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DracoGPT: Extracting Visualization Design Preferences
from Large Language Models

Huichen Will Wang, Mitchell Gordon, Leilani Battle, and Jeffrey Heer

Abstract—Trained on vast corpora, Large Language Models (LLMs) have the potential to encode visualization design knowledge and
best practices. However, if they fail to do so, they might provide unreliable visualization recommendations. What visualization design
preferences, then, have LLMs learned? We contribute DracoGPT, a method for extracting, modeling, and assessing visualization design
preferences from LLMs. To assess varied tasks, we develop two pipelines—DracoGPT-Rank and DracoGPT-Recommend—to model
LLMs prompted to either rank or recommend visual encoding specifications. We use Draco as a shared knowledge base in which to
represent LLM design preferences and compare them to best practices from empirical research. We demonstrate that DracoGPT
can accurately model the preferences expressed by LLMs, enabling analysis in terms of Draco design constraints. Across a suite of
backing LLMs, we find that DracoGPT-Rank and DracoGPT-Recommend moderately agree with each other, but both substantially
diverge from guidelines drawn from human subjects experiments. Future work can build on our approach to expand Draco’s knowledge
base to model a richer set of preferences and to provide a robust and cost-effective stand-in for LLMs.

Index Terms—Visualization, Large Language Models, Visualization Recommendation, Graphical Perception

1 INTRODUCTION

Large language models (LLMs) have shown potential for visualization
tasks including captioning [10, 29], generation [22], and critique [12].
State-of-the-art LLMs are trained on vast corpora of texts or even im-
ages, which likely include a wide range of visualization discussions,
research papers, and code examples. Hence, LLMs might also encode
visualization design knowledge and best practices. What visualization
design preferences, then, have LLMs learned? As LLM recommen-
dations may influence people’s analysis and decision-making, poor
decisions could stem from suboptimal LLM visualization designs. To
the best of our knowledge, no work has yet proposed methods to sys-
tematically understand LLMs’ visualization design preferences, partly
due to the difficulties in eliciting and representing these preferences.

We contribute DracoGPT, a method for extracting, modeling, and
assessing visualization design preferences from LLMs. Using LLM
responses to generate training data, DracoGPT synthesizes comparable
Draco knowledge bases [24, 40] to model and assess LLM preferences.
The DracoGPT method may be applied across various LLMs, prompts,
and tasks in order to assess, compare, and reuse design preferences.
By comparing Draco knowledge bases fit to LLM responses to those
fit to human performance data, we can interrogate the extent to which
LLM preferences align with best practices from empirical visualization
research, and clarify how they diverge.

DracoGPT relies on Draco to represent visualizations as a set of
facts and constructs a knowledge base in terms of logical constraints
over encoding specifications, where each constraint corresponds to a
design choice. Design preferences are expressed as numerical weights
for soft constraints, which are learned from training data in the form of
visualization pairs in which one chart is preferred over the other. Prior
work [24, 42] learns Draco constraint weights using chart pairs from
experimental research, such that subsequent chart scoring and recom-
mendation adheres to empirically-derived visualization best practices.

To extract design preferences, we prompt LLMs using two tasks:
directly labeling chart pairs (rank) or synthesizing (recommend) new
charts that we can then contrast with alternatives. As an initial assess-
ment of task differences on expressed LLM preferences, we contribute
two pipelines: DracoGPT-Rank uses the discriminative task of selecting
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a preferred chart, while DracoGPT-Recommend uses the generative
task of the synthesizing chart completions from partial specifications.

We further conduct a case study with DracoGPT comparing LLM
ranking and recommendation preferences with human performance
data. We use experimental stimuli from Kim et al. [13], which in-
clude variations of three-variable scatterplot designs for both value
comparison and summary chart reading tasks, and test three LLMs
(GPT3.5-Turbo, GPT4, and GPT4-Turbo). We find that DracoGPT-
Rank and -Recommend are able to learn knowledge base configurations
whose preferences accurately match LLM judgments, allowing us to
analyze LLM preferences by comparing fitted Draco knowledge bases.

Draco chart costs derived from GPT4-Turbo rank and recommend
pipelines moderately correlate with each other, while both correlate
weakly with costs learned from Kim et al.’s results, thus diverging
from empirical performance data. More specifically, we observe that
GPT4-Turbo’s preferences moderately align with Kim et al.’s findings
for perceptual tasks involving the comparison of individual values, but
do not align for aggregate summary tasks. Meanwhile, GPT4-Turbo
expresses nearly identical preferences when recommending charts as
Vega-Lite JSON [26] or Vega-Altair code [33], exhibiting consistency
across these different (though highly similar) tools.

DracoGPT provides a method to systematically test how prompting
and chart representations affect LLM design preferences. It can readily
be applied to study other LLMs or preference elicitation methods. In
sum, our primary contributions are:

1. DracoGPT, a method for extracting, modeling, and assessing
visualization preferences from LLMs by eliciting training data
and learning design preferences in a Draco knowledge base. We
employ four strategies—examining training pairs, soft constraint
counts, soft constraint weights, and correlation of summed chart
costs—to analyze the preferences of fitted Draco models;

2. A case study using three LLMs and stimuli from Kim et al. [13],
demonstrating DracoGPT’s ability to accurately model LLM judg-
ments and enable comparison of preference models from both
LLMs and results of human subjects experiments.

2 RELATED WORK

2.1 Graphical Perception Knowledge in VizRec Systems
Creating a visualization entails various design decisions, each having
potentially significant implications how reader perceive and interpret
the visualization [1,6,13,28]. To simplify this process, researchers have
developed various visualization recommendation (VizRec) systems [45].
Though many such systems achieve the goal of automating visualization
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Fig. 1: Overview of the DracoGPT-Rank pipeline. (1) User provides prompt templates for an LLM to rank chart pairs; (2) Draco featurizes charts and
produces feature vectors consisting of constraint counts; (3) Draco learns constraint weights over LLM-labeled chart pairs by fitting a RankSVM
model; (4) The fitted Draco model can be applied to score charts. Results at each stage of the pipeline afford insight into LLM ranking preferences.

creation, there are no guarantees on how effective the recommended
charts are. In fact, existing systems severely under-utilize the literature
of graphical perception research, with no one system synthesizing
results from more than three graphical perception studies [41].

