
Faster Gröbner bases for Lie derivatives of ODE systems via
monomial orderings

Mariya Bessonov
Department of Mathematics, CUNY

NYC College of Technology
New York, NY, USA

mariya.bessonov@gmail.com

Ilia Ilmer
Ph.D. Program in Computer Science,

CUNY Graduate Center
New York, NY, USA
i.ilmer@icloud.com

Tatiana Konstantinova
Department of Mathematics, CUNY

Queens College
New York, NY, USA

tatiana.v.konst@gmail.com

Alexey Ovchinnikov
Department of Mathematics, CUNY
Queens College; Ph.D. Programs in
Mathematics and Computer Science,

CUNY Graduate Center
New York, NY, USA

aovchinnikov@qc.cuny.edu

Gleb Pogudin
LIX, CNRS, École Polytechnique,
Institute Polytechnique de Paris

Paris, France
gleb.pogudin@polytechnique.edu

Pedro Soto∗
Ph.D. Program in Computer Science,

CUNY Graduate Center
New York, NY, USA
pedrosoto@vt.edu

ABSTRACT
Symbolic computation for systems of di�erential equations is of-
ten computationally expensive. Many practical di�erential models
have a form of polynomial or rational ODE system with speci�ed
outputs. A basic symbolic approach to analyze these models is to
compute and then symbolically process the polynomial system ob-
tained by su�ciently many Lie derivatives of the output functions
with respect to the vector �eld given by the ODE system.

In this paper, we present a method for speeding up Gröbner ba-
sis computation for such a class of polynomial systems by using
speci�c monomial ordering, including weights for the variables,
coming from the structure of the ODE model. We provide empiri-
cal results that show improvement across di�erent symbolic com-
puting frameworks and apply the method to speed up structural
identi�ability analysis of ODE models.

KEYWORDS
di�erential algebra, ODE Systems, F4 algorithm, weighted mono-
mial ordering, parameter identi�ability, mathematical biology

ACM Reference Format:
Mariya Bessonov, Ilia Ilmer, Tatiana Konstantinova, Alexey Ovchin-
nikov, Gleb Pogudin, and Pedro Soto. 2024. Faster Gröbner bases for
Lie derivatives of ODE systems via monomial orderings. In Proceed-
ings of ISSAC 2024 (ISSAC ’24). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3666000.3669695

∗Work was partially done at the Department of Mathematics at Virginia Tech, the
Mathematical Institute at the University of Oxford, and the Wellcome Centre for Hu-
man Genetics at the University of Oxford.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full cita-
tion on the �rst page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/3666000.3669695

1 INTRODUCTION
Di�erential equations are widely used in modeling. Symbolic com-
putation via di�erential algebra provides a broad range of tools for
analyzing such models [30]. However, e�ciency has been a signi�-
cant bottleneck in using such tools. There has been much progress
in e�ciency for ODE systems with speci�ed output functions by
symbolically processing the Lie derivatives of the output functions
using Gröbner bases. However, for some particular examples of rel-
atively small ODE systems (even < 10 equations), the computation
would not �nish in weeks consuming over 100GB of RAM (see,
e.g. [11, Table 4] and [22, Table 6.1]).

The Gröbner basis (itself and its computation) of a polyno-
mial system can vary based on the chosen monomial ordering.
The most common and empirically reliable in terms of comput-
ing time monomial ordering is the so-called total-degree-reverse-
lexicographic order, or tdeg inM���� notation.Weighted ordering
adds a layer of comparison to monomial orderings where one �rst
compares variables by the weight value multiplied by its degree ex-
ponent and then breaks ties by applying any applicable monomial
rule [18]. Properly chosen weights may have tremendous impact
on the computation time. To illustrate this, consider the follow-
ing motivating example of a well-known benchmark polynomial
system, Jason-210 [12]. This example shows bene�ts of weights in
general:

% :=

(
G21G

4
3 + G1G2G23G25 + G1G2G3G4G5G7 + G1G2G3G4G6G8+

+G1G2G24G26 + G22G44 , G62 , G61
(1)

Computing the Gröbner basis of this system with tdeg-order of
G1, G2, G3, G4, G5, G6, G7, G8 takes approximately 670 seconds of total
CPU time and 26 seconds of total elapsed time (multiple cores
were used) as computed in Maple 20211. Modifying the system by
assigning a weight of 2 to the variable G8 results in approximately 2
seconds of CPU time and only about 1 second of total elapsed time.
Assigning weights of 2 to some of the other variables, e.g. to G7,
result in a speed-up as well.

1Computation done on MacBook Pro with 16 GB of RAM and 16-core M1 processor

1

ar
X

iv
:2

20
2.

06
29

7v
3 

 [c
s.S

C
]  

6 
Ju

n 
20

24



ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Bessonov, et al.

In this paper, we present a method for signi�cantly speeding
up Gröbner basis computation for the class of poylnomial systems
that are formed by taking Lie derivatives and all variables and
their derivatives are interpreted as indeterminates. Our method
is based on a careful automatic selection of a monomial ordering,
which is based on the structure of the ODE system. Our orderings
areweighted total-degree-reverse-lexicograpic, with theweight as-
signment following the ODE model structure.

The presented ordering is a result of conducting numerous ex-
periments and analyzing the results. It is thus motivated by em-
pirical observations, just like the fact that the total degree lexico-
graphic ordering is also an empirical achievement accepted univer-
sally as the most advantageous monomial order. Proving that the
given choice behaves best is outside the scope of our manuscript,
and we hope that our work will inspire more investigation in the
area. We provide experimental results showing improvements in
runtime and memory use forM���� and Magma.

One of the applied contexts in which such Lie derivative com-
putation appears is the parameter identi�ability problem. Param-
eter identi�ability is a property crucial for designing high-quality
mathematical models of real-world phenomena using ODEs. The
question of identi�ability ariseswhen one seeks a value for a partic-
ular parameter of the model. A parameter can have either �nitely
many such values (local structural identi�ability), the value can be
unique (global structural identi�ability), or there may be in�nitely
many values and the parameter is unidenti�able.

Distinguishing between unidenti�able and locally identi�able
is rather e�cient [39]. On the other hand, knowing only local
identi�ability in practice is typically insu�cient. For example, if
one then uses an optimization-based parameter estimation algo-
rithm [3, 13, 23, 26, 36, 38], one typically obtains only one solution
for the parameter values even if there are multiple solutions �tting
into a physically meaningful range. Knowing whether the system
is globally identi�able would give the user a guarantee that the so-
lution returned by the parameter estimation algorithm is unique.

The Gröbner basis computation with Lie derivatives described
above, for instance, lies at the core of the global identi�ability al-
gorithm SIAN [21, 24, 32] (see further details in Section 3.3), used
in [1, 9, 28, 40, 42]. We refer to a recent survey [37, Table 3] show-
ing that SIAN compares favorably to other identi�ability software
tools. The orderings proposed in the paper allow to speed up global
identi�ability analysis with SIAN signi�cantly, and are included in
the latest release of SIAN [21] and SIAN-Julia [31].

The rest of this paper is organized as follows. In Section 2, we
provide an overview ofworks related to identi�ability andGröbner
basis computation. Section 3 describes Gröbner bases and how they
appear in the identi�ability analysis. Section 4 contains the weight
generation algorithm. In Section 5, we show the experimental re-
sults and benchmarks with our new weight assignment approach.
We conclude in Section 6 with �nal remarks regarding the work
done and future directions of this research.

2 RELATEDWORK
The analysis of connection between weights and homogenization
of ideals appeared in [17] and later in more detail in [18]. Ho-
mogeneous ideals are an intriguing special case of inputs for a

Gröbner basis algorithm because of the additional structure [4,
Section 10.2] and because it has been proven to lower the overall
complexity of the F5 aglrotithm [17, 18]. In the mentioned works,
weights were used as a homogenization tool, e.g., there are sys-
tems that can be homogenized by raising variables to the power
given by a choice of weights. However, we have observed in the
motivating example (1) above that a weighted ordering can break
homogenization, o�ering large bene�ts.

