2202.06297v3 [cs.SC] 6 Jun 2024

.
.

arxiv

Faster Grobner bases for Lie derivatives of ODE systems via
monomial orderings

Mariya Bessonov Ilia Ilmer Tatiana Konstantinova
Department of Mathematics, CUNY Ph.D. Program in Computer Science, = Department of Mathematics, CUNY
NYC College of Technology CUNY Graduate Center Queens College

New York, NY, USA
mariya.bessonov@gmail.com

Alexey Ovchinnikov
Department of Mathematics, CUNY
Queens College; Ph.D. Programs in
Mathematics and Computer Science,

CUNY Graduate Center
New York, NY, USA
aovchinnikov@qc.cuny.edu

ABSTRACT

Symbolic computation for systems of differential equations is of-
ten computationally expensive. Many practical differential models
have a form of polynomial or rational ODE system with specified
outputs. A basic symbolic approach to analyze these models is to
compute and then symbolically process the polynomial system ob-
tained by sufficiently many Lie derivatives of the output functions
with respect to the vector field given by the ODE system.

In this paper, we present a method for speeding up Grébner ba-
sis computation for such a class of polynomial systems by using
specific monomial ordering, including weights for the variables,
coming from the structure of the ODE model. We provide empiri-
cal results that show improvement across different symbolic com-
puting frameworks and apply the method to speed up structural
identifiability analysis of ODE models.

KEYWORDS

differential algebra, ODE Systems, F4 algorithm, weighted mono-
mial ordering, parameter identifiability, mathematical biology

ACM Reference Format:

Mariya Bessonov, Ilia Ilmer, Tatiana Konstantinova, Alexey Ovchin-
nikov, Gleb Pogudin, and Pedro Soto. 2024. Faster Grobner bases for
Lie derivatives of ODE systems via monomial orderings. In Proceed-
ings of ISSAC 2024 (ISSAC ’24). ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3666000.3669695

*Work was partially done at the Department of Mathematics at Virginia Tech, the
Mathematical Institute at the University of Oxford, and the Wellcome Centre for Hu-
man Genetics at the University of Oxford.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSAC °24, July 16-19, 2024, Raleigh, NC, USA

© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/3666000.3669695

New York, NY, USA
iilmer@icloud.com

Gleb Pogudin
LIX, CNRS, Ecole Polytechnique,
Institute Polytechnique de Paris
Paris, France

gleb.pogudin@polytechnique.edu

New York, NY, USA
tatiana.v.konst@gmail.com

Pedro Soto*
Ph.D. Program in Computer Science,
CUNY Graduate Center
New York, NY, USA
pedrosoto@vt.edu

1 INTRODUCTION

Differential equations are widely used in modeling. Symbolic com-
putation via differential algebra provides a broad range of tools for
analyzing such models [30]. However, efficiency has been a signifi-
cant bottleneck in using such tools. There has been much progress
in efficiency for ODE systems with specified output functions by
symbolically processing the Lie derivatives of the output functions
using Grobner bases. However, for some particular examples of rel-
atively small ODE systems (even < 10 equations), the computation
would not finish in weeks consuming over 100GB of RAM (see,
e.g. [11, Table 4] and [22, Table 6.1]).

The Grobner basis (itself and its computation) of a polyno-
mial system can vary based on the chosen monomial ordering.
The most common and empirically reliable in terms of comput-
ing time monomial ordering is the so-called total-degree-reverse-
lexicographic order, or tdeg in MAPLE notation. Weighted ordering
adds a layer of comparison to monomial orderings where one first
compares variables by the weight value multiplied by its degree ex-
ponent and then breaks ties by applying any applicable monomial
rule [18]. Properly chosen weights may have tremendous impact
on the computation time. To illustrate this, consider the follow-
ing motivating example of a well-known benchmark polynomial
system, Jason-210 [12]. This example shows benefits of weights in
general:

2,2 2,4 6 6 (1)

+X1X2X5 X + X5Xy, X 1

P {xfxg + x1x2x§x§ + X1X2X3X4X5X7 + X1X2X3X4X6X8+
X

23

Computing the Grébner basis of this system with tdeg-order of
X1, X2, X3, X4, X5, X6, X7, X3 takes approximately 670 seconds of total
CPU time and 26 seconds of total elapsed time (multiple cores
were used) as computed in Maple 2021!. Modifying the system by
assigning a weight of 2 to the variable xg results in approximately 2
seconds of CPU time and only about I second of total elapsed time.
Assigning weights of 2 to some of the other variables, e.g. to x7,
result in a speed-up as well.

!Computation done on MacBook Pro with 16 GB of RAM and 16-core M1 processor

ISSAC ’24, July 16-19, 2024, Raleigh, NC, USA

In this paper, we present a method for significantly speeding
up Grobner basis computation for the class of poylnomial systems
that are formed by taking Lie derivatives and all variables and
their derivatives are interpreted as indeterminates. Our method
is based on a careful automatic selection of a monomial ordering,
which is based on the structure of the ODE system. Our orderings
are weighted total-degree-reverse-lexicograpic, with the weight as-
signment following the ODE model structure.

The presented ordering is a result of conducting numerous ex-
periments and analyzing the results. It is thus motivated by em-
pirical observations, just like the fact that the total degree lexico-
graphic ordering is also an empirical achievement accepted univer-
sally as the most advantageous monomial order. Proving that the
given choice behaves best is outside the scope of our manuscript,
and we hope that our work will inspire more investigation in the
area. We provide experimental results showing improvements in
runtime and memory use for MAPLE and Magma.

One of the applied contexts in which such Lie derivative com-
putation appears is the parameter identifiability problem. Param-
eter identifiability is a property crucial for designing high-quality
mathematical models of real-world phenomena using ODEs. The
question of identifiability arises when one seeks a value for a partic-
ular parameter of the model. A parameter can have either finitely
many such values (local structural identifiability), the value can be
unique (global structural identifiability), or there may be infinitely
many values and the parameter is unidentifiable.

