Secure Aggregation for Privacy-Preserving Machine Learning. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. ACM, 1175–

1191.

[12] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.

2019. Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs. In

Advances in Cryptology – CRYPTO 2019: 39th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part III
(Santa Barbara, CA, USA). 67–97.

[13] Gautam Botrel, Thomas Piellard, Youssef El Housni, Ivo Kubjas, and Arya Tabaie.

2022. ConsenSys/gnark: v0.7.0. https://doi.org/10.5281/zenodo.5819104

[14] David L. Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Commun. ACM 24, 2 (Feb. 1981), 84–90.

[15] David L. Chaum. 1988. The Dining Cryptographers Problem: Unconditional

Sender and Recipient Untraceability. Journal of Cryptology 1, 1 (March 1988),

65–75.

[16] Albert Cheu. 2021. Differential privacy in the shuffle model: A survey of separa-

tions. arXiv preprint arXiv:2107.11839 (2021).
[17] Albert Cheu, Matthew Joseph, Jieming Mao, and Binghui Peng. 2021. Shuffle

private stochastic convex optimization. arXiv preprint arXiv:2106.09805 (2021).
[18] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scalable

Computation of Aggregate Statistics. In 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2017, Boston, MA, USA, March 27-29,
2017. USENIX Association, 259–282.

[19] Ivan Damgård. [n. d.]. On Σ Protocols. https://www.cs.au.dk/~ivan/Sigma.pdf.

[20] George Danezis and Claudia Diaz. 2008. A Survey of Anonymous Communication

Channels. Technical Report MSR-TR-2008-35, Microsoft Research.

[21] Hannah Davis, Christopher Patton, Mike Rosulek, and Phillipp Schoppmann.

2023. Verifiable Distributed Aggregation Functions. In Proceedings on Privacy
Enhancing Technologies (PET).

[22] Pankaj Dayama, Arpita Patra, Protik Paul, Nitin Singh, and Dhinakaran Vinayaga-

murthy. 2022. How to prove any NP statement jointly? Efficient Distributed-

prover Zero-Knowledge Protocols. PETS (2022).
[23] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-

Generation Onion Router. In USENIX Security Symposium.

926

https://fuchsia.googlesource.com/fuchsia/+/refs/heads/main/src/cobalt/
https://fuchsia.googlesource.com/fuchsia/+/refs/heads/main/src/cobalt/
https://eprint.iacr.org/2016/492
https://eprint.iacr.org/2016/492
https://en.wikipedia.org/wiki/Case_Closed
https://arxiv.org/abs/1909.11225
https://doi.org/10.5281/zenodo.5819104
https://www.cs.au.dk/~ivan/Sigma.pdf

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Mingxun Zhou, Giulia Fanti, and Elaine Shi

[24] Matthew Edman and Bülent Yener. 2009. On Anonymity in an Electronic Society:

A Survey of Anonymous Communication Systems. ACM Comput. Surv. 42, 1,
Article 5 (Dec. 2009), 35 pages.

[25] Saba Eskandarian and Dan Boneh. 2021. Clarion: Anonymous communication

from multiparty shuffling protocols. Cryptology ePrint Archive (2021).
[26] David Evans, Vladimir Kolesnikov, and Mike Rosulek. 2018. A Pragmatic Intro-

duction to Secure Multi-Party Computation. Found. Trends Priv. Secur. 2, 2–3 (dec
2018), 70–246.

[27] Amos Fiat and Adi Shamir. 1986. How to prove yourself: Practical solutions to

identification and signature problems. In Conference on the theory and application
of cryptographic techniques. Springer, 186–194.

[28] Michael J. Freedman and Robert Morris. 2002. Tarzan: A Peer-to-Peer Anonymiz-

ing Network Layer. In Proceedings of the 9th ACM Conference on Computer and
Communications Security. 193–206.

[29] Ariel Gabizon, Zachary J Williamson, and Oana Ciobotaru. 2019. Plonk: Per-

mutations over lagrange-bases for oecumenical noninteractive arguments of

knowledge. Cryptology ePrint Archive (2019).
[30] Badih Ghazi, Noah Golowich, Ravi Kumar, Rasmus Pagh, and Ameya Velingker.