The problem of �nding convenient variables orderings for Gröb-
ner bases computation or similar tasks has recently been actively
investigated using tools from machine learning [14, 19, 25, 34].
These results typically allow arbitrary input systems and learn a
black-box algorithm for choosing the ordering (for some recent
work towards explainable ordering choice, see [35]). In this work,
we focus on a speci�c class of input system only, but, for this class,
we were able to �nd a simple human-understandable rule, which
incorporates domain-speci�c information.

3 PRELIMINARIES
3.1 Gröbner bases
We begin by de�ning monomial orderings and Gröbner bases.

D��������� 1 (M�������O��������). Amonomial ordering <
of a polynomial ring is a total order on the set of monomials such that,
for all monomials"1, "2, "3, we have: 1  "1 and"1 < "2 =)
"1"3 < "2"3.

D��������� 2 (G������ B����). Fix a monomial ordering < on
the polynomial ring : [G1, . . . , G=]. A subset ⌧ = {61, . . . ,6<} of an
ideal � ✓ : [G1, . . . , G=] such that⌧ < {0}, is called Gröbner basis if

h!) (61), . . . , !) (6<)i = h!) (� )i

where !) (68 ) is the leading term of 68 , !) (� ) are the leading terms of
nonzero elements of � , and h!) (� )i is the ideal generated by !) (� ).

3.2 Di�erential algebra and ODE systems with
parameters

In this section, we set up the language we will use to connect ODE
systems and polynomial systems.

D��������� 3 (D����������� ����� ��� ������). A di�erential
ring (', X) is a commutative ring with a derivation X : ' ! ', that
is, a map such that, for all 0,1 2 ', X (0 + 1) = X (0) + X (1) and
X (01) = X (0)1 +0X (1). A di�erential ring that is also a �eld is called
a di�erential �eld.

D��������� 4 (D����������� ����������� ��� ������������
������). The ring of di�erential polynomials in the variables
G1, . . . , G= over a �eld  is the ring  [G (8 )9 | 8 > 0, 1 6 9 6 =]
with a derivation de�ned on the ring by

X
⇣
G (8 )9

⌘
:= G (8+1)9 .

This di�erential ring is denoted by  {G1, . . . , G=}. An ideal � of a
di�erential ring (', X) is called a di�erential ideal if, for all 0 2 � , we
have X (0) 2 � . For � ⇢ ', the smallest di�erential ideal containing
set � is denoted by [� ].

2



Faster Gröbner bases for Lie derivatives of ODE systems via monomial orderings ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA

For an ideal � and element 0 in a ring ', we denote

� : 01 = {A 2 ' | 9✓ : 0✓A 2 � }.
This set is an ideal in '.

D��������� 5 (M���� �� ��� ����������� ����). A model in
the state-space form is a system

⌃ :=

8>>><
>>>:

§x = f (x, -, u),
y = g(x, -, u),
x(0) = x⇤,

(2)

where f = (51, . . . , 5=) and g = (61, . . . ,6<) with 58 = 58 (x, -, u),
68 = 68 (x, -, u) are rational functions over the complex num-
bers C. The vector x = (G1, . . . , G=) represents the time-dependent
state variables and §x represents the derivative. The vectors u =
(D1, . . . ,DB ), y = (~1, . . . ,~<), - = (`1, . . . , `_), and x⇤ =
(G⇤1 , . . . , G⇤=) represent the input variables, output variables, param-
eters, and initial conditions, respectively.

The analytic notion of identi�ability [22, De�nition 2.5] is equiv-
alent (see [22, Proposition 3.4] and [33, Proposition 4.7]) to the fol-
lowing algebraic de�nition.

We write f = F
& and g = G

& , where F and G are tuples from
C(-) [x, u] and & is the common denominator of f and g. De�ne
the following di�erential ideal, where we use§ in place of X .

�⌃ := [& §G1 � �1, . . . ,& §G= � �=,&~1 �⌧1, . . . ,&~< �⌧<] : &1, (3)

which is in C(-){x, y, u}. Observe that every solution of (2) is a
solution of �⌃.

D��������� 6 (G������ ��������). A tuple (xB , yB , uB ) from a
di�erential �eld  � C(-) is called a generic solution of (2) if, for
every di�erential polynomial % 2 C(-){x, y, u},

% (xB , yB , uB ) = 0 () % 2 �⌃ .
D��������� 7 (I��������������). LetC(-) be a �eld of functions

in - with complex coe�cients. A function (or parameter) ⌘ 2 C(-)
is said to be identi�able (or globally identi�able) in model (2) if,
for every generic solution (xB , yB , uB ) of ODE (2), it follows that
⌘ 2 C(-, yB , §yB , . . . , uB , §uB , . . . ). The function ⌘ is said to be locally
identi�able if ⌘ is algebraic over the �eld C(-, yB , §yB , . . . , uB , §uB , . . . ).

3.3 Lie-derivative algorithm for parameter
identi�ability in ODE models

We will now summarize (following [21]) how the class of polyno-
mial systems we consider can be computed from ODE models (2):

(1) The original di�erential system (2) is transformed into a
polynomial system in the functions’ derivatives and param-
eters through successive di�erentiation of the original equa-
tions.

(2) Random values are sampled for x⇤, - and the derivatives of
D8 ’s. Then the corresponding values of the derivatives of
~8 ’s are computed. Finally, the values for ~8 ’s and D8 ’s are
plugged into the polynomial system. This corresponds to
sampling a random input-output pair for the model.

After these steps, the polynomial system is, for instance, ready
for an immediate use for the parameter identi�ability problem for
the ODE system using Gröbner bases. In particular, we then check

whether the sampled values x⇤, - are the only possible solutions
of the specialized polynomial system. If yes, the corresponding pa-
rameter is globally identi�able. Due to random sampling, this algo-
rithmmay produce incorrect results, but the probability of correct-
ness can be made arbitrarily close to 1 by choosing an appropriate
sampling range [22, Theorem 4.2].

The aforementioned Gröbner basis computation is typically the
bottleneck in the identi�ability analysis. We would like to empha-
size two features of this computation:

• The uniqueness of the value of a coordinate can easily be
checked using a Göbner basis with respect to any ordering.

• The resulting Gröbner basis is typically simple, e.g., for a
globally identi�able system, it de�nes a maximal ideal.

Notice that, for simplicity of presentation, from this point on,
we do not separately discuss input variables u.

3.4 Toy example
In this section, we will show how a concrete (toy) ODE model is
transformed into a polynomial system, which will further be a sub-
ject for Gröbner basis computation. Consider the following ODE
model in state-space form:

⌃ =

8>>><
>>>:

§G = 0G + 22
~ = G,
G (0) = G⇤

(4)

Using the Jacobian-based termination criterion [21, Theorem 3.16
and Proposition 3.20], which is not relevant in the context of this
paper, we will di�erentiate the �rst and the second equations one
and two times, respectively. As a result, the following polynomial
system will be obtained:

⇢C =
⇥
~ � G⇤, §G � 0G⇤ � 22, §G � §~, •G � 0 §G, •G � •~, ®G � 0 •G, ®~ � ®G

⇤
.

Here, the superscript C stands for “truncated”, which is the wording
we use to represent the fact that some of the equations were dif-
ferentiated a smaller number of times (but still su�ciently many)
than one would naively do.

Then, to restrict to a random output trajectory, we randomly
sample values for G⇤ and 0, substitute them into ⇢C and solve the
resulting system for ~, §~, •~, ®~ (the solution will be unique thanks to
the triangular shape of the system). We will denote this solution by
.̂ := [~̂0, ~̂1, ~̂2]. Thenwe substitute the solution into ⇢C obtainingb⇢C . For a sample of 0 = 119791, G⇤ = 139697, 2 = 75091, we have:

b⇢C =
8>>>>><
>>>>>:

139697 � G⇤, §G � 0G⇤ � 22,
� §G + 22373101608,�0 §G + •G,
�•G + 2680096214723928, ®G � 0 •G,
�®G + 321051405657994059048

(5)

Then comes the key step of symbolically processing this polyno-
mial system to determine the property of the ODE system, global
identi�ability of the parameters. This is done by computing a Gröb-
ner basis of (5) (the ordering does not matter). A parameter/initial
condition of the ODE model is globally identi�able if and only if,
modulo the basis, it reduces to a constant. For example, for (5), we

3



ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Bessonov, et al.

obtain a basis

B =

8>>><
>>>:

0 � 119791,�139697 + G⇤,
§G � 22373101608, •G � 2680096214723928,
®G � 321051405657994059048, 22 � 5638658281.