Synthesizing graphical perception literature into a VizRec system is
non-trivial. Traditional visualization recommendation approaches use
rule-based systems, machine learning [34], or a mix of both. Rule-based
systems [21,38] rely on the VizRec system designer authoring rules that
reflect best practices established in the literature. Thus, integrating new
graphical perception research often necessitates adding more rules, a
process that can be labor-intensive. Additionally, as the rule set expands,
ensuring seamless rule integration becomes increasingly challenging
given the possible interplay and contradictions between rules. Machine-
learning-based approaches (e.g., [9, 17, 44]), on the other hand, are
trained on curated datasets. These systems typically need training
data in various formats, ranging from chart pairs featuring a positive
example and a negative example [24] to dataset-visualization pairs [9,
17]. However, existing graphical perception papers rarely publish all
stimuli used or share stimuli in a format that can be readily utilized to
train machine-learning-based systems, limiting their uptake by VizRec
systems. Moreover, it is often challenging to assess how well the trained
models encode graphical perception principles, hence the necessity to
develop probes to extract visualization design preferences. In our case
study, we use stimuli from Kim et al. [13] to probe LLMs’ design
preferences, which cover a diverse range of visualization task types that
involve reasoning over both individual and aggregate summary values.

2.2 LLMs for Visualization
LLMs demonstrate impressive capabilities across many natural lan-
guage processing tasks [3] and have made inroads into data analy-
sis [4, 8, 16, 19, 23, 36]. The Internet-scale training data behind LLMs
presumably includes rich information on visualization. As such, many
researchers are exploring the potential of LLMs for visualization tasks.
For example, Tang et al. [29] and Huang et al. [10] explore caption
generation for visualizations with LLMs. Ko et al. [14] further demon-
strates the potential of LLMs in generating rich and diverse natural
language datasets for visualizations. Another vein of research harnesses
the power of LLMs in interpreting, storing, and summarizing informa-
tion to facilitate visualization reading [5, 43]. In addition to generating
text based on visualizations, LLMs also provide a convenient interface
for natural language to visualization (NL2VIS), outperforming baseline
methods across a suite of benchmarks [15, 18, 30, 32, 39].

While previous work has explored using LLMs to generate visu-
alizations, no studies have yet proposed methods to understand the
visualization design preferences of LLMs. Most similar to our work is
a study comparing LLMs to humans for answering visualization-related
questions [12]. The authors compiled a dataset of 119 visualization
design questions for both humans and LLMs to answer. Through qual-
itative coding, they discovered that ChatGPT’s responses were better

in terms of breadth, clarity, and coverage. Nonetheless, this approach
does not characterize specific design preferences expressed by Chat-
GPT, nor does it compare how ChatGPT’s preferences diverge from
best practices. Our work provides an automated and scalable solution
to this problem, quantitatively models LLM visualization design pref-
erences for different tasks, and allows for direct comparison of design
preferences across sources (i.e., different LLMs and empirical results).

3 EXTRACTING DESIGN PREFERENCES WITH DRACOGPT

In this section, we provide an overview of Draco and how the DracoGPT
method extracts, models, and assesses visualization design preferences
of LLMs across two tasks: ranking and recommending visualizations.

3.1 Overview of Draco

We model visualization design preferences in the context of Draco [24,
40], a reasoning and recommendation system based on logic program-
ming methods. The fundamental building blocks of visualization rep-
resentation in Draco are chart facts, which capture properties of the
visualized data and the visualization specification. For instance, “a mark
in the visualization uses the x channel” is a fact Draco can encode. To
model the complex visualization design space, Draco composes lower-
level facts into logical statements, subject to logical constraints. Collec-
tively, these constraints constitute Draco’s knowledge base, which is the
set of rules and guidelines it uses to validate and evaluate visualizations.
Draco’s knowledge base contains both hard and soft constraints. Hard
constraints, such as “line or area marks require both x and y channels”,
must be respected to avoid ill-formed or non-expressive charts. Soft
constraints, on the other hand, include a numerical weight to represent
design preferences in terms of cost trade-offs: soft constraints incur a
penalty (positive weight) or reward (negative weight) when satisfied.

Draco then treats visualization recommendation as a constrained
optimization problem, searching and ranking a space of feasible charts.
The cost (or score) of a chart in Draco is the sum of the weights of
all satisfied soft constraints. For example, linear_color (use of
a linear color scale) and ordinal_size (use of an ordinal size
scale) are two soft constraints that Draco might consider. Given a
query in the form of a partial chart specification, i.e., some facts about
the visualization, Draco enumerates a design space to find complete
specifications that minimize these summed weights, which it then
renders using visualization tools like Vega-Lite.

To learn constraint weights from data and thereby create a new Draco
instance, one provides a dataset of annotated chart pairs, with a positive
example deemed a “better” design than a negative example. For each
chart, Draco counts how many times each soft constraint is satisfied,
representing each chart as a feature vector of these soft constraint
counts (i.e., one dimension per soft constraint). Draco then trains
a linear RankSVM model to distinguish the vectors for the positive
examples from those of the negative examples. The learned RankSVM
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model parameters are then the fitted Draco soft constraint weights that
best discriminate positive from negative examples.

3.2 Two Visualization Tasks: Rank and Recommend
Consider two tasks: ranking visualizations according to their effective-
ness (e.g., as measured by affordance for reading speed and accuracy)
and recommending a full visualization specification given a partial
specification. The ranking task is discriminative, requiring a preference
judgment over a fixed set of options. The recommendation task is
generative, and requires synthesizing new candidate charts. Both tasks
involve design preferences, are relevant to visualization creators, and
central to many VizRec systems [41, 42].

Draco, for instance, can perform both of these tasks. Given an input
visualization, it can compute a total cost for it by tallying the weights
of all satisfied constraints. As such, ranking two visualizations reduces
to comparing their costs. When recommending a visualization given
a partial specification, Draco enumerates possible completions and
draws on the same knowledge base to score them to determine top
recommendations. Thus, Draco is an example of a consistent system,
one that applies the same set of visualization design preferences when
ranking and recommending. If a VizRec system encodes design best
practices, then consistency is a desirable property, since it guarantees
that shared best practices are observed across tasks.

Draco operates on a linear RankSVM model with about 150 pa-
rameters, while state-of-the-art LLMs possess billions of parameters
and perform stochastic decoding [2, 31]. While we can prompt LLMs
to serve as visualization rankers and recommenders, they may not
be consistent. Across the spectrum of visualization tasks LLMs can
perform, differents tasks might elicit different conditional probability
distributions, resulting in varied design preferences.