2021. On the power of multiple anonymous messages: Frequency estimation and

selection in the shuffle model of differential privacy. In Eurocrypt. Springer.
[31] Badih Ghazi, Pasin Manurangsi, Rasmus Pagh, and Ameya Velingker. 2020. Pri-

vate Aggregation from Fewer Anonymous Messages. In Advances in Cryptology –
EUROCRYPT 2020: 39th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings,
Part II. 798–827.

[32] Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and

Ananda Theertha Suresh. 2021. Shuffled model of differential privacy in federated

learning. In AISTATS.
[33] Antonious M Girgis and Suhas Diggavi. 2024. Multi-message shuffled privacy in

federated learning. IEEE Journal on Selected Areas in Information Theory 5 (2024),

12–27.

[34] David Goldschlag, Michael Reed, and Paul Syverson. 1999. Onion Routing for

Anonymous and Private Internet Connections. Commun. ACM 42 (1999), 39–41.

[35] Jens Groth. 2016. On the Size of Pairing-Based Non-interactive Arguments.

Springer.

[36] Tianyao Gu, Yilei Wang, Bingnan Chen, Afonso Tinoco, Elaine Shi, and Ke Yi.

2023. Efficient Oblivious Sorting and Shuffling for Hardware Enclaves. Cryptology
ePrint Archive (2023).

[37] Susan Hohenberger, Steven A. Myers, Rafael Pass, and Abhi Shelat. 2014. AN-

ONIZE: A Large-Scale Anonymous Survey System. In IEEE S & P.
[38] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. 2006. Cryptogra-

phy from anonymity. In FOCS. IEEE.
[39] Marcel Keller, Peter Scholl, and Nigel P. Smart. 2013. An architecture for practical

actively secure MPC with dishonest majority. In 2013 ACM SIGSAC Conference
on Computer and Communications Security, CCS’13, Berlin, Germany, November
4-8, 2013, Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung (Eds.). ACM,

549–560.

[40] Ruixuan Liu, Yang Cao, Hong Chen, Ruoyang Guo, and Masatoshi Yoshikawa.

2021. Flame: Differentially private federated learning in the shuffle model. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 8688–8696.
[41] Tianyi Liu, Tiancheng Xie, Jiaheng Zhang, Dawn Song, and Yupeng Zhang.

2023. Pianist: Scalable zkRollups via Fully Distributed Zero-Knowledge Proofs.

Cryptology ePrint Archive (2023).
[42] PrateekMittal andNikita Borisov. 2009. ShadowWalker: Peer-to-Peer Anonymous

Communication Using Redundant Structured Topologies. In Proceedings of the
16th ACM Conference on Computer and Communications Security. 161–172.

[43] Yi Mu and Vijay Varadharajan. 1998. Anonymous Secure E-Voting Over a Net-

work. In 14th Annual Computer Security Applications Conference (ACSAC 1998),
7-11 December 1998, Scottsdale, AZ, USA. IEEE Computer Society, 293–299.

[44] Emmanuela Orsini. 2022. Efficient, Actively Secure MPC with a Dishonest

Majority: a Survey. Cryptology ePrint Archive, Paper 2022/417. https://doi.org/

10.1007/978-3-030-68869-1_3 https://eprint.iacr.org/2022/417.

[45] Alex Ozdemir and Dan Boneh. 2022. Experimenting with Collaborative {zk-
SNARKs}:{Zero-Knowledge} Proofs for Distributed Secrets.

[46] Michael K. Reiter and Aviel D. Rubin. 1998. Crowds: Anonymity for Web Trans-

actions. ACM Trans. Inf. Syst. Secur. 1, 1 (Nov. 1998), 66–92.
[47] Rob Sherwood, Bobby Bhattacharjee, and Aravind Srinivasan. 2002. P5: A Proto-

col for Scalable Anonymous Communication. In IEEE S & P.
[48] Elaine Shi and Ke Wu. 2021. Non-Interactive Anonymous Router. In Advances

in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October
17-21, 2021, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 12698).
Springer, 489–520.

