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Algorithm to find new identifiable
reparametrizations of parametric rational ODE

models
Nicolette Meshkat, Alexey Ovchinnikov, and Thomas Scanlon

Abstract— Structural identifiability concerns the ques-
tion of which unknown parameters of a model can be recov-
ered from (perfect) input-output data. If all of the parameters
of a model can be recovered from data, the model is said to
be identifiable. However, in many models, there are param-
eters that can take on an infinite number of values but yield
the same input-output data. In this case, those parameters
and the model are called unidentifiable. The question is
then what to do with an unidentifiable model. One can try
to add more input-output data or decrease the number of
unknown parameters, if experimentally feasible, or try to
find a reparametrization to make the model identifiable.
In this paper, we take the latter approach. While existing
approaches to find identifiable reparametrizations were lim-
ited to scaling reparametrizations or were not guaranteed
to find a globally identifiable reparametrization even if it ex-
ists, we significantly broaden the class of models for which
we can find a globally identifiable model with the same
input-output behavior as the original one. We also prove
that, for linear models, a globally identifiable reparametriza-
tion always exists and show that, for a certain class of
linear compartmental models, with and without inputs, an
explicit reparametrization formula exists. We illustrate our
method on several examples and provide detailed analysis
in supplementary material on github.

Index Terms— Parametric ODE Models, Parameter Identi-
fiability, Input-output Equations, Differential Algebra

I. INTRODUCTION

Structural (local) identifiability is a property of an ODE
model with parameters

(
x̄0(t) = f̄(x̄(t), ↵̄, ū(t))

ȳ(t) = ḡ(x̄(t), ↵̄, ū(t)),
(1)

as to whether the parameters ↵̄ can be uniquely determined
(or determined up to finitely many choices) from the inputs ū

This work was partially supported by the NSF grants CCF-2212460,
CCF-1563942, CCF-1564132, DMS-1760448, DMS-1760212, DMS-
1760413, DMS-1853650, and DMS-1853482 and CUNY grant PSC-
CUNY #65605-00 53.

Nicolette Meshkat is with Santa Clara University, Department of
Mathematics and Computer Science, 500 El Camino Real, Santa Clara,
CA 95053, USA (e-mail: nmeshkat@scu.edu).

Alexey Ovchinnikov is with CUNY Queens College, Department of
Mathematics, 65-30 Kissena Blvd, Queens, NY 11367, USA and CUNY
Graduate Center, Mathematics and Computer Science, 365 Fifth Av-
enue, New York, NY 10016, USA (e-mail: aovchinnikov@qc.cuny.edu).

Thomas Scanlon is with University of California, Berkeley, Math-
ematics Department, Evans Hall, Berkeley, CA, 94720-3840 (e-mail:
scanlon@math.berkeley.edu).

and outputs ȳ of the model. If a parameter is not locally iden-
tifiable, then it is not possible to estimate its numerical values
from measurements of the outputs. Non-identifiability occurs
rather frequently in models used in practice [1]. Therefore, it is
important to develop theory and algorithms that can eliminate
non-identifiability. Achieving only local identifiability for a
model (finitely many parameter values fit the data) can still
be problematic for many algorithms and software packages
for parameter estimation. This is because these algorithms
typically cannot find all of the multiple parameter values that
fit the data, and multiple values can fit into the physically
meaningful ranges [1]. As a result, errors in such methods can
easily be much higher than for globally identifiable models,
see the locally identifiable Biohydrogenation, Mammillary 4,
and SEIR models in the tables in [2]. Therefore, it is im-
portant to find a globally rather than just locally identifiable
reparametrization.

In this paper, we discuss closely related properties called
global and local input-output (IO) identifiability, which con-
cern determining the parameters from IO-equations, i.e. the
equations relating the inputs and the outputs obtained by
eliminating the state variables [3], [4], [5], [6]. Global (resp.,
local) IO-identifiability and global (resp., local) identifiability
are not logically equivalent. However, there are sufficient
conditions for the equivalence, see [7], which can be checked
algorithmically and often (but not always) hold in practical
models.

We propose a new method of reparametrizing an ODE
model to achieve at least local structural IO-identifiability
of the parameters of the reparametrized system. Whenever
possible within the framework of our approach, this allows us
to find a globally IO-identifiable reparametrization. However,
there are ODE models for which no globally IO-identifiable
reparametrizations exist regardless of the approach taken, see
[8, Section IV.A]. MAPLE code for our illustrating examples
can be found in [9]. We also prove a new general result
that, for linear models with or without inputs, a globally IO-
identifiable reparametrization always exists. Additionally, for a
class of linear compartmental models with and without inputs,
we obtain explicit reparametrization formulas.

Identifiability of the initial conditions of a model, which is
related to observability of the state variables, is also important.
There is a new approach being developed and tested via simpli-
fying Lie derivatives to find globally observable reparametriza-
tions [10]. Reparametrized models in this approach are
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differential-algebraic systems, i.e. are of the form (1) with pos-
sible additional polynomial constraints. Our algorithm cannot
tackle state observability because state variables do not appear
in the IO-equations. However, reparametrized models in our
approach are of the ODE form (1).

Efficient algorithms are available for finding scaling [11]
or, more generally, linear reparametrizations [12], [13]. Fur-
ther refinements are available for scaling reparametrizations
of linear compartmental models [14], [15]. Several ap-
proaches have been proposed for producing locally identifiable
reparametrizations [16], [17], [18], which succeed in finding
nontrivial parametrizations for models from the literature
but are not guaranteed to produce a reparametrization if
it exists. Another recent approach [8] gives an algorithm
for reparametrizing the model preserving its structure: the
reparametrized system has the same number of equations and
state variables as the old system and the monomials in the
new system are obtained from the monomials of the old
system by replacing the old state variables with the new state
variables. This approach has shown to be practical in many
cases. However, it has a noticeable drawback. In particular, the
requirement in [8] to preserve the structure can result in not
being able to find a globally IO-identifiable reparametrization
when it exists; see [8, Section IV.B] or Section E from our
paper for examples, which is a limitation of that approach
that we do not have in our proposed approach.

The paper is organized as follows. In Section II, we state
the reparametrization problem precisely. Basic definitions,
including IO-identifiability, are given in Section III. Our main
algorithm is in Section IV. We illustrate the algorithm in
Section V using toy models, a Lotka-Volterra model with
input, a chemical reaction network model, a biohydrogenation
model, which is rational (non-polynomial), a bilinear model
with input, and a linear compartmental model for which
no scaling reparametrization exists. In Section VI, based
on our algorithm, we establish the existence of globally
IO-identifiable reparametrizations for linear models, and we
also provide new general explicit reparametrization formulas,
which we discovered using our software.

II. PROBLEM STATEMENT

Given an ODE system

⌃(↵̄) :=

(
x̄0 = f̄(x̄, ↵̄, ū)

ȳ = ḡ(x̄, ↵̄, ū),
(2)

where f̄ and ḡ are rational functions over Q(↵̄), find �̄ in the
algebraic closure of Q(↵̄) and w̄ in the algebraic closure of
Q(x̄, ↵̄, ū, ū0, ū00, . . .) such that

• there exist F̄ , Ḡ in Q(w̄, �̄, ū, ū0, ū00, . . .) with |F̄ | = |w̄|
and |Ḡ| = |ȳ| (we write |F̄ | for the length of the tuple
F̄ ) such that

(
w̄0 = F̄ (w̄, �̄, ū, ū0, ū00, . . .)

ȳ = Ḡ(x̄, �̄, ū, ū0, ū00, . . .).
(3)

We will denote this system by ⌃̃(�̄).
• all parameters �̄ in ⌃̃(�̄) are at least locally IO-

identifiable and

• the IO-equations of ⌃(↵̄) and ⌃̃(�̄) are the same.
Sometimes in the literature, the ground field is taken to be

C, R, or Q instead of Q. The reader may substitute these larger
fields for Q everywhere in this paper. We prefer to work with
the rational numbers as they are more amenable to machine
computations.

III. DEFINITIONS AND NOTATION

In this section, we recall the standard terminology from dif-
ferential algebra that is used in working with IO-identifiability.

1) A differential ring (R, 0) is a commutative ring with a
derivation 0 : R ! R, that is, a map such that, for all
a, b 2 R, (a+ b)0 = a0 + b0 and (ab)0 = a0b+ ab0.