In response, we develop two complementary pipelines to initially test
such sensitivities: DracoGPT-Rank, for modeling design preferences
when LLMs discriminatively rank charts, and DracoGPT-Recommend,
for modeling preferences when they generatively recommend charts.
Using Draco as a common knowledge base, we can systematically
probe and compare visualization design preferences demonstrated by
LLMs across tasks, as well as best practices from empirical research.
We now present each pipeline in detail.

3.3 DracoGPT-Rank: Extracting LLM Design Preferences
when Ranking Charts

In order to train DracoGPT-Rank, we need to prepare a dataset of chart
pairs. In practice, such a dataset is typically collected from the litera-
ture and the labels are derived using theoretical analyses or empirical
results [42]. In order to extract visualization design preferences from
LLMs when they are ranking charts, we can provide chart pairs without
labels and instruct an LLM to select the “better” design. As such, an
existing corpus of chart pairs can be used to generate training data and
fit new Draco models, as illustrated in Figure 1. The chart pairs to
be fed to LLMs can be specified in any format (e.g., Vega-Lite [26],
ggplot2 [37], or—in the case of multimodal models—potentially even
bitmap images), so long as they can be recognized by the LLMs and
transformed into a logical representation compatible with Draco.

A potential complication is that LLMs are sensitive to positional bias.
For example, LLMs often favor the first and last choices when answer-
ing multiple choice questions [25]. This sensitivity to the ordering of
items is similarly observed when employing LLMs as recommendation
systems [20]. To mitigate positional bias, the pipeline shuffles the order
within each chart pair and separately prompts models to rank either
arrangement. If the rankings conflict between two orderings of the same
chart pair, the pipeline excludes the pair from the training data, as the
inability to consistently determine rankings likely suggests that noise
(positional bias) dominates signal (visualization design preferences).

This process leads to a dataset to train DracoGPT-Rank. At this point,
we can analyze the design preferences of LLMs by comparing the de-
sign choices in positive and negative charts. Our pipeline further splits
this dataset into training and test sets and performs cross-validation to
identify optimal hyperparameters. Then, it trains a DracoGPT-Rank
model on the entire training set and assesses accuracy on the test set,

which allows an unbiased evaluation of how well DracoGPT-Rank fits
to LLM-provided labels. If this accuracy is reasonably high, we have
some assurance that the fitted DracoGPT-Rank instance models the
LLM’s preferences well. We can then use the optimal hyperparameters
identified in cross-validation to train on the entire dataset and analyze
the resulting DracoGPT-Rank model, such as by comparing the number
of times each constraint is satisfied in positive and negative charts and
by inspecting the weights for each constraint (§4.6).

3.4 DracoGPT-Recommend: Extracting LLM Design Prefer-
ences when Recommending Charts

Visualization recommendation is arguably more widely undertaken
with LLMs than ranking. Users can specify to LLMs what data they
want to visualize and (optionally) note additional design details they
want the recommendations to respect. To produce training data that
captures LLM recommendation preferences, one strategy is to generate
partial specifications of visualizations from scratch and ask for optimal
completions from LLMs, which then serve as positive examples in chart
pairs. Partial specifications can be in any format, so long as they can be
productively processed by the LLM. Similarly, completions can be in
any reasonable visualization specification format, provided they can be
mapped to Draco’s logical format. We show how Vega-Lite and Vega-
Altair can be transformed into Draco’s chart representation Domain
Specific Language (DSL) in our case study in §5. To construct negative
examples, one method is to sample valid completions of the partial
specification that differ from the LLM’s recommendation. Since we
request optimal completions from the LLM, any alternative completion
is implicitly deemed inferior by the LLM.

Alternatively, we can use existing chart pairs to generate training
data for DracoGPT-Recommend, as shown in Figure 2. Given a chart
pair, we can programmatically extract the common parts of their speci-
fications. Then, we can prompt an LLM to provide completions, which
act as positive examples. Since both charts in the original chart pair are
valid completions of the common parts of their specifications, they can
both serve as negative examples if they differ from the LLM’s provided
completion. Once the training set is constructed, we can train and ana-
lyze DracoGPT-Recommend in the same manner as DracoGPT-Rank.

4 CASE STUDY USING DRACOGPT-RANK

To showcase the DracoGPT approach and perform an initial analysis of
LLM-expressed design preferences, we present a case study using a cor-
pus of charts developed as experimental stimuli by Kim et al. [13]. We
begin by training and analyzing DracoGPT-Rank models to understand
LLM ranking preferences and compare them to empirical findings.

4.1 Dataset
Despite covering only one chart type (scatterplots), our choice of dataset
includes a variety of encodings and backing data variables, is compati-
ble with both Draco and Vega-Lite, and provides human performance
data that can serve as a baseline for comparison. Kim et al. [13] exper-
imentally assessed the effects of visual encoding channels, task type,
and data distributions on the effectiveness of data visualizations. Their
visual stimuli each depict three data variables—one categorical (n)
and two quantitative (q1 and q2)—and employ a total of 12 encod-
ing specifications that include x, y, color, size, and row (faceting)
channels. Using these 12 designs, they varied the data distribution (i.e.,
the number of data points, cardinality of the categorical variable, and
entropies of the quantitative variables). They then conducted crowd-
sourced experiments measuring participants’ performance in terms of
reading speed and accuracy across two task categories: value tasks
(reading or comparing individual visual marks) and summary tasks
(identifying or comparing aggregate properties of visual marks). For
value tasks, participants answered questions about q1; in summary
tasks, they answered questions about q1 and n. These variables are
referred to as “variables of interest”.

To train a Draco knowledge base, Moritz et al. [24] constructed 1,152
chart pairs from Kim et al.’s stimuli by identifying all visualization
pairs that depict the same data and correspond to statistically significant
differences in reading speed or accuracy. The charts associated with
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Fig. 2: Overview of the DracoGPT-Recommend chart pair construction pipeline. (1) Given an input chart pair, the pipeline extracts their shared partial
specification, then (2) prompts an LLM to “optimally” complete the partial specification. (3) The pipeline constructs up to two new chart pairs for
training a Draco model: the LLM completion is labeled as the positive example and an input chart as the negative example.

better performance are labeled as positive examples. As outlined in
§3.3, for DracoGPT-Rank we permute the order within each of the 1,152
chart pairs, resulting in 2,304 chart pairs to be passed to LLMs. Using
this dataset as a probe, we investigate how LLM ranking preferences
compare with Kim et al.’s experimental results.