[49] Fatemeh Shirazi, Milivoj Simeonovski, Muhammad Rizwan Asghar, Michael

Backes, and Claudia Diaz. 2018. A Survey on Routing in Anonymous Communi-

cation Protocols. ACM Comput. Surv. 51, 3, Article 51 (June 2018), 39 pages.
[50] Howard Wu, Wenting Zheng, Alessandro Chiesa, Raluca Ada Popa, and Ion

Stoica. 2018. {DIZK}: A distributed zero knowledge proof system. In USENIX

Security.
[51] Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang,

Yongzheng Jia, Dan Boneh, and Dawn Song. 2022. zkbridge: Trustless cross-

chain bridges made practical. In CCS.
[52] H Peyton Young. 1988. Condorcet’s theory of voting. American Political science

review 82, 4 (1988), 1231–1244.

[53] Mingxun Zhou, Elaine Shi, and Giulia Fanti. 2023. Conan: Distributed Proofs of

Compliance for Anonymous Data Collection. Cryptology ePrint Archive, Paper

2023/1900. https://eprint.iacr.org/2023/1900

[54] Li Zhuang, Feng Zhou, Ben Y. Zhao, and Antony Rowstron. 2005. Cashmere:

Resilient Anonymous Routing. In NSDI.

A Proofs for the Semi-Honest-Server Setting
In this section, we provide the detailed proofs for our warmup pro-

tocol in Section 5, assuming a semi-honest server. The completeness

proof is straightforward, so we will focus on proving soundness

and anonymity.

A.1 Soundness Proof
Recall that earlier, we proved a key lemma (Lemma 5.6) which

captures the core statistical reasoning for proving soundness. The

full soundness proof needs to additionally make use of the security

of the cryptographic primitives, and we present the full proof below.

Theorem A.1 (Soundness). Suppose the field size |F| is superpoly-
nomial w.r.t. the security parameter 𝜆, the commitment scheme is
perfectly binding and the NIZK scheme satisfies soundness. Then, our
protocol satisfies soundness.

Proof. Before the random challenge is sampled, the server’s

view contains pp, Multiset(x1, . . . , x𝑛), Multiset(y1, . . . , y𝑛), and
{com𝑖 }𝑖∈[𝑛] . Except with the negligible probability that some un-

derlying NIZK instance’s soundness is broken, if the server passes

the verification, then for every 𝑖 ∈ [𝑛], it must be that there exists

(x′
𝑖
, 𝛾𝑖 ,𝑤𝑖 , 𝜌

′
𝑖
) such that R𝑖 (x′𝑖 ,𝑤𝑖) = 1, commit(1𝜆, (x′

𝑖
, 𝜌′

𝑖
);𝛾𝑖) =

com𝑖 ; and
∏

𝑗∈[𝑚] (𝑥 ′𝑖, 𝑗 − 𝑟) · 𝜌
′
𝑖
= 𝑧𝑖 .

Henceforth, we ignore the negligibly small probability that the

NIZK’s soundness is broken, and assume that the above equations

hold. Since the commitment scheme is perfectly binding, the x′
𝑖
and

𝜌′
𝑖
satisfying the above equations are already uniquely determined

given com𝑖 , which must be sent before seeing the random challenge

𝑟 — we need this because later, to apply Lemma 5.6, the challenge 𝑟

must be sampled independently of the x′
𝑖
s and 𝜌′

𝑖
s.

Now, if the server passes verification, it must be that∏
𝑖∈[𝑛], 𝑗∈[𝑚]

(𝑥 ′𝑖, 𝑗 − 𝑟) · 𝛼
′ =

∏
𝑖∈[𝑛], 𝑗∈[𝑚]

(𝑥𝑖, 𝑗 − 𝑟) · 𝛼

where

𝛼 ′ :=
∏
𝑖∈[𝑛]

𝜌′𝑖 , 𝛼 :=
∏

𝑖∈[𝑛], 𝑗∈[𝑑]
𝑦𝑖, 𝑗

Given that the field size is superpolynomial in 𝜆, and the server’s

check ensures that𝛼 ≠ 0, due to Lemma 5.6, we conclude that except

with the negligibly small probability that a bad challenge 𝑟 is sam-

pled, it must be that Multiset(x1, . . . , x𝑛) = Multiset(x′
1
, . . . , x′𝑛)

where (x′
1
, . . . , x′𝑛) are uniquely determined by com1, . . . , com𝑛 .