2) The ring of differential polynomials in the variables
x1, . . . , xn over a field K is the ring K[x(i)

j
| i >

0, 1 6 j 6 n] with a derivation defined on the ring
by (x(i)

j
)0 := x(i+1)

j
. This differential ring is denoted by

K{x1, . . . , xn}.
3) An ideal I of a differential ring (R, 0) is called a

differential ideal if, for all a 2 I , a0 2 I . For F ⇢ R,
the smallest differential ideal containing the set F is
denoted by [F ].

4) For an ideal I and element a in a ring R, we denote

I : a1 = {r 2 R | 9` : a`r 2 I}.

This set is also an ideal in R.
5) An ideal P of a commutative ring R is said to be prime

if, for all a, b 2 R, if ab 2 P then a 2 P or b 2 P .
6) Given ⌃ as in (2), we define the differential ideal of ⌃

as

I⌃ = [Q(x̄0 � f̄), Q(ȳ � ḡ)] : Q1 ⇢ Q(↵̄){x̄, ȳ, ū},

where Q is the common denominator of f̄ and ḡ. By
[19, Lemma 3.2], I⌃ is a prime differential ideal.

7) A differential ranking on K{x1, . . . , xn} is a total order
> on X := {x(i)

j
| i > 0, 1 6 j 6 n} satisfying:

• for all x 2 X , x0 > x and
• for all x, y 2 X , if x > y, then x0 > y0.

It can be shown that a differential ranking on
K{x1, . . . , xn} is always a well order. The ranking is
orderly if moreover for all i, j, o1, and o2, if o1 > o2,
then x(o1)

i
> x(o2)

j
.

8) For f 2 K{x1, . . . , xn}\K and differential ranking >,
• lead(f) is the element of {x(i)

j
| i > 0, 1 6 j 6 n}

appearing in f that is maximal with respect to >.
• The leading coefficient of f considered as a poly-

nomial in lead(f) is denoted by in(f) and called
the initial of f .

• The separant of f is @f

@ lead(f) , the partial derivative
of f with respect to lead(f).

• The rank of f is rank(f) = lead(f)deglead(f) f .
• For S ⇢ K{x1, . . . , xn}\K, the set of initials and

separants of S is denoted by HS .
• for g 2 K{x1, . . . , xn}\K, say that f < g if

lead(f) < lead(g) or lead(f) = lead(g) and
deglead(f) f < deglead(g) g.
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9) For f, g 2 K{x1, . . . , xn}\K, f is said to be reduced
w.r.t. g if no proper derivative of lead(g) appears in f
and deglead(g) f < deglead(g) g.

10) A subset A ⇢ K{x1, . . . , xn}\K is called autoreduced

if, for all p 2 A, p is reduced w.r.t. every element of
A \ {p}. One can show that every autoreduced set has
at most n elements (like a triangular set but unlike a
Gröbner basis in a polynomial ring).

11) Let A = {A1, . . . , Ar} and B = {B1, . . . , Bs} be
autoreduced sets such that A1 < . . . < Ar and B1 <
. . . < Bs. We say that A < B if

• r > s and rank(Ai) = rank(Bi), 1 6 i 6 s, or
• there exists q such that rank(Aq) < rank(Bq) and,

for all i, 1 6 i < q, rank(Ai) = rank(Bi).
12) An autoreduced subset of the smallest rank of a differen-

tial ideal I ⇢ K{x1, . . . , xn} is called a characteristic

set of I . One can show that every non-zero differential
ideal in K{x1, . . . , xn} has a characteristic set. Note
that a characteristic set does not necessarily generate
the ideal.

Definition 1 (IO-identifiability): The smallest field k such
that

• Q ⇢ k ⇢ Q(↵̄) and
• I⌃ \ Q(↵̄){ȳ, ū} is generated as a differential ideal by

I⌃ \ k{ȳ, ū}
is called the field of globally IO-identifiable functions. In
differential algebra, such a field k is called the field of
definition of the ideal I⌃ [20, page 125].

We call h 2 Q(↵̄) globally IO-identifiable if h 2 k. We also
call h 2 Q(↵̄) locally IO-identifiable if h is in the algebraic
closure of the field k.

Remark 1: By [21, Theorem 19], IO-identifiability is equiv-
alent to multi-experimental identifiability [21, Definition 16].
The latter is built using the notion of identifiability, which can
be stated using the language of algebra [21, Definition 7] or
in a more analytic way [19, Definition 2.5].

Definition 2 (IO-equations): Given a differential ranking
on the differential variables ȳ and ū, the IO-equations are
defined as the monic characteristic presentation of the prime
differential ideal I⌃ \Q(↵̄){ȳ, ū} with respect to this ranking
(see [7, Definition 6 and Section 5.2] for more details).
For a given differential ranking, such a monic characteristic
presentation is unique [22, Theorem 3].

Let �̄ generate the field of globally IO-identifiable functions
of the parameters. The tuple �̄ can be computed as the
set of coefficients of input-output equations, which are a
canonical (still can depend on the choice of ranking on the
variables) characteristic set of the projection of (2) to the
(ū, ȳ)-variables [7, Corollary 1]. On a computer, this can be
done, for instance, in MAPLE using RosenfeldGroebner
or ThomasDecomposition. An implementation that fur-
ther simplifies �̄ is available at https://github.com/
pogudingleb/AllIdentifiableFunctions as a part
of [21].

IV. MAIN ALGORITHM

We break down our approach into the following several
steps, which we describe and justify in detail in Theorem 1:

1) Find input-output equations, view them as algebraic
equations E, and compute the rational parametrization
of the variety V defined by (E) : H1

E
induced by the

Lie derivatives of the output variables.
2) Create a polynomial system of equations based on

the computed parametrization whose solutions provide
another rational parametrization of V but now over (the
algebraic closure of) the field of identifiable functions.
Pick a solution, and therefore, a locally IO-identifiable
rational parametrization of V . Whenever it exists, pick
such a solution that results in a globally IO-identifiable
rational parametrization of V .

3) Reconstruct a locally (or globally if it exists) IO-
identifiable ODE system from the new rational
parametrization, cf. [23].

4) By comparing the two rational parametrizations of V ,
find the corresponding change of state variables using
Gröbner bases.

Theorem 1: There is an algorithm solving the local IO-
identifiable reparametrization problem from Section II for
system (2), whose detailed steps are given in the proof.
Furthermore,

• as in [8, Theorem 1], if the sum of the orders with
respect to the ȳ-variables of the IO-equations is equal
to the dimension of the model, the state variables of
the reparametrized system can be expressed as algebraic
functions of x̄ and ↵̄.

• If the ODE system (2) has a globally IO-identifiable
reparametrization whose Lie derivatives have monomial
support being a subset of the monomial support of the
Lie derivatives for (2), then we can find this globally IO-
identifiable reparametrization of (2).
Proof: We follow the four steps outlined above.

1) Rational parametrization of IO-equations. By com-
puting Lie derivatives of ȳ, . . . , ȳ(n) using (2), for each
i, we can write y(i)s as a rational function

hs,i

⇣
x̂, ↵̄, ū, . . . , ū(i)

⌘

=

P
m2M1

m(↵̄) · ps,m
�
x̂, ū, . . . , ū(i)

�
P

m2M2
m(↵̄) · qs,m

�
x̂, ū, . . . , ū(i)

�
(4)

for some sets M1 and M2 of polynomials m in the
indeterminates ↵̄, where x̂ are the variables from x̄ that
explicitly appear in the Lie derivatives for ȳ, . . . , ȳ(n),
and the p’s and q’s are polynomials over Q. Let

Ys

⇣
�̄, ȳ, . . . , ȳ(ns), ū, . . . , ū(ns)

⌘
= 0, 1 6 s 6 |ȳ|

(5)
be the input-output equations E with respect to an
orderly ranking on Q{ȳ}, where here we write |ȳ|
for the length of the tuple of variables ȳ. Note that
the rational functions hs,i considered as functions from
the affine space A|x̂| with x̂ coordinates to the affine
(n1 + . . . + n|ȳ|)-space is a unirational parametrization
over Q(�̄)hūi, h : A|x̂| ! V , of the affine variety V
defined over Q(�̄)hūi by the input-output equations: V
is the zero set of the ideal

IV := (E) : H1
E
.

https://github.com/pogudingleb/AllIdentifiableFunctions
https://github.com/pogudingleb/AllIdentifiableFunctions
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Since I⌃ is a prime differential ideal, the differential
ideal I⌃ \Q(�̄){ȳ, ū} is prime. Since E is a character-
istic set of I⌃ \Q(�̄){ȳ, ū}, we have

I⌃ \Q(�̄){ȳ, ū} = [E] : H1
E
.