4.2 Chart Specification
Charts are represented in Draco as a set of logical facts—including facts
about the data depicted and the visualization design—using Answer Set
Programming (ASP) syntax. One drawback of the ASP representation
is its limited readability. In our LLM prompts we transform these
facts into Draco’s dictionary format, which is as expressive as the
ASP specification and closely resembles Vega-Lite. For instance, the
following snippet, here in YAML format, indicates a (potentially partial)
visualization specification in which the data field q1 is encoded in the
x channel using a linear scale that includes a zero baseline.
view:
- mark:
- type: point
encoding:
- { channel: x, field: q1 }

- scale:
- { channel: x, type: linear, zero: true }

4.3 Experiment Setup
We conduct experiments with three LLMs from OpenAI: GPT-4-0125-
preview (hereafter GPT4-Turbo), GPT-4-0613 (hereafter GPT4), and
GPT-3.5-Turbo-0125 (hereafter GPT-3.5-Turbo) to demonstrate that our
approach is applicable across models. We select these models because
they are popular, state-of-the-art LLMs at the time of writing. In order
to elicit stable visualization design preferences, we set the decoding
temperature to zero to ensure minimal stochasticity. To train DracoGPT-
Rank, we partition the dataset, allocating 80% for training and the
remaining 20% for testing. Furthermore, we employ 5-fold cross-
validation to conduct a grid search, aimed at identifying an optimal
regularization parameter.

4.4 Prompts
Our LLM prompts introduce the ranking task, describe fields in a chart
specification, and outline the expected format for the response. The
prompts specifically indicate to rank charts for either a value compari-
son or summary task, following the logic of Kim et al. We designed
our prompts to be relatively simple, incorporating only the essential
information required for the tasks and abstaining from other strategies,
such as Chain of Thought prompting [35]. To provide appropriate con-
text, our prompts include guidance to “rely upon visualization design
best practices and graphical perception research to rank visualizations.”
In early pilot experiments, including this instruction appeared to mean-
ingfully affect the results. We performed initial experiments using
several chart pairs to ensure a high degree of instruction following. The
supplemental materials include an example ranking prompt.

Although we acknowledge that subtle changes to textual prompts can
sometimes lead to different LLM responses, we believe our prompts to
be a reasonable starting point for demonstrating the DracoGPT pipeline
and eliciting implicit design preferences from LLMs. Leveraging our
pipeline, future work can further investigate the effects of prompting
strategies on the expressed design preferences.

4.5 Fitted Draco Models

For each chart pair, we check the consistency of LLM responses across
the two presentation orders. As we pass chart pairs in two orders,
inconsistent responses for a chart pair are either both “Chart 1” or
both “Chart 2”. As shown in Table 1, of the three LLMs tested, GPT4-
Turbo shows the lowest percentage of inconsistent responses at 23.09%,
followed by GPT4 at 28.56%. For GPT3.5-Turbo, the vast majority
(72.48%) of its responses are conflicting. We observe that even state-of-
the-art LLMs often fail to provide consistent answers to the same
ranking question. We further examine the distribution of choices
for the inconsistent responses. As shown in Table 2, over 90% of
the inconsistent responses are “Chart 1” for GPT4 and GPT3.5-Turbo,
signifying a strong positional bias for the first choice. This tendency is
weaker in GPT4-Turbo, which selects “Chart 2” 62.40% of the time.
One possible explanation for inconsistent LLM responses across chart
pair orders is that when both charts in a pair are evaluated roughly
equally by the LLM, the response is driven by other, non-design-related
biases such as a positional bias.

We use only the consistently labeled chart pairs to train DracoGPT-
Rank (i.e., the data in the first two columns of Table 1). Of all chart
pairs, 63.54% of GPT4-Turbo responses, 56.51% of GPT4 responses,
and a meager 9.98% of GPT3.5-Turbo responses match the labels of
the Kim et al. data. This initial result already indicates that LLM chart
rankings diverge from experimental results.

We train DracoGPT-Rank models for each LLM. To compare LLM
preferences against empirically established best practices, for each
DracoGPT-Rank model we train an instance of Draco on the same
data subset (consistent pairs only), but using the labels from Kim et
al.’s experimental results. In addition, we train an instance of Draco
on the full dataset from Kim et al. Table 3 shows the average 5-fold
cross-validation (CV) accuracy and test set accuracy for these seven
models. All Draco instances fit their chart pair labels well, with test
set accuracy well above 90%. These high accuracies confirm that our
DracoGPT-Rank instances model the design preferences of their
source LLMs well. Therefore, we proceed to investigate LLM design
preferences by probing these DracoGPT-Rank models.

Interestingly, all DracoGPT-Rank models achieve higher test set
accuracy than Draco models trained on the same pairs with labels from
Kim et al. As Draco uses linear RankSVM to distinguish between
positive and negative examples, this result indicates that, relative to
Draco’s knowledge base, the LLM ranking outputs are more linearly
separable than Kim et al.’s experimental data. In other words, LLM
design preferences may be more accurately modeled as Draco soft
constraint weights than those synthesized from empirical studies.
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Agree with Disagree with Inconsistent
Kim et al. Kim et al. Responses

GPT4-Turbo 63.54% 13.37% 23.09%
GPT4 56.51% 14.93% 28.56%
GPT3.5-Turbo 9.98% 17.53% 72.48%

Table 1: Percentages of LLM rankings that agree or disagree with Kim et
al.’s data [13], or are self-conflicting across the two pair orders. Pairs
with inconsistent LLM responses are excluded from the training data.

Both “Chart 1” Both “Chart 2”

GPT4-Turbo 37.59% 62.40%
GPT4 92.71% 7.29%
GPT3.5-Turbo 96.53% 3.47%

Table 2: Breakdown of inconsistent responses, as the percentages of
LLM choices that are both “Chart 1” or both “Chart 2”. GPT4 and
GPT3.5-Turbo exhibit strong positional biases in favor of the first option.