Notice that we have 0 � 119791, G⇤ � 139697 in the basis, so the
reductions of 0 and G⇤ will be constants yielding that these param-
eters are globally identi�able. At the same time, we do not have a
unique value for 2 thus concluding that it is only locally identi�able.

Our goal: �nd a weight assignment to each variable of the poly-
nomial system b⇢C to speed up the Gröbner basis computation. In
the example above, the weighted ordering would be applied before
the step of computing the Gröbner basis, but after we generate a
sampled system b⇢C . We provide more technical details about how
exactly this is performed in Section 5.

4 MAIN RESULT
4.1 The monomial ordering.
The monomial ordering we propose compares twomonomials �rst
by their weights (we describe the weight assignment below) and
then breaks ties by the reverse-lexicographic ordering in which the
variables are �rst compared with respect to their derivative order
, e.g., G < §G < •G < . . . (and then any ordering could be used, we
used reverse alphabetical order, e.g., §I > G > I).

Now we describe the key component of our monomial ordering,
the weight assignment. Given a system (2), one can de�ne the Lie
derivative L(⌘) of a function ⌘ 2 C(x, -, u, u0, . . .) with respect to
the system by

L(⌘) =
=’
8=1

58
m⌘

mG8
+

B’
9=1

§D 9
m⌘

mD 9
. (6)

By applying this formula to each output function~8 , we can de�ne,
for each state variable or a parameter 0 2 {x, -}, the level as

Level(0) := min
8

⇥
9~ 9 2 y : 0 appears in L8 (~ 9 )

⇤
. (7)

Using that value, we assign weight as follows:
• for a state variable G8 2 G (and all its derivatives)

Weight(G8 ) := Level(G8 ) + 1; (8)

• for a parameter `8 2 -:

Weight(`8 ) :=
8>><
>>:
Level(`8 ) + 1, if Level(`8 ) = max

42-[x
Level(4),

1, otherwise.
(9)

4.2 Example
Consider the following ODE system

⌃ =

8>>><
>>>:

§G1 = 0G1 + 1G2,
§G2 = 2G1,
~1 = G1 .

(10)

Di�erentiating once:

L(~1) = L(G1) = 0G1 + 1G2 .

We see that 0,1, G2 all occur after the �rst di�erentiation and hence
will have level of 1. At the same time, state G1 was already at level
0 and will not be considered further. If we di�erentiate once more,
we get

L(L(~1)) = 0L(G1) + 1L(G2) = 0(0G1 + 1G2) + 2G2,

bringing out 2 . Di�erentiating further leads to no new information.
The �nal weight assignment then is as follows:

G1 ) 1, G2 ) 2

4.3 Do our weights homogenize the system?
We discussed earlier how it has been shown that polynomial sys-
tems bene�t from homogenizing weight assignment (see [17] and
[18]). One may be tempted to hypothesize that homogenization
would be the explanation behind the speed-up, but this does not
happen because our systems are rarely homogeneous; we instead
o�er the hypothesis that avoiding reductions to zero, which we ob-
served in our experiments, is the more likely cause of the speed-up,
see Section 4.4. Polynomial systems obtained by Lie derivatives in
ODEmodels contain non-homogeneous polynomials in most cases
by the nature of the problem statements and approach. For exam-
ple, consider an output function (see De�nition 5) of the form

~8 = 68 (. . . ), (11)

where 68 is a polynomial. Since polynomial elimination typically
signi�cantly speeds up after reducing the number of variables
keeping the rest the same, the next step we take is to replace the ~-
variables with numbers, such as in (5). This way, (11) is inevitably
transformed into an equation with a free term of degree 0. There-
fore, the polynomial systems from the class we consider always
have a non-homogeneous polynomial.

By design of our weight-assignment algorithm (9), the weight
of any variable in 68 will be 1 , since the variables of 68 are exaxtly
the base case of 8 in Equation 7. For other polynomials that do not
have a free term and may be homogeneous, the maximum possi-
ble degree in the system will either increase or remain the same
because we raise variables to the power of their weight similarly
to the procedure described in [18]. In this sense, we do not nec-
essarily make polynomials “more homogeneous” with our weight
assignment.

4.4 Possible rationale behind the weight
assignment

While the idea to use di�erential rev-lex ordering can be moti-
vated by results inmonomial ideals [43], themechanism behind the
weight assignment seems to be more mysterious. In this section,
we propose an explanation why the weight assignment eqs. (8)
and (9) speeds up the computation.

We start with a brief overview of the F4 algorithm [15]. The
original Buchberger algorithm [7] iteratively picks a pair of poly-
nomials 5 ,6 from the already computed set and computes their
S-polynomial

( (5 ,6) := " (5 ,6)
LT(5 ) 5 �

" (5 ,6)
LT(6) 6,

" (5 ,6) := lcm(LM(5 ), LM(6)),
(12)

4



Faster Gröbner bases for Lie derivatives of ODE systems via monomial orderings ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA

where LM and LT stand for the leadingmonomial and leading term,
respectively. Then ( (5 ,6) is reduced with respect to already com-
puted polynomials and the result, if nonzero, is added to the com-
puted set. The key idea of the F4 algorithm by [15] is to select
several S-polynomial at each step and then reduce them simulta-
neously using linear algebra. This is done by constructing a matrix
from the S-polynomials and all the multiples of the already com-
puted polynomials which could be used in the reduction as follows:
the columns correspond to themonomials appearing in at least one
of the polynomials, so every polynomial can be transformed into
a row in such a matrix. We would like to point out two features of
the algorithm important for our discussion:

• The way a set of S-polynomials is chosen at each step may
have dramatic impact on the performance of the algorithm.
A popular approach is the normal strategy [15, p. 73] which
takes all pairs for which the formal degree, deg" (5 ,6)
(see (12)), is the minimal possible.

• The matrix is highly structured, in particular, the part con-
taining the reducers (that is, not the S-polynomials) is by
construction in a row echelon form and often has block-
triangular shape. Therefore, the time for reducing such a
matrix may depend more on the number of S-polynomials
rather than the total number of rows in the matrix.

The S-polynomials which are reduced to zero can be considered
as “waste of time”. Avoiding reductions to zero is a recurring
theme in the Gröbner bases computation, including the Buch-
berger criterion, F5 algorithm by [16], and connections to regular
sequences [41, Section 2.4.3]. We believe that one can explain the
performance gains achieved by our weight assignment within this
framework, although not directly through casting the system into
a regular one.

Polynomial systems produced by our Lie derivative process for
ODE systems typically have relatively small and simple Gröbner
bases, so one may expect that few reductions are necessary. On
the other hand, the number of equations is large (starting with 40
in real examples) and the degrees are low (may not go beyond 3 in
many applications). Therefore, the normal selection strategy may
select too many pairs at once, yielding a large number of zero re-
ductions. We claim that our weight assignment alleviates this issue
by spreading possible values of deg" (5 ,6) used for selecting pairs.
Let us explain this in more detail using the following model as an
example

~ = G1, (13)

G 01 = �0G21 + 21G2, (14)

G 02 = 0G
2
1 � 1G2 � 2G2 . (15)

This system corresponds to a chemical reaction network with two
species -1 and -2 and reactions:

2-1
0�! -2, -2

1�! 2-1, -2
2�! ú.

Variables G2 and 2 will be assigned a weight of 2 and 3, respectively
and all the others will be assigned a weight of 1.