By Rosenfeld’s lemma from differential algebra [20,
Lemma III.8.5], the polynomial ideal IV is prime as
well, and so V is an irreducible affine variety.
If |x̂| = dimV , define x̃ := x̂. If |x̂| > dimV , then
we look for a linear change of variables x̂ = Ax̃ for
some matrix A over Q of rank dimV defining a linear
map L : AdimV ! A|x̂| so that h � L : AdimV !
V is a unirational parameterization of V . On general
grounds, almost any A works. Indeed, the condition is
rank(dh � A) = dimV , where dh is the differential of
h.
We then have

n1+. . .+n|ȳ| = trdegQ(↵̄)hȳ, ūi/Q(↵̄)hūi = |x̃|. (6)

Let M = {m1, . . . ,mq}. Note that

Ys

⇣
�̄, ȳ, . . . , ȳ(ns), ū, . . . , ū(ns)

⌘
|ȳ(i)=hs,i,16i6ns

= 0

(7)
holds for all s, 1 6 s 6 |ȳ|.

2) Rational parametrization over identifiable parame-

ters. Consider the new indeterminates z1, . . . , zq and the
rational functions

Hs,i(z̄, x̃, ū, . . . , ū
(i)) := hs,i|L(x̃)=x̂, mj=zj ,16j6q,

where 0 6 i 6 ns. Consider the system of polynomial
equations (after clearing out the denominators)

Ys(�̄, Hs,0, . . . , Hs,ns , ū, . . . , ū
(n)) = 0 (8)

in the variables z1, . . . , zq . It follows from (7) that the
system has a solution in Q(↵̄). Since the coefficients of
the system belong to Q(�̄), it has a solution �̄ in the
algebraic closure of Q(�̄).

3) Identifiable ODE realization of the IO-equations

given the new rational parametrization. Consider now

Hs,0(�̄, w̄, ū), . . . , Hs,ns(�̄, w̄, ū, . . . , ū
(ns)), (9)

in which we replaced x̃ by the new indeterminates w̄,
and try to find an explicit ODE system (cf. [23])

(
w̄0 = F (�̄, w̄, ū, . . . , ū(n+1)),

ȳ = G(�̄, w̄, ū, . . . , ū(n+1))
(10)

so that the input-output equations of (10) coincide
with (5) as follows by making sure that (9) are the Lie

derivatives of ȳ. We have

H1,1 = ȳ0 = H 0
1,0 =

@H1,0

@w̄
w̄0 +

X @H1,0

@ū
ū0

=
@H1,0

@w̄
F +

@H1,0

@ū
ū0

...

H1,n1 = y(n1) = H 0
1,n1�1

=
@H1,n1�1

@w̄
w̄0 +

X @H1,n1�1

@ū
ū0

=
@H1,n1�1

@w̄
F +

nX

i=0

@H1,n1�1

@ū(i)
ū(i+1)

...

Define an (n1 + . . .+ n|ȳ|)-vector

H =

0

BBBBBBBBBBBBB@

H1,1 �
P

n

i=0
@H1,0

@ū(i) ū
(i+1)

...
H1,n1 �

P
n

i=0
@H1,n1�1

@ū(i) ū(i+1)

...
H|ȳ|,1 �

P
n

i=0
@H|ȳ|,0
@ū(i) ū(i+1)

...

H|ȳ|,n|ȳ| �
P

n

i=0

@H|ȳ|,n|ȳ|�1

@ū(i) ū(i+1)

1

CCCCCCCCCCCCCA

and an (n1 + . . .+ n|ȳ|)⇥ |w̄|-matrix (see (6))

dH =
⇣

@H1,0

@w̄
, . . . ,

@H1,n1�1

@w̄
, . . . ,

@H|ȳ|,0
@w̄

, . . . ,
@H|ȳ|,n1�1

@w̄

⌘T

.

Then the above translates into a linear system in F :

dH · F = H.

What if det dH is zero? Then go back and choose a dif-
ferent tuple �̄ satisfying (6) and additionally det dH 6=
0.

4) Corresponding change of variables. This step is done
as [8, Section III, step 4], which computationally is:
solving the system of polynomial equations (after clear-
ing out the denominators) Hs,i = hs,i|L(x̃)=x̂ for w̄.
This can be done, for instance, by doing a Gröbner basis
computation with an elimination monomial ordering.

Remark 2: In all of our examples from Section V, it was
possible to express the w̄-variables as rational functions of the
original state variables and parameters. However, for some
examples, more general algebraic functions are required for
this change of variables – see Section H.

V. EXPLAINING THE APPROACH USING EXAMPLES

In this section, we illustrate our approach using a series
of examples, intentionally beginning with toy linear models
to show the basics first. The non-linear examples are Lotka-
Volterra models with input, a polynomial chemical reaction
network model, a rational (non-polynomial) biohydrogenation
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model, and a bilinear model with input. We also include a
linear compartmental model with input, for which the prior
method of finding scaling identifiable reparametrizations failed
but our more general method succeeded. We end the section
with an example in which radicals appear in the change of
variables.

A. Turning local into global identifiability

Consider the system
8
><

>:

x0
1 = ax1,

x0
2 = bx2,

y = x1 + x2,

(11)

and so x̄ = (x1, x2), ȳ = y, and ↵̄ = (a, b). There is no ū.
The input-output equation is

y00 � (a+ b)y0 + ab · y = 0. (12)

Therefore, �̄ = (a+ b, a · b) and the identifiable functions are
K := Q(a+ b, a · b), and so a and b are algebraic of degree 2
over K, therefore, are only locally identifiable. The approach
from Section IV will proceed as follows. For i = 0, 1, 2, we
will compute y(i) as a function hi(x1, x2, a, b):

y = h0(x1, x2, a, b) = x1 + x2,

y0 = h1(x1, x2, a, b) = x0
1 + x0

2 = ax1 + bx2,

y00 = h2(x1, x2, a, b) = x00
1 + x00

2 = a2x1 + b2x2,

(13)

and so x̂ = (x1, x2), x̃ = x̂, and M = {1, a, b, a2, b2}. The
equations (13) induce the following parametrization of the
plane induced by (12), where, since the equation is linear,
(E) : H1

E
= (E):

Y2 � (a+ b)Y1 + ab · Y0 = 0, (14)
Y0 = x1 + x2,

Y1 = ax1 + bx2,

Y2 = a2x1 + b2x2.

We now define
H0 = z1w1 + z2w2,

H1 = z3w1 + z4w2,

H2 = z5w1 + z6w2.

(15)

and search for a reparametrization of (14) of the form defined
by (15):

(z5w1+z6w2)�(a+b)(z3w1+z4w2)+ab(z1w1+z2w2) = 0,

arriving at the following solution set in the z-variables:

z5 = �abz1 + (a+ b)z3, z6 = �abz2 + (a+ b)z4.

This solution set has 4 free variables, z1, . . . , z4. For the
simplicity of the next steps, let us make the following choice:

z1 = 1, z2 = 0, z3 = 0, z4 = 1,

which we can adjust later if necessary if the choice makes the
next steps degenerate (a non-degenerate choice always exists

according to Section IV). So, we have z5 = �ab and z6 =
a+ b, which turns (15) into

H0 = w1,

H1 = w2,

H2 = �abw1 + (a+ b)w2.

(16)

We now construct an ODE realization of (14) from
parametrization Y0 = H0, Y1 = H1, Y2 = H2 from (16) using
the following equations:

w1 = H0 = y,

w0
1 = H 0

0 = y0 = H1 = w2,

w0
2 = H 0

1 = (y0)
0
= y00 = H2 = �abw1 + (a+ b)w2.

Thus, we finally have
8
><

>:

w0
1 = w2,

w0
2 = (a+ b)w2 � abw1,

y = w1,

We now find the conversion from the x-variables to the w-
variables:

(
w1 = H0 = Y0 = x1 + x2,

w2 = H1 = Y1 = ax1 + bx2.