Average CV Test Set
Accuracy Accuracy

GPT4-Turbo Rank 98.87% 99.44%
Kim et al. Data (GPT4-Turbo Subset) 94.77% 96.07%

GPT4 Rank 99.39% 99.39%
Kim et al. Data (GPT4 Subset) 95.44% 94.55%

GPT3.5-Turbo Rank 97.64% 96.88%
Kim et al. Data (GPT3.5-Turbo Subset) 89.33% 95.31%

Kim et al. Data (Full) 93.81% 93.94%

Table 3: Average cross-validation and test accuracies for the three
instances of DracoGPT-Rank and four instances of Draco trained on
experimental human performance data from Kim et al.

4.6 Design Preferences in DracoGPT-Rank

We next analyze LLM preferences modeled by DracoGPT-Rank and
compare them against results from Kim et al. For clarity, we focus
on Draco instances fit to GPT4-Turbo responses, as GPT4-Turbo is
OpenAI’s most recent state-of-the-art LLM at the time of writing and
exhibits the highest test set accuracy. We first examine chart pairs
for which an LLM provides consistent responses and investigate what
encoding specifications are preferred by LLMs. We then take a closer
look at how LLM preferences and Kim et al. results diverge in terms of
soft constraint counts. Finally, we examine the weights associated with
soft constraints in the fitted DracoGPT model.

4.6.1 LLMs’ Preferred Encoding Choices

Selecting the appropriate encoding channel for each field is a critical
design choice in the creation of visualizations. We examine chart
pairs for which GPT4-Turbo provides consistent responses and count
how often each encoding specification is labeled as positive or negative
according to GPT4-Turbo and Kim et al. Figure 3 shows the distribution
of these examples by encodings and task type (summary or value).

Figure 3 reveals that GPT4-Turbo generally prefers positional encod-
ings for the most important quantitative variable, q1. For instance, it
strongly favors q1:y q2:x n:row (encoding q1with y, q2with x, and
encoding n with row), q1:y q2:size n:x, q1:y q2:color n:x,
and q1:x q2:y n:row for both task types. In contrast, the model
tends to rate designs using non-positional encodings for q1 as negative
examples. These encoding preferences largely align with Kim et al.
and common visualization design best practices.

While the training sets for GPT4-Turbo and Kim et al. follow sim-
ilar distributions for the value tasks, there are notable divergences,
especially concerning the use of color and size, for summary tasks.
Furthermore, GPT4-Turbo displays more “clear-cut” preferences
than Kim et al.’s data, in that there are more encoding designs that it
rates as positive or negative across the board relative to Kim et al. This
more pronounced preference may contribute to the better linear fits of
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Fig. 3: Distribution of positive and negative examples by encoding speci-
fication and interpretation task type for Kim et al. and GPT4-Turbo. Only
chart pairs for which GPT4-Turbo provides consistent responses are
included. These training sets have similar distributions for value tasks,
but notably diverge across summary tasks.

LLM-provided labels than those from Kim et al.

4.6.2 Analyzing DracoGPT-Rank Soft Constraint Counts

Many soft constraints in Draco correspond to design choices in vi-
sualizations. For instance, linear_color represents the use of a
linear color scale, while summary_facet indicates the application of
faceting in a chart designed for summary tasks.1 By analyzing how
often each soft constraint is employed by positive examples versus
negative examples, we can begin to map design preferences in terms of
concrete visualization design decisions.

Figure 4(A) plots the frequency with which soft constraints are
satisfied in positive versus negative examples from pairs for which
GPT4-Turbo’s responses are consistent but differ from results in Kim et
al. We see, for instance, that compared with Kim et al.’s results, GPT4-
Turbo is more inclined to label charts negative if they have an ordinal y
scale and a size encoding for the variable of interest, while preferring
positive labels for charts with a linear y axis and an x encoding for the
variable of interest. Furthermore, Figure 4(A) shows strong differences
around the y axis scale type and the encoding channel for the variable of
interest. These results hint that GPT4-Turbo’s ranking decisions may
be dominated by a few design choices, which we confirm in §4.6.3.

4.6.3 Analyzing DracoGPT-Rank Weights

To rank charts, Draco computes the total cost of each chart by summing
the weights of all satisfied soft constraints. Thus, the weights associated
with soft constraints collectively dictate Draco’s design preferences.
Charts with lower total costs are deemed more favorable, making it
preferable to satisfy soft constraints with lower weights. Specifically,

1Complete descriptions for each Draco soft constraint are available at https:
//github.com/cmudig/draco2/blob/main/draco/asp/soft.lp.
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(A) (B)

Fig. 4: (A) The number of times each constraint is satisfied in chart pairs where GPT4-Turbo labels disagree with Kim et al. By analyzing where
constraint counts diverge, we see, for example, that GPT4-Turbo is more likely to label a chart negative if it uses a size channel (linear_size,
interesting_size) or an ordinal_y scale. (B) Constraint weights in the fitted models for Kim et al. results (blue) and DracoGPT-Rank (gold). The
weights listed last exhibit opposite signs, indicating model differences. By analyzing where constraint weights diverge, we see, for example, that the
models strongly disagree on the use of a continuous size encoding for summary tasks (summary_continuous_size).

negative weights can be considered rewards as they decrease the total
cost, while positive weights act as penalties.

After fitting Draco(GPT) models, we observe that most of the
weights in both models are zero, indicating the models do not have
preferences for these design choices. This finding echoes Zeng et
al. [42], who also find many zero weights when training Draco instances
on chart pairs drawn from graphical perception studies. Figure 4(B)
compares the weights of DracoGPT-Rank with Draco trained on the
Kim et al. results. Given the large number of constraints with opposite
signs in the two models (constraints in the lower half of the chart), we
further confirm that GPT4-Turbo ranking preferences materially
differ from Kim et al.’s results. For instance, while GPT4-Turbo
strongly penalizes a continuous size encoding for summary tasks
(summary_continuous_size), Kim et al. heavily rewards it.

In §4.6.2, we noted the possibility of a few design decisions, espe-
cially the y axis type and the encoding choice for the variable of inter-
est, significantly swaying GPT4-Turbo’s ranking results. Our weight
analysis corroborates this observation: DracoGPT-Rank tends to have
more extreme weights than Kim et al., such as for interesting_x,
interesting_size, and ordinal_y, encouraging Draco to fixate on
a few dominant design choices. In other words, compared with experi-
mental results, GPT4-Turbo may focus on a few design choices while
failing to attribute appropriate importance to other choices.