Distinguishing between unidentifiable and locally identifiable
is rather efficient [39]. On the other hand, knowing only local
identifiability in practice is typically insufficient. For example, if
one then uses an optimization-based parameter estimation algo-
rithm [3, 13, 23, 26, 36, 38], one typically obtains only one solution
for the parameter values even if there are multiple solutions fitting
into a physically meaningful range. Knowing whether the system
is globally identifiable would give the user a guarantee that the so-
lution returned by the parameter estimation algorithm is unique.

The Grobner basis computation with Lie derivatives described
above, for instance, lies at the core of the global identifiability al-
gorithm SIAN [21, 24, 32] (see further details in Section 3.3), used
in [1, 9, 28, 40, 42]. We refer to a recent survey [37, Table 3] show-
ing that SIAN compares favorably to other identifiability software
tools. The orderings proposed in the paper allow to speed up global
identifiability analysis with SIAN significantly, and are included in
the latest release of SIAN [21] and SIAN-Julia [31].

The rest of this paper is organized as follows. In Section 2, we
provide an overview of works related to identifiability and Grébner
basis computation. Section 3 describes Grobner bases and how they
appear in the identifiability analysis. Section 4 contains the weight
generation algorithm. In Section 5, we show the experimental re-
sults and benchmarks with our new weight assignment approach.
We conclude in Section 6 with final remarks regarding the work
done and future directions of this research.

2 RELATED WORK

The analysis of connection between weights and homogenization
of ideals appeared in [17] and later in more detail in [18]. Ho-
mogeneous ideals are an intriguing special case of inputs for a

Bessonoy, et al.

Grobner basis algorithm because of the additional structure [4,
Section 10.2] and because it has been proven to lower the overall
complexity of the F5 aglrotithm [17, 18]. In the mentioned works,
weights were used as a homogenization tool, e.g., there are sys-
tems that can be homogenized by raising variables to the power
given by a choice of weights. However, we have observed in the
motivating example (1) above that a weighted ordering can break
homogenization, offering large benefits.

The problem of finding convenient variables orderings for Gréb-
ner bases computation or similar tasks has recently been actively
investigated using tools from machine learning [14, 19, 25, 34].
These results typically allow arbitrary input systems and learn a
black-box algorithm for choosing the ordering (for some recent
work towards explainable ordering choice, see [35]). In this work,
we focus on a specific class of input system only, but, for this class,
we were able to find a simple human-understandable rule, which
incorporates domain-specific information.

3 PRELIMINARIES
3.1 Grobner bases

We begin by defining monomial orderings and Grobner bases.

DEFINITION 1 (MONOMIAL ORDERINGS). A monomial ordering <
of a polynomial ring is a total order on the set of monomials such that,
for all monomials My, My, Ms, we have:1 < My and My < My =
MMz < MaMs.

DEFINITION 2 (GROBNER Basts). Fix a monomial ordering < on
the polynomial ring k[x1,...,xn]. A subset G = {g1,...,gm} of an
ideal I C k[x1,...,xn] such that G # {0}, is called Grébner basis if

(LT(g1), .., LT(gm)) = (LT(I))

where LT (g;) is the leading term of g;, LT (I) are the leading terms of
nonzero elements of I, and (LT (I)) is the ideal generated by LT (I).

3.2 Differential algebra and ODE systems with
parameters

In this section, we set up the language we will use to connect ODE
systems and polynomial systems.

DEFINITION 3 (DIFFERENTIAL RINGS AND FIELDS). A differential
ring (R, 0) is a commutative ring with a derivation § : R — R, that
is, a map such that, for all a,b € R, 6(a + b) = &(a) + 6(b) and
d(ab) = 6(a)b+ad(b). A differential ring that is also a field is called
a differential field.

DEFINITION 4 (DIFFERENTIAL POLYNOMIALS AND DIFFERENTIAL
IDEALS). The ring of differential polynomials in the variables
X1,...,%n over a field K is the ring K[x;l) |i>01<j<n]
with a derivation defined on the ring by

(D)) .- (i+1)
é (xj) =X
This differential ring is denoted by K{x1,...,xp}. An ideal I of a
differential ring (R, §) is called a differential ideal if, for alla € I, we
have §(a) € I. For F C R, the smallest differential ideal containing
set F is denoted by [F].

Faster Grobner bases for Lie derivatives of ODE systems via monomial orderings

For an ideal I and element a in a ring R, we denote
I:a® ={reR|3: drel}.
This set is an ideal in R.

DEFINITION 5 (MODEL IN THE STATE-SPACE FORM). A model in
the state-space form is a system

X =f(x p),

Y= 4y =g(x, u v, (2)
x(0) =x",

where f = (fi,...,fn) and g = (91,...,9m) With f; = fi(x, g, u),
gi = gi(x, p, u) are rational functions over the complex num-
bers C. The vector x = (x1, ..., x,) represents the time-dependent
state variables and X represents the derivative. The vectors u =
(wi,..,us), y = W, ym), = (p1,..., 1), and x* =
(x7,...,x;,) represent the input variables, output variables, param-
eters, and initial conditions, respectively.

The analytic notion of identifiability [22, Definition 2.5] is equiv-
alent (see [22, Proposition 3.4] and [33, Proposition 4.7]) to the fol-
lowing algebraic definition.

We write f = 5 and g = 8 where F and G are tuples from
C(p)[x,u] and Q is the common denominator of f and g. Define
the following differential ideal, where we use "in place of §.

Iy = [QX1 —-F,.. .,Qf(n —Fy, Qy1 -Gq,.. .,Qym —Gm] : QOO, (3)
which is in C(p){x,y, u}. Observe that every solution of (2) is a
solution of I5.

DEFINITION 6 (GENERIC SOLUTION). A tuple (Xs,ys, us) from a
differential field K © C(p) is called a generic solution of (2) if; for
every differential polynomial P € C(p){x,y, u},

P(x5,ys,u5) =0 & Pels.