B. Making choices for the non-vanishing of det dH

Consider the system
8
><

>:

x0
1 = ax2,

x0
2 = bx1,

y = x1,

(17)

so x̄ = (x1, x2), ȳ = (y), ↵̄ = (a, b), and we have no ū. The
input-output equation is

y00 � ab · y = 0. (18)

Therefore, �̄ = (ab) and ab is globally identifiable but
neither a nor b is identifiable. Following the approach from
Section IV, let us begin by computing Lie derivatives of ȳ.
We have

y = h0(x1, x2, a, b),= x1,

y0 = h1(x1, x2, a, b) = x0
1 = ax2,

y00 = h2(x1, x2, a, b) = x00
1 = ax0

2 = abx1.

(19)

We have x̂ = (x1, x2), x̃ = x̂, and M = {1, a, ab}.
Equations (19) induce the following parametrization of the
plane defined by the input-output equation, where, since the
equation is linear, (E) : H1

E
= (E):

Y2 � ab · Y0 = 0, (20)
Y0 = x1,

Y1 = ax2,

Y2 = abx1.

We now define
H0 = z1w1,

H1 = z2w2,

H2 = z3w1.

(21)
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and search for a reparametrization of (20) of the form defined
by (21):

z3w1 � abz1w1 = 0,

arriving at the following solution set in the z-variables: z3 =
abz1. This solution set has 2 free variables, z1 and z2. For the
simplicity of the next steps, let us make the following choice:
z1 = 1, z2 = 0, which we can adjust later if necessary if
the choice makes the next steps degenerate (a non-degenerate
choice always exists according to Section IV). So, we have
z3 = ab, which turns (21) into

H0 = w1,

H1 = 0,

H2 = abw1.

(22)

We now construct an ODE realization of (20) from
parametrization Y0 = H0, Y1 = H1, Y2 = H2 from (22) using
the following equations:

y = H0 = w1,

w0
1 = H 0

0 = y0 = H1 = 0.

However, we cannot find an ODE for w2 because it does not
appear in the Hi’s. So, let us instead choose a non-zero value
for z2, e.g., z2 = 1. Then we have

H0 = w1,

H1 = w2,

H2 = abw1.

(23)

and so we obtain:

y = H0 = w1,

w0
1 = H 0

0 = y0 = H1 = w2,

w0
2 = H 0

1 = (y0)
0
= y00 = H2 = abw1.

Thus, we finally have
8
><

>:

w0
1 = w2,

w0
2 = abw1,

y = w1,

We now find the conversion from the x-variables to the w-
variables: (

w1 = H0 = Y0 = x1,

w2 = H1 = Y1 = ax2.

C. Lotka-Volterra examples with input

Consider the system
8
><

>:

x0
1 = ax1 � bx1x2 + u,

x0
2 = �cx2 + dx1x2,

y = x1

(24)

with two state variables x̄ = (x1, x2), four parameters ↵̄ =
(a, b, c, d), one output ȳ = y, and one input ū = u. The input-
output equation is

yy00 � y02 � dy0y2 + cyy0 + uy0

+ ady3 + duy2 � acy2 � u0y � cuy = 0. (25)

So, we have that the field of IO-identifiabile functions is
Q(d, c, ad, ac) = Q(a, c, d). A computation (in MAPLE)
shows that (E) = (E) : H1

E
in this case. The Lie derivatives

of the y-variable are as follows:

y = x1,

y0 = �bx1x2 + ax1+u,

y00 = u0 � bdx2
1x2 � bux2 + au

+
�
b2x2

2 + (�2a+ c)bx2 + a2
�
x1

(26)

We then have x̃ = x̂ = (x1, x2), and we now define

H0 = z1w1

H1 = z2w1w2 + z3u+ z4w1

H2 = z5w
2
1w2 + z6w1w

2
2 + z7uw2 + z8w1w2

+ z9u+ z10u
0 + z11w1

(27)

Making the substitution y = H0, y0 = H1, y00 = H2 into (25),
we obtain the following polynomial system in z1, . . . , z11:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

�dz21z2 + z1z5 = 0

adz31 � dz21z4 = 0

z1z6 � z22 = 0

cz1z2 + z1z8 � 2z4z2 = 0

�duz21z3 � acz21 + duz21 + cz1z4
+z1z11 � z24 = 0

uz1z7 � 2uz3z2 + uz2 = 0

(cuz3 � cu+ u0z10 � u0)z1
+u(z9 � 2z3z4 + z4) = 0

�u2z23 + u2z3 = 0

(28)

In the above, u and u0 are considered to be in the ground field
for solving purposes, so these do not vanish. Also, if z1 = 0,
then (27) is degenerate. So, we may assume that z1 6= 0. To
preserve input, we may also assume z3 6= 0 (so, z3 = 1).
Solving system (28) in MAPLE with these assumptions, we
arrive at the following solution set, in which z1, z7, z10 play
the role of free variables:

z2 = z1z7, z3 = 1, z4 = az1, z5 = dz21z7, z6 = z1z
2
7 ,

z8 = (2a� c)z1z7, z9 =
au+ (1� z10)u0

u
, z11 = a2z1.

Choosing (since, for us, it is sufficient to pick a solution)
z1 = z7 = z10 = 1, we obtain

z2 = z3 = z6 = 1, z4 = z9 = a, z5 = d, z8 = 2a�c, z11 = a2.

Substituting into (26), we obtain

H0 = w1,

H1 = (a+ w2)w1 + u,

H2 = dw2
1w2 +

�
w2

2 + (2a� c)w2 + a2
�
w1 + (a+ w2)u+ u0.

With the above, we now solve

y = H0 = w1,

w0
1 = H 0

0,

(w1w2 + aw1)
0 = H 0

1 = H2.
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and obtain the following reparametrized system
(
w0

1 = aw1 + w1w2 + u

w0
2 = �cw2 + dw1w2

and to find the variable conversion, we solve the system

x1 = h0 = H0 = w1,

�bx1x2 + ax1 + u = h1 = H1 = w1w2 + aw1 + u,

(we omitted the the equation with H2 because the first two
were already sufficient, and the additional one is too big
to display and does not change the outcome) finding the
following: (

w1 = x1,

w2 = �bx2.
(29)

Here is another Lotka-Volterra model with input [24]
8
><

>:

x0
1 = ax1 � bx1x2 + ux1,

x0
2 = �cx2 + dx1x2 + ux2,

y = x1.

We omit the details because they are mostly the same as in the
previous Lotka-Volterra model. The globally IO-identifiable
parameters are a, d, c. According to our code, the same
change of variables (29) results in the following globally IO-
identifiable reparametrization:

8
><

>:

w0
1 = aw1 + w1w2 + uw1,

w0
2 = �cw2 + dw1w2 + uw2,

y = w1.

D. Chemical reaction network example

Consider the following example based on [25, Example 5]:
8
><

>:

x0
1 = (2k1 + k4)x2

2 � (k2 + 2k6)x2
1 + (k5 � k3)x1x2,

x0
2 = �x0

1,

y = x1.

Our calculation in MAPLE shows that

(4k1 + k3 + 2k4 � k5)
2

2k1 + k4
,

(8k2 + 16k6)k1 + (4k2 + 8k6)k4 + (k3 � k5)2

2k1 + k4
,

generate the field of globally IO-identifiable functions. And,
using our code, we obtain the following reparametrized model
equations with globally IO-identifiable parameters:

8
>>>>><

>>>>>:

w0
1 = (4k1+k3+2k4�k5)

2

2k1+k4
w2

2

� (8k2+16k6)k1+(4k2+8k6)k4+(k3�k5)
2

4(2k1+k4)
w2

1,

w0
2 =

w0
1

2
,

y = w1

(30)

and the following linear change of variables resulting in (30):
8
>>>><

>>>>:

w1 = x1,

w2 =
k3 � k5

2(4k1 + k3 + 2k4 � k5)
x1

�
2k1 + k4

4k1 + k3 + 2k4 � k5
x2.

(31)

E. Biohydrogenation model

Consider the following rational ODE model
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

x0
4 = �

k5x4

k6 + x4
,

x0
5 =

k5x4

k6 + x4
�

k7x5

k8 + x5 + x6
,

x0
6 =

k7x5

k8 + x5 + x6
� k9x6

(k10 � x6)

k10
,

x0
7 = k9x6

k10 � x6

k10
,

y1 = x4, y2 = x5,

(see [26, system (3), Supplementary Material 2], initial condi-
tions are assumed to be unknown, the choice of outputs is as in
https://maple.cloud/app/6509768948056064).

We have x̄ = (x4, x5, x6, x7), ȳ = (y1, y2), ↵̄ =
(k5, k6, k7, k8, k9, k10), and there is no ū. Our MAPLE code
shows that the field of globally IO-identifiable functions is
generated by

k5, k6, k7, A := k29, B :=
k10
k9

, C := k9
2k8 + k10

k10
.