While Draco enables examination of design preferences in the form
of soft constraint weights, we caution against interpreting individual
weights out of context. Even though a design element might be pre-
ferred over another in isolation, full chart designs often involve bal-
ancing additional trade-offs. All things being equal, DracoGPT-Rank
prefers an ordinal x scale to a linear one and a linear y scale to an
ordinal one. However, Figure 5 provides an example where DracoGPT-
Rank considers the chart with linear x and ordinal y scale superior to
one with an ordinal x and linear y scale. In this case DracoGPT-Rank
has an even stronger preference for encoding the variable of interest
q1 with x rather than color, and for using a continuous x scale over
a continuous color scale for value tasks. This example highlights
the importance of evaluating design preferences at the chart level, not
just individual weights. In §5.4.3 we further analyze total chart costs,
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Fig. 5: A chart pair demonstrating constraint weight trade-offs. Despite
higher weights for a linear x scale (weight = 0.469) and ordinal y scale
(weight = 0.721), GPT4-Turbo prefers the chart on the left. This chart
obtains a lower cost because DracoGPT-Rank has a stronger prefer-
ence for encoding the variable of interest q1 with the x channel (weight
= -1.964) and a continuous x scale (weight = -1.055) for value tasks.
Therefore, it is important to evaluate design preferences at the chart level
to complement weight-level analysis.

comparing across models for both rank and recommend tasks.

5 CASE STUDY USING DRACOGPT-RECOMMEND

We now extend our case study to include DracoGPT-Recommend,
with a focus on examining LLM design preferences for visualization
recommendation tasks and comparing them to both LLM ranking pref-
erences and empirical findings. As different tool communities may
have different examples and conventions, it is possible that LLMs may
exhibit tool-specific design preferences. We assess the feasibility of
using DracoGPT to gauge such preferences by fitting recommendation
models based on either Vega-Lite JSON or Vega-Altair Python code.

5.1 Experiment Setup
We begin with the same dataset of chart pairs from Kim et al. For every
pair in the dataset, we extract all common parts of the charts to form a
partial specification. As both charts in a pair depict the same data, data
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facts are always preserved. Any additional commonalities in design,
such as encoding channels for variables or scale types, are included in
the partial specification. This process yields 1,152 partial specifications,
which we represent using Draco’s dictionary format (§4.2).

Next, we request optimal completions for partial specifications in
two formats, Vega-Lite and Vega-Altair [33], which allows us to inves-
tigate whether LLM preferences vary based on the format of the output
visualization specification. For all completions generated by LLMs, the
pipeline discards those that are invalid due to syntactical errors or that
contravene the partial specification. Each valid completion serves as
the positive example in a chart pair, while charts in the original chart
pair serve as negative examples. Thus, for each LLM recommendation,
we can construct up to two chart pairs. The pipeline omits output
pairs where the LLM-produced chart matches the original (ostensibly
negative example) chart. We use the same LLMs and train-test setup as
with DracoGPT-Rank.

5.2 Prompts
Our Recommend prompts follow a similar structure as our Rank
prompts. The supplemental materials include an example recommen-
dation prompt that requests a Vega-Lite completion of a partial spec-
ification in support of a value comparison task. We again conducted
experiments to ensure instruction following before finalizing prompts.

5.3 Fitted Draco Models
We developed a script to map Vega-Lite and Vega-Altair charts
to Draco’s chart representation DSL for this case study. We
first validate the LLM-generated Vega-Lite specifications using
altair.Chart.from_dict() and the Vega-Altair specifications us-
ing altair.Chart.to_json(). We include custom checks to ensure
all requirements in the prompt are met, such as verifying that the charts
encode all three variables. Table 4 shows the proportions of valid
completions of partial specifications in Vega-Lite and Vega-Altair by
the three LLMs tested. Notably, GPT4-Turbo generates the highest
proportion of valid completions in both formats with well over 90%
validity rates. Conversely, GPT3.5-Turbo struggles to provide valid
completions for both formats, generating valid Vega-Lite completions
only 19.10% of the time and failing to produce any valid Vega-Altair
completions. Despite being explicitly prompted for Vega-Altair code,
GPT3.5-Turbo persistently outputs Vega-Lite syntax. Common issues
leading to invalid completions include syntactically incorrect code (e.g.,
including a “zero” field for the scale definition of an encoding channel
for a categorical variable), violating partial specifications, and failing
to encode certain variables.

We use LLM completions as positive examples and charts from the
Kim et al. datasets as negative examples to construct chart pairs and
remove pairs where the positive example is the same as the negative
example. Table 5 shows the proportion of chart pairs removed for each
of the training sets. In all cases, the vast majority of pairs are retained.

Table 6 shows the accuracies of the five DracoGPT-Recommend
models. Overall, average cross-validation accuracies and test accuracies
are high, indicating that DracoGPT-Recommend instances fit the
design preferences expressed by their source LLMs well.

5.4 Design Preferences in DracoGPT-Recommend
We now expand our analysis of LLM design preferences to include
DracoGPT-Recommend. We apply the same strategies used to analyze
DracoGPT-Rank results, again focusing on models fit to GPT4-Turbo
responses given its superior performance. We first inspect the encoding
specification choices recommended by GPT4-Turbo. We then ana-
lyze soft constraint weights and compare DracoGPT-Rank, DracoGPT-
Recommend, and Kim et al. results. Finally, we examine total chart
costs to quantify the extent to which Kim et al. results, GPT4-Turbo’s
ranking preferences, and recommendation preferences align.

5.4.1 LLMs’ Preferred Encoding Choices
Figure 6 plots the distribution of encoding choices used by positive
examples (GPT4-Turbo completions) and negative examples (charts
from Kim et al.). Both the Vega-Lite and Vega-Altair completions

Vega-Lite Valid Vega-Altair Valid
Completion Rate Completion Rate

GPT4-Turbo 92.80% 95.23%
GPT4 88.72% 84.55%
GPT3.5-Turbo 19.10% 0.00%

Table 4: The percentages of valid completions of partial specifications in
Vega-Lite and Vega-Altair by GPT4-Turbo, GPT4, and GPT3.5-Turbo.

Proportion of Pairs Proportion of Pairs
Removed (Vega-Lite) Removed (Vega-Altair)

GPT4-Turbo 22.17% 22.97%
GPT4 22.70% 23.20%
GPT3.5-Turbo 10.68% N/A

Table 5: The percentages of chart pairs removed because the positive
and negative examples are the same. In these cases, LLMs generate a
chart that matches the original positive example from Kim et al.
GPT3.5-Turbo does not produce any valid Vega-Altair completions.

