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Abstract

We consider how to design an anonymous data collection protocol
that enforces compliance rules. Imagine that each client contributes
multiple data items (e.g., votes, location crumbs, or secret shares of
its input) to an abstraction of an anonymous network, which mixes
all clients’ data items so that the receiver cannot determine which
data items belong to the same user. Now, each user must prove to
an auditor that the set it contributed satisfies a compliance predi-
cate, without identifying which items it contributed. For example,
the auditor may want to ensure that no voter voted for the same
candidate twice, or that a user’s location crumbs are not too far
apart in a given time interval.

Our main contribution is a novel anonymous, compliant data
collection protocol that realizes the above goal. In comparison with
naive approaches such as generic multi-party computation or ear-
lier constructions of collaborative zero-knowledge proofs, the most
compelling advantage of our approach is that each client’s com-
munication and computation overhead do not grow with respect
to the number of clients n. In this sense, we save a factor of at
least n over prior work, which allows our technique to scale to
applications with a large number of clients, such as anonymous
voting and privacy-preserving federated learning.

We first describe our protocol using generic cryptographic prim-
itives that can be realized from standard assumptions. We then
suggest a concrete instantiation called Conan which we implement
and evaluate. In this concrete instantiation, we are willing to employ
SNARKSs and the random oracle model for better practical efficiency.
Notably, in this practical instantiation, each client’s additional com-
munication overhead (not counting the overhead of sending its data
items over the anonymous network) is only o] (1). We evaluated our
technique in various application settings, including secure voting,
and secure aggregation protocols for histogram, summation, and
vector summation. Our evaluation results show that in all scenarios,
each client’s additional communication overhead is only 2.2KB or
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2.6KB, depending on which SNARK implementation we use. Fur-
ther, each client’s computation only 0.2s - 0.5s for almost all cases,
except for the vector summation application where the data items
are high-dimensional and each client’s computation is 8.5-10.6s.
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1 Introduction

Anonymous data collection [2, 14, 15, 20, 23, 24, 28, 34, 42, 46—
49, 54] has been used in many privacy-enhancing applications. For
example, in anonymous voting [43] or anonymous surveys [37],
users’ votes and opinions are collected over an anonymous network.
In privacy-preserving federated learning [11], the popular “shuffle
model” [6-8, 10, 16, 17, 30—-32, 40] anonymously collects noisy
data from participating clients, such that the server can perform
statistical analysis and learning tasks without learning which client
contributed what data. Previous works have shown that, anonymity
significantly amplifies privacy in the context of differential privacy:
if we fix the amount of noise each client adds to their data, then
the privacy guarantee is proven to be much stronger if the data
collection is performed anonymously rather than in the plain model
without anonymity [6-8, 10, 16, 17, 30-32, 40].

In this paper, we focus on how to check the compliance of the
data contributed by anonymous participants. Specifically, imagine
that each client i € [n] submits a set of data items {x;1,...,X;m},
and the anonymous network (also called the shuffler) randomly per-
mutes all data items {x;,j}ic[n),je[m]> and sends the unordered mul-
tiset Multiset({xi j};e[n],je[m]) to the data collector (also called
the server). The server wants to ensure that each client i’s con-
tributions {x; j}je[m] satisfy some compliance predicate C. For
example, in an anonymous voting scenario, the server wants to
check that the multiple votes cast by the same voter must vote
for distinct candidates. In a privacy-preserving federated learning
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scenario, we might want to check that the data items contributed
by each client satisfies some robustness condition. For example,
in a multi-message shuffle-model protocol for secure summation
or frequency estimation [7, 8, 30, 31], each client adds noise to its
input and submits secret shares of its noisy input to the shuffler.
In this case, we may want to verify that the summation of each
client’s shares lies within some appropriate range.

Enforcing compliance is challenging because the shuffler breaks
linkability among the multiple items contributed by the same client
and mixes them together with all other clients’ contributions. In
particular, breaking up the linkability among the same client’s items
is essential for numerous privacy-preserving protocols [7, 8, 30,
38]. Our goal is to check compliance of each client’s contributions
without breaking anonymity. This means that we cannot reveal
which data items belong to which user, or even whether two data
items belong to the same user. Henceforth, we refer to this task as
an anonymous, compliant data collection protocol.

To get a better feel of this problem, it helps to consider a couple
naive solutions and see why they do not work.

A flawed solution. A straightforward idea is the following. Sup-
pose that the server receives the unordered multiset Pool := Multiset(
{xi.j}Yie[n],je[m]) from the shuffler, where {x; ;} je[m] are contri-
butions from the i-th client. Now, the server and the clients run an
audit protocol: each client i proves in zero knowledge that it knows

. ’ . ’ ’
a set of items X) = (xl.’l, .. .,xi’m) such that

(1) for j € [m], item xlf,j belongs to Pool, e.g., by showing that
there exists a valid Merkle tree proof for x; jwrt. the Merkle
digest of Pool; and

(2) the set x; satisfy the compliance predicate C.

Unfortunately, this approach is flawed due to the following rea-
son. Suppose that the adversary A controls a subset of the clients.
Aslong as one of the colluding clients i submitted compliant data x;
in the data collection phase, all the colluding clients can use client
i’s contribution x; to pass the audit protocol. In other words, the
problem is that this protocol did not verify the 7, .. ., x;, purported
in the audit phase is indeed a disjoint partitioning of the Pool of
data items collected earlier — henceforth for convenience, we call
this property set consistency.

Besides the security flaw, the above protocol may also be inef-
ficient since each client needs to privately fetch the Merkle proof
for each data item it contributed. The straightforward approach
is for each client to also download the entire Pool and compute
the Merkle proofs, but this incurs per-client communication that is
linear in n.

Naive MPC-based solution. Another generic but inefficient ap-
proach is to use a maliciously secure multi-party computation
(MPC) protocol for the audit, where each client i’s input is the
set X; = (xi1,...,X%m), and the server’s input is the unordered
multiset Pool obtained from the shuffler. Now, all parties engage in
an MPC protocol to securely evaluate a circuit which outputs a bit
indicating whether the following conditions are both satisfied: 1)
X1,...,Xp is a disjoint partitioning of Pool, and 2) for each i € [n],
x; satisfies the desired compliance predicate C.
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Unfortunately, generic MPC is expensive. Using known MPC
implementations [26, 39, 44], the per-client communication would
be linear in n. Although techniques exist for MPC with sublinear
communication (e.g. using Fully Homomorphic Encryption), it is
not clear how to make these techniques work when the server is
potentially malicious, without incurring linear in n communication
per client — we discussed other attempts in the Appendix E in the
full version [53].

Question. We ask the following question:

Assuming an underlying anonymous network (modelled as a
shuffler ideal functionality), can one design an efficient anony-
mous, compliant data collection protocol such that each client’s
communication and computation do not grow w.r.t. n?

1.1 Results and Contributions

We give an affirmative answer to the above question. We design
a novel anonymous, compliant data collection protocol assuming
that the underlying network is anonymous. Our protocol proceeds
in two phases: 1) a data collection phase where each client simply
submits its data items through the anonymous network, and 2) an
audit phase where the server and the clients engage in an interactive
protocol to check compliance. Notably, in comparison with other
generic approaches such as those based on MPC [26, 39, 44] or
collaborative ZKP [22, 45], the most compelling advantage of our
approach is that per-client communication and computation do not
grow w.r.t. the number of clients n, but depend only on the number
of data items each client contributes m and the circuit for checking
compliance. This is crucial for scaling to applications with large n,
e.g., anonymous voting or privacy-preserving federated learning.

We make novel contributions both on the theoretical and practi-
cal fronts.

Theoretical contribution: a succinct anonymous, compliant data col-
lection protocol. To state our theoretical contribution, we use generic
cryptographic primitives which can be realized from standard cryp-
tographic assumptions. Specifically, we prove the following theo-
rem where T(c), S(c), and V(c) denote the prover time, proof size,
and verification time of a non-interactive zero-knowledge (NIZK)
proof system when proving a circuit of size c.

Theorem 1.1 (Informal). Assume a NIZK scheme with the above
costs, and a committing public-key encryption scheme. Moreover, as-
sume the existence of an anonymous network (modeled as a shuffler
ideal functionality). Then, there exists an anonymous, compliant data
collection protocol that is sound even when all of the clients are cor-
rupted, and t-anonymous' when all but a constant number of clients
are corrupted with the following costs:

e Each client’s communication is upper bounded by O(m) +
S(|C| + O(m)) + O(1) and its computation is upper bounded
by O(m) + T(|C| + O(m)) + O(1), where m is the length of
the client’s input, and |C| denotes the size of the circuit that
encodes the compliance predicate C.

'We define t-anonymity in Section 3.3 to mean that the adversary only learns the
multiset of the (n — t) honest clients’ data items even when it controls the server and
tclients(0 <t < n-—1).
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e The server’s computation is upper bounded by n - V(|C| +
O(m)) + O(n - m) + O(n) and its communication is bounded
by n - S(|C| + O(m)) + O(n - m) + O(n).

o The protocol has only 3 rounds of client-server interaction, and
there is no client-client interaction.