We can see from this list that all parameters in this model
k5, . . . , k10 are at least locally IO-identifiable. Therefore, the
approach from [8] will leave this model as is, and so will not
improve the identifiability properties of the model. In what
follows, we will show how our approach makes the model
globally IO-identifiable. Our MAPLE code then finds that the
resulting reparametrized system is
8
>>>>>>>><

>>>>>>>>:

w0
1 = �k5

w1

k6 + w1
,

w0
2 =

((k5 � k7)w2 + k5w3)w1 � k6k7w2

(w2 + w3)(k6 + w1)
,

w0
3 =

1
Bw2w

2
3�Cw2w3+

⇣
BC2�AB

4 +k7

⌘
w2+ 1

Bw
3
3�Cw

2
3+

BC2�AB
4 w3

w2+w3
,

y1 = w1, y2 = w2

(32)
under the following change of variables:

8
><

>:

w1 = x4,

w2 = x5,

w3 = k8 + x6.

Using SIAN [27], we have also checked to see that all param-
eters (and initial conditions) in (32) are globally identifiable.
The algorithm from [8] cannot find this reparametrization
because it has a different structure, e.g., a smaller number
of state variables, among other things.

F. Bilinear model with input

Consider the model [28, Example 1]:
8
>>><

>>>:

x0
1 = �p1x1 + p2u,

x0
2 = �p3x2 + p4u,

x0
3 = �(p1 + p3)x3 + (p4x1 + p2x2)u,

y = x3.

https://maple.cloud/app/6509768948056064
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Our computation shows that the globally IO-identifiable func-
tions are p1p3, p2p4, p1 + p3 and that the following change of
variables

8
><

>:

w1 = p2x2 + p4x1,

w2 = �p1p2x2 � 2p1p4x1 � 2p2p3x2 � p3p4x1,

w3 = x3

results in the following reparametrized globally IO-identifiable
ODE system:

8
>>>>>><

>>>>>>:

w0
1 = (p1 + p3)w1 + 2p2p4u+ w2,

w0
2 = (�2p21 � 5p1p3 � 2p23)w1

�3p2p4(p1 + p3)u+ (�2p1 � 2p3)w2,

w0
3 = �(p1 + p3)w3 + uw1,

y = w3

On the other hand, if one follows the algorithm from [8],
one would arrive at the following system of equations and
inequations in the unknowns ep1, ep2, ep3, ep4:

8
>>><

>>>:

p1p3 = ep1 ep3,
p2p4 = ep2 ep4,
p1 + p3 = ep1 + ep3,
ep1 ep2 ep4 � ep2 ep3 ep4 6= 0.

with solutions sought over the algebraic closure of the field
Q(p1p3, p2p4, p1 + p3). This system does not have solutions
over Q(p1p3, p2p4, p1 + p3) and the method from [8] would
just pick a value for ep2, say, ep2 = 1, and so ep4 = p2p4. Thus
the method from [8] would arrive at the following ODE model,
which is locally but not globally IO-identifiable:

8
>>><

>>>:

w0
1 = �p1w1 + u,

w0
2 = �p3w2 + p2p4u,

w0
3 = �(p1 + p3)w3 + (p2p4w1 + w2)u,

y = w3.

Here the limitation of [8] that prevents the method from
achieving global IO-identifiability is the requirement to
keep the same monomial structure in each equation of the
reparametrized vs. original ODE model, cf. [8, Section IV.B].

G. Linear compartmental model with input

We consider a model that does not have an identifiable
scaling reparametrization according to [14] and thus could not
be reparametrized using that approach. We, however, are able
to find a linear reparametrization using our approach.

8
>>><

>>>:

x0
1 = a11x1 + a12x2 + u1

x0
2 = a22x2 + a23x3

x0
3 = a31x1 + a32x2 + a33x3

y1 = x1.

(33)

The IO-equation is

y000�(a11+a22+a33)y
00+((a11+a33)a22+a11a33�a23a32)y

0

+ (�a11a22a33 + a11a23a32 � a12a23a31)y

� u00
1 + (a22 + a33)u

0
1 + (�a22a33 + a23a32)u1 = 0.

The coefficients of this equation generate the field of glob-
ally IO-identifiable functions. After simplifying these gen-
erators using https://github.com/pogudingleb/
AllIdentifiableFunctions, we obtain

a11, a12a23a31, a22 + a33, a22a33 � a23a32

as generators of the field of globally IO-identifiable functions.
To reparametrize (33), our next step is to find the Lie deriva-
tives, which are:

y = x1,

y0 = a11x1 + a12x2 + u1,

y00 = a211x1 + a11a12x2 + a12a22x2 + a12a23x3 + u0
1 + a11u1,

y000 = (a311 + a12a23a31)x1

+(a211a12 + a11a12a22 + a12a
2
22 + a12a23a32)x2

+(a11a12a23 + a12a22a23 + a12a23a33)x3

+u00
1 + a11u

0
1 + a211u1,

which, with undetermined coefficients, takes the form

H0 = w1z1,

H1 = z2u1 + z3w1 + z4w2,

H2 = z5u1 + z6u
0
1 + z7w1 + z8w2 + z9w3,

H3 = z10u1 + z11u
0
1 + z12u

00
1

+ z13w1 + z14w2 + z15w3.

(34)

Since the IO-equation E is linear, (E) = I : H1
E

, so we will
be substituting the above H’s into E to obtain the following
system of linear equations in z1, . . . , z15, which we solve and
obtain

z15 = (a11 + a22 + a33)z9,

z14 = (a23a32 � a11a22 � a11a33 � a22a33)z4

+(a11 + a22 + a33)z8,

z13 = (a11a22a33 � a11a23a32 + a12a23a31)z1

�(a11a22 � a11a33 � a22a33 + a23a32)z3

+(a11 + a22 + a33)z7

z12 = �
⇣
(a11a22 + a11a33 + a22a33 � a23a32)u1z2

�(a11 + a22 + a33)(u1z5 + u0
1z6) + (a23a32 � a22a33)u1

+(z11 + a22 + a33)u
0
1 + u1z10 � u00

1

⌘
/u00

1 ,

with z1, . . . , z11 being free variables. We choose the following
values for the free variables:

z1 = z2 = z4 = z6 = z9 = z10 = z11 = 1,

z3 = z5 = z8 = a11, z7 = a211.

Substituting this entire solution in (34) and using the relation-
ship H 0

0 = H1, H 0
1 = H2, H 0

2 = H3, we obtain the following
reparametrized system:
8
>>><

>>>:

w0
1 = a11w1 + w2 + u1

w0
2 = w3

w0
3 = a12a23a31w1 + (a23a32 � a22a33)w2 + (a22 + a33)w3,

y1 = w1.

https://github.com/pogudingleb/AllIdentifiableFunctions
https://github.com/pogudingleb/AllIdentifiableFunctions
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We find the resulting (non-scaling) linear reparameterization:
8
><

>:

w1 = x1,

w2 = a12x2,

w3 = a12a22x2 + a12a23x3

by setting equal (34) with the found z-values to the Lie
derivatives and solving the resulting equations for w1, w2, w3.

H. Radicals in the change of variables

We now present an (artificially constructed) example of a
rational ODE model for which, in our method, the expressions
for w̄ in terms of the original state variables and parameters
involve radicals (see Remark 2). Consider the ODE model
8
>>><

>>>:

x0
1 = b2x1 + ab(x2

2 + x2),

x0
2 =

x2
1 � b(x2

2 + x2)� b2(b2x1 + ab(x2
2 + x2))

ab(2x2 + 1)
,

y = x1.

(35)

The IO-equation of this system is

ay00 + y0 � ay2 � b2y = 0.

Therefore, the identifiable functions of the parameters are
Q(a, b2). The Lie derivatives are:

y = x1,

y0 = b2x1 + ab(x2
2 + x2),

y00 = x2
1 � b(x2

2 + x2).