DEFINITION 7 (IDENTIFIABILITY). Let C(p) be a field of functions
in p with complex coefficients. A function (or parameter) h € C(p)
is said to be identifiable (or globally identifiable) in model (2) if,
for every generic solution (xs,ys,us) of ODE (2), it follows that
h e C(u,ys,¥ss---»Us, s, ...). The function h is said to be locally
identifiable if h is algebraic over the field C(p, ys, Vs, - . ., Us, Us, . . .).

3.3 Lie-derivative algorithm for parameter
identifiability in ODE models

We will now summarize (following [21]) how the class of polyno-
mial systems we consider can be computed from ODE models (2):
(1) The original differential system (2) is transformed into a
polynomial system in the functions’ derivatives and param-
eters through successive differentiation of the original equa-
tions.
(2) Random values are sampled for x*, g and the derivatives of
u;’s. Then the corresponding values of the derivatives of
y;’s are computed. Finally, the values for y;’s and u;’s are
plugged into the polynomial system. This corresponds to
sampling a random input-output pair for the model.
After these steps, the polynomial system is, for instance, ready
for an immediate use for the parameter identifiability problem for
the ODE system using Grobner bases. In particular, we then check

ISSAC °24, July 16-19, 2024, Raleigh, NC, USA

whether the sampled values x*, p are the only possible solutions
of the specialized polynomial system. If yes, the corresponding pa-
rameter is globally identifiable. Due to random sampling, this algo-
rithm may produce incorrect results, but the probability of correct-
ness can be made arbitrarily close to 1 by choosing an appropriate
sampling range [22, Theorem 4.2].

The aforementioned Grobner basis computation is typically the
bottleneck in the identifiability analysis. We would like to empha-
size two features of this computation:

o The uniqueness of the value of a coordinate can easily be
checked using a Gobner basis with respect to any ordering.

o The resulting Grobner basis is typically simple, e.g., for a
globally identifiable system, it defines a maximal ideal.

Notice that, for simplicity of presentation, from this point on,
we do not separately discuss input variables u.

3.4 Toy example

In this section, we will show how a concrete (toy) ODE model is
transformed into a polynomial system, which will further be a sub-
ject for Grobner basis computation. Consider the following ODE
model in state-space form:

% = ax + c?
T=1y=x, (4)
x(0) = x*

Using the Jacobian-based termination criterion [21, Theorem 3.16
and Proposition 3.20], which is not relevant in the context of this
paper, we will differentiate the first and the second equations one
and two times, respectively. As a result, the following polynomial
system will be obtained:

E'=|y-x"x—ax* —ch % —g,%—ax,% — §,¥ - ak, j - X .
Here, the superscript ¢ stands for “truncated”, which is the wording
we use to represent the fact that some of the equations were dif-
ferentiated a smaller number of times (but still sufficiently many)
than one would naively do.

Then, to restrict to a random output trajectory, we randomly
sample values for x* and a, substitute them into E? and solve the
resulting system for y, 9, j, i (the solution will be unique thanks to
the triangular shape of the system). We will denote this solution by
Y := [do, 71, 2]. Then we substitute the solution into E obtaining

E!.Fora sample of a = 119791, x™ = 139697, ¢ = 75091, we have:

139697 — x*, % — ax™ — ¢2,

~ | —%+22373101608, —ax + %,

E' = (5)
—% + 2680096214723928, ¥ — as,

—X +321051405657994059048

Then comes the key step of symbolically processing this polyno-
mial system to determine the property of the ODE system, global
identifiability of the parameters. This is done by computing a Grob-
ner basis of (5) (the ordering does not matter). A parameter/initial
condition of the ODE model is globally identifiable if and only if,
modulo the basis, it reduces to a constant. For example, for (5), we

ISSAC ’24, July 16-19, 2024, Raleigh, NC, USA

obtain a basis

a— 119791, -139697 + x*,
B = {x — 22373101608, ¥ — 2680096214723928,
¥ — 321051405657994059048, ¢ — 5638658281.

Notice that we have a — 119791, x* — 139697 in the basis, so the
reductions of a and x* will be constants yielding that these param-
eters are globally identifiable. At the same time, we do not have a
unique value for ¢ thus concluding that it is only locally identifiable.

Our goal: find a weight assignment to each variable of the poly-

nomial system E' to speed up the Grobner basis computation. In
the example above, the weighted ordering would be applied before
the step of computing the Grobner basis, but after we generate a
sampled system E'. We provide more technical details about how
exactly this is performed in Section 5.

4 MAIN RESULT

4.1 The monomial ordering.

The monomial ordering we propose compares two monomials first
by their weights (we describe the weight assignment below) and
then breaks ties by the reverse-lexicographic ordering in which the
variables are first compared with respect to their derivative order
,eg,x < x <X < ... (and then any ordering could be used, we
used reverse alphabetical order, e.g., Z > x > z).

Now we describe the key component of our monomial ordering,
the weight assignment. Given a system (2), one can define the Lie
derivative L(h) of a function h € C(x, g, u, v/, ...) with respect to
the system by

5 oh <~ . oh
i=1 =1

By applying this formula to each output function y;, we can define,
for each state variable or a parameter a € {x, pu}, the level as

Level(a) := min [Jy; € y: a appears in Li(yj)] . ™)
1

Using that value, we assign weight as follows:

e for a state variable x; € x (and all its derivatives)
Weight(x;) := Level(x;) + 1; 8)
o for a parameter y; € p:

Level(y;) + 1, if Level(y;) = max Level(e),
eepuUx

Weight(y;) =
1, otherwise.
©)
4.2 Example
Consider the following ODE system
X1 =axy + be,
2 =1{%xp =cxq, (10)

Y1 = X1.
Differentiating once:

L(y1) = L(x1) = axy + bxy.

Bessonoy, et al.