By default, the algorithm will order variables “alphabetically”
G1 > G2. If we do not use weights, then the leading monomial

of (13)(8 ) , the 8-th derivative of (13), will be G (8 )1 while the lead-
ing monomials of (14)(8 ) and (15)(8 ) will be equal and come from
(0G21 ) (8 ) because these monomials will have higher total degree.
Now we consider the pairs of small formal degree. In degree two,
we will only have S-polynomials of derivatives of (13), which will
be reducible to zero because the leading monomials in the pairs
forming the S-polynomials are relatively prime (Buchberger’s cri-
terion). Nontrivial pairs start with degree three, and there will be
many of them, including

• simple S-polynomials such as ( ((13), (14)), which basically
correspond to plugging the known value for one of the G1’s
inside G21 in (14) , i.e., ( ((13), (14)) = 0G1~ + G 01 � 21G2;

• less trivial S-polynomials such as ( ((14)(8 ) , (15)(8 ) ), which
do not have such an immediate interpretation.

In the weighted case, the leadingmonomial of (13)(8 ) and (14)(8 )

will stay the same, while the leading monomial of (15)(8 ) will be-
come 2G (8 )2 . This will change the situation signi�cantly because
the only remaining pairs of the formal degree 3 (earlier de�ned
as deg" (5 ,6)) will be the natural ones corresponding to plugging
the known values of G1 and its derivatives to (14) while consider-
ing more complicated S-polynomials is postponed. As a result, the
maximal number of pairs selected at a single iteration of F4 reduces
from 20 in the no-weights case to 10 (see also Table 1).

Generalizing this example, one can observe that the weight as-
signments attempt to force the variables of high level to appear
in the leading monomials of the corresponding equations, thus
making the pairs involving these equations to be of higher for-
mal degree. This will avoid selecting too many pairs at once and
steer the computation towards �rst workingwith the variables and
equations of small level only, thus taking advantage of the known
~-values. We suspect this heuristic is particularly well-suited for
ODEs in the form of Eq. 2 since the outputs are truly modeling
“known” output values from real world applications. In particu-
lar, both globally identi�able and parameter estimation algorithms
set the output functions equal to a number, and the heuristic for
system solving would be to solve for unknown quantities that are
“close” to the known quantities �rst; our weight assignments pre-
cisely measure this “closeness”.

We used msolve [5] to check whether using weights indeed
reduces the maximal number of pairs selected at the same time
and the number of zero reductions. Thanks to being open source,
msolve allows us to extract all information of interest easily. The
results are given in Table 1 and con�rm our expectations. We also
double-checked smaller examples using our own basic implemen-
tation of F4 inM����2, and observed the same phenomena.

5 EXPERIMENTAL RESULTS
In this section, we present several examples of ODE systems, for
which we observe reduction in both the runtime and memory. All
simulations were run on a cluster with 64 Intel Xeon CPU with
2.30GHz clock frequency and 755 GB RAM. We ran the computa-
tion usingM���� and Magma computer algebra systems.

The original SIAN algorithm [22] computed Gröbner bases over
rationals. However, many popular F4 implementations (including

2available at https://github.com/iliailmer/BasicF4Algorithm

5



ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Bessonov, et al.

Max. # of pairs selected # of zero reductions
Model No weights Weights No weights Weights
(13)-(15) 20 10 21 19
(20) 25451 3472 42857 20581
(26) 34570 2731 59804 11546
(27) 10370 2021 27972 8953
(24) 10555 6653 27795 18102

Table 1: F4 statistics on benchmarks with/without weights

the one in M����) are multimodular, that is, the actual computa-
tion is in fact performed modulo several prime numbers, and then
the result is lifted to the rationals. To reduce the uncertainty re-
lated to di�erent possibilities of the choices of primes and focus on
the performance gains of the proposed weighted ordering, we run
all experiments modulo a �xed prime number ? = 11863279. We
have conducted additional experiments to verify that the speedup
is similar for the computations over rationals.

M���� does not directly support the use of weighted orderings
with a compiled F4 implementation that is su�ciently fast. To
avoid any potential slowdowns, we substitute any variable E in the
polynomial system that has weightF greater than 1 with EF . To il-
lustrate this, if we have a polynomial system ⇢ = {G +~, G �~}, and
we wish to use the weight of 2 for variable G , our approach is to
compute the basis for a new polynomial system ⇢1 = {G2+~, G2�~}
keeping the variable order as total degree reverse lexicographic.
Empirically, there may be a di�erence observed between comput-
ing Gröbner basis with G > ~ and ~ > G . In our computations, we
order the variables by the degree of the derivative. For example,
consider a simple input ODE model

8>>><
>>>:

§G1 = 0G1,
§G2 = �1G1 + 2G2,
~ = G1 + G2 .

(16)

We then produce the following polynomial system, where the dou-
ble index in G8;9 shows that the variable is the 9-th derivative of G8
in jet-notation.

⇢ =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

7828371 � G1;0 � G2;0,�0G1 + G1;1,
1G1 � 2G2 + G2;1,�G1;1 � G2;1 + 22382588610034,
�0G1;1 + G1;1,1G1;1 � 2G2;1 + G2;2,
�G1;1 � G2;2 + 98741152216384012556,
�0G1;1 + G1;3,1G1;1 � 2G2;2 + G2;3,
�G1;3 � G2;3 + 538005180363000517510923144,
�0G1;3 + G1;4,1G1;3 � 2G2;3 + G2;4,
�G1;4 � G2;4 + 3127015821351630984063385030338736

(17)
the order of variables for the best speed without weights is

G2;4, G1;4, G2;3, G1;3, G2;2, G1;2, G2;1, G1;1, G2;0, G1;0,0,1, 2 . (18)

That is, we use di�erential deg-rev-lex ordering which orders vari-
ables from higher to lower derivative grouping the same degree
together (all order-4 derivatives, all order-3, etc.).

In what follows, we apply the weights on top of the default vari-
able ordering (18) that has proven itself to be empirically faster.

We will consider several ODE models and provide Gröbner basis
results over a �eld of integers with positive prime characteristic
? = 11863279. Each example will be summarized by the following
metrics in Tables 2 and 3:

(1) Number of polynomials and variables in the polynomial sys-
tem.

(2) Default (without weights) CPU time (min) and memory
(GB).

(3) CPU time (min) and memory (GB) with weights.
(4) Speedup calculated as old time

new time .
(5) Memory improvement calculated as old memory

new memory .

Once the Gröbner basis computation is �nished, the weights are
removed by a back substitution to answer the identi�ability query.

Model information Time (min) Memory (GB)
Model num. num. old SIAN di�erential our �nal speedup old SIAN di�erential our �nal reduction
name polys. vars. ordering degrevlex ordering ordering degrevlex ordering

COVID Model 2,
(7.5) 49 48 N/A N/A 602.0 1 N/A N/A 23.2 1

Pharmacokinetics,
(23) 48 47 N/A N/A 21.0 1 N/A N/A 7.7 1
HPV,

(28), (29) 97 92 N/A N/A 13.9 1 N/A N/A 3.7 1
HPV,

(28), (30) 79 75 N/A N/A 5.1 1 N/A N/A 11.0 1
COVID Model 1,

(21) 51 50 377.0 321.9 1.0 327.6 15.3 15.2 0.3 52.6
Goodwin Oscillator

(19) 42 43 44.1 29.8 1.5 18.9 10.8 10.6 0.7 14.6
SEIR-1,
(26) 44 45 3.5 2.2 0.1 17.4 3.3 3.3 0.1 44.8

NF-^B,
(24) 120 109 10.6 7.1 2.3 3.0 11.8 6.1 3.1 1.9

SEIRP,
(20) 50 42 2.6 2.0 0.8 2.5 1.0 1.6 0.2 8.5

SEIR-2,
(27) 44 43 1.3 0.8 0.4 2.2 0.8 0.7 0.1 6.1

Table 2: Results of applying the weighted ordering to only
Gröbner basis computation step of Lie derivative process-
ing (SIAN algorithm), with characteristic ? = 11863279 us-
ing M���� 2021.2. We compare three monomial orderings:
originally used in SIAN, di�erential degrevlex, and our
main weighted ordering. “N/A” stands for the M���� er-
ror “Error, (in Groebner:-F4:-GroebnerBasis) numeric
exception: division by zero” without clear direct cause.