(36)

To clarify, this example was manufactured by considering
these Lie derivatives first:

y = x1,

y0 = b2x1 + abx2,

y00 = x2
1 � bx2,

and then replacing x2 by x2
2+x2 to obtain (36). A computation

in MAPLE now shows that the following is a family of
identifiable reparametrizations of (35):

8
<

:

w0
1 = b2w1 � z2

z1
a(w2

2 + w2),

w0
2 =

b4z1w1 � w2
1z

2
1 � z2w2(w2 + 1)(ab2 + 1)

z2a(2w2 + 1)
,

where z1 and z2 are any non-zero elements of Q(a, b2), which
originates from the following set of Lie derivatives

y = z1w1,

y0 = z1b
2w1 � z2a(w

2
2 + w2)

y00 = z21w
2
1 + z2(w

2
2 + w2).

(37)

Following our usual procedure to find the change of variables,
we equate (36) and (37) and solve for w̄ obtaining:

8
>><

>>:

w1 =
x1

z1
,

w2 =
� z2 ±

p
z22 � 4b(x2

2 + x2)z2
2z2

,

which stays radical for any non-zero choices of z1 and z2 from
Q(a, b2).

VI. LINEAR MODELS

In this section, we focus on finding globally IO-identifiable
reparametrizations of linear ODE models. Theorem 2 gives
a general existence result of such reparametrizations based
on analyzing our algorithm. Theorems 3 and 4 provide
explicit globally IO-identifiable reparametrization formulas
for linear compartmental models with single and multiple
outputs, respectively. In these results, there are no inputs.
However, they provide a basic approach that we then use to
find identifiable reparametrizations for systems with inputs
as follows. Theorem 5 provides an explicit globally IO-
identifiable reparametrization formula for a special case of
linear compartmental models with a single input and output
in the same compartment. Each of these explicit results is
preceded by small examples that we calculated using our
software and that gave a hint on what the general result should
look like.

A. General existence result

Theorem 2: Every model (2) in which f̄ and ḡ are linear has
a globally IO-identifiable linear reparametrization obtained by
a linear change of variables. Moreover, this reparametrization
can be found using the algorithm from Section IV.

Proof: Since f̄ and ḡ are linear, the IO-equations are
linear in ȳ, ȳ0, . . . , ȳ(n), and so the corresponding variety V
is a hyperplane. The Lie derivatives of ȳ are also linear in x̄
(though could be non-linear in ↵̄, like in (13)). The embedding
L from step 1 is linear. Since the coefficients of the monomials
in the Lie derivatives are replaced by new indeterminates,
the resulting system (8) is linear in the unknowns z1, . . . , zq
(and is also consistent), and so it has a solution �̄ in Q(�̄)
itself (without taking the algebraic closure). Since Q(�̄) is the
field of globally IO-identifiable functions, �̄ is globally IO-
identifiable.

With this solution �̄, the algorithm then proceeds to con-
struct an ODE realization with the new Lie derivatives. This
step is done by solving a consistent system of linear equa-
tions, and so the result is an ODE system with globally IO-
identifiable parameters. Finally, the change of variables from
the original x̄ to the new w̄ is linear as it can be found by
setting the old and new expressions of the Lie derivatives of
ȳ, ȳ0, . . . , ȳ(n), which are all linear (in x̄ and w̄, respectively).

B. Linear Compartmental Models

Definition 3: Let G be a directed graph with vertex set V
and set of directed edges E. Each vertex i 2 V corresponds
to a compartment in our model and an edge j ! i denotes a
direct flow of material from compartment j to compartment i.
Also introduce three subsets of the vertices In,Out, Leak ✓
V corresponding to the set of input compartments, output
compartments, and leak compartments respectively. To each
edge j ! i, we associate an independent parameter aij , the
rate of flow from compartment j to compartment i. To each
leak node i 2 Leak, we associate an independent parameter
a0i, the rate of flow from compartment i leaving the system.
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We associate a matrix A, called the compartmental matrix

to the graph and the set Leak in the following way:

Aij =

8
>><

>>:

�a0i �
P

k:i!k2E
aki if i = j and i 2 Leak

�
P

k:i!k2E
aki if i = j and i /2 Leak

aij if j ! i is an edge of G
0 otherwise

Then we construct a system of linear ODEs with inputs and
outputs as follows:

ẋ(t) = Ax(t) + u(t) yi(t) = xi(t) for i 2 Out (38)

where ui(t) ⌘ 0 for i /2 In. The resulting model is called a
linear compartmental model.

For a model as in (38) where there is a leak in every
compartment (i.e. Leak = V ), it can greatly simplify the
representation to use the fact that the diagonal entries of
A are the only places where the parameters a0i appear.
Since these are algebraically independent parameters, we can
introduce a new algebraically independent parameter aii for
the diagonal entries (i.e. we make the substitution aii =
�a0i �

P
k:i!k2E

aki) to get generic parameter values along
the diagonal. Identifiability questions in such a model are
equivalent to identifiability questions in the model with this
reparametrized matrix.

We will be considering graphs that have some special
connectedness properties. We define these properties now.

Definition 4: A path from vertex ik to vertex i0 in a
directed graph G is a sequence of vertices i0, i1, i2, . . . , ik
such that ij+1 ! ij is an edge for all j = 0, . . . , k � 1.
To a path P = i0, i1, i2, . . . , ik, we associate the monomial
aP = ai0i1ai1i2 · · · aik�1ik , which we refer to as a monomial

path.
Definition 5: A directed graph G is strongly connected if

there exists a directed path from each vertex to every other
vertex.

C. Linear models without inputs

In this section, we give a general technique to reparameter-
ize a linear model without any inputs, but with one or more
outputs. The techniques we use in this section will be used to
prove a special case for linear models with inputs.

Example 1: Consider the following model:

ẋ1 = a11x1 + a12x2 + a13x3

ẋ2 = a21x1 + a22x2 + a23x3

ẋ3 = a31x1 + a32x2 + a33x3

y1 = x1

Here the identifiable functions are

a11 + a22 + a33,

� a11a22 � a11a33 + a12a21 + a13a31 � a22a33 + a23a32,

a11a22a33 � a11a23a32 � a33a12a21 + a12a23a31

+ a13a32a21 � a22a13a31

as these are the coefficients of the characteristic polynomial
(up to sign). Using the linear reparameterization:

X1 = x1

X2 = a11x1 + a12x2 + a13x3

X3 = (a211 + a12a21 + a13a31)x1

+ (a11a12 + a22a12 + a13a32)x2

+ (a11a13 + a12a23 + a13a33)x3

we obtain the following reparameterized system:

Ẋ1 = X2

Ẋ2 = X3

Ẋ3 = (a11a22a33 � a11a23a32 � a33a12a21 + a12a23a31

+ a13a32a21 � a22a13a31)X1

+ (�a11a22 � a11a33 + a12a21 + a13a31

� a22a33 + a23a32)X2

+ (a11 + a22 + a33)X3

1) Reparametrization formula for linear systems with one

output: We will now derive an explicit formula for globally
IO-identifiable reparametrization of a linear ODE system with
one output.

Theorem 3: Consider a linear system over
x̄ = (x1, . . . , xn):

(
˙̄x = Ax̄

y1 = x1 = Cx̄,

where the graph corresponding to A is strongly connected and
there is at least one leak and C is the matrix where the (1, 1)
entry is 1 and all other entries are zero. Then using the linear
reparameterization X̄ = Px̄ given by:

8
<

:

X1 = x1

Xi =
nP

j=1
p(i�1)
1j xj , i = 2, . . . , n,

where p(i�1)
1j is the sum of all monomial paths of length i� 1

from j to 1,

p(i�1)
1j =

X

length=i�1

a1k1ak1k2 · · · aklj

we get a reparameterized globally IO-identifiable (and, by [29,
Theorem 1] globally identifiable as well) ODE system:

Ẋ1 = X2

Ẋ2 = X3

...
Ẋn�1 = Xn

Ẋn = �c0X1 � c1X2 � . . .� cn�1Xn

(39)

where ci is the n � ith coefficient of the characteristic
polynomial of A, i = 1, . . . , n. The matrix P is the n ⇥ n
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observability matrix:
0

BBB@

C
CA

...
CAn�1

1

CCCA

Proof: A direct calculation shows that

y(n)1 + cn�1y
(n�1)
1 + . . .+ c1ẏ1 + c0y1 = 0 (40)

is the IO-equation of (44). This can be shown using the
Laplace Transform/Transfer Function approach (see [30] for
more details). This input-output equation is irreducible and of
minimal order by [31, Theorem 3]. Notice the reparameterized
system can be factored as:

˙̄X =

0

BBB@

0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

...
...

...
...

...
�c0 �c1 �c2 �c3 · · · �cn�1

1

CCCA
X̄ = ÃX̄.