We see that a, b, x5 all occur after the first differentiation and hence
will have level of 1. At the same time, state x; was already at level
0 and will not be considered further. If we differentiate once more,
we get

L(L(y1)) = aL(x1) + bL(x2) = a(axy + bxa) + cxa,

bringing out c. Differentiating further leads to no new information.
The final weight assignment then is as follows:

x1=1, x9g=2

4.3 Do our weights homogenize the system?

We discussed earlier how it has been shown that polynomial sys-
tems benefit from homogenizing weight assignment (see [17] and
[18]). One may be tempted to hypothesize that homogenization
would be the explanation behind the speed-up, but this does not
happen because our systems are rarely homogeneous; we instead
offer the hypothesis that avoiding reductions to zero, which we ob-
served in our experiments, is the more likely cause of the speed-up,
see Section 4.4. Polynomial systems obtained by Lie derivatives in
ODE models contain non-homogeneous polynomials in most cases
by the nature of the problem statements and approach. For exam-
ple, consider an output function (see Definition 5) of the form

yi =gi(...), (11)

where g; is a polynomial. Since polynomial elimination typically
significantly speeds up after reducing the number of variables
keeping the rest the same, the next step we take is to replace the y-
variables with numbers, such as in (5). This way, (11) is inevitably
transformed into an equation with a free term of degree 0. There-
fore, the polynomial systems from the class we consider always
have a non-homogeneous polynomial.

By design of our weight-assignment algorithm (9), the weight
of any variable in g; will be 1 , since the variables of g; are exaxtly
the base case of i in Equation 7. For other polynomials that do not
have a free term and may be homogeneous, the maximum possi-
ble degree in the system will either increase or remain the same
because we raise variables to the power of their weight similarly
to the procedure described in [18]. In this sense, we do not nec-
essarily make polynomials “more homogeneous” with our weight
assignment.

4.4 Possible rationale behind the weight
assignment

While the idea to use differential rev-lex ordering can be moti-
vated by results in monomial ideals [43], the mechanism behind the
weight assignment seems to be more mysterious. In this section,
we propose an explanation why the weight assignment egs. (8)
and (9) speeds up the computation.

We start with a brief overview of the F4 algorithm [15]. The
original Buchberger algorithm [7] iteratively picks a pair of poly-
nomials f, g from the already computed set and computes their
S-polynomial
o= 840,

9) (12)
M(f,) :=lem(LM(f),LM(9)).

Faster Grobner bases for Lie derivatives of ODE systems via monomial orderings

where LM and LT stand for the leading monomial and leading term,
respectively. Then S(f, g) is reduced with respect to already com-
puted polynomials and the result, if nonzero, is added to the com-
puted set. The key idea of the F4 algorithm by [15] is to select
several S-polynomial at each step and then reduce them simulta-
neously using linear algebra. This is done by constructing a matrix
from the S-polynomials and all the multiples of the already com-
puted polynomials which could be used in the reduction as follows:
the columns correspond to the monomials appearing in at least one
of the polynomials, so every polynomial can be transformed into
a row in such a matrix. We would like to point out two features of
the algorithm important for our discussion:

e The way a set of S-polynomials is chosen at each step may
have dramatic impact on the performance of the algorithm.
A popular approach is the normal strategy [15, p. 73] which
takes all pairs for which the formal degree, deg M(f,g)
(see (12)), is the minimal possible.

o The matrix is highly structured, in particular, the part con-
taining the reducers (that is, not the S-polynomials) is by
construction in a row echelon form and often has block-
triangular shape. Therefore, the time for reducing such a
matrix may depend more on the number of S-polynomials
rather than the total number of rows in the matrix.

The S-polynomials which are reduced to zero can be considered
as “waste of time”. Avoiding reductions to zero is a recurring
theme in the Grobner bases computation, including the Buch-
berger criterion, F5 algorithm by [16], and connections to regular
sequences [41, Section 2.4.3]. We believe that one can explain the
performance gains achieved by our weight assignment within this
framework, although not directly through casting the system into
a regular one.

Polynomial systems produced by our Lie derivative process for
ODE systems typically have relatively small and simple Grébner
bases, so one may expect that few reductions are necessary. On
the other hand, the number of equations is large (starting with 40
in real examples) and the degrees are low (may not go beyond 3 in
many applications). Therefore, the normal selection strategy may
select too many pairs at once, yielding a large number of zero re-
ductions. We claim that our weight assignment alleviates this issue
by spreading possible values of deg M(f, g) used for selecting pairs.
Let us explain this in more detail using the following model as an

example
y=x1, (13)
X1 = —ax% + 2bx, (14)
x} = ax? — bxz — cx. (15)

This system corresponds to a chemical reaction network with two
species X7 and X, and reactions:

b
2X1 5 Xy, Xy = 2X1, Xo = @.

Variables x; and ¢ will be assigned a weight of 2 and 3, respectively
and all the others will be assigned a weight of 1.

By default, the algorithm will order variables “alphabetically”
x1 > xp. If we do not use weights, then the leading monomial

ISSAC °24, July 16-19, 2024, Raleigh, NC, USA

of (13)(i), the i-th derivative of (13), will be xl(i) while the lead-

ing monomials of (14)(i) and (15)(i) will be equal and come from
(axf)(i) because these monomials will have higher total degree.
Now we consider the pairs of small formal degree. In degree two,
we will only have S-polynomials of derivatives of (13), which will
be reducible to zero because the leading monomials in the pairs
forming the S-polynomials are relatively prime (Buchberger’s cri-
terion). Nontrivial pairs start with degree three, and there will be
many of them, including

e simple S-polynomials such as S((13), (14)), which basically
correspond to plugging the known value for one of the x;’s
inside xf in (14) , i.e., S((13), (14)) = ax1y + x| — 2bxz;

o less trivial S-polynomials such as S((l4)(i), (15)(i>), which
do not have such an immediate interpretation.

In the weighted case, the leading monomial of (13)(i) and (14)(i)
will stay the same, while the leading monomial of (15)(i) will be-

come cxél). This will change the situation significantly because
the only remaining pairs of the formal degree 3 (earlier defined
as deg M(f, g)) will be the natural ones corresponding to plugging
the known values of x; and its derivatives to (14) while consider-
ing more complicated S-polynomials is postponed. As a result, the
maximal number of pairs selected at a single iteration of F4 reduces
from 20 in the no-weights case to 10 (see also Table 1).