Chart Average CV Test
Format Accuracy Accuracy

GPT4-Turbo Vega-Lite 97.67% 96.70%
GPT4 Vega-Lite 99.29% 100.00%
GPT3.5-Turbo Vega-Lite 97.14% 96.20%
GPT4-Turbo Altair 98.15% 97.34%
GPT4 Altair 97.99% 98.67%

Table 6: Average cross-validation accuracies and test set accuracies for
five DracoGPT-Recommend models. We measure the degree to which
the DracoGPT instances’ ranking judgments agree with the training data.

produced by GPT4-Turbo largely follow the same distribution across
different encoding choices, indicating a high level of agreement
in design preferences across output formats in this case. Notably,
q1:x q2:y n:color is the most common choice by GPT4-Turbo. In
contrast, encoding q1, the variable of interest, with color or size
is quite rare, which aligns with its ranking preferences established in
§4.6.1. Interestingly, GPT4-Turbo uniquely generates a few recom-
mendations that do not exhaust positional channels before using other
channels, such as q1:x q2:color n:shape, which are generally con-
sidered less effective designs [7]. These examples point to potential
variance in LLM-generated visualization recommendations.

5.4.2 Analyzing DracoGPT-Recommend Weights

After training DracoGPT-Recommend, we can again analyze soft con-
straint counts and weights to examine fine-grained design preferences.
Here, we illustrate what the weights reveal about design preferences
encoded by DracoGPT-Rank and DracoGPT-Recommend. Figure 7
depicts the constraint weights for Draco instances fit to Vega-Lite rec-
ommendations, Altair recommendations, and our earlier rank labels
(from §4.6.3). Figure 7 shows that some constraints have non-zero
weights for Recommend Vega-Lite, but weights of zero for the other
two models. The Vega-Lite visualizations generated by GPT4-Turbo
cover a wider design space and satisfy a wider set of constraints than
the charts from Kim et al. or GPT4-Turbo Altair recommendations. In
such cases, the weights for these constraints may be treated skeptically,
due to the lack of design space coverage of negative examples. Among
the 1,069 valid recommendations by GPT4-Turbo, only ten utilize the
shape channel yet all shape-related constraints are linked to rewards.
As none of Kim et al.’s charts use a shape encoding, there are no
potentially offsetting negative examples.

Judging by the quantity of constraints with different signs, it becomes
evident that GPT4-Turbo’s design preferences for recommendation,
across both output formats, align more closely with each other
than with GPT4-Turbo’s design preferences for ranking. The only
divergence between the Recommend Vega-Lite and Recommend Altair
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Fig. 6: Distribution of positive and negative examples by encoding spec-
ification and interpretation task type for DracoGPT-Recommend chart
pairs, using GPT4-Turbo to produce either Vega-Lite or Altair code. The
similarity in these training sets indicate that encoding preferences are
strongly aligned across these chart formats for GPT4-Turbo.

models is in whether an ordinal y scale is preferable. Meanwhile, both
of these models disagree with DracoGPT-Rank on 15 design choices.
For example, we see that when ranking, GPT4-Turbo favors faceting,
but penalizes it in a recommendation context. This divergence stems
from the fact that GPT4-Turbo generally labels faceted charts positive,
but rarely generates them when prompted for recommendations.

5.4.3 Assessing Alignment via Chart Cost Correlations

As discussed in §4.6.3, design choices do not exist in a vacuum. A good
design element in one chart may be undesirable in another. Therefore,
it is helpful to complement constraint-level analysis with chart-level
analysis to account for interactions among design choices. Given an
input chart, Draco computes a total cost by summing the weights of all
satisfied constraints: the lower the cost, the more preferable the chart.
As two Draco instances with similar design preferences should produce
similar patterns of costs over a collection of charts, the product-moment
correlation among costs can serve as a measure of model alignment.

Accordingly, we extract all distinct chart stimuli from Kim et al. and
compare their costs as evaluated by various Draco instances. We con-
sider two charts distinct if their feature vectors (soft constraint satis-
factions) differ. The Kim et al. stimuli consist of 524 different charts,
which map to 48 distinct feature vectors. Many charts use the same
visual specification for different input data; however, the data features
(such as coarsely-binned entropy values) may map to the same Draco
representations. Thus we avoid double counting charts with identical
designs with data sampled from similar distributions, which would
unduly affect measured correlation strengths.

Figure 8(A) presents the costs according to GPT4-Turbo Rank and
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Fig. 7: Constraint weights in the fitted GPT4-Turbo DracoGPT models
for Rank, Recommend Vega-Lite, and Recommend Altair. The weights
indicate highly aligned recommendation preferences for Vega-Lite and
Altair, while both differ from ranking preferences.

Kim et al.’s experimental results, conditioned on perceptual (sum-
mary vs. value) task, while Figure 8(B) shows the costs according to
GPT4-Turbo Recommend Vega-Lite and the Kim et al. results, again
conditioned on task. Pooling across perceptual tasks, the costs from a
Draco model fit to Kim et al. results have a weak positive correlation
with both DracoGPT-Rank (r(46) = 0.36, p = 0.011) and DracoGPT-
Recommend Vega-Lite (r(46) = 0.40, p = 0.005), which suggests that
empirical results from Kim et al. do not align well with either
GPT4-Turbo’s ranking or recommendation preferences.

Conditioning on task type, we see that Kim et al. Draco model costs
have a moderately strong positive correlation with both DracoGPT-
Rank (r(22) = 0.69, p < 0.001) and DracoGPT-Recommend Vega-Lite
(r(22) = 0.67, p < 0.001) for the value task. For the summary task,
however, they exhibit negative correlations that are not statistically
significant with either DracoGPT-Rank (r(22) = −0.18, p = 0.408)
or DracoGPT-Recommend Vega-Lite (r(22) =−0.32, p = 0.127), in-
dicating a specific divergence between GPT4-Turbo preferences and
Kim et al. results for summary judgments. Though it is difficult to
pinpoint the exact reason for the poor alignment of the model’s pref-
erences and empirical results, we conjecture that the LLM responses
may reflect common visualization patterns in LLM training data. As
much visualization research and discourse focus on value tasks [13],
the next-token pretraining objective may incentivize LLMs to prioritize
encoding information relevant to value tasks.