Note that throughout, the 0 (1) term in the client’s communica-
tion and computation actually spells out to w (Iogk()%) where ¢

is the number of corrupted clients. So in fact, each client’s commu-
nication and computation decrease as the number of honest clients
grows — see also our evaluation results Figure 3. Intuitively, this is
because with a larger n, the mixing effect of the anonymous net-
work allows us to achieve the same level of security with cheaper
cost (and jumping ahead, using a smaller number of decoy terms).

Similarly, the 5(n) additive term in the server’s communication
log A )

and computation spells out to n - w (log(Tt)

Practical instantiation and concrete efficiency. For our practical
implementation, we do not restrict ourselves to using only standard
assumptions for better efficiency. Specifically, we will instantiate the
NIZKs using Succinct Non-Interactive Zero-Knowledge Arguments
of Knowledge (SNARKSs), and we allow the random oracle model.
In this case, we can state even tighter bounds on the cost, that is,

e Fach client’s extra communication (besides sending the data
items to the shuffler) is only 5(1);

e Each client’s computation is O(|C|) where O(-) hides a loga-

rithmic factor;

o The server’s communication and computation are upper bounded

by O(nm) + O(n).

We created an implementation of our protocol which we call
ConaN (short for COmpliant N ANonoymous?). Our code is open
sourced at https://github.com/wuwuz/conan-open. We evaluated
our technique in various application settings, including secure vot-
ing, and secure aggregation protocols for histogram, summation,
and vector summation — see Section 1.2 for more details about
these applications. Our evaluation results show that in all scenarios,
each client’s additional communication overhead is only 2.2 KB or
2.6 KB, depending on whether we use Groth16 [35] or Plonk [29]
to instantiate the SNARK. Further, each client’s computation only
0.2s to 0.5s for almost all cases, except for the vector summation
application where the data items are high-dimensional and as a
result, each client’s computation is 8.5-10.6s.

New techniques. Interestingly, our techniques are inspired by
techniques from the distributed differential privacy (DP) litera-
ture [8], which is also related to Ishai et al’s result for building cryp-
tographic protocols for anonymous communication networks [38].
Importantly, we stress that although we use DP-inspired techniques,
we actually prove cryptographically strong notions of security, not
differential privacy. We give an informal overview of our ideas in
Section 2.

Definitional contribution. We also make a new conceptual con-
tribution by formulating the anonymous, compliant data collection
problem and the corresponding security definitions. We believe that

2In our protocol, the server plays Detective Conan [5] and will detect any cheating
behavior.
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this abstraction can be useful in numerous application scenarios —
see Section 1.2 for more discussion.

Extension: attributing blame. In our basic anonymous, compliant
data collection protocol, there is no recourse if the audit phase fails.
In reality, it may be desirable for the server to identify a subset of
the cheating clients that caused the protocol to fail. We propose an
extension of our basic protocol that supports identifiable abort, such
that should the audit fail, the auditor can run an additional “blame
protocol” to catch a subset of the cheating clients (see the details
in the Appendix C for one application (shuffle-DP sum) We prove
that our extension preserves t-anonymity, while guaranteeing that
the server can identify a subset of corrupted clients in the case of
an abort and also no honest client is falsely accused. We further
evaluate the extension protocol in our experiments. The results
show that the additional per-client communication and computa-
tion overheads are within reasonable bounds, being 1.0 MB and
4.6s, respectively.

1.2 Potential Applications

We discuss some potential applications of our anonymous, compli-
ant data collection protocol. These are also the applications used in
our experimental evaluation (Section 7):

o Privacy-preserving federated analytics in the shuffle model. In
privacy-preserving federated analytics, an untrusted server
wants to learn some statistics over of n clients’ inputs, without
compromising each client’s privacy. Earlier work [7, 8, 30, 31]
showed that the multi-message shuffle-model is a promising
approach for designing differentially private aggregation pro-
tocols. In this model, each client uses multiple messages that
jointly encodes its data, and send them to a trusted shuffler. The
shuffler mixes all data items and send them to the server who
then performs statistical analytics on the received data. Our
work can be viewed as a cryptographic protocol that upgrades
a traditional shuffler without compliance checking to a robust
shuffler with compliance checking. Therefore, an immediate ap-
plication of our work is to make multi-message shuffle-model
protocols [7, 8, 8, 30, 31] robust to data corruption attacks.
In our evaluation (Section 7), we implement the multi-message
shuffle-model protocols proposed by Balle et al. [8]. Specifically,
each client adds noise to its input, splits the noisy input into
random shares, and sends the shares to the shuffler. We use
our CONAN protocol to verify that each user’s noisy input (i.e.,
the summation of its shares) is within some appropriate range.
Secure histogram protocol. Imagine that each user has watched a
set of movies. A server wants to compute the popularity of each
movie (i.e., how many users have watched it). To achieve this,
each user sends all the movies it has watched to the shuffler,
and the shuffler randomly permutes all entries and sends them
to the server. Note that in this protocol, the server learns only
the resulting histogram and nothing else. In the above secure
histogram protocol, we can use our CONAN protocol to ensure
that each client cannot submit duplicate entries.

o Anonymous Condorcet voting. We also consider an anonymous
Condorcet voting [52] scenario in our evaluation. Specifically,
each user has a ranking among the candidates. Based on this
ranking, the user submits to the shuffler a set of votes that
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encodes its preference over every pair of candidates. For ex-
ample, if the ranking is A > B > C > D, the votes submitted
are A> B,A>C,A>D,B>C,B>DandC > D. After
obtaining the shuffled votes, the server can tally for each pair
of candidates, how many votes rank each candidate over the
other, and this will be used to decide the outcome of the elec-
tion. It is not hard to see that the server learns only the result
of the tally and nothing else. In such an application, we can use
our CONAN protocol to ensure that each user submits only one
vote for each pair of candidates; moreover, the votes submitted
by each user should be internally consistent, i.e., its rankings
should not form a cycle.

1.3 Additional Related Work

Since our work can be viewed as an efficient distributed ZKP
protocol over an anonymous network where the witness is par-
titioned across multiple clients, we review other related notions
of distributed ZKPs and explain why they fail to solve our prob-
lem. A line of work considered distributed zero-knowledge proofs
(ZKP) where the witness is partitioned or secretly-shared across n
provers [22, 45]. Although these works can be used in our context
for the clients to jointly generate a compliance proof, the commu-
nication overhead per client would be at least linear in n. Another
line of work [41, 50, 51] considered how to use a cluster of ma-
chines to accelerate the prover of a ZKP system. However, these
approaches are not applicable to our setting because they do not
address the privacy requirement. Prio [18] and others [3, 12, 21]
considered statistic aggregation protocols where there are multiple
servers and each client sends secret-shared versions of its input to
the servers. Their compliance checking protocols can be considered
as distributed ZKP protocols where the prover knows the statement
and each verifier (the servers) only knows a secret share of the
statement. In their model, there is a single prover and multiple
verifiers, whereas there are multiple provers and one verifier in our
model. So they can be considered as the dual of our model. Bell
et al. [9] proposed ACORN, a robust secure aggregation protocol
with input validation. One building block they used is a protocol for
multiple clients to collectively prove that their committed values
are correlated in the correct manner. However, their protocol is
restricted to a specific relation (i.e., the sum of all provers’ secret
witnesses is equal to a public value) and does not fit our setting.

2 Technical Roadmap

We give a high-level overview of our novel techniques.

First attempt: representing sets as polynomials for set consistency
check. Recall that the flawed solution mentioned earlier is unsound
because it fails to check the “set consistency” property, i.e., it cannot
guarantee that the purported sets x1, . . ., X, in the audit phase are a
disjoint partitioning of the shuffled Pool the server received during
the data collection phase.

As a first attempt to fix this problem, we can use the polyno-
mial interpolation technique to prove set consistency [29]. Suppose
each client i represents its set of items x; := (x;1,...,Xim) using
a polynomial fi(x) = (x —xj1) - ... (x — xim). During the au-
dit, each client commits to its purported set x;. Next, the server
sends a random challenge r, and each client responds with f;(r),
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and proves in zero-knowledge that 1) the committed x; satisfies
the predicate C, and 2) the purported outcome f;(r) is correct w.r.t.
the committed x;. The server now verifies all clients’ proofs. More-
over, to verify set consistency, the server additionally checks that
[1; fi(r) = [1aepool (r — a). This technique is a perfect fit for our
distributed setting: every client can compute their polynomial eval-
uations locally without communicating with other clients, making
this technique efficient in both communication and computation.

Unfortunately, even though this approach indeed enforces the
set consistency check, it breaks privacy. Specifically, the server can
perform a “subset-style” attack: it can pick a subset X* C Pool, and
test if a some client i’s f;(r) agrees with [],cx+ (r — a). This allows
the server to learn if client i’s set x; = X*.