Generalizing this example, one can observe that the weight as-
signments attempt to force the variables of high level to appear
in the leading monomials of the corresponding equations, thus
making the pairs involving these equations to be of higher for-
mal degree. This will avoid selecting too many pairs at once and
steer the computation towards first working with the variables and
equations of small level only, thus taking advantage of the known
y-values. We suspect this heuristic is particularly well-suited for
ODEs in the form of Eq. 2 since the outputs are truly modeling
“known” output values from real world applications. In particu-
lar, both globally identifiable and parameter estimation algorithms
set the output functions equal to a number, and the heuristic for
system solving would be to solve for unknown quantities that are
“close” to the known quantities first; our weight assignments pre-
cisely measure this “closeness”.

We used msolve [5] to check whether using weights indeed
reduces the maximal number of pairs selected at the same time
and the number of zero reductions. Thanks to being open source,
msolve allows us to extract all information of interest easily. The
results are given in Table 1 and confirm our expectations. We also
double-checked smaller examples using our own basic implemen-
tation of F4 in MAPLE2, and observed the same phenomena.

5 EXPERIMENTAL RESULTS

In this section, we present several examples of ODE systems, for
which we observe reduction in both the runtime and memory. All
simulations were run on a cluster with 64 Intel Xeon CPU with
2.30GHz clock frequency and 755 GB RAM. We ran the computa-
tion using MAPLE and Magma computer algebra systems.

The original SIAN algorithm [22] computed Grébner bases over
rationals. However, many popular F4 implementations (including

2available at https://github.com/iliailmer/BasicF4Algorithm

ISSAC ’24, July 16-19, 2024, Raleigh, NC, USA

Max. # of pairs selected | # of zero reductions
Model No weights ‘ Weights | No weights ‘ Weights
(13)-(15) 20 10 21 19
(20) 25451 3472 42857 20581
(26) 34570 2731 59804 11546
(27) 10370 2021 27972 8953
(24) 10555 6653 27795 18102

Table 1: F4 statistics on benchmarks with/without weights

the one in MAPLE) are multimodular, that is, the actual computa-
tion is in fact performed modulo several prime numbers, and then
the result is lifted to the rationals. To reduce the uncertainty re-
lated to different possibilities of the choices of primes and focus on
the performance gains of the proposed weighted ordering, we run
all experiments modulo a fixed prime number p = 11863279. We
have conducted additional experiments to verify that the speedup
is similar for the computations over rationals.

MaPLE does not directly support the use of weighted orderings
with a compiled F4 implementation that is sufficiently fast. To
avoid any potential slowdowns, we substitute any variable v in the
polynomial system that has weight w greater than 1 with ™. To il-
lustrate this, if we have a polynomial system E = {x+y,x—y}, and
we wish to use the weight of 2 for variable x, our approach is to
compute the basis for a new polynomial system E; = {x?+y, x2—y}
keeping the variable order as total degree reverse lexicographic.
Empirically, there may be a difference observed between comput-
ing Grobner basis with x > y and y > x. In our computations, we
order the variables by the degree of the derivative. For example,
consider a simple input ODE model

X1 = axy,
X9 = —bx1 + cxo, (16)
Yy =x1+x2.

We then produce the following polynomial system, where the dou-
ble index in x;;j shows that the variable is the j-th derivative of x;
in jet-notation.
7828371 — x1,0 — X2;0, —AX1 + X1;1,
bx1 —cxg + X2:1, —X1;1 — X2;1 + 22382588610034,
—ax1;1 +x1;1, bxi — exz + x22,
—X1.1 — X2:2 + 98741152216384012556,
—ax1y + x13, bxi1 — exz;2 + x233,
—X1;3 — X2;3 + 538005180363000517510923144,
—ax13 + x1;4, bx1;3 — cx2;3 + X4,
—X1;4 — X2;4 +3127015821351630984063385030338736
(17)

the order of variables for the best speed without weights is

X234, X134, X233, X133, X232, X132, X231, X131, X2;0, X1;0, & b, ¢ (18)
That is, we use differential deg-rev-lex ordering which orders vari-
ables from higher to lower derivative grouping the same degree
together (all order-4 derivatives, all order-3, etc.).

In what follows, we apply the weights on top of the default vari-
able ordering (18) that has proven itself to be empirically faster.

Bessonoy, et al.

We will consider several ODE models and provide Grobner basis
results over a field of integers with positive prime characteristic
p = 11863279. Each example will be summarized by the following
metrics in Tables 2 and 3:

(1) Number of polynomials and variables in the polynomial sys-
tem.

(2) Default (without weights) CPU time (min) and memory
(GB).

(3) CPU time (min) and memory (GB) with weights.

(4) Speedup calculated as %.

old memory

(5) Memory improvement calculated as Themory °

Once the Grobner basis computation is finished, the weights are
removed by a back substitution to answer the identifiability query.

[T Model information 11 Time (min) 1T Memory (GB) |
Model num. [num. | [old STANTdifferential [our final|speedup [[old STANTdifferential [our final[reduction
name polys. | vars. | | ordering | degrevlex |ordering ordering | degrevlex |ordering

COVID Model 2;
(7.5) 49 48 N/A N/A 602.0 0 N/A N/A 232 el
Pharmacokinetics,
(23) 48 47 N/A N/A 21.0 o N/A N/A 7.7)
HPV,
(28), (29) 97 | 92 N/A N/A 13.9 0 N/A N/A 3.7 B
HPV,
(28), (30) 79 75 N/A N/A 5.1 00 N/A N/A 11.0 00
COVID Model T,
(21 51 50 377.0 321.9 1.0 327.6 153 15.2 0.3 52.6
Goodwin Oscillator
(19 42 43 441 29.8 15 18.9 10.8 10.6 0.7 14.6
SEIR-T,
(26) 44 45 3.5 2.2 0.1 17.4 33 3.3 0.1 44.8
NF-xB,
(24) 120 | 109 10.6 7.1 23 3.0 11.8 6.1 3.1 1.9
SEIRP,
(20) 50 42 2.6 2.0 0.8 2.5 1.0 16 0.2 8.5
SEIR-2,
(27) 44 43 1.3 0.8 0.4 2.2 0.8 0.7 0.1 6.1