This is a standard result from differential equations on con-
verting an nth order linear ODE (i.e. the input-output equa-
tion (45)): into a first order system of n ordinary differential
equations via the procedure:

X1 = y1

X2 = ẏ1 = Ẋ1

X3 = ÿ1 = Ẋ2

...

Ẋn = y(n)1 = �cn�1y
(n�1)
1 � . . .� c1ẏ1 � c0y1

= �c0X1 � c1X2 � . . .� cn�1Xn

Now we show that this procedure leads to the linear reparam-
eterization X̄ = Px̄ given above. We have:

X1 = y1 = x1 = Cx̄

X2 = Ẋ1 = ẋ1 = a11x1 + a12x2 + . . .+ a1nxn = CAx̄

X3 = Ẋ2 = Ẍ1 = ẍ1 = a11ẋ1 + a12ẋ2 + . . .+ a1nẋn

= a11(a11x1 + a12x2 + . . .+ a1nxn)

+ a12(a21x1 + a22x2 + . . .+ a2nxn) + . . .

+ a1n(an1x1 + an2x2 + . . .+ annxn) = CA2x̄

X4 = Ẋ3 = Ẍ2 =
...
X1 =

...
x 1 = a11ẍ1 + a12ẍ2 + . . .+ a1nẍn

= a11(a11ẋ1 + a12ẋ2 + . . .+ a1nẋn)

+ a12(a21ẋ1 + a22ẋ2 + . . .+ a2nẋn) + . . .

+ a1n(an1ẋ1 + an2ẋ2 + . . .+ annẋn) = CA3x̄

...
Xn = CAn�1x̄

Thus the matrix P is the n by n observability matrix:
0

BBB@

C
CA

...
CAn�1

1

CCCA

We can write ẋ1, . . . , ẋn in terms of paths:

ẋi =
nX

j=1

p(1)
ij

xj

for i = 1, . . . , n, p(1)
ij

is the monomial path of length 1 from
j to i. Then ẍi =

P
n

j=1 p
(1)
ij

ẋj , which is:

ẍi =
nX

j=1

p(1)
ij

nX

k=1

p(1)
jk

xk

which works out to: ẍi =
P

n

j=1 p
(2)
ij

xj where p(2)
ij

is the sum
of all monomial paths of length 2 from j to i,

p(2)
ij

=
X

length=2

aik1ak1j

We have that x(n)
i

=
P

n

j=1 p
(1)
ij

x(n�1)
j

(by linearity) and now
assume that:

x(n�1)
i

=
nX

j=1

p(n�1)
ij

xj

where p(n�1)
ij

is the sum of all monomial paths of length n�1
from j to i. Then

x(n)
i

=
nX

j=1

p(1)
ij

nX

k=1

p(n�1)
jk

xk

which works out to: x(n)
i

=
P

n

j=1 p
(n)
ij

xj , where p(n)
ij

is the
sum of all monomial paths of length n from j to i,

p(n)
ij

=
X

length=n

a1k1ak1k2 . . . aklj .

Corollary 1: The reparametrization in Theorem 3 yields Xi

that are linearly independent (in particular, are not zero) for
i = 1, . . . , n.

Proof: To show linear independence of the Xi, it is suffi-
cient to show that the Jacobian of the linear reparametrization
is generically full rank. The Jacobian is given by the matrix
P . This is the observability matrix:

0

BBB@

C
CA

...
CAn�1

1

CCCA

where C has (1, 1) entry equal to 1, all others zero. A
n�compartment model is structurally observable if and only
if the rank of the observability matrix is n [32]. From [33,
Theorem 1], a compartmental model is structurally observable
if and only if it is output connectable, which means there exists
a path from every vertex to the output. Since G is strongly
connected by assumption, it is thus output connectable and
this structurally observable, so the rank of the observability
matrix is n.
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2) Reparametrization formula for linear systems with multiple

outputs:

Example 2: Consider the following model:

ẋ1 = a11x1 + a12x2 + a13x3 + a14x4 + a15x5

ẋ2 = a21x1 + a22x2 + a23x3 + a24x4 + a25x5

ẋ3 = a31x1 + a32x2 + a33x3 + a34x4 + a35x5

ẋ4 = a41x1 + a42x2 + a43x3 + a44x4 + a45x5

ẋ5 = a51x1 + a52x2 + a53x3 + a54x4 + a55x5

y1 = x1

y2 = x2

Using the linear reparameterization:

X1 = x1

X2 = x2

X3 = ẋ1 = a11x1 + a12x2 + a13x3 + a14x4 + a15x5

X4 = ẋ2 = a21x1 + a22x2 + a23x3 + a24x4 + a25x5

X5 = ẍ1 = a11ẋ1 + a12ẋ2 + a13ẋ3 + a14ẋ4 + a15ẋ5 = . . .

we obtain the following reparameterized system:

Ẋ1 = X3

Ẋ2 = X4

Ẋ3 = X5

Ẋ4 = Ẍ2

Ẋ5 =
...
X1

The expressions for Ẍ2 and
...
X1 on the right-hand side can

then be written in terms of X1, ..., X5, but we do not include
these as the expressions get too big to fit on a page.

We can now generalize to the case of multiple outputs and
write a reparametrized linear system.

Theorem 4: Consider

• a linear system over x̄ = (x1, . . . , xn):
(
˙̄x = Ax̄

yi = xi, i = 1, . . . ,m

• C the diagonal m⇥ n matrix in which the (i, i) entry is
1 for i = 1, . . . ,m, all other entries are zero

• the matrix P given by the first n rows of the observability
matrix:

0

BBB@

C
CA

...
CAn�1

1

CCCA
(41)

If the matrix P is invertible, then, using the linear reparam-
eterization X̄ = Px̄, we obtain a globally IO-identifiable
reparametrized ODE system

˙̄X = PAP�1X̄.

Remark 3: In coordinates, the new variables are given by

X1 = x1, . . . , Xm = xm

Xm+1 = Ẋ1 = ẋ1

...
X2m = Ẋm = ẋm

X2m+1 = Ẋm+1 = Ẍ1 = ẍ1

...
Xn = Ẋn�m = Ẍn�2m = . . .

= X(k)
n�km

= x(k)
n�km

,

(42)

where k > 0 is an integer such that m > n � km > 0. The
reparameterized globally IO-identifiable ODE system is:

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Ẋ1 = Xm+1,

Ẋ2 = Xm+2,
...

Ẋm+1 = X2m+1

...
Ẋn�m = Xn, Ẋn�m+1 = Ẍn�m+1�m

...
Ẋn = Ẍn�m

(43)

Remark 4: It would be interesting to know for what classes
of linear systems, the matrix P is invertible. For instance, it
is invertible in Example 2. On the other hand, if A is the zero
matrix and m < n, then P is not invertible.

Proof: Note that we trivially set X1 = x1, . . . , Xm =
xm as we do not want to change the outputs. Following
this same technique as in Theorem 3, we can describe our
reparametrization (42) in terms of C and powers of A. We
have that

(X1, . . . , Xm) = Cx̄,

(Xm+1, . . . , X2m) = CAx̄, . . . , (Xn�m, . . . , Xn) = CAkx̄.

This gives the first n rows of the observability matrix in
(41). Our reparametrization in (42) gives the right-hand-side
expressions for Ẋ1, . . . , Ẋn�m, etc, in (43) by setting them
equal to Xm+1, . . . , Xn until all variables Xi have been
exhausted. The expressions for Ẋn�m+1, . . . , Ẋn in (43) can
be obtained by taking derivatives of the first n�m equations
in (43), as the variables Xn�m+1, . . . , Xn appear in the
first n � m equations on the right-hand side of (43) since
n � m + 1 < n for m > 1. This introduces second order
derivatives (and higher) of the variables X1, . . . , Xn. To get
the precise form of the right-hand-side of (43) in terms of
X̄ , we use the linear reparametrization X̄ = Px̄ and get the
reparametrized ODE system ˙̄X = PAP�1X̄ .

What’s only left to prove is that this reparametrized ODE
system is, in fact, a globally IO-identifiable reparametrization.
Note that each of the expressions X1, . . . , Xn can themselves
be written in terms of y1, . . . , ym or their derivatives as
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follows:
8
>>>><

>>>>:

Xi = xi = yi, i = 1, . . . ,m,

Xj = Ẋj�m = ẏj�m, j = m+ 1, . . . , 2m,

Xk = Ẋk�m = ÿk�2m, k = 2m+ 1, . . . , 3m,
...