Novel idea: preventing leakage with decoy terms. Our main novel
idea is to introduce decoy terms to provably prevent the afore-
mentioned leakage. Specifically, during the audit phase, instead of
sending f;(r) directly to the server, client i generates random decoy
terms y; 1, ... Y; 4, and sends p; := fi(r) - [1je[q] Yi,j to the server,
where the term [] j[4] yi,j masks the true value of f;(r). Further,
each client sends its decoy terms y;1,...y; 4 to a trusted shuffler
(denoted Fgpufie). The shuffler Fp g randomly permutes all de-
coy terms, and sends an unordered set Y of all clients’ decoy terms
to the server. Instead of checking that []; pi = [4epool (r — @), the
server now checks [1; pi = [Taepool (r = @) - [1yey y’. Intuitively,
the “subset-style” attack is now much harder for the server: the
server needs to find both the subset X* and a correct subset of
decoy terms Y™ to break an individual client’s privacy. Formally, we
show that for an appropriate choice of the field size, it suffices to
set the number of decoy terms d = poly log A to achieve negligibly
small security failure probability.

New proof techniques. Henceforth, let H C [n] denote the set of
honest clients, and we use the notation Multiset({y; j}ic# je[4])
to denote the shuffled decoy terms {y;,j}ic 4 je[d]-

To prove that the protocol satisfies zero-knowledge, a key step is
to argue that even when the server has seen Multiset({yi j }ie 4, je[4])
for each honest client i € H, the randomizing term [ j¢[4] i, still
serves as a good mask for the partial product [] je [ (r — x1,5), €.,
the mask [] jeq4] yi,j is sufficient for hiding which subset of Pool
belong to client i.

To show this, we rely on a technical lemma shown by Balle
et al. [8] in the context of a secure summation protocol over an
anonymous network. Specifically, imagine that n clients each have
an input denoted x1, X2, ..., x, from an additive graph of size ¢
They want to jointly compute the summation of their private values
without leaking each individual’s input. Ishai et al. [38] suggested
a simple protocol: each client splits its private input into d additive
shares, and sends all shares to a shuffler which mixes all n - d shares,
and presents them to a server. The server simply sums up all the
shares it receives. Ishai et al. [38] showed that if we set the number
of shares to d = O(log q + o + logn), then for any input vectors
(x1,...,xp) and (x7,...,x;,) such that };c[n] Xi = Yje[n] X}, the
views of the adversary have statistical distance bounded by 27°.
Balle et al. [8] observed that the bound by Ishai et al. [38] is not
tight when n > 19. In particular, the number of shares d grows
with n, which is counterintuitive since having more parties should
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intuitively strengthen the privacy guarantees, allowing us to use
a smaller number of shares. Thus, Balle et al. showed a stronger
version of the theorem where the number of shares d only needs

20+log, q
tobed > 2+ m
We now give an informal proof roadmap. Fix the Pool of data
items, and consider two different ways to partition Pool across the
n clients. Specifically, imagine that in world 0, the partitioning is
{xi.j}ie[n],je[m]> and in world 1, the partitioning is {x{!j}ie[n]’je [m]
Letz;
be the masked partial product from each client i, where the decoy
terms {yi j}ie[n],je[d] 2nd {y;’j}ie[n],je[d] are all chosen indepen-
dently at random. We want to show that

to get 277 statistical distance.

({Zi}ie[n]) MUItiset({yi,j}ie[n],je[d]))

~ ({Z,’-}ie[nj, MUItiSEt({yl{,j}ie[nJ,je[d]))

where ~ denotes statistical indistinguishability. To show this, ob-
serve that conditioned on z; = zl{ for all i € [n] in the two worlds,
it must be that nie[n],je[d] Yij = nie[n],je[d] yl{,j' Using Balle et
al’s theorem, we have that conditioned on z; = z; foralli € [n], the
terms Multiset({yi;}ic[n],je[a]) and Multiset({y] ;}ic[n],je(a])
are statistically indistinguishable.

Our technical sections later will formalize the above intuition.
Specifically, to make the proof formal, we need to 1) add compu-
tationally sound reasoning for the cryptographic primitives used;
2) change the above argument to work for the subset of honest
parties rather than all parties; and 3) correctly set parameters of
the scheme to get negligibly small security failure. We defer the
details to Appendix A.

Concretely efficient upgrade to the malicious-server setting. The
protocol mentioned so far achieves anonymity only if the server is
semi-honest. To get rid of this assumption, one approach is to use
standard theoretical techniques for converting an honest-verifier
ZKP to a malicious-verifier ZKP [19], or to rely on a random coin
toss protocol to jointly generate the server’s challenge. However,
these generic techniques are not concretely efficient. Instead, we
propose a new upgrade that incurs minimal additional overhead
in comparison with the semi-honest-server setting. We defer the
detailed description to Section 6.

3 Formal Problem Definition

3.1 Notations

Shuffler notation. We use the notation Fguge to denote a shuf-
fler ideal functionality 3. Assume there are n clients and each
client i submits to Fgpufe a multiset of m data items denoted
X; = (Xi1,...,Xim), then Fgume outputs an unordered multiset
of all the data items, that is, {xij}ic[n], je[m]- Henceforth, we
use the notation Multiset(xy,...,x,) to denote the multiset of

{xijtie[n],je[m]-
Remark 3.1.

30ur Fopume functionality is widely-used in cryptography (e.g. [38]) and distributed
differential privacy (e.g., [10]), and has practical deployments in real-world systems [1].
A separate line of work constructs shufflers from various trust assumptions like trusted
hardware [10, 36] or MPC [25]. Anonymous networks like Tor are also used as heuristic
realizations of Fshuffle.

[Tjetm) (r=xij) [jeray yi.j and 2; = [T jem) (r=x] ) [je[a)
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Notation for NP relation. Henceforth, we use the notation R; (x;, w;)
to represent the NP relation corresponding to the compliance predi-
cate that the server wants to check for each client i, where x; is the
data items contributed by client i, and w; is the witness. Specifically,
Ri(xi, wi) = 1 means that x; is in the NP language, i.e., it satisfies
the compliance predicate. In the most general form, this compliance
predicate need not be the same for all clients.

Henceforth, given x := (x1,...,X,), and w := (wq, ..., wy), and
.., Rn), we use the short-hand R(x,w) = 1

3.2 Syntax
An anonymous, compliant data collection has the following syntax:

e pp < Setup(14,n, R):

e Poolor L « II(pp,X1,...,Xp, Wi,..., wp): All parties have
the input pp and moreover, each client i has a list of data
items X; = {xj j}je[m]> and witness w;. The client and the
server then engage in a protocol, such that at the end of the
protocol, the server either outputs a multiset Pool of data items,
or outputs L indicating failure.

Completeness. Completeness is a natural correctness require-
ment, it stipulates the following: for any A, n € N, any R, for any
x = (X1,...,Xp), any w = (wy,...,wp) such that R(x,w) = 1,
given an honest execution of II,

Pr|pp « Setup(lA, n, R), I(pp, x, w) = Multiset(x1,...,x,)| =1

3.3 Security Definitions

Henceforth, let C C [n] denote the set of corrupt clients, and let
H = [n]\C denote the set of honest clients. Consider the following
random experiment denoted Expt™#® (1%):

e run pp « Setup(14,n, R), and A receives pp;

e A outputs {x;, w; };cg¢ which is required to satisfy R;(x;, w;)
for any i € ‘H;

e run the protocol IT with A who controls the set C of clients
and possibly the server, where the honest clients use the inputs
{xi, witieq

Soundness. Soundness requires that for any n that is polynomi-
ally bounded in A4, any C C [n], any R (where the circuits for
checking the NP relations are polynomially bounded in A), for any
non-uniform PPT adversary A that controls the set C of corrupt
clients (but not the server), there exists a negligible function negl(-),
such that in the above randomized experiment Expt™ 7R (11), ex-
cept with 1 — negl(A) probability, if the server did not reject out-
putting L, the multiset Pool it outputs must satisfy the following:

(1) Multiset(x¢() C Pool;

(2) there exists a disjoint partitioning {x;} jc c of Pool\Multiset({x; };c /),

such that for any j € C, there exists some w; such that
Rj(Xj,Wj) =1.
The first condition says that honest clients’ contributions must
show up in Pool, and the second condition says that for the corrupt
clients’ contributions, there must be a way to partition these data
items among the corrupt clients C, such that every corrupt client
Jj € C submitted a compliant multiset of data items.
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t-anonymity. t-anonymity requires that for any non-uniform
PPT adversary A who controls at most ¢ clients and possibly the
server, there exists a PPT simulator (SimSetup, SimProt) such that
for any n that is polynomially bounded in A, any R (where the
circuits for checking the NP relations are polynomially bounded
in 1), the adversary’s view in the above real-world experiment
Expt™ 7R (11) is computationally indistinguishable from the out-
put of the following ideal experiment.

e run (pp, st) « SimSetup(l’l, n, R), and A receives pp;

e A outputs {x;, w;};cgs which is required to satisfy R;(x;, w;)
for any i € H;

e output the simulated view SimProt(st, Multiset({x;};c¢))-

Notice that the simulator only sees Multiset({x;};c¢s) of honest
clients’ contributions. This implies that a computationally bounded
adversaries does not learn who contributed which data items.

Remark 3.2 (t-anonymity in the presence of a semi-honest server).
Later, as a stepping stone, we will first construct a scheme that
satisfies t-anonymity in the presence of a semi-honest server. In
this model, we assume that the adversary controls a subset of the
clients, and possibly the server. The server is guaranteed to behave
honestly, but the adversary can observe the server’s view including
its internal coins and all the messages it sends and receives. On the
other hand, the corrupted clients can behave arbitrarily including
in a manner dependent on the server’s internal coins.