Table 2: Results of applying the weighted ordering to only
Grobner basis computation step of Lie derivative process-
ing (SIAN algorithm), with characteristic p = 11863279 us-
ing MaPLE 2021.2. We compare three monomial orderings:
originally used in SIAN, differential degrevlex, and our
main weighted ordering. “N/A” stands for the MAPLE er-
ror “Error, (in Groebner:-F4:-GroebnerBasis) numeric
exception: division by zero” without clear direct cause.

m Model information T Time (min) 1T Memory (GB)
Model num. |num. | [old STAN|differential [our final|speedup [old STAN|differential | our final [reduction
name polys. | vars. | | ordering | degrevlex |ordering ordering | degrevlex |ordering
COVID Model 2;
(7.5) 49 48 4000.6 3471.2 5174 6.7 38.6 364 21.6 17
Pharmacokinetics,
48 47 757.6 248.3 44.5 5.6 14.7 8.4 10.7 0.8
HPV,
(28), (29) 97 92 321.7 126.6 515 2.4 214 9.8 18.6 0.5
HpPV,
(28), (30) 79 75 6.8 5.9 3.2 1.4 2.7 2.6 2.4 1.1
COVID Model T,
(21) 51 50 1331.1 1272.1 0.6 2207.9 9.2 8.7 1.8 4.8
Goodwin Oscillator
(19) 42 43 26.9 22.4 0.8 28.5 3.5 3.1 0.5 6.0
SEIR-T,
(26) 44 45 8.6 3.9 0.1 76.0 2.0 2.0 0.2 9.8
NF-kB,
(24) 120 | 109 14.6 9.1 17 5.2 33 2.0 0.6 3.5
1 TRP;
(20) 50 42 10.0 6.8 36.5 11.2 14 1.3 16 0.8
SEIR-2,
(27) 44 43 3.4 12 0.2 7.6 2.0 1.2 0.7 16

Table 3: Results of applying the weighted ordering to only
Grobner basis computation step of Lie derivative processing
(SIAN algorithm) with characteristic p = 11863279 in Magma
2.26-8. We compare three underlying monomial orderings:
originally used in SIAN, differential degrevlex, and our main
weighted ordering.

Faster Grobner bases for Lie derivatives of ODE systems via monomial orderings

6 CONCLUDING REMARKS

We presented an approach to automatically choose a weighted
monomial ordering for Grobner basis computation for a class of
polynomial systems obtained by computing Lie derivatives of out-
put functions in ODE models. This is, for example, a key com-
ponent of assessing parameter identifiability of the ODE mod-
els [21, 22]. We observe significant improvements for multiple mod-
els that vary in complexity, number of polynomials, and number
of variables.

Our main idea for weight generation lies in the observation that
the “closedness” of parameters and states in the ODE to the outputs
makes a difference for the effect of a weighted ordering. These em-
pirical observations translated into a sequential Lie differentiation
of output functions. Effectively, this differentiation produces Tay-
lor coefficients of output functions y in terms of states at a fixed
time t = 0 and parameters. We assign weights depending on the
depth of these Taylor coefficients, thus, effectively, leveraging the
outputs “sensitivity”.

If the systems were already relatively quick to return the answer,
the weights did not have a negative impact. In fact, in examples
where computation slowed down (see e.g. Section 7.10), the mem-
ory usage still showed a positive effect, decreasing by around 80%.
There was also a case where the program ran around 44% faster but
consumed 30% more memory. These non-trivial examples consti-
tute a minority of systems. In some cases, a user would not require
a weighted ordering because the Grobner basis computation runs
fast without weights.

ACKNOWLEDGMENTS

The authors are grateful to CCiS at CUNY Queens College for the
computational resources, to Andrew Brouwer for pointing out the
HPV example, to Mohab Safey El Din for bringing our attention
to regular sequences, to Alexander Demin for helpful discussions
about F4 algorithm, and to the referees for their useful comments.
This work was partially supported by the NSF grants CCF-2212460,
1563942, 1564132 and DMS-1760448, 1853650, 1853482, and the
French ANR-22-CE48-0008 OCCAM project.

REFERENCES

[1] M. A. Al-Radhawi, M. Sadeghi, and E. Sontag. 2021. Long-term regulation of pro-
longed epidemic outbreaks in large populations via adaptive control: a singular
perturbation approach. IEEE Control System Letters (2021).

[2] E. Balsa-Canto, A. A Alonso, and J. R. Banga. 2010. An iterative identification
procedure for dynamic modeling of biochemical networks. BMC Systems Biology
4,1(2010), 1-18.

[3] E.Balsa-Canto, D. Henriques, A. Gabor, and J. Banga. 2016. AMIGO?2, a toolbox
for dynamic modeling, optimization and control in systems biology. Bioinfor-
matics 32, 21 (2016), 3357-3359.

[4] T.Becker and V. Weispfenning. 1993. Grébner bases. Springer New York, NY.

] J. Berthomieu, C. Eder, and M. Safey El Din. 2021. msolve: A Library for Solving
Polynomial Systems. In 2021 International Symposium on Symbolic and Algebraic
Computation. Saint Petersburg, Russia, 51-58.

[6] A.F. Brouwer, R. Meza, and M. C. Eisenberg. 2015. Transmission heterogene-
ity and autoinoculation in a multisite infection model of HPV. Mathematical
Biosciences 270 (2015), 115-125.

[7] B. Buchberger. 1976. A theoretical basis for the reduction of polynomials to
canonical forms. SIGSAM Bull. 10, 3 (1976), 19-29.

[8] M. A. Capistran, M. A. Moreles, and B. Lara. 2009. Parameter estimation of
some epidemic models. The case of recurrent epidemics caused by respiratory
syncytial virus. Bulletin of Mathematical Biology 71, 8 (2009), 1890-1901.