Because for any honest client 𝑖 ∈ H , x′
𝑖
= x𝑖 , it means that

Multiset({x𝑖 }𝑖∈C) = Multiset({x′
𝑖
}𝑖∈C), i.e., the corrupt clients’

purported data items in the audit phase must be equal to their

contributions in the data collection phase.

927

https://doi.org/10.1007/978-3-030-68869-1_3
https://doi.org/10.1007/978-3-030-68869-1_3
https://eprint.iacr.org/2022/417
https://eprint.iacr.org/2023/1900

Conan: Distributed Proofs of Compliance for Anonymous Data Collection CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Summarizing the above, except with negligible probability, if the

server did not reject outputting ⊥, then there exists a partitioning

{x′
𝑖
}𝑖∈C (which is uniquely determined by {com𝑖 }𝑖∈C) of the cor-

rupt clients’ contributionsMultiset({x𝑖 }𝑖∈C), such that for every

corrupt client 𝑖 ∈ C, R𝑖 (x′𝑖 ,𝑤𝑖) = 1. □

A.2 Anonymity Proof
Recall that there are three data-dependent components in the pro-

tocol that we need to handle: the NIZK proofs, the commitments,

and the masked partial products. From a high level view, our proof

goes first by replacing the honest clients’ NIZK proofs and com-

mitments with simulated ones. Then, the most challenging part is

to show that the joint distribution of the honest clients’ masked

partial polynomial evaluations and the shuffled decoy terms can be

simulated just by knowing the multiset of the honest clients’ data

items. We proved a key lemma (Lemma 5.4) that captures this core

statistical reasoning step in the proof. We provide the full proof

below.

Theorem A.2 (𝑡-anonymity). Given a security parameter 𝜆, as-

sume |F| is superpolynomial in 𝜆, 𝑛 − 𝑡 ≥ 19, 𝑑 ≥ 𝜔

(
log |F |+log𝜆
log(𝑛−𝑡)

)
.

Moreover, suppose that the NIZK scheme satisfies zero-knowledge,
and the commitment scheme is computationally hiding. Then, our
shuffle-model ZKP protocol satisfies 𝑡-anonymity in the presence of a
semi-honest server.

Proof. LetH be the set of at least 𝑛 − 𝑡 honest users, and let C
be the set of corrupt clients.

Real-world experiment. The real-world experiment is the same as

the experiment Expt
𝑛,A (1𝜆) as defined in Section 3.3. Recall that we

assume that if the server is corrupted, it will still act honestly except

that the adversary can see the server’s view (including its internal

coins and messages sent and received). However, the corrupted

clients can act arbitrarily and in a way possibly dependent on the

server’s internal coins.

We can imagine that in the real-world experiment, there is a

challenger acting on behalf of the trusted setup and all honest

parties and interacting with adversary who controls the corrupted

parties. The challenger also implements the oracle F
shuffle

for the

adversary.

ExperimentHyb
1
. ExperimentHyb

1
is otherwise identical to the

real-world experiment, except that

• Inside the Setup algorithm, for any honest user 𝑖 ∈ H , instead

of calling the real NIZK𝑖 .Gen algorithm for honest users, now

call the simulator of NIZK𝑖 to generate simulated common

reference strings and the trapdoors (crs𝑖 , 𝜏𝑖).
• Whenever the experiment needs to compute a NIZK proof on

behalf of an honest user 𝑖 ∈ H , it calls the simulator of NIZK𝑖

to generate a proof without using any witness.

Claim A.3. Suppose that the NIZK scheme satisfies zero-knowledge,
then the real-world experiment and Hyb

1
are computationally indis-

tinguishable.

Proof. We can prove this through sequence of hybrids, such

that one honest user at a time, we can replace its crs𝑖 and NIZK

proof with simulated ones. Any pair of adjacent hybrids are com-

putationally indistinguishable through a straightforward reduction

to the zero-knowledge of the underlying NIZK. □

Experiment Hyb
2
. Hyb

2
is almost the same as Hyb

1
except that

when the experiment needs to compute com𝑖 on behalf of an the

honest client 𝑖 ∈ H , it now computes a commitment of 0 instead.