4 Preliminaries

4.1 Technical Lemma for Secure Summation

As mentioned, the most interesting technique in our construction
and proof is the introduction of decoy terms to allow a privacy-
preserving set consistency check. To prove the security of this
approach, we rely on a technical lemma from Balle et al. [8], which
is derived from a simple secure summation protocol first proposed
by Ishai et al. [38].

Imagine that there are n parties each with an input x; € Zg.
Each party i splits its input x; into d random, additive shares and
sends them to a shuffler. The server receives all the shares from
the shuffler and sums them up. The lemma shows that as long as
the server only sees the unordered, shuffled shares, it learns only
the sum of the inputs and nothing else, ignoring a small statistical
security loss. Balle et al. [8] observed that the lemma also works
when the inputs are from a finite abelian group. We will formally
state the lemma in the context of the case when the inputs are from
a multiplicative abelian group.

Lemma 4.1 ([8]). Suppose thatn > 19,d > 3, and o > 1. Let G

be a multiplicative abelian group of order q. Suppose we are given

two arbitrary vectors (1, . . ., jin) € G" and (y, ..., ) € G", such

that [lie[n) i = Tlie[n] #n- Now, for i € [n], randomly sample

(Yi,1 - - - Yiq) such that pi = [1je(a) Yi,j- Similarly, randomly sam-

ple(yiy...., y;’d) such that yi} = [ e[ ylf,j. Then, the two multisets

Multiset({y;,j}ic[n],je[d]) andMultiset({yl{’j}ie[n]!je[d]) have sta-
tistical distance at most 27° where

oo (d — 1)(log, n — log, e) — log, |q|
2
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4.2 Cryptographic Building Blocks

We use the following primitives in our construction.

Non-interactive commitment. A non-interactive commitment al-
gorithm commit(l’l, x;r) takes in a security parameter 1’1, a mes-
sage x € {0, 1}[(’1), and a random string r € {0, 1})‘, and outputs
a committed value C. Henceforth let the message length £(1) be a
polynomial function in A. We require that a non-interactive com-
mitment scheme satisfy the following properties:

o Computationally hiding. For any x,y € {0, 1} it must be
that commit(14, x) and commit(1%, ) are computationally in-
distinguishable. We write commit(l’l,x) to denote the ran-

domized algorithm that first samples ri{O, 1}* and then calls
commit(lA,x; r).

o Perfectly binding. There does not exist 4, (x,r) and (x’,r’)
where x # x’, such that commit(ll,x; r)= commit(l’l,x’; r’).

Non-interactive zero-knowledge. A non-interactive argument sys-
tem for a family of NP relations {R } ) indexed by A consists of the
following (possibly randomized) algorithms:

® Crs «— Gen(l’l): samples and outputs a common reference string
denoted crs.

e 1 « P(crs,x,w): takes in the common reference string crs, a
statement x and a witness w such that R (x, w) = 1, outputs a
proof 7.

e 0or 1« V(crs, x, x): takes in the common reference string crs,
a statement x, and a purported proof 7, outputs either 0 or 1
indicating “reject” or “accept”.

We require the following properties:

(1) Completeness. For any A, for any (x, w) such that R, (x, w) = 1,
it holds that

Pr [crs — Gen(l’l),n — P(crs,x,w) :
Viers,x,m)=1] =1

(2) Soundness. For any non-uniform probabilistic polynomial-time
(PPT) prover P*, there exists a negligible function negl(-), such
that

Pr|crs « Gen(ll), (x, ) « P*(crs) :
V(crs,x,m) = 1 but x ¢ Ry] < negl(1)

In the above, we use x ¢ R to mean that there does not exist a
w such that Ry (x, w) = 1.

Knowledge soundness. For any non-uniform deterministic algo-
rithm A, there exist a non-uniform polynomial-time extractor
X # and a negligible function negl(-) such that for any auxiliary
string z,

®)

Pr|crs « Gen(ll), ((x,m);w) «— (A||lX7)(crs, z) :
V(ers,x,m) = 1 AR (x, w) = 0] < negl(4)

Zero-knowledge. Intuitively, a non-interactive argument system
is computationally zero-knowledge if one can simulate the proof
of a true statement without knowing the witness. Formally,
a non-interactive argument system satisfies adaptive multi-
theorem computational zero-knowledge, iff there exists a PPT
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simulator (51, S2), such that for any non-uniform PPT adversary
A, there exists a negligible function negl(-) such that

Pr [crs — Gen(1%) : AP(ers>) (12 crs) = l]

I(A S
negz( )Pr [(crs, 1) — S1(1Y) - AT (14 ers) = 1]

where 7 is a trapdoor, and §(f, x,w) is the following oracle:
upon receiving (7, x, w), it checks whether R (x, w) = 1. If so,

output Sz(7, x), which simulates a proof without knowing the

. . . negl(d)
witness; otherwise, output L. Moreover, the notation =

means that the left-hand side and the right-hand side differ by
at most negl(4).

5 Warmup: Protocol for a Semi-Honest Server

We first present a protocol assuming a semi-honest server; however,
a subset of the clients may be under the control of the adversary and
behave arbitrarily maliciously. Later in Section 6, we will discuss
how to upgrade the protocol to the malicious-server setting with
minimal additional overhead.

5.1 Construction

We assume a prime-order field F whose size is superpolynomial in
the security parameter A. Suppose that each data item is encoded in
the field F, i.e., each x; = (x1,...,Xi,m) € F™. Our protocol relies
on an underlying anonymous network modelled as a shuffler ideal
functionality denoted ¥, me — See Section 3.1.

Protocol. During the setup, we call the NIZKs’ setup and outputs

the resulting common reference strings as the public parameter.

Our protocol then proceeds with a data collection phase and an
audit phase as follows:

(1) Data collection phase. All clients send their data items over
an anonymous network to the server. More formally, every
client i € [n] sends its data items x; = (Xj1,...,%im) to
Fohuffles and Fshuftle sends Multiset(xy, . .., x,) to the server.

(2) Audit phase.* Each client proves compliance to the server
without identifying which data items it has contributed using
the following protocol.

e First, each client samples d random decoy terms y; 1, ...,y 4
from F\{0}, and sends {y;,1,...,y; 4} to Fehume, which in
turn sends Multiset({yi j}ic[n],je[4]) to the server.

e Additionally, client i sends a commitment com; of (x;, p;)
to the server where p; == []e[q] ¥ij-

o Next, the server sends a random challenge r € F to all clients.

e Now, each client i sends z; := p; - [1je[m] (xi,j — ) to the
server, along with a NIZK proof attesting to the following
facts: 1) z; is computed correctly using the tuple (x;, p;)
under the commitment com;, and the data items x; under
the commitment com; satisfy the compliance predicate.

o Finally, the server outputs Multiset(xj, .. ., x,) if all n NIZK

proofs verify, and moreover, [ ;e[ ] i = [lie[n],je[m] (*ij—

r) - Ilie[n),je[d] ¥ij; Otherwise, it outputs L. Notice that
the server can efficiently compute [T;c(n] je[m] (*ij — )
4Here, we focus on the case when the audit phase is run only once. Our protocol can

be extended to run multiple audit phases on the same collected data with different
predicates naturally.
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and [Tie[n],je[d] Yi.j> since it knows Multiset(xy, ..., xn)
and Multiset({yi,j}ie[n],je[d]).
We give a formal protocol description in Figure 1 where the NP

relation for the NIZK proofs are defined below.

NP relation for the NIZK proofs. In Figure 1, we use NIZK; to
denote a NIZK scheme for the NP relation R;:

e Public statement (z;, com;, r): the client’s masked evaluation
zj, the commitment com;, and the evaluation point r;

e Private witness (x;, yi, Wi, pi): the client’s data items x;, wit-
ness w;, the randomness y; used in the commitment, as well
as the product of client i’s decoy terms p;.

® Ri((zi,comy,7), (Xi, yi, wi, pi)) = 1iff

- Ri(xi,wi) = 1;
— commit((x;, pi); yi) = com;; and
= [jetm)(xij = 1) - pi = zi.

Parameter choices. Throughout, we use A to denote the security
parameter, and we assume that n is upper bounded by a fixed
polynomial in A. We set the field size of F to be superpolynomial in
A. Let 0 = w(log A) be a super-logarithmic function in the security
parameter. Assume n clients and at most ¢ corrupted clients, by
setting the number of decoy terms per client as

20 +log, |F|

~ logy(n—t) —logye W

the statistical security loss is upper bounded by 27¢ which is negli-
gibly small in A since o = w(log A). Additionally, the cryptographic
primitives we employ introduce a separate computational security
loss that is also negligibly small in A. Note that Equation (1) also
shows that the number of decoy terms per client d decreases as n
grows. Further, if we set the field size to be exp(log® n) for some
constant ¢ > 1, then d is upper bounded by O(log® 1).

Remark 5.1 (Parameter choices depend on the number of honest
clients). Our choice of d in Equation (1) assumes that there are at
least 19 honest clients — this is inherited from the technical lemma
(Lemma 4.1) proven by Balle et al. [8]. Note that the total number
of clients n can be much larger than 19, i.e., security holds even
when a large majority of the clients can be maliciously corrupted.
However, if there are fewer than 19 honest clients, we can set the
number of decoys d tobe d = [1.5 log, (|F|) +log, n + 0'] due to the
lemma of Ishai et al. [38] to achieve the same level of security loss.