[9] E. Dankwa, C. Donnelly, A. Brouwer, R. Zhao, M. Montgomery, M. Weng, and
N. Martin. 2021. Estimating vaccination threshold and impact in the 2017-2019

ISSAC °24, July 16-19, 2024, Raleigh, NC, USA

hepatitis A virus outbreak among persons experiencing homelessness or who
use drugs in Louisville, Kentucky, United States. Vaccine 39, 49 (2021), 7182—
7190.

[10] S. Demignot and D. Domurado. 1987. Effect of prosthetic sugar groups on the
pharmacokinetics of glucose-oxidase. Drug design and delivery 1, 4 (1987), 333—
348.

[11] R. Dong, C. Goodbrake, H. A. Harrington, and G. Pogudin. 2023. Differential
elimination for dynamical models via projections with applications to structural
identifiability. SIAM Journal on Applied Algebra and Geometry 7, 1 (2023).

[12] C.Eder and T. Hofmann. 2021. Efficient Grébner bases computation over prin-
cipal ideal rings. Journal of Symbolic Computation 103 (2021), 1-13.

[13] J. Egea, D. Henriques, T. Cokelaer, A. Villaverde, A. MacNamara, D. Danciu, J.
Banga, and J. Saez-Rodriguez. 2014. MEIGO: an open-source software suite
based on metaheuristics for global optimization in systems biology and bioin-
formatics. BMC Bioinformatics 15, 1 (2014), 136.

[14] M. England. 2020. Real quantifier elimination by cylindrical algebraic decompo-
sition, and improvements by machine learning. In Proceedings of the 45th Inter-
national Symposium on Symbolic and Algebraic Computation (ISSAC "20). ACM.

[15] J.-C.Faugére. 1999. A new efficient algorithm for computing Grébner bases (F4).
Journal of Pure and Applied Algebra 139, 1 (1999), 61-88.

[16] J.-C. Faugeére. 2002. A new efficient algorithm for computing Grébner bases
without reduction to zero (F5). In Proceedings of the 2002 international symposium
on Symbolic and algebraic computation. 75-83.

[17] J.-C. Faugere, M. Safey El Din, and T. Verron. 2013. On the complexity of com-
puting Grobner bases for quasi-homogeneous systems. In Proceedings of the 38th
International Symposium on Symbolic and Algebraic Computation. 189-196.

[18] J.-C. Faugere, M. Safey El Din, and T. Verron. 2016. On the complexity of com-
puting Grobner bases for weighted homogeneous systems. Journal of Symbolic
Computation 76 (2016), 107-141.

[19] D.Florescu and M. England. 2020. A Machine Learning Based Software Pipeline
to Pick the Variable Ordering for Algorithms with Polynomial Inputs. In Math-
ematical Software — ICMS 2020 (Lecture Notes in Computer Science, Vol. 12097).
Springer, 302-311.

[20] B. C. Goodwin. 1965. Oscillatory behavior in enzymatic control processes. Ad-
vances in enzyme regulation 3 (1965), 425-437.

[21] H. Hong, A. Ovchinnikov, G. Pogudin, and C. Yap. 2019. SIAN: software for
structural identifiability analysis of ODE models. Bioinformatics 35, 16 (2019),
2873-2874.

[22] H. Hong, A. Ovchinnikov, G. Pogudin, and C. Yap. 2020. Global identifiability
of differential models. Communications on Pure and Applied Mathematics 73, 9
(2020), 1831-1879.

[23] S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P.

Mendes, and U. Kummer. 2006. COPASI—a COmplex PAthway SImulator. Bioin-

formatics 22, 24 (2006), 3067-3074.

L. Ilmer, A. Ovchinnikov, and G. Pogudin. 2021. Web-based Structural Identifia-

bility Analyzer. In Computational Methods in Systems Biology (Lecture Notes in

Computer Science, Vol. 12881). 254-265.

[25] M. Kauers and J. Moosbauer. 2020. Good Pivots for Small Sparse Matrices. In
Computer Algebra in Scientific Computing. CASC 2020 (Lecture Notes in Computer
Science, Vol. 12291). Springer, 358-367.

[26] Z.Li, M. Osborne, and T. Prvan. 2005. Parameter estimation of ordinary differ-

ential equations. IMA J. Numer. Anal. 25, 2 (2005), 264-285.

T. Lipniacki, P. Paszek, A. Brasier, B. Luxon, and M. Kimmel. 2004. Mathematical

model of NF-kB regulatory module. Journal of Theoretical Biology 228, 2 (2004),

195-215.

[28] M. Locke, G. Lythe, M. Lopez-Garcia, C. Mufioz-Fontela, M. Carroll, and C.
Molina-Paris. 2021. Quantification of Type I Interferon Inhibition by Viral Pro-
teins: Ebola Virus as a Case Study. Viruses 13, 12 (2021), 2441.

[29] G.Massonis, J. R. Banga, and A. F. Villaverde. 2021. Structural Identifiability and
Observability of Compartmental Models of the COVID-19 Pandemic. Annual
Reviews in Control 51 (2021), 441-459.

[30] F. Ollivier. 2023. Effective formal resolution of systems of algebraic differential
equations. Habilitation a diriger des recherches. Institut Polytechnique de Paris.
https://hal.science/tel-04098759

[31] A. Ovchinnikov. 2021. SIAN-Julia: Structural Identifiability Analyzer.
https://github.com/alexeyovchinnikov/SIAN-Julia

[32] A. Ovchinnikov, A. Pillay, G. Pogudin, and T. Scanlon. 2021. Computing all
identifiable functions of parameters for ODE models. Systems & Control Letters
157 (2021), 105030.

[33] A. Ovchinnikov, G. Pogudin, and P. Thompson. 2023. Input-output equations

and identifiability of linear ODE models. IEEE Trans. Automat. Control 68 (2023),

812-824.

D. Peifer, M. Stillman, and D. Halpern-Leistner. 2020. Learning selection strate-

gies in Buchberger’s algorithm. In International Conference on Machine Learning.

PMLR, 7575-7585.