ClaimA.4. Suppose that the commitment scheme is computationally
hiding, then Hyb

1
and Hyb

2
are computationally indistinguishable.

Proof. We can prove this through sequence of hybrids, such

that one honest user at a time, we can replace its commitment

with a commitment of 0. Any pair of adjacent hybrids are computa-

tionally indistinguishable through a straightforward reduction to

the computational hiding property of the underlying commitment

scheme. □

ExperimentHyb
3
. Hyb

3
is almost identical toHyb

2
except that if

the challenge 𝑟 sampled happens to be one of {𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚] , we
simply abort the current execution, and retry till we encounter a run

inwhich the random challenge 𝑟 does not collidewith {𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚] .

Claim A.5. Hyb
3
and Hyb

2
have statistical distance at most (𝑛 −

𝑡) ·𝑚/|F|.

Proof. The random challenge 𝑟 is always sampled honestly

when the server is semi-honest. Therefore, the probability of retry-

ing is at most (𝑛−𝑡) ·𝑚/|F|. Thus, the claim follows by the definition

of statistical distance. □

Experiment Hyb
4
. Hyb

4
is almost identical as Hyb

3
except with

the following modifications.

• After the adversary chooses {𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚] , the experiment

reorders the terms {𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚] in any arbitrary canonical

order (e.g., from small to large). The reordered set is now de-

noted {𝑥 ′
𝑖, 𝑗
}𝑖∈H, 𝑗∈[𝑚] .

• Whenever the challenger needs to use 𝑥𝑖, 𝑗 to compute a re-

sponse to A, use 𝑥 ′
𝑖, 𝑗

instead.

Claim A.6. Suppose 𝑛 − 𝑡 ≥ 19, 𝑑 ≥ 𝜔

(
log |F |+log𝜆
log(𝑛−𝑡)

)
. Then, Hyb

4

and Hyb
3
have negligibly small in 𝜆 statistical distance.

Proof. Recall that the NIZK proofs and commitments for honest

clients have been replaced with simulated proofs and commitments

of 0. Also, since the challenger simulates F
shuffle

for the adversary,

from what F
shuffle

outputs to the adversary, effectively the adver-

sary can see the honest clients’ multisetsMultiset({𝑥 ′
𝑖, 𝑗
}𝑖∈H, 𝑗∈[𝑚])

andMultiset({𝑦𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑑]). By Lemma 5.4,Hyb
3
andHyb

4
have

statistical distance at most 2
−𝜎

as long as 𝑑 ≥
⌈
2𝜎+log

2
(|F |−1)

log
2
(𝑛−𝑡)−log

2
𝑒
+ 2

⌉
.

This means that the statistical distance is negligibly small in 𝜆 as

long as 𝑑 ≥ 𝜔

(
log |F |+log𝜆
log(𝑛−𝑡)

)
. □

Last but not the least, observe that inHyb
4
, to compute the adver-

sary’s view, the experiment only needs to knowMultiset({𝑥𝑖, 𝑗 }𝑖∈H, 𝑗∈[𝑚])
and pp but not the honest clients’ witnesses. Therefore, the descrip-

tion of Hyb
4
uniquely defines a simulator Sim, such that Hyb

4
can

be equivalently viewed as the ideal experiment.

□

928

	Abstract
	1 Introduction
	1.1 Results and Contributions
	1.2 Potential Applications
	1.3 Additional Related Work

	2 Technical Roadmap
	3 Formal Problem Definition
	3.1 Notations
	3.2 Syntax
	3.3 Security Definitions

	4 Preliminaries
	4.1 Technical Lemma for Secure Summation
	4.2 Cryptographic Building Blocks

	5 Warmup: Protocol for a Semi-Honest Server
	5.1 Construction
	5.2 Anonymity for a Semi-Honest Adversary
	5.3 Proof of Soundness

	6 A Simple Upgrade to the Malicious-Server Setting
	7 Implementation and Evaluation
	7.1 Application Settings and Parameters Used in our Evaluation
	7.2 Audit Phase Costs
	7.3 Blame Phase Costs

	References
	A Proofs for the Semi-Honest-Server Setting
	A.1 Soundness Proof
	A.2 Anonymity Proof