In Appendix A, we prove the following theorem.

Theorem 5.2 (Protocol for a semi-honest server). Suppose that |F|

log |F|+log 4 Further,
log(n—t) )° ’

suppose that the underlying N1ZK satisfies completeness, soundness,
and zero-knowledge, and the commitment scheme comm is perfectly
binding and computationally hiding. Then, the protocol described in
this section satisfies completeness, soundness, and t-anonymity in the
presence of a semi-honest server.

is superpolynomial in A,n—t > 19 andd = » (

In our implementation, we will use a prime field F, where p is
a 254-bit prime. Suppose we want to achieve a statistical security
failure probability of 2780 Then, with 100, 1000, and 10000 honest
clients, we can choose d = 82, d = 51, and d = 37, respectively.
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II(pp, X1, - - > Xn, Wi, - - -, Wp).

(2) Audit phase:
e Each client i:

- Send (y;1, ..
e Server:
e Each client i:
— Parse x; := (x1,..
— Parse pp := (crsq, .-

— Send (zj, 7;j) to the server.
o Server: Output Multiset(x1, ..

equation knowing zi, . .

Setup(lA, n, R):. For i € [n], run crs; «— NIZK;.Gen(1%). Output pp := {crsi}tie[n]- *
(1) Data collection phase: Every client i € [n] sends x; to Fgphufiie> and Fshusile Sends Multiset(xq, . .

$
- Sample y; = (yi1.....y;q) < {F/{0}}? and let p; = [1jc(a) ¥ij-
- Yid) to Fgnume, which sends Multiset ({y,j}ic[n)
— Send com; = commit((x;, p;);yi) directly to the server where y; denotes sampled random coins.

— Sample a random challenge ri F and broadcast r to all clients.

-»Xi,m), and compute z; := p; - [ je[m](xij = 7)-
.,crsp), and call 7; «— NIZK;.P(crs;, (zi, com;, r), (Xi, Yi, Wi, pi))-

., xp) if the following checks pass, else output 0:

— NIZK verification: For i € [n], NIZK;.V(crs;, (zi, com;, 1), ;) = 1.

— Set consistency check: [1ic[n] zi = [lie[n],je[m](Xij =) - [lie[n],je[d] Yi.j- The server can compute both sides of the
-»Zn, Multiset({xi j }ie[n],je[m])> and Multiset({yi j }ie[n],je[d])- Also, check all y; ;’s are not 0.

%The CRS for the NIZK scheme can be shared if it is instantiated with a SNARK scheme with a universal CRS.

., Xp) to the server.

_je[d]) to the server.

Figure 1: Our anonymous, compliant data collection protocol for a semi-honest server.

Cost analysis. Based on the above parameter choices, we can
now give the asymptotic performance bounds. Suppose we use
a SNARK scheme to realize the underlying NIZK, and suppose
that the SNARK scheme has O(c) prover time for proving a size-
¢ circuit, O(1) proof size and verification time. Further, suppose
the commitment scheme comm has O(m) computation time and
commitment size for a message of size O(m). Then, the above
protocol satisfies the following performance bounds:

e Each client i incurs O(|R;|) computation and O(m) + 0(1)
communication (see also Remark 5.3), where the notation |R;|
denotes the size of the circuit that checks the NP relation R;.
Specifically, the O(m) part comes from sending the m data
items to the shuffler and committing to them again during the
audit, and the O(1) accounts for sending the decoy terms to
the shuffler and all other communication.

o The server’s computation and communication are upper bounded
by O(nm) + O(n).

Remark 5.3 (Regarding client communication). The client com-
munication includes sending the m data items to the shuffler during
data collection, and sending one commitment and one ZKP in the
audit phase. If we use a perfectly binding commitment, the commit-
ment size is linear in m for committing to a length-m message. In our
actual implementation, we use a random-oracle-based commitment
scheme that the commitment size is O(1) even for committing to a
length-m message; and we use a SNARK whose proof size is also
O(1). In this case, the client’s extra communication overhead (be-
sides sending the m data items to the shuffler) is actually bounded
by O(1). Later in Section 6, we will argue that our security proofs
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still hold when we replace the commitment scheme with a random-
oracle-based one (see also Appendix B in the full version [53] for
details).

5.2 Anonymity for a Semi-Honest Adversary

We now prove a key lemma that is needed for proving anonymity
in the presence of a semi-honest server. This key lemma represents
the most interesting step in our security proof, since it captures the
statistical steps of reasoning why the decoy terms give us strong
privacy. We defer the full proof of anonymity for a semi-honest
server to Appendix A.

Key lemma for anonymity. Intuitively, the lemma says that sup-
pose the zero-knowledge proofs and commitments leak nothing,
then the server cannot distinguish whether the honest clients’ in-
puts are {x;j}icq( je[m] € FI7I™ or {x} jYierjerm) € FlHlIm,
as long as Multiset({xi j }ie #, je[m]) = Multiset({xlf’j}ieq.(,je[m]).
In other words, the server cannot learn how the permuted data
items are partitioned across the honest clients. This intuition can
be captured by the following lemma.

Lemma 5.4 (Key lemma for proving anonymity). Given a secu-
rity parameter o = w(logA), and assume |F| is superpolynomial

. 20+log, |F|
inA,n—t>19,andd > [W + 2]. Let H denote the

set of honest clients. Fix arbitrary {xij}icH je[m] € FIHIm gnq
{x,{!j}ie‘H,je[m] e FIHI'™ such that Multiset({xi j}iet je[m]) =
Multiset({xlf’j}ieq{,je[mJ), and fix some r & {Xi j}ie je[m] also
fromE. Then, the following distributions have negligibly small in A
statistical distance:
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o Distribution 0: Sample {yi j}ic 4, je[q] at random from F, output
the following terms:

Multiset({xi,j}ie g je[m])> > Multiset({yij}ic#,je[a))s
foreachie H : z;:= Hje[m] (xi,j -r)- Hje[d] Yi,j

e Distribution 1: Same as Distribution 0 except that each x; j is
replaced with x| j

Proor. To prove the key lemma, we shall rely on Lemma 4.1,
the technical lemma from Balle et al. [8].

First, consider the following hybrid experiment which is equiva-
lent to Distribution 1 except that the order in which the random
variables are sampled is changed.

Experiment Hyb:
o First, sample {z;};c ¢ at random from F/{0}.
o Next, for each i € H, compute p; = zi/[lje[m](xij — 7).
basically pi; corresponds to the product of the terms {y;,j} je[q]
e Next, for each i € H, sample {y; j} je[4] at random subject to
the constraint that their product is ;.
e Finally, compute and output the following terms:

Multiset({x; j} e, je[m]) 7>
Multiset({y;,j}ie 4, je[d]) {Zitien

Experiment Hyb, : same as Hyb,, except that each x; j is replaced
with x;’ Iz Hyb; is equivalent to Distribution 1 except that the order
in which the random variables are sampled is changed.

The key lemma follows directly from the following claim.

Claim 5.5. Hyb, and Hyb, have statistical distance negligibly small
in A

It suffices to show that conditioned on any fixed {z;};c 4, Hybg
and Hyb, are statistically close. Since Multiset({xij}ic#,je[m]) =
Multiset({xlfj}ie«yje[m ), we have

Zj

1—1 1_[ H]G[m (x,j )

ieH r) ieH
Then, we can directly apply Lemma 4.1 and get that the statistical
distance of the distribution of Multiset({y; j}ic#,je[a]) in Hyby
and Hyb, is bounded by 27 where

H]G[m (x,J

1 1
o= E(d —2)(logy(n—t) —logy e) — 3 log, (|F] = 1).
Therefore, fixing 0 = w(log 1), when d > [% + 21, the
2 2
statistical distance of A’s view between Hyb, and Hyb, is bounded
by 279 which is negligibly small in A. ]

Completing the proof of anonymity against a semi-honest server.
As mentioned, the key lemma essentially shows that the server
does not learn how the data items are partitioned across the honest
clients, assuming that the zero-knowledge proofs and commitments
are perfectly secret. In reality, however, the cryptographic primi-
tives satisfy only computational notions of security. Therefore, to
formally prove anonymity in the presence of a computationally
bounded adversary, we need to go through a sequence of hybrid ex-
periments, such that we first replace the zero-knowledge proofs and
commitments with simulated ones using the security of the crypto-
graphic primitives, and then apply Lemma 5.4 to switch the honest
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clients’” inputs from {xi j}je 4 je[m] to {x,{’j}ie‘l—{,je[m] where the
latter is an arbitrary partition of Multiset({x; j}ie[n] je[m])- After-
wards, the view of the adversary in the hybrid experiment can be
fully simulated by a simulator that only knows the multiset of the
honest clients” inputs. We present the full proof in Appendix A.

5.3 Proof of Soundness

We now prove a key lemma that captures the essential statistical
reasoning in the soundness proof, when we imagine that all the
cryptographic primitives were ideal. The full soundness proof re-
quires a computationally sound treatment of the cryptographic
primitives used, and we defer the full soundness proof to Appen-

dix A.