Model information Time (min) Memory (GB)
Model num. num. old SIAN di�erential our �nal speedup old SIAN di�erential our �nal reduction
name polys. vars. ordering degrevlex ordering ordering degrevlex ordering

COVID Model 2,
(7.5) 49 48 4000.6 3471.2 517.4 6.7 38.6 36.4 21.6 1.7

Pharmacokinetics,
(23) 48 47 757.6 248.3 44.5 5.6 14.7 8.4 10.7 0.8
HPV,

(28), (29) 97 92 321.7 126.6 51.5 2.4 21.4 9.8 18.6 0.5
HPV,

(28), (30) 79 75 6.8 5.9 3.2 1.4 2.7 2.6 2.4 1.1
COVID Model 1,

(21) 51 50 1331.1 1272.1 0.6 2207.9 9.2 8.7 1.8 4.8
Goodwin Oscillator

(19) 42 43 26.9 22.4 0.8 28.5 3.5 3.1 0.5 6.0
SEIR-1,
(26) 44 45 8.6 3.9 0.1 76.0 2.0 2.0 0.2 9.8

NF-^B,
(24) 120 109 14.6 9.1 1.7 5.2 3.3 2.0 0.6 3.5

SEIRP,
(20) 50 42 10.0 6.8 36.5 11.2 1.4 1.3 1.6 0.8

SEIR-2,
(27) 44 43 3.4 1.2 0.2 7.6 2.0 1.2 0.7 1.6

Table 3: Results of applying the weighted ordering to only
Gröbner basis computation step of Lie derivative processing
(SIAN algorithm) with characteristic ? = 11863279 in Magma
2.26-8. We compare three underlying monomial orderings:
originally used in SIAN, di�erential degrevlex, and ourmain
weighted ordering.

6



Faster Gröbner bases for Lie derivatives of ODE systems via monomial orderings ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA

6 CONCLUDING REMARKS
We presented an approach to automatically choose a weighted
monomial ordering for Gröbner basis computation for a class of
polynomial systems obtained by computing Lie derivatives of out-
put functions in ODE models. This is, for example, a key com-
ponent of assessing parameter identi�ability of the ODE mod-
els [21, 22].We observe signi�cant improvements formultiplemod-
els that vary in complexity, number of polynomials, and number
of variables.

Our main idea for weight generation lies in the observation that
the “closedness” of parameters and states in the ODE to the outputs
makes a di�erence for the e�ect of a weighted ordering. These em-
pirical observations translated into a sequential Lie di�erentiation
of output functions. E�ectively, this di�erentiation produces Tay-
lor coe�cients of output functions y in terms of states at a �xed
time C = 0 and parameters. We assign weights depending on the
depth of these Taylor coe�cients, thus, e�ectively, leveraging the
outputs “sensitivity”.

If the systemswere already relatively quick to return the answer,
the weights did not have a negative impact. In fact, in examples
where computation slowed down (see e.g. Section 7.10), the mem-
ory usage still showed a positive e�ect, decreasing by around 80%.
There was also a case where the program ran around 44% faster but
consumed 30% more memory. These non-trivial examples consti-
tute a minority of systems. In some cases, a user would not require
a weighted ordering because the Gröbner basis computation runs
fast without weights.

ACKNOWLEDGMENTS
The authors are grateful to CCiS at CUNY Queens College for the
computational resources, to Andrew Brouwer for pointing out the
HPV example, to Mohab Safey El Din for bringing our attention
to regular sequences, to Alexander Demin for helpful discussions
about F4 algorithm, and to the referees for their useful comments.
This work was partially supported by the NSF grants CCF-2212460,
1563942, 1564132 and DMS-1760448, 1853650, 1853482, and the
French ANR-22-CE48-0008 OCCAM project.

REFERENCES
[1] M. A. Al-Radhawi, M. Sadeghi, and E. Sontag. 2021. Long-term regulation of pro-

longed epidemic outbreaks in large populations via adaptive control: a singular
perturbation approach. IEEE Control System Letters (2021).

[2] E. Balsa-Canto, A. A Alonso, and J. R. Banga. 2010. An iterative identi�cation
procedure for dynamic modeling of biochemical networks. BMC Systems Biology
4, 1 (2010), 1–18.

[3] E. Balsa-Canto, D. Henriques, A. Gábor, and J. Banga. 2016. AMIGO2, a toolbox
for dynamic modeling, optimization and control in systems biology. Bioinfor-
matics 32, 21 (2016), 3357–3359.

[4] T. Becker and V. Weispfenning. 1993. Gröbner bases. Springer New York, NY.
[5] J. Berthomieu, C. Eder, and M. Safey El Din. 2021. msolve: A Library for Solving

Polynomial Systems. In 2021 International Symposium on Symbolic and Algebraic
Computation. Saint Petersburg, Russia, 51–58.

[6] A. F. Brouwer, R. Meza, and M. C. Eisenberg. 2015. Transmission heterogene-
ity and autoinoculation in a multisite infection model of HPV. Mathematical
Biosciences 270 (2015), 115–125.

[7] B. Buchberger. 1976. A theoretical basis for the reduction of polynomials to
canonical forms. SIGSAM Bull. 10, 3 (1976), 19–29.

[8] M. A. Capistrán, M. A. Moreles, and B. Lara. 2009. Parameter estimation of
some epidemic models. The case of recurrent epidemics caused by respiratory
syncytial virus. Bulletin of Mathematical Biology 71, 8 (2009), 1890–1901.

[9] E. Dankwa, C. Donnelly, A. Brouwer, R. Zhao, M. Montgomery, M. Weng, and
N. Martin. 2021. Estimating vaccination threshold and impact in the 2017–2019

hepatitis A virus outbreak among persons experiencing homelessness or who
use drugs in Louisville, Kentucky, United States. Vaccine 39, 49 (2021), 7182–
7190.

[10] S. Demignot and D. Domurado. 1987. E�ect of prosthetic sugar groups on the
pharmacokinetics of glucose-oxidase. Drug design and delivery 1, 4 (1987), 333–
348.

[11] R. Dong, C. Goodbrake, H. A. Harrington, and G. Pogudin. 2023. Di�erential
elimination for dynamical models via projections with applications to structural
identi�ability. SIAM Journal on Applied Algebra and Geometry 7, 1 (2023).

[12] C. Eder and T. Hofmann. 2021. E�cient Gröbner bases computation over prin-
cipal ideal rings. Journal of Symbolic Computation 103 (2021), 1–13.

[13] J. Egea, D. Henriques, T. Cokelaer, A. Villaverde, A. MacNamara, D. Danciu, J.
Banga, and J. Saez-Rodriguez. 2014. MEIGO: an open-source software suite
based on metaheuristics for global optimization in systems biology and bioin-
formatics. BMC Bioinformatics 15, 1 (2014), 136.

[14] M. England. 2020. Real quanti�er elimination by cylindrical algebraic decompo-
sition, and improvements by machine learning. In Proceedings of the 45th Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC ’20). ACM.

[15] J.-C. Faugère. 1999. A new e�cient algorithm for computing Gröbner bases (F4).
Journal of Pure and Applied Algebra 139, 1 (1999), 61–88.

[16] J.-C. Faugère. 2002. A new e�cient algorithm for computing Gröbner bases
without reduction to zero (F5). In Proceedings of the 2002 international symposium
on Symbolic and algebraic computation. 75–83.

[17] J.-C. Faugère, M. Safey El Din, and T. Verron. 2013. On the complexity of com-
puting Gröbner bases for quasi-homogeneous systems. In Proceedings of the 38th
International Symposium on Symbolic and Algebraic Computation. 189–196.

[18] J.-C. Faugère, M. Safey El Din, and T. Verron. 2016. On the complexity of com-
puting Gröbner bases for weighted homogeneous systems. Journal of Symbolic
Computation 76 (2016), 107–141.