Figure 9(A) presents the costs according to DracoGPT-Rank and
GPT4-Turbo Recommend Vega-Lite. These costs have a moderately
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Fig. 8: Chart costs conditioned on task type, comparing Kim et al.’s
experimental results to DracoGPT-Rank (A) and DracoGPT-Recommend
Vega-Lite (B). For value tasks, results from both GPT4-Turbo models
moderately correlate with a model fit to human performance data, but do
not significantly correlate for summary tasks.
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Fig. 9: (A) Chart costs according to DracoGPT Rank and Recommend
Vega-Lite models; (B) Chart costs according to DracoGPT Recommend
Altair and Recommend Vega-Lite models. GPT4-Turbo’s Rank and Rec-
ommend Vega-Lite preferences exhibit moderate correlation, while chart
scores from Vega-Lite and Altair recommendations strongly correlate.

strong positive correlation (r(46) = 0.70, p < 0.001). This suggests
that GPT4-Turbo’s ranking and recommendation preferences align
moderately well with each other. In other words, GPT4-Turbo is more
consistent with itself across these two tasks than it is with Kim et al.’s
empirical results. These findings reinforce our contention that rank-
ing and recommending are related yet distinct visualization tasks that
warrant separate investigation.

Figure 9(B) presents the costs according to GPT4-Turbo Recom-
mend Vega-Lite and -Altair. The chart costs exhibit a near-perfect
positive correlation (r(46) = 0.99, p < 0.001). This indicates that
GPT4-Turbo exhibits highly consistent design preferences when
making either Vega-Lite or Vega-Altair recommendations, likely
due to the high-level of similarity between the two formats.

6 DISCUSSION: LIMITATIONS & FUTURE WORK

In this paper, we present DracoGPT, a method for extracting, modeling,
and assessing visualization design preferences from LLMs and evaluate
them using the Draco knowledge base. Motivated by different use
cases of LLMs for data visualization, we propose to extract design
preferences of LLMs for two tasks: ranking visualization pairs and
recommending visualizations. Using data from Kim et al. [13] and three
LLMs as a case study, we show through high test set accuracies that
both DracoGPT-Rank and -Recommend produce models that accurately
match the design preferences expressed by LLMs. To analyze the
design preferences modeled by DracoGPT, we compare the visual
encoding choices used by positive and negative training data examples,
tally the soft constraints that positive and negative examples tend to

satisfy, inspect learned soft constraint weights, and examine correlations
among total chart scores. Each unit of analysis provides complementary
perspectives for assessing the alignment between LLMs and empirical
graphical perception data. We show, for example, that while GPT4-
Turbo exhibits some ranking preferences akin to those observed in Kim
et al., many of its preferences differ. When using Draco to score charts
according to extracted preferences, we find that GPT4-Turbo’s ranking
and recommendation preferences are moderately aligned, while both
are moderately aligned with findings from Kim et al. for the value task
and misaligned for the summary task.

One limitation of our case study is the limited visualization design
space covered by the Kim et al. dataset. Though covering a range of
encoding specifications, all the charts are scatter plots depicting two
quantitative fields and a nominal field. Utilizing the DracoGPT pipeline,
future work can extract a wider set of visualization design preferences
by expanding the design space covered by chart pairs. Zeng et al. [42]
compiled a dataset of chart pairs from 30 studies and mapped them to
Draco representations, providing a useful resource for future endeavors.
To enable a comprehensive understanding of LLM visualization design
preferences, we further call upon future graphical perception studies to
publish their stimuli.

In addition, future work should expand Draco’s knowledge base.
By adding more soft constraints representing a wider range of design
decisions (e.g., if a visualization uses grid lines), we can better model
more nuanced design preferences from LLMs. In order to identify
shortcomings of Draco, we can generate a wide array of chart pairs
using LLMs in a semi-controlled manner and check if Draco is able to
discriminate them. Draco’s failure to do so may reveal design decisions
that its knowledge base cannot encode.

As our case study found that DracoGPT can accurately model LLM
preferences, in the future Draco may have the potential to serve as a
reliable and cost-effective stand-in for LLMs. Eliciting visualization
recommendations from LLMs is compute- and cost-intensive, whereas
Draco is a lightweight model that is cheap to deploy. If Draco’s con-
straint set is suitably expanded and trained on chart pairs covering a
large design space, it could serve as a valuable and efficient means of
reifying and reusing preferences implicit to an LLM.

DracoGPT also provides a means for studying the influence of input
and output formats on the visualization design preferences expressed
by an LLM. In this work, we present input visualizations to LLMs
using Draco’s dictionary format. Future work can explore alternative
specifications, including images. Furthermore, we hope to request
recommendations in formats other than Vega-Lite and Vega-Altair, such
as the popular ggplot2 [37] and Matplotlib [11] libraries. We found little
difference in GPT4-Turbo design preferences when recommending
Vega-Lite JSON or Vega-Altair Python code. However, this result is not
particularly surprising given the close relationship between these tools
(Altair is a Python API for Vega-Lite) and overlapping online examples.
Other visualization tools, through their differing communities, use
cases, and examples, may lead to differing LLM design preferences
that can be analyzed via DracoGPT pipelines. While the engineering
involved to transform other specifications into a form amenable to
Draco is non-trivial, reverse-engineering tools such as DIVI [27] raise
the possibility of leveraging SVG as a common medium for translating
charts into a Draco-compatible format.

We also require further research on how users interact with LLMs
for visualization-related tasks. Here we proposed two tasks (ranking
and recommendation) that users can perform with LLMs, and there
are undoubtedly more, such as critiquing visualization designs. A
better understanding of such tasks could lead to future work enabling
DracoGPT to extract visualization design preferences in more contexts.

Finally, we presented both low-level and high-level measures of
alignment of design preferences between different sources (e.g., em-
pirical research, LLMs, and personal preferences). Future work could
leverage DracoGPT to expose how LLM design preferences differ in
response to techniques such as fine-tuning or retrieval-augmented gen-
eration (RAG). To this end, DracoGPT can serve as a tool to evaluate
the results of various attempts at LLM alignment in support of more
effective visualization tasks.
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SUPPLEMENTAL MATERIALS

In Supplemental Material 1, we provide example LLM prompts for
both DracoGPT-Rank and DracoGPT-Recommend. In Supplemental
Material 2, we provide queries and responses for all DracoGPT runs.
The folder named “rank” contains data for DracoGPT-Rank. The folder
named “recommend” contains data for DracoGPT-Recommend.
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