Key lemma for soundness. We now state the key lemma (Lemma 5.6)
needed for proving soundness. To better understand the lemma
below, it helps to imagine that {x; j};e[n] je[m] (represented by
{x1,...,X;} in Lemma 5.6) represent the data items the server has
obtained during the data collection phase, and {x,.. .,x;(} (rep-
resented by {x1,...,Xx;} in Lemma 5.6) represent the data items
the clients commit to during the audit. Moreover, imagine that
@ = [lie[n],je[d] Yij» and @ = [l;e[n] pi- Recall that during the
audit (Figure 1), the clients submit the decoy terms {y; j} and com-
mit to {xlf)j},-e[n],je[m] and {p;i};e[pn]- This is why in Lemma 5.6
below, we imagine that {x;j};c[n],je[m]> {xlf!j}ie[n]’je[m], a, a
are fixed; however, the challenge r is randomly chosen.

Lemma 5.6 (Key lemma for proving soundness). LetF be a finite
field. Let x1,...,x; € F, a € F\{0}, and let xi, .,x];,a’ c F.
Suppose that Multiset(xy, ..., xg) # Multiset(xi, .. x]'c) Then,

n(r—xl)—a l_[(r x})| <

ie[k] |F|

r<—]F

Proor. Since Multiset(x1,...,x,) # Multiset(x{, ..., %), the
polynomials F(R) = [T;e[n](R - x;) and F'(R) = [1;e[n] (R - xi)
are not the same. In the case of @ # «’, since F(R) and F’(R)
are both monic polynomials, «F (R) and a’F’(R) are two different
polynomials. In the case of @ = @', «F(R) and o’ F’ (R) are different
because F(R) # F’(R). Therefore, the lemma follows from a direct
application of the Schwartz-Zippel lemma. O

Intuitively, the above key lemma for soundness says that as long
as the corrupted clients use inconsistent data items in the audit
phase, the audit will fail with overwhelming probability regardless
of how the corrupted clients generate their decoys.

Completing the soundness proof. The full proof of soundness
makes use of the perfect binding property of the commitment
scheme and the soundness of the zero-knowledge proof, and then
reaches a step where applying the key lemma, i.e., Lemma 5.6 would
be sufficient. We defer the full proof to Appendix A.

6 A Simple Upgrade to the Malicious-Server
Setting

In this section, we propose a simple upgrade with minimal over-
head that lifts our warmup protocol to the malicious-server setting.
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Specifically, for soundness, we always assume an honest server;
however, we want our anonymity guarantees to hold even when the
server can be malicious. In this setting, the challenge for proving
anonymity is that the server may not choose the challenge r at
random®. To upgrade our protocol to the malicious-server setting,
one naive way is the use a generalization of the transformation
described by Damgard [19] that converts an honest-verifier zero-
knowledge proof to a malicious-verifier zero-knowledge proof. An-
other naive way is to use a random coin toss protocol to jointly gen-
erate the server’s challenge. However, these standard approaches
result in relatively high concrete overhead. Instead, we propose a
simple upgrade with minimal overhead.

Intuition. The construction in Section 5.1 provides anonymity
only in the presence of a semi-honest server, relies on the facts
that 1) the challenge r is chosen independently of the decoy terms
{Yi.j}ie#, je[a] — however, r need not be chosen uniformly at ran-
dom; and 2) the challenge r is not equal to any of the data items
{xi,j}ie#, je[m]- However, a malicious server may choose r based
on its guess of the data items {x; j};e 4 je[m] Of the decoy terms
{Yi,jtiet je[a) that have already been revealed. For example, a
malicious server can intentionally pick a challenge r that equals
one of the messages. Then, the server learns the source of that
particular message, because the client who submitted it will have a
polynomial evaluation of 0. Therefore, the intuition of our upgrade
is to ensure that even a malicious server cannot choose the chal-
lenge r that collides with any honest client’s data item, or depends
on the decoy terms. For the former, we can split the field F into
two halves and enforce the data items and the challenge r to be
sampled from different halves. For the latter, we require the server
to commit to r upfront, so r cannot be chosen based on the decoy
terms.

Upgrade to the malicious-server setting. In the upgraded protocol,
the server commits to the challenge r upfront. Next, the clients
commits to their data items and submits the decoy terms using an
extractable commitment scheme, and the server then opens r. The
clients check if the opening r is valid, and that » must be sampled
from a different half of the field than the messages.

e Assume we use a prime-order field Fp. We will encode the

clients’ messages x; ; using the first half of the field {0, .. ., | p/2] }.

o At the beginning of the audit phase, the server picks a random
challenge r from {|p/2] + 1,...,p — 1}, and it computes 7 :=
commit(r; coins) where coins denotes the random coins used
in the commitment scheme®. The server sends 7 to all clients
over a broadcast channel (see Remark 6.1).

e Now, run the earlier protocol in Figure 1 except with the fol-
lowing modifications. First, the clients now use an extractable
commitment scheme when committing to (x;, p;)” Second, in-
stead of directly sending the challenge r to all clients, the server
now sends opening r, coin to all clients. All clients check that
commit(r;coins) = 7 and that r > |p/2] + 1. They continue
with the protocol if the check passes, and else they abort.

Notice that the Fiat-Shamir heuristic [27] does not work in our setting, because the
provers are distributed.

This commitment need not be extractable.

"The common reference string (CRS) of the extractable commitment scheme is included
in the CRS of our protocol.
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For completeness, we describe the full protocol formally in Fig-
ure 2. We prove that this upgraded protocol satisfies soundness and
t-anonymity in the presence of a malicious server. See Appendix B
of the online full version [53] for details.

Remark 6.1 (Necessity of the broadcast channel). Note that the
broadcast channel is needed to ensure that the server sends the
same challenge r to all clients. Otherwise, there is an explicit attack
where the server can distinguish between the following two cases:
1) client 1 has x and client 2 has x’; and 2) the two clients data items
are swapped. The server can send ry to client 1 and ry to client 2,
and from its view, it can recover the product (x — r1) - (x’ — rp) in
the former case; or the product (x” —r1) - (x — r) in the latter case.
The server can then learn the source of the data items, violating the
anonymity property. One way to instantiate the broadcast channel
is to have the server send 7 to all clients; all clients then sign 7 using
a threshold signature scheme. The server aggregates all clients’
signatures and sends the aggregated signature to all clients. The
clients accept the challenge 7 if the aggregated signature verifies.

Remark 6.2 (Necessity of using extractable commitment scheme
for clients’ data items). When we make this change, the sound-
ness proof becomes more challenging. Our earlier soundness proof
(Lemma 5.6) relies on the fact that the malicious clients cannot
choose the committed {x; j};e 4/ je[m] Values and the decoy terms
{Yi,jtie je[a] that depend on the challenge . However, now the
server has committed some challenge r upfront, we effectively need
to argue that it is not possible for malicious clients to commit to
values that are related to the committed challenge r. To deal with
this issue, we require that the clients commit to their data items
{xi j} using an extractable commitment scheme which is easy to
construct assuming a common reference string (see Appendix B.1
in our full version [53]).

Cost analysis. In comparison with the semi-honest-server pro-
tocol in Section 5, this new upgrade introduces minimal overhead,
and all the asymptotic bounds for the semi-honest-server protocol
still hold for the upgraded protocol. More specifically, in compari-
son with the semi-honest-server protocol, each client incurs only
0,(1) additive overhead in terms of client computation and band-
width. Further, the server needs to incur only O,(1) additional
computation relative to the scheme in Section 5, broadcast an ad-
ditional message of size 04 (1) to all clients, and send O (1) extra
information to each client over a point-to-point channel.

In the Appendix B of our online full version [53], we prove the
following theorem.

Theorem 6.3 (Protocol for a malicious server). Suppose that |F| is

log |F|+log A
Togtn=1)_ ) Further,

suppose that the underlying NI1ZK satisfies completeness, soundness,
and zero-knowledge, the commitment scheme used by the server is
perfectly binding and computationally hiding, and the commitment
scheme used by the client is computationally hiding and extractable.
Then, the protocol described in this section satisfies completeness,
soundness, and t-anonymity in the presence of a malicious server.

superpolynomial inA,n—t > 19 andd = w (

7 Implementation and Evaluation

Implementation. We use gnark [13], an open-sourced NIZK li-
brary to create an implementation of our protocol. We separate the
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Setup(lA, n, R): Same as before.

TI(pp, X1, - - > Xn, Wi, - - -, Wp).

(2) Audit phase:
e Server:

— Send 7 to all clients over a broadcast channel.
e Each client i

- Send (y; 1, ..

commitment scheme.
e Server:
— Send the opening (r, coins) to all clients.
e Each client i:

- Parse x; := (xi1,..
— Parse pp := (crsq, ..
- Send (z;, ;) to the server.
e Server: Output Multiset(xy, ..
— For i € [n], NIZK;.V(crs;, (zi, com;, r), i) = 1.

Multiset(xq, ..

.,Xp) and Multiset(y1, ..