[19] D. Florescu and M. England. 2020. A Machine Learning Based Software Pipeline
to Pick the Variable Ordering for Algorithms with Polynomial Inputs. In Math-
ematical Software – ICMS 2020 (Lecture Notes in Computer Science, Vol. 12097).
Springer, 302–311.

[20] B. C. Goodwin. 1965. Oscillatory behavior in enzymatic control processes. Ad-
vances in enzyme regulation 3 (1965), 425–437.

[21] H. Hong, A. Ovchinnikov, G. Pogudin, and C. Yap. 2019. SIAN: software for
structural identi�ability analysis of ODE models. Bioinformatics 35, 16 (2019),
2873–2874.

[22] H. Hong, A. Ovchinnikov, G. Pogudin, and C. Yap. 2020. Global identi�ability
of di�erential models. Communications on Pure and Applied Mathematics 73, 9
(2020), 1831–1879.

[23] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P.
Mendes, and U. Kummer. 2006. COPASI—a COmplex PAthway SImulator. Bioin-
formatics 22, 24 (2006), 3067–3074.

[24] I. Ilmer, A. Ovchinnikov, and G. Pogudin. 2021. Web-based Structural Identi�a-
bility Analyzer. In Computational Methods in Systems Biology (Lecture Notes in
Computer Science, Vol. 12881). 254–265.

[25] M. Kauers and J. Moosbauer. 2020. Good Pivots for Small Sparse Matrices. In
Computer Algebra in Scienti�c Computing. CASC 2020 (Lecture Notes in Computer
Science, Vol. 12291). Springer, 358–367.

[26] Z. Li, M. Osborne, and T. Prvan. 2005. Parameter estimation of ordinary di�er-
ential equations. IMA J. Numer. Anal. 25, 2 (2005), 264–285.

[27] T. Lipniacki, P. Paszek, A. Brasier, B. Luxon, and M. Kimmel. 2004. Mathematical
model of NF-kB regulatory module. Journal of Theoretical Biology 228, 2 (2004),
195–215.

[28] M. Locke, G. Lythe, M. López-García, C. Muñoz-Fontela, M. Carroll, and C.
Molina-París. 2021. Quanti�cation of Type I Interferon Inhibition by Viral Pro-
teins: Ebola Virus as a Case Study. Viruses 13, 12 (2021), 2441.

[29] G. Massonis, J. R. Banga, and A. F. Villaverde. 2021. Structural Identi�ability and
Observability of Compartmental Models of the COVID-19 Pandemic. Annual
Reviews in Control 51 (2021), 441–459.

[30] F. Ollivier. 2023. E�ective formal resolution of systems of algebraic di�erential
equations. Habilitation à diriger des recherches. Institut Polytechnique de Paris.
https://hal.science/tel-04098759

[31] A. Ovchinnikov. 2021. SIAN-Julia: Structural Identi�ability Analyzer.
https://github.com/alexeyovchinnikov/SIAN-Julia

[32] A. Ovchinnikov, A. Pillay, G. Pogudin, and T. Scanlon. 2021. Computing all
identi�able functions of parameters for ODE models. Systems & Control Letters
157 (2021), 105030.

[33] A. Ovchinnikov, G. Pogudin, and P. Thompson. 2023. Input-output equations
and identi�ability of linear ODE models. IEEE Trans. Automat. Control 68 (2023),
812–824.

[34] D. Peifer, M. Stillman, and D. Halpern-Leistner. 2020. Learning selection strate-
gies in Buchberger’s algorithm. In International Conference on Machine Learning.
PMLR, 7575–7585.

[35] L. Pickering, T. del Río Almajano, M. England, and K. Cohen. 2024. Explainable
AI Insights for Symbolic Computation: A case study on selecting the variable or-
dering for cylindrical algebraic decomposition. Journal of Symbolic Computation

7



ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Bessonov, et al.

123 (2024), 102276.
[36] A. Raue, B. Steiert,M. Schelker, C. Kreutz, T.Maiwald, H. Hass, J. Vanlier, C. Töns-

ing, L. Adlung, R. Engesser, W. Mader, T. Heinemann, J. Hasenauer, M. Schilling,
T. Höfer, E. Klipp, F. Theis, U. Klingmüller, B. Schöberl, and J. Timmer. 2015.
Data2Dynamics: a modeling environment tailored to parameter estimation in
dynamical systems. Bioinformatics 31, 21 (2015), 3558–3560.

[37] X. Rey Barreiro and A. Villaverde. 2023. Benchmarking tools for a priori identi-
�ability analysis. Bioinformatics 39, 2 (2023).

[38] H. Schmidt and M. Jirstrand. 2005. Systems Biology Toolbox for MATLAB: a
computational platform for research in systems biology. Bioinformatics 22, 4
(2005), 514–515.

[39] A. Sedoglavic. 2002. A probabilistic algorithm to test local algebraic observability
in polynomial time. Journal of Symbolic Computation 33, 5 (2002), 735–755.

[40] A. Tran, M. A. Al-Radhawi, I. Kareva, J. Wu, D. Waxman, and E. Sontag. 2020.
Delicate Balances in Cancer Chemotherapy: Modeling Immune Recruitment and
Emergence of Systemic Drug Resistance. Frontiers in Immunology (2020).

[41] T. Verron. 2016. Régularisation du calcul de bases de Gröbner pour des systèmes
avec poids et déterminantiels, et application en imagerie médicale. Ph. D. Disser-
tation. Paris 6.

[42] S. Zhang, J. Ponce, Z. Zhang, G. Lin, and G. Karniadakis. 2021. An integrated
framework for building trustworthy data-driven epidemiological models: Appli-
cation to the COVID-19 outbreak in New York City. PLoS Computational Biology
17, 9 (2021).

[43] A. I. Zobnin. 2009. One-element di�erential standard bases with respect to in-
verse lexicographical orderings. Journal of Mathematical Sciences 163, 5 (2009),
523–533.

7 SYSTEMS ANDWEIGHTS
In this section, we present details about models considered. Specif-
ically, we will describe the di�erential equations and the resulting
weights of the models used in the analysis of this paper.

7.1 Goodwin oscillator
This model is presented in (19) and comes from [20] and describes
time periodicity in cell behavior. This example has 4 state vari-
ables G1,2,3,4 and 6 parameters. Below is the Goodwin oscillator
model and the weight assignment for it (identity weights are not
displayed):

8>>>>>>>><
>>>>>>>>:

§G1 = �1 G1 + 1
(2+G4 ) ,

§G2 = U G1 � V G2,
§G3 = W G2 � X G3,
§G4 = f G4 (W G2�X G3 )

G3
,

~ = G1

G2 =) 3
G3 =) 3
G4 =) 2
V =) 4

(19)

SIAN uses an auxiliary variable I0DG to account for the pres-
ence of denominators in the right-hand side of the original input
ODE system. We observe that giving a weight of at most 3 to this
variable does not decrease performance.

7.2 SEIRP model
This is a biomedical model applied to COVID-19 in [29]. The out-
puts were changed to make the system more of a computational
challenge to SIAN. Below is the SEIRP model and the weight as-
signment for it (identity weights are not displayed):

8>>>>>>>>>><
>>>>>>>>>>:

§( = �U4 ( ⇢ � U8 ( � ,
§⇢ = U4 ( ⇢ + U8 ( � � ^ ⇢ � d ⇢,
§� = ^ ⇢ � V � � ` � ,
§' = V � + d ⇢,
§% = ` � ,
~1 = � + (

⇢ =) 2
d =) 3 (20)

7.3 SEIR COVID-19 model
Next we consider a SEIR-model of epidemics from [29, table 2,
ID=14]. The example originally had 3 output functions. We re-
duced it to 1 to create more of a computational challenge for our
program. We also use the term ` 8 B instead of ` 8` B in the third
equation. The state-space form of the model and the weight as-
signment are presented in (21):

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

§( = ` # � U ( � V ( � # � ` (,
§⇢ = V ( � # � ` ⇢ � W ⇢,
§� = W ⇢ � X � � ` � (,
§& = X � � _& � ^ & � ` &,
§' = _& � ` (,
§⇡ = ^ &,
§⇠ = U ( � `⇠ � g ⇠,
~ = ⇠

( =) 2
� =) 3
⇢ =) 4
W =) 4
X =) 4

(21)

7.4 SIR model with forcing term
The followingmodel was presented in [8]. This is a SIR-model with
an oscillating forcing term given by equations for G1, G2. We also
give our weight assignment.