Thus, we can use substitution to obtain that the equations
in Ẋn�m+1, . . . , Ẋn in (43) are m IO-equations. As the
coefficients of the IO-equations are globally IO-identifiable by
definition, we have a globally IO-identifiable reparametriza-
tion.

Remark 5: Theorem 3 can be seen as a special case of
Theorem 4 for the case where m = 1, and we thus get a single
input-output equation in our identifiable reparametrization.

D. Linear models with inputs

Finding an identifiable reparametrization in the case of
linear models with inputs is a trickier problem than without
inputs. In [14], necessary and sufficient conditions were found
for identifiable scaling reparametrizations, but no work was
done on the general case of linear reparametrizations (i.e. not
just scaling). We generalize our result for linear reparametriza-
tion without input to consider the special case of models with
a single input and single output in the first compartment and
have a single incoming edge and single outgoing edge to
compartment 1, which we call a single-in-single-out matrix.

Definition 6: A matrix A is called a single-in-single-out
matrix if A is strongly connected and the entries of the matrix
A satisfy the following conditions:

8
>>><

>>>:

a1i 6= 0 for some unique i

a1j = 0 for all j 6= i

ak1 6= 0 for some unique k 6= i

al1 = 0 for all l 6= k

and there are no cycles of length i for i = 2, . . . , n � 1
involving compartment 1.

Theorem 5: Consider a linear system over
x̄ = (x1, . . . , xn):

(
˙̄x = Ax̄+Bū

y1 = x1 = Cx̄,

where the graph corresponding to A is a single-in-single-out
matrix and there is at least one leak and B and C are the
matrices where the (1, 1) entry is 1 and all other entries are
zero. Then using the linear reparameterization X̄ = Px̄ given
by: 8

<

:

X1 = x1

Xi =
nP

j=1
p(i�1)
1j xj , i = 2, . . . , n,

where p(i�1)
1j is the sum of all monomial paths of length i� 1

from j to 1,

p(i�1)
1j =

X

length=i�1

a1k1ak1k2 · · · aklj

we get a reparameterized globally IO-identifiable (and, by
[29, Theorem 1] globally identifiable as well) ODE system:

Ẋ1 = X2 + u

Ẋ2 = X3 + a11u

...
Ẋn�1 = Xn + an�2

11 u

Ẋn = �c0X1 � c1X2 � . . .� cn�1Xn + an�1
11 u

(44)

where ci is the n � ith coefficient of the characteristic
polynomial of A, i = 1, . . . , n. The matrix P is the n ⇥ n
observability matrix:

0

BBB@

C
CA

...
CAn�1

1

CCCA

Proof: The IO-equation of our system is

y(n)1 + cn�1y
(n�1)
1 + . . .+ c1ẏ1 + c0y1 =

u(n�1)
1 + dn�2u

(n�2)
1 + . . .+ d1u̇1 + d0u1, (45)

where c0, c1, . . . , cn�1 are the n coefficients of the charac-
teristic polynomial of A and d0, d1, . . . , dn�2 are the n � 1
coefficients of the characteristic polynomial of A11, which the
is the matrix A with the first row and first column removed
and is derived in [14]. This can also be shown using the
Laplace Transform/Transfer Function approach. This input-
output equation is irreducible and of minimal order by [31,
Theorem 3].

By extending the standard technique of lifting an nth order
ODE (45) to a system with a companion matrix, for a general
matrix A, the reparameterized system can be factored as:

˙̄X =

0

BBB@

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

�c0 �c1 �c2 · · · �cn�1

1

CCCA
X̄ +

0

BBBBBB@

1

p(1)11

p(2)11
...

p(n�1)
11

1

CCCCCCA
u1.

However, the terms p(1)11 , . . . , p
(n�1)
11 are not globally identifi-

able in general. Recall that p(i)11 is the sum of all monomial
paths of length i from 1 to 1. If A is a single-in-single-out
matrix, then p(i)11 reduces to just ai11

˙̄X =

0

BBB@

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

�c0 �c1 �c2 · · · �cn�1

1

CCCA
X̄ +

0

BBBBB@

1
a11
a211

...
an�1
11

1

CCCCCA
u1.

We note that the parameter a11 is globally identifiable as it is
equal to �cn�1 + dn�2, i.e. tr(A)� tr(A11).
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The rest of the proof is identical to the proof of Theorem 3
but with the addition of u1 as follows:

X1 = y1

X2 + u1 = ẏ1 = Ẋ1

X3 + a11u1 = ÿ1 = Ẋ2

...

Ẋn + an�1
11 u1 = y(n)1 = �cn�1y

(n�1)
1 � . . .� c1ẏ1 � c0y1

= �c0X1 � c1X2 � . . .� cn�1Xn

We now have:

X1 = y1 = x1 = Cx̄,

X2 = Ẋ1 � u1 = ẋ1 � u1

= a11x1 + a12x2 + . . .+ a1nxn = CAx̄,

X3 = Ẋ2 � a11u1 = Ẍ1 � a11u1 � u̇1 = ẍ1 � a11u1 � u̇1

= a11ẋ1 + a12ẋ2 + . . .+ a1nẋn � a11u1

= a11(a11x1 + a12x2 + . . .+ a1nxn + u1)

+ a12(a21x1 + a22x2 + . . .+ a2nxn) + . . .

+ a1n(an1x1 + an2x2 + . . .+ annxn)� a11u1 = CA2x̄,

...
Xn = CAn�1x̄

Example 3: Consider the following model:

ẋ1 = a11x1 + a13x3 + u1

ẋ2 = a21x1 + a22x2 + a23x3

ẋ3 = a32x2 + a33x3

y1 = x1

Notice that a12 and a31 have been set to zero to satisfy the
single-in-single-out condition. This is an example of a model
for which there is no identifiable scaling reparametrization
using the results from [14] (it is not an identifiable cycle
model), thus, by Theorem 2, a linear reparametrization must
be made. Linear compartmental models like this one come up
in areas such as pharmacokinetics, physiology, cell biology,
and ecology [31]. The identifiable functions are

a11,

a13a32a21,

a22 + a33,

a22a33 � a23a32,

which can be easily found from the coefficients of the input-
output equation. Using the linear reparameterization:

X1 = x1

X2 = a11x1 + a12x2 + a13x3

X3 = (a211)x1 + (a13a32)x2 + (a11a13 + a13a33)x3

we obtain the following reparameterized system:

Ẋ1 = X2 + u1

Ẋ2 = X3 + a11u1

Ẋ3 = (a11a22a33 � a11a23a32 + a13a32a21)X1

+ (�a11a22 � a11a33 � a22a33 + a23a32)X2

+ (a11 + a22 + a33)X3 + a211u1

VII. CONCLUSION AND FUTURE WORK

We have presented a new algorithm for finding globally
identifiable reparametrizations of ODE models, which has
wider applicability than the existing methods. We have not sys-
tematically analyzed the scalability of our algorithm in relation
to the number of parameters and state variables and degrees
of nonlinearity. Just like with identifiability analysis [27], we
do not see a clear dependence here besides non-polynomial
rational models taking typically much longer computation time
(e.g., NFB model is much bigger than Pharm, but the latter
is rational and much less efficient for identifiability analysis).

The two main bottlenecks for us are the computation of IO-
equations and polynomial system solving, with the latter likely
playing a bigger role. More and more efficient algorithms
are being developed for both bottlenecks at the moment, see
e.g. [34], [35]. The complexity of polynomial system solving
is typically more affected by the number of variables. The
number of variables in our approach is determined by the
degrees of terms in Lie derivatives. The largest biological
model we have seen that passes through the bottlenecks of
computing IO-equations and polynomial system solving is the
Akt pathway model [36], which is a non-linear model with
16 parameters, 9 state variables, 1 input, and 3 outputs, as in
[34, Example 11].

Some biological models, such as the glucose-insulin model
from [37], involve high-degree but relatively sparse polynomi-
als in the right-hand side of the ODE system. Developing an
approach that takes advantage of sparsity would significantly
improve the efficiency of the current algorithm. This model is
the smallest one in size (besides having a term of degree 8
in the ODE) we have seen that does not pass the bottleneck
of polynomial system solving. The polynomial system we are
solving has 150 equations of average degree 5 per equation, in
59 unknowns, with rational function coefficients. Solving did
not finish after 20 days of sequential computing time, having
consumed 120 GB of RAM.
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