(1) Data collection phase: Same as before, except that now we require that each data item x; ; € {0,

- Sample a random challenge ri{ lp/2]+1,....,p—1};
— Let 7 := commit(r; coins) for some randomly sampled coins;

$
- Sample y; = (yi1,. .., Yiq) & {]F/{O}}d and let p; = [1e[q] Yi,j-
> Yid) to Fshume> which sends Multiset({yi j}ic[n],je[d]) to the server.
- Send com; = commit((x;, pi);yi) to the server where y; denotes sampled random coins and commit is an extractable

— Check that (r, coin) is a correct opening of 7, and further, check that r € {[p/2] + 1,..., p — 1}. Abort if the check fails.
., Xim), and compute z; := p; - ]_[je[m] (xi,j — 7).
.,crsp), and call 7; « NIZK;.P(crs;, (zi, com;, r), (Xi, yi, Wi, pi))-

., xp) if the following checks pass, else output 0:

= Tliern] #i = Ticqn),je[m) (%ij — 1) - Tlic[n],je[d] Yi.j- The server can easily compute both sides of the equation knowing
., ¥n)- Also check that all y; ; are non-zero.

o Llp/2l).

Figure 2: Our anonymous, compliant data collection protocol for a malicious server. The modifications are highlighted in blue.

implementation into two phases, which include the audit phase
and the blame phase that can catch the non-compliant clients. We
omit the evaluations of the blame phase here and refer the read-
ers to the Appendix D of the full version [53] for the results. We
assume a semi-honest server throughout the experiments. We use
a prime field F, with r being a 254-bit prime associated with the
BN254 elliptic curve. We use a security parameter of 1 = 80. We
instantiate our protocol with two proof schemes, Groth16 [35] and
Plonk [29]. Groth16 requires a per-circuit setup and Plonk has a
universal setup. We use the MiMC hash [4] for the commitment
scheme with a 254-bit random salt. The experiments are run on
single server with a 2.4GHz Intel Xeon E5-2680 CPU and a 256 GB
RAM.

7.1 Application Settings and Parameters Used in
our Evaluation

We evaluate the application scenarios mentioned earlier in Sec-
tion 1.2. Here, we provide more details about the parameters we
choose for all applications. Unless otherwise noted, we assume there
are 1000 clients with 500 corrupted clients. This matches the com-
mon settings in shuffle-model data analytics and federated learning
scenarios, such as in [8, 33, 40]. We list the concrete settings for
each application here.

924

Secure histogram protocol. We implement a simple anonymous
histogram protocol.

e Each client has 60 data items from a domain of {0, 1, ..., 9999}.

e The clients send their data items to the shuffler, who shuffles
the data items and sends them to the server. The server then
computes the histogram of the data items.

e Constraint: The contribution from each client cannot include
repeated data items.

Shuffle-DP summation protocol. We implement the shuffle-DP
summation protocol from Balle et al. [8].

o Each client has an integer secret value v; in [0, 1000]. The client
adds a noise y; to v;, where y; is a Polya noise as specified in [8],
which ensures the final sum value satisfies e-shuffle-DP with
¢ = 1.0. Each client will split its noisy value v; + y; into 60
additive shares (ensuring 80-bit statistical security) and the
server sums up all the shares.

e Constraint: The contribution of each client to the final sum,
i.e., vj +yj, is less than 1500.8

Secure vector summation protocol with Ly norm constraint. We
extend the secure summation protocol from Balle et al. [8] to sum

8We choose 1500 because the probability that an honest client’s noise being more than

500 is small enough. This is only for demonstration and can be adjusted according to
other scenarios.



CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

vectors with an Ly norm constraint, which applies to update aggre-
gation in federated learning.

e Each client has a 50-dimension vector ¥;. The client splits
the corresponding value in each dimension of its vector to 60
additive shares and the server sums all the shuffled shares. A
client’s shares across different dimensions are unlinkable.

e Constraint: The Ly norm of each client’s vector, i.e., || Xi||2, is
no more than 1000.

Secure Condorcet voting protocol. In Condorcet voting [52], each
client’s preference is a ranking list of candidates and a candidate is
chosen if it beats every other candidate in a pairwise comparison.
For example, if there are three candidates Alice, Bob, and Charlie, a
client’s preference can be Bob > Alice > Charlie. Then, if there are
five voters, where Bob is preferred over Alice from three voters and
is preferred over Charlie from four voters, Bob will be the winner.

e We implement a secure Condorcet voting protocol with 10
candidates and 1000 voters.

e Each voter has a secret ranking among the 10 candidates, rep-
resented as a permutation of 1 to 10.

e Givenaranking (cy, ..., ¢10), a voter will submit 45 comparison
pairs to the shuffler, i.e., {(c;, ¢j) }1<i<10,i<j<10, indicating that
it prefers c; over c;.

o Constraint: Each voter’s submitted pairs form a valid ranking.

7.2 Audit Phase Costs

We measure the computation and the communication cost for the
use cases and show the results in Table 1. For each task, we re-
peat the experiment five times and report the average results. The
amortized server time shows the server’s total computation time
amortized by the number of clients. Since the clients also need
to store the public parameters of the NIZK to generate the proof,
the public parameter size captures each client’s storage costs. The
per-client communication cost counts only the additional overhead
incurred by the audit, and does not include the overhead of sending
the original data items to the shuffler. Moreover, we also measure
the number of constraints needed for each task after we compile
the circuit to the R1CS constraint system. The constraint number
can be viewed as a proxy for the complexity of each task.

Communication cost. We observe that the per-client communica-
tion cost is dominated by the decoys used to mask the polynomial
evaluations, which is independent of the concrete use cases. There-
fore, the use cases have nearly the same communication cost when
the underlying proof systems are the same. Recall that each client

needs to send d = w (logk()+/—lt)) decoys to the shuffler, so given

more honest clients, the decoys sent to the shuffler per client are
less. To better demonstrate the communication cost, we plot the
communication overhead for our protocol in Fig 3 given different
honest client numbers and two different proof systems. The plot
shows the results from the Shuffle-DP summation use case. while
the other cases have nearly identical communication costs. With
our parameter setting, each client will not send more than 60 decoys
to the server. The client will also send one commitment, one field
element denoting the masked local polynomial evaluation and one
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—— Instantiated w/ Groth16
51 Instantiated w/ Plonk

Comm. Cost Per Client(KB)
w

102 103 10

Honest Client Num

Figure 3: Per-client communication overhead. The number
of corrupted clients is fixed to 500. The per-client commu-
nication decreases with a larger n since with more honest
clients, the client needs to send fewer decoy terms.

NIZK proof to the server. Therefore, given a wide range of client
numbers, the communication cost is no more than 6KB.

Client time. As shown in Table 1, the client time depends on the
concrete use cases, and the Groth16-based instantiation is faster
than the Plonk-based instantiation in general. We observe that
the proof generation time is the dominant factor of the clients’
computation time, and the more constraints it takes to describe the
compliance rule, the more time it takes for the client to generate
the proof. The constraint numbers for the histogram, voting and
Shuffle-DP sum use cases are around 1.6x10* to 3.6x10%, depending
on the proof systems. The per client time ranges from 0.2s to 0.5s.
The vector sum use cases have more constraints, around 10, and
the per client time is around 8.5s and 10.6s for the Groth16 and
Plonk instantiations, respectively.

Server time. The server computation is highly efficient - the
amortized computation time (the total server time divided by the
number of clients) is no more than 11ms for all use cases. This is
because verifying a proof in Groth16 or Plonk only takes 0, 1(1) time,
and the server only needs to evaluate the polynomial evaluation
besides the proof verification, which takes O (nm) time in total.

Storage cost. The public parameter size reflects the storage cost of
each client and also scale with the constraint number. The Groth16
system has smaller public parameters that are no more than 5MB
for the histogram, voting and shuffle-DP summation use cases, and
no more than 200MB for the vector summation. The Plonk system
has larger public parameters that are 10.8 - 22.5MB for the three
simpler cases and around 700MB for the vector sum use case.

Shuffle Cost. We did not report the shuffle cost in the tables since
different use cases could rely on different shuffler implementations
and the costs could vary. For example, an MPC-based shuffle proto-
col like Clarion [25] can shuffle 10° messages within 10 seconds,
which will be sufficient for our histogram use cases. A trusted-
hardware-based algorithm [10, 36] will be significantly more effi-
cient, taking less than one second to shuffle the same number of
messages.
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Use Case # Constraints Public Param Client Time Amortized Server Time Communication Per Client
Based on Groth16
Histogram 2.4 %104 4.0MB 0.2s 3.2ms 2.2KB
Voting 1.6 x 10% 2.4MB 0.2s 3.1ms 2.2KB
Shuffle-DP Sum 2.4 x 10% 4.2MB 0.2s 2.5ms 2.2KB
Vector Sum 9.9 x 10° 163.3MB 8.5s 3.7ms 2.2KB
Based on Plonk

Histogram 3.2 x 10* 22.5MB 0.5s 2.7ms 2.6KB
Voting 2.1x 10* 10.8MB 0.3s 3.0ms 2.6KB
Shuffle-DP Sum 3.6 X 10* 22.5MB 0.4s 2.7ms 2.6KB
Vector Sum 1.3 x 10° 721.4MB 10.6s 6.0ms 2.6KB

Table 1: The computation and memory costs of Conan protocol. “# Constraints” stands for number of constraints in the corresponding
constraint system after compiling the program with gnark [13]. “Client Time” denotes the average of the clients’ computation time. “Amortized
Server Time” denotes the amortized computation time that the server spends on each individual client.