8>>>>>>>>>><
>>>>>>>>>>:

§( = ` � ` ( � 10 (1 + 11 G1) � ( + 6 ',
§� = 10 (1 + 11 G1) � ( � (a + `) � ,
§' = a � � (` + 6) ',
§G1 = �" G2,

§G2 = " G1,

~1 = � , ~2 = '.

G1 =) 2
G2 =) 3
" =) 3

(22)

7.5 A di�erent SEIR-like COVID-19 model
The following model also comes from [29]. We also provide our
weight assignment.
8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

§(3 = �nB V0 (�= + n0 �3 ) (3 � ⌘1 (3 + ⌘2 (= � nB V8 (3 �=,
§(= = �V8 (= �= � V0 (�= + n0 �3 ) (= + ⌘1 (3 � ⌘2 (=,
§�3 = nBV8(3 �= + nBV0 (�= + n0�3 )(= + ⌘2�= � W08�3 � ⌘1�3 ,
§�= = V8 (= �= + V0 (�= + n0 �3 ) (= + ⌘1�3 � W08 �= � ⌘2�=,
§�= = 5 W08 (�3 +�=) � X �= � W8A �=,
§' = (1 � 5 ) W08 (�3 +�=) + W8A �=,
~1 = (3 , ~2 = �=

�3 =) 2
�= =) 2
(= =) 2
V0,8 =) 2
⌘1,2 =) 2
W08 =) 2
5 =) 2
n0,B =) 2

In this model, the computation without weights has not �nished
in reasonable time, consuming all available memory.

7.6 Pharmacokinetics model
This model comes from [10] describing pharmacokinetics of
glucose-oxidase. We make one modi�cation setting 01 = 02. The
model is small but presents a signi�cant computational challenge

8



Faster Gröbner bases for Lie derivatives of ODE systems via monomial orderings ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA

for global identi�ability, that is, it is very di�cult to compute Gröb-
ner basis of this model’s polynomial system in SIAN. We also pro-
vide our weight assignment:

8>>>>>>>><
>>>>>>>>:

§G1 = 01 (G2 � G1) � (:0 = G1 )
(:2 :0+:2 G3+:0 G1 ) ,

§G2 = 01 (G1 � G2),
§G3 = 11 (G4 � G3) � (:2 = G3 )

(:2 :0+:2 G3+:0 G1 ) ,

§G4 = 12 (G3 � G4),
~1 = G1

G2 =) 2
G3 =) 3
G4 =) 3
12 =) 4

(23)

7.7 NF-^B model
This model comes from [27] and was used for identi�ability anal-
ysis in [2]. The ODE system consists of 15 equations, (24),

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

§G1 = :? � :3 G1 � :1 G1 D,
§G2 = �:3 G2 � :3 G2 � 02 G2 G10+
+C1 G4 � 03 G2 G13 + C2 G5 + (:1 G1 � :2 G2 G8) D,
§G3 = :3 G2 � :3 G3 + :2 G2 G8 D,
§G4 = 02 G2 G10 � C1 G4,
§G5 = 03 G2 G13 � C2 G5,
§G6 = 260 G13 � 01 G6 G10 + C2 G5 � 81 G6,
§G7 = 81 :E G6 � 01 G11 G7,
§G8 = 24 G9 � 25 G8,
§G9 = 22 + 21 G7 � 23 G9,
§G10 = �02 G2 G10 � 01 G10 G6 + 240G12�
�250G10 � 810G10 + 410G11,
§G11 = �01 G11 G7 + 810 :E G10 � 410 :E G11,
§G12 = 220 + 210 G7 � 230 G12,
§G13 = 01 G10 G6 � 260 G13 � 03 G2 G13 + 420 G14,
§G14 = 01 G11 G7 � 420 :E G14,
§G15 = 222 + 212 G7 � 232 G15

(24)

and the outputs, (25):

(
~1 = G2, ~2 = G10 + G13, ~3 = G9,
~4 = G1 + G2 + G3, ~5 = G7, ~6 = G12,

(25)

We use the values of these parameters from [27] to reduce the num-
ber of target identi�ability candidates:
01,02,03, 210, 250, 212 , 232 , 222 , 21, 22, 23, 24, 410,:E . The output func-
tions of (24) yields these weights (not listed states get weight of 1):
25 ) 3, G4, G5, G6, G8, G11, G14 ) 2.

7.8 Two SEIR epidemiological models
The following two SEIRmodels were presented in [29, Examples 34
and 16]. Example 34 is presented in (26), while example 16 is given

by (27). We also provide our weight assignments.
8>>>>>>>><
>>>>>>>>:

§( = ⇤ � A V ( �/# � ` (,
§⇢ = V ( �/# � n ⇢ � ` 4,
§� = n ⇢ � W � � ` � ,
§' = W � � ` ',
~ = � + '.

⇢ =) 2
( =) 3
W =) 4

(26)

8>>>>>>>><
>>>>>>>>:

§( = �V ( � ,
§⇢ = V ( � � n ⇢,
§� = n ⇢ � (d + `) � ,
§' = d � � 3 ',
~ = � + '

⇢ =) 2
( =) 3
V =) 3
d =) 3
W =) 4

(27)

The output functions for both examples are structurally similar.
They are di�erent from those in the original paper to increase the
computational di�culty for SIAN’s Gröbner basis routine.

7.9 HPV models
We considered two HPV models studied in [6]. The model itself is
given by (28) with indices 8, 9 2 {� , "}. We present the Gröbner
basis computation timings for two cases of outputs given in equa-
tions (30) and (29). The outputs in (30) result in the weight of 2
assigned to the following parameters and states provided in (32)
where 8, 9 2 {", � }. Everything else gets weight 1. The output col-
lection from (29) results in (31).

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

§(8 = `
2 + W⌧8 �⌧8 + W$8 �$8 � (8 ` � (8 (V$$

98 (�$8 + �$⌧
8 )

+V⌧$
98 (�⌧8 + �$⌧

8 ) ) � (8 (V$⌧
98 (�$8 + �$⌧

8 )+
+V⌧⌧

98 (�⌧8 + �$⌧
8 ) ),

§�$8 = (8 (V$$
98 (�$8 + �$⌧

8 ) + V⌧$
98 (�⌧8 + �$⌧

8 ) ) + W⌧8 �$⌧
8

��$8 (a$⌧
" + W$8 + ` + V$⌧

98 (�$8 + �$⌧
8 )+

+V⌧⌧
98 (�⌧8 + �$⌧

8 ) ),
§�⌧8 = (8 (V$⌧

98 (�$8 + �$⌧
8 ) + V⌧⌧

98 (�⌧8 + �$⌧
8 ) ) + W$8 �$⌧

8

��⌧8 (a⌧$
" + W⌧8 + ` + V$$

98 (�$8 + �$⌧
8 )+

+V⌧$
98 (�⌧8 + �$⌧

8 ) ),
§�$⌧
8 = �$8 (a$⌧

" + V$⌧
98 (�$8 + �$⌧

8 ) + V⌧⌧
98 (�⌧8 + �$⌧

8 ) )
+�⌧8 (a⌧$

" + V$$
98 (�$8 + �$⌧

8 ) + V⌧$
98 (�⌧8 + �$⌧

8 ) )
��$⌧

8 (W$8 + W⌧8 + ` ),

(28)

Output set 1:

(
~1 = �⌧" + �$⌧

" , ~2 = �$" + �$⌧
" ,

~3 = �$⌧
" + �$⌧

�

(29)

Output set 2:

(
~1 = �⌧" + �$⌧

" , ~2 = �$" + �$⌧
" ,

~3 = �⌧� + �$⌧
� , ~4 = �$� + �$⌧

�

(30)