Use Cases Compliance Commitment Consistency Total
Histogram 3540 2.0 x 10% 61 2.4 x 104
Voting 109 1.6 x 10* 46 1.6 x 10
DP Sum 4.0 x 10° 2.0 x 10* 61 2.4 x 10*
Vector Sum 2.0 x 10% 9.9 x 10° 3001 9.9x 10°

Table 2: Breakdown of the constraints required by each component
during the proof generation process for each task. The results are
based on the implementation with Groth16 proof system.

7.3 Blame Phase Costs

We also evaluate the extension of our protocol with identifiable
abort (see Appendix C in the full version [53]). for the Shuffle-DP
Sum use case. Specifically, we use Fgpue plus Private Information
Retrieval (PIR) for instantiating the enhanced ﬁ;ufﬂe functionality,
which works assuming a semi-honest server.

In summary, the per client time is 4.6s, the amortized server
time is 27.2ms, and the communication cost is 1.0MB. The costs
remain reasonable for the use case. We list the implementation and
evaluation details in Appendix D of the full version [53].
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A Proofs for the Semi-Honest-Server Setting

In this section, we provide the detailed proofs for our warmup pro-
tocol in Section 5, assuming a semi-honest server. The completeness
proof is straightforward, so we will focus on proving soundness
and anonymity.

A.1 Soundness Proof

Recall that earlier, we proved a key lemma (Lemma 5.6) which
captures the core statistical reasoning for proving soundness. The
full soundness proof needs to additionally make use of the security
of the cryptographic primitives, and we present the full proof below.

Theorem A.1 (Soundness). Suppose the field size |F| is superpoly-
nomial w.r.t. the security parameter A, the commitment scheme is
perfectly binding and the NIZK scheme satisfies soundness. Then, our
protocol satisfies soundness.

Proor. Before the random challenge is sampled, the server’s
view contains pp, Multiset(xy, ..., x,), Multiset(y1, ..., yn), and
{comi}c[n]- Except with the negligible probability that some un-
derlying NIZK instance’s soundness is broken, if the server passes
the verification, then for every i € [n], it must be that there exists
(xg, )/i,wi,p;) such that Ri(x;, wi) =1, commit(lA, (x;,plf); Yi) =
com;; and []je[pm) (xlf’j -r)-p;=z.

Henceforth, we ignore the negligibly small probability that the
NIZK’s soundness is broken, and assume that the above equations
hold. Since the commitment scheme is perfectly binding, the x} and
p; satisfying the above equations are already uniquely determined
given com;, which must be sent before seeing the random challenge
r — we need this because later, to apply Lemma 5.6, the challenge r
must be sampled independently of the x}s and p/s.

Now, if the server passes verification, it must be that

[ [

ic[n].je[m) i€[n],je[m]

a = l_[ pi, a:= 1_[

ic[n] ie[n],jeld]

(xjj=r)-a' = (xij—r)-a

where

Yi,j

Given that the field size is superpolynomial in A, and the server’s
check ensures that & # 0, due to Lemma 5.6, we conclude that except
with the negligibly small probability that a bad challenge r is sam-
pled, it must be that Multiset(x, ..., x,) = Multiset(x'l, coXD)
where (x’l, ...,X),) are uniquely determined by comy, ..., comp.
Because for any honest client i € H, x; = X;, it means that
Multiset({x;}iec) = Multiset({x}};cc), i.e., the corrupt clients’
purported data items in the audit phase must be equal to their
contributions in the data collection phase.
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Summarizing the above, except with negligible probability, if the
server did not reject outputting L, then there exists a partitioning
{X}}iec (which is uniquely determined by {com;};e¢) of the cor-
rupt clients’ contributions Multiset({x;};c¢), such that for every
corrupt client i € C, R;(x}, w;) = 1. ]

A.2 Anonymity Proof

Recall that there are three data-dependent components in the pro-
tocol that we need to handle: the NIZK proofs, the commitments,
and the masked partial products. From a high level view, our proof
goes first by replacing the honest clients’ NIZK proofs and com-
mitments with simulated ones. Then, the most challenging part is
to show that the joint distribution of the honest clients’ masked
partial polynomial evaluations and the shuffled decoy terms can be
simulated just by knowing the multiset of the honest clients’ data
items. We proved a key lemma (Lemma 5.4) that captures this core
statistical reasoning step in the proof. We provide the full proof
below.

Theorem A.2 (t-anonymity). Given a security parameter A, as-
log |Fl+log A
log(n—t)
Moreover, suppose that the NIZK scheme satisfies zero-knowledge,
and the commitment scheme is computationally hiding. Then, our
shuffle-model ZKP protocol satisfies t-anonymity in the presence of a
semi-honest server.

sume |F| is superpolynomial inA, n—t > 19,d > w (

ProoF. Let H be the set of at least n — ¢ honest users, and let C
be the set of corrupt clients.

Real-world experiment. The real-world experiment is the same as
the experiment Expt’™> (11) as defined in Section 3.3. Recall that we
assume that if the server is corrupted, it will still act honestly except
that the adversary can see the server’s view (including its internal
coins and messages sent and received). However, the corrupted
clients can act arbitrarily and in a way possibly dependent on the
server’s internal coins.

We can imagine that in the real-world experiment, there is a
challenger acting on behalf of the trusted setup and all honest
parties and interacting with adversary who controls the corrupted
parties. The challenger also implements the oracle Fgp, e for the
adversary.

Experiment Hyb,. Experiment Hyb, is otherwise identical to the
real-world experiment, except that

o Inside the Setup algorithm, for any honest user i € H, instead
of calling the real NIZK;.Gen algorithm for honest users, now
call the simulator of NIZK; to generate simulated common
reference strings and the trapdoors (crs;, ;).

e Whenever the experiment needs to compute a NIZK proof on
behalf of an honest user i € H, it calls the simulator of NIZK;
to generate a proof without using any witness.

Claim A.3. Suppose that the NIZK scheme satisfies zero-knowledge,
then the real-world experiment and Hyb, are computationally indis-
tinguishable.

Proor. We can prove this through sequence of hybrids, such
that one honest user at a time, we can replace its crs; and NIZK
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proof with simulated ones. Any pair of adjacent hybrids are com-
putationally indistinguishable through a straightforward reduction
to the zero-knowledge of the underlying NIZK. O

Experiment Hyb,. Hyb, is almost the same as Hyb, except that
when the experiment needs to compute com; on behalf of an the
honest client i € H, it now computes a commitment of 0 instead.

Claim A.4. Suppose that the commitment scheme is computationally
hiding, then Hyb, and Hyb, are computationally indistinguishable.

ProOF. We can prove this through sequence of hybrids, such
that one honest user at a time, we can replace its commitment
with a commitment of 0. Any pair of adjacent hybrids are computa-
tionally indistinguishable through a straightforward reduction to
the computational hiding property of the underlying commitment
scheme. O

Experiment Hyb;. Hybs is almost identical to Hyb, except that if
the challenge r sampled happens to be one of {x; j};c, je[m]> We
simply abort the current execution, and retry till we encounter a run
in which the random challenge r does not collide with {x; j }ic %, je[m]-

Claim A.5. Hybs and Hyb, have statistical distance at most (n —
t) - m/|F|.

Proor. The random challenge r is always sampled honestly
when the server is semi-honest. Therefore, the probability of retry-
ing is at most (n—t)-m/|F|. Thus, the claim follows by the definition
of statistical distance. O

Experiment Hyb,. Hyb, is almost identical as Hyb; except with
the following modifications.

o After the adversary chooses {xi j};ie#( je[m]> the experiment
reorders the terms {x; j };c#,je[m] in any arbitrary canonical
order (e.g., from small to large). The reordered set is now de-
noted {x; ;}ie 74 je[m]-

e Whenever the challenger needs to use x; ; to compute a re-
sponse to A, use xlf’ j instead.

Claim A.6. Supposen—1t >19,d > w (bﬁ)g‘%ﬁ) Then, Hyb,

and Hybs have negligibly small in A statistical distance.

ProOF. Recall that the NIZK proofs and commitments for honest
clients have been replaced with simulated proofs and commitments
of 0. Also, since the challenger simulates ¥, g for the adversary,
from what Fgume outputs to the adversary, effectively the adver-
sary can see the honest clients’ multisets Multiset({xlf’j YieH je[m])
and Multiset({y; j} ;e je[q])- By Lemma 5.4, Hyb; and Hyb, have

20+log, (|F|-1)
log, (n—t)—log, e + 2-"
This means that the statistical distance is negligibly small in A as
log |F|+log A
log(n—t) )

statistical distance at most 277 aslong asd > [

longastw( O

Last but not the least, observe that in Hyb,, to compute the adver-

sary’s view, the experiment only needs to know Multiset ({x j }ic 4, je[m])

and pp but not the honest clients’ witnesses. Therefore, the descrip-
tion of Hyb, uniquely defines a simulator Sim, such that Hyb, can
be equivalently viewed as the ideal experiment.

[m}
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