Output set 1 weights:

8>>><
>>>:

�⌧� , �$� , �$⌧
� ,(" ) 2

(� ,W⌧� ,W$� , a⌧$
� , a$⌧

� ,

V⌧⌧
�" , V⌧$

"� , V
$⌧
"� , V

$$
"� ) 3

(31)

Output set 2 weights:

(
(8 ,W⌧8 ,W$8 , `, a⌧$

8 , a$⌧
8 , V⌧⌧

8 9 , V⌧⌧
98 , V⌧$

8 9 ,

V⌧$
98 , V$⌧

8 9 , V$⌧
98 , V$$

8 9 , V$$
98

(32)

7.10 Example with slowdown: a SIR-model
In (33) from [29, Table 1, ID 26], we present an example in which
the weight assignment generated by our algorithm increases the

9



ISSAC ’24, July 16–19, 2024, Raleigh, NC, USA Bessonov, et al.

running time of F4. In M����, we observed an increase in CPU
time from around 12 to 50 minutes while memory usage slightly
decreases from 11.5 to 10.8 GB. In Magma, this system shows a
larger increase in memory from 5.6 to 18.8 GB with an increase in
CPU time from around 7 to 32 minutes.
8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

§( = 1 # � ( (� _ + _& n0 n@ + _ n0 � + _ n 9 � + 3 + 1),
§� = :1� � (61 + `2 + 32) � ,
§' = 61 �= + 62 � � 33 ',
§� = ( (� _ + _& n0 n@ + _ n0 � + _ n 9 � ) � (:1 + `1 + 34)�,
§& = `1� � (:2 + 35)&,
§� = :2& + `2 � � (62 + 36) � ,
~1 = &,
~2 = �

(33)

Model information Time (min) Memory (GB) Primes
Model num. num. old SIAN di�erential our �nal speedup old SIAN di�erential our �nal reduction
name polys. vars. ordering degrevlex ordering ordering degrevlex ordering
HPV,

(28), (30) 79 75 N/A N/A N/A N/A N/A N/A N/A N/A
COVID Model 2,

(7.5) 49 48 N/A 3762.7 1 N/A 23.5 1 N/A 84
Pharmacokinetics,

(23) 48 47 N/A 102.5 1 N/A 8.0 1 N/A 212
HPV,

(28), (29) 97 92 N/A 179.0 1 N/A 4.0 1 N/A 82
Goodwin Oscillator

(19) 42 43 148.6 7.8 19.0 11.0 0.8 13.7 103 103
SEIR-1,
(26) 44 45 10.2 0.8 12.6 3.3 0.1 24.7 68 68

COVID Model 1,
(21) 51 50 1346.9 5.0 173.9 15.7 0.3 45.7 120 120

NF-^B,
(24) 120 109 40.6 13.7 3.0 6.3 3.2 1.9 88 89

SEIRP,
(20) 50 42 8.3 3.5 2.4 1.7 0.3 6.3 32 32

SEIR-2,
(27) 44 43 2.9 1.7 1.8 0.8 0.2 4.6 38 38

Table 4: Weighted ordering applied to the Gröbner ba-
sis computation step of SIAN with zero characteristic
using M���� 2021.2. “N/A” stands for the M���� error
“Error, (in Groebner:-F4:-GroebnerBasis) numeric
exception: division by zero” without a clear direct cause.

Model information Time (min) Memory (GB) Primes
Model num. num. old SIAN di�erential our �nal speedup old SIAN di�erential our �nal reduction
name polys. vars. ordering degrevlex ordering ordering degrevlex ordering
HPV,

(28), (30) 79 75 31.2 85.2 0.4 2.8 2.7 1.0 8 74
COVID Model 2,

(7.5) 49 48 20722.2 6784.6 3.1 38.6 24.1 1.6 36 93
Pharmacokinetics,

(23) 48 47 1181.6 202.7 5.8 9.4 10.8 0.9 17 275
HPV,

(28), (29) 97 92 1229.2 457.4 2.7 10.6 18.8 0.6 167 185
Goodwin Oscillator

(19) 42 43 112.5 3.5 31.8 3.1 0.5 6.0 109 169
SEIR-1,
(26) 44 45 18.5 0.3 73.2 2.1 0.2 9.9 84 87

COVID Model 1,
(21) 51 50 7626.9 3.1 2468.9 8.8 1.8 4.9 237 260

NF-^B,
(24) 120 109 78.7 12.5 6.3 2.8 0.7 4.8 9 107

SEIRP,
(20) 50 42 41.5 3.3 12.6 1.3 1.6 0.8 62 41

SEIR-2,
(27) 44 43 7.6 1.1 6.9 1.4 0.7 1.7 80 78

Table 5:Weighted ordering applied to theGröbner basis com-
putation step of SIAN with zero characteristic using Magma
V2.26-8.

8 INVERTEDWEIGHTS
The weight assignment we discussed above is not unique. In fact,
we can even �nd an alternative assignment given the same weight
generation procedure as described earlier. Instead of simply using

Model information Time (min) Memory (GB)
Model num. num. eq. (18) eq. (18), speedup eq. (18) eq. (18), reduction
name polys. vars. order inv. weights order inv. weights

HPV,
(28), (30) 79 75 N/A N/A - N/A N/A -

COVID Model 2,
(7.5) 49 48 N/A 607.1 1 N/A 33.6 1

Pharmacokinetics,
(23) 48 47 N/A 127.0 1 N/A 6.02 1
HPV,

(28), (29) 97 92 N/A 19.1 1 N/A 3.4 1
Goodwin Oscillator

(19) 42 43 29.8 0.6 72.6 10.6 0.1 21.7
SEIR-1,
(26) 44 45 2.2 0.23 14.9 3.3 0.1 16.2

COVID Model 1,
(21) 51 50 321.9 148.2 2.2 15.2 3.4 4.4

NF-^B,
(24) 120 109 7.1 5.3 1.3 6.1 1.9 3.2

SEIRP,
(20) 50 42 2.0 4.5 0.5 1.6 0.8 2.1

SEIR-2,
(27) 44 43 0.8 0.7 1.2 0.7 0.1 6.7

Table 6: Results of applying the inverted weighted ordering
to only Gröbner basis computation step of SIAN with char-
acteristic ? = 11863279 using M���� 2021.2. “N/A” stands for
theM���� error “Error, (in Groebner:-F4:-GroebnerBasis)
numeric exception: division by zero” without a clear di-
rect cause.

the rule of higher level, as in (7), we can generate the following
assignment:

Weight(x) := " � Level(G) + 1,
where " = max

G
Level(G) is a maximal possible level of each state.

With this strategy, we can also see improvement. In fact, for cer-
tain systems, such as (19), this assignment is more bene�cial in
reducing the runtime. At the same time, in case of (28), (30), we
observe a similar error message in M���� as if weights were not
present. The results of this new assignment are presented in Ta-
ble 6. It shows that there is still room for improvement in �nding
a weight assignment rule.

One would expect that many of the same phenomena from the
previous weight assignment would happen with these models as
well. In particular, it should attempt to force the variables of low
level to appear in the leading monomials of the corresponding
equations, thus making the pairs involving these equations to be
of higher formal degree, which would, once again, avoid selecting
too many pairs at once and steer the computation towards �rst
working with the variables and equations at a high level only. This
heuristic is similar to how one would solve a “simple” ODE system
by integration. In particular, if one would try to solve the equations

G 02 = 0 (34)
G 01 = G2 (35)
~ = G1, (36)

one would �rst solve for G2 by integrating the constant 0 in (34)
to get G2 = 0C + G2 (0), then would integrate G1 in (35) to get
G1 = 0C2 +G2 (0)C +G1 (0), and �nally after substituting for ~ in (36)
we get~ (C) = 0C2 +G2 (0)C +G1 (0). The inverted weight assignment
heuristic models the way a human would naturally solve such an
ODE system. While we expect the regular weight assignment to
be useful more often, we also expect there to be ODE systems that
have a nice structure in the equations coming from higher deriva-
tives that the inverted weights select �rst before other equations.

10