L. Pickering, T. del Rio Almajano, M. England, and K. Cohen. 2024. Explainable

Al Insights for Symbolic Computation: A case study on selecting the variable or-

dering for cylindrical algebraic decomposition. Journal of Symbolic Computation

[24

[27

(34

[35

ISSAC ’24, July 16-19, 2024, Raleigh, NC, USA

123 (2024), 102276.

[36] A.Raue,B. Steiert, M. Schelker, C. Kreutz, T. Maiwald, H. Hass, J. Vanlier, C. Téns-
ing, L. Adlung, R. Engesser, W. Mader, T. Heinemann, J. Hasenauer, M. Schilling,
T. Hofer, E. Klipp, F. Theis, U. Klingmiiller, B. Schoberl, and J. Timmer. 2015.
Data2Dynamics: a modeling environment tailored to parameter estimation in
dynamical systems. Bioinformatics 31, 21 (2015), 3558-3560.

[37] X. Rey Barreiro and A. Villaverde. 2023. Benchmarking tools for a priori identi-
fiability analysis. Bioinformatics 39, 2 (2023).

[38] H. Schmidt and M. Jirstrand. 2005. Systems Biology Toolbox for MATLAB: a
computational platform for research in systems biology. Bioinformatics 22, 4
(2005), 514-515.

[39] A.Sedoglavic. 2002. A probabilistic algorithm to test local algebraic observability
in polynomial time. Journal of Symbolic Computation 33, 5 (2002), 735-755.

[40] A. Tran, M. A. Al-Radhawi, L. Kareva, J. Wu, D. Waxman, and E. Sontag. 2020.
Delicate Balances in Cancer Chemotherapy: Modeling Immune Recruitment and
Emergence of Systemic Drug Resistance. Frontiers in Immunology (2020).

[41] T. Verron. 2016. Régularisation du calcul de bases de Grobner pour des systémes

avec poids et déterminantiels, et application en imagerie médicale. Ph.D. Disser-

tation. Paris 6.

S. Zhang,]J. Ponce, Z. Zhang, G. Lin, and G. Karniadakis. 2021. An integrated

framework for building trustworthy data-driven epidemiological models: Appli-

cation to the COVID-19 outbreak in New York City. PLoS Computational Biology

17,9 (2021).

[43] A.1 Zobnin. 2009. One-element differential standard bases with respect to in-
verse lexicographical orderings. Journal of Mathematical Sciences 163, 5 (2009),
523-533.

[42

7 SYSTEMS AND WEIGHTS

In this section, we present details about models considered. Specif-
ically, we will describe the differential equations and the resulting
weights of the models used in the analysis of this paper.

7.1 Goodwin oscillator

This model is presented in (19) and comes from [20] and describes
time periodicity in cell behavior. This example has 4 state vari-
ables x1234 and 6 parameters. Below is the Goodwin oscillator
model and the weight assignment for it (identity weights are not
displayed):

X1 ==bx; +

(c+x4)°
Xp =axi — fx, x3 = 3
X3 =yx2— S x3, ;i z g (19)
%y = UX4(Y;C:—5X3)’ p = 4
y=x1

SIAN uses an auxiliary variable zgyx to account for the pres-
ence of denominators in the right-hand side of the original input
ODE system. We observe that giving a weight of at most 3 to this
variable does not decrease performance.

7.2 SEIRP model

This is a biomedical model applied to COVID-19 in [29]. The out-
puts were changed to make the system more of a computational
challenge to SIAN. Below is the SEIRP model and the weight as-
signment for it (identity weights are not displayed):

S=-a.SE-a;S],

E=q.SE+a;SI-xE-pE,

[=xkE-pI-plL E= 2

i 20
R=pBI+pE, p=3 (20)
P:,uI,

y1=I+S

Bessonoy, et al.

7.3 SEIR COVID-19 model

Next we consider a SEIR-model of epidemics from [29, table 2,
ID=14]. The example originally had 3 output functions. We re-
duced it to 1 to create more of a computational challenge for our
program. We also use the term pis instead of pius in the third
equation. The state-space form of the model and the weight as-
signment are presented in (21):

S=uN-aS—BSIN —uS,
E=BSIN - uE-yE,
I=yE-8I-yuls,
Q=68I-2Q-kQ-pQ,

Ty

: (21)
R=21Q-uS,

D=xQ,

C=aS—puC-1C,

y=C

7.4 SIR model with forcing term

The following model was presented in [8]. This is a SIR-model with
an oscillating forcing term given by equations for x1, x2. We also
give our weight assignment.

S=p—puS—by(1+byx1)IS+gR,
f=b0(1+b1x1)IS—(V+y)I,

R=vI-(u+9)R X = 2
vIi-(u+g) =3 ()

X1 = —M x», M = 3

X9 = Mx,

y1=1 y2=R.

7.5 A different SEIR-like COVID-19 model

The following model also comes from [29]. We also provide our
weight assignment.

Sa = —¢€s Pa (An+€aAq) Sq = h1Sq+ha Sp — € Bi Sq In,
Sn=—PiSnln— Ba (An + €a Ag) Sn + h1 Sq — ha Sn,

Ad = esﬂiSdIn + esﬁa (An + eaAd)Sn + hZAn - YaiAd - hlAd,
Ay = PiSnIn+ Pa (An+€aAg) Sn+h1 Ag = Yai An — h2 A,

jn = fvai (Ag +Ap) =0l - Yir In,

R=(1 = f) Yai (Ag + An) + Yir In,

Y1 =S¢ Y2 =1In

TR

€a,s
In this model, the computation without weights has not finished
in reasonable time, consuming all available memory.

7.6 Pharmacokinetics model

This model comes from [10] describing pharmacokinetics of
glucose-oxidase. We make one modification setting a; = az. The
model is small but presents a significant computational challenge

Faster Grobner bases for Lie derivatives of ODE systems via monomial orderings

for global identifiability, that is, it is very difficult to compute Grob-
ner basis of this model’s polynomial system in SIAN. We also pro-
vide our weight assignment:

. _ (ka "xl)

Ty = ay (X2 = X1) ke vk)

x2 = ay (x1 — x2), X2
(ke nxs) X3

(23)

Luuy

B=hi e mn) S gy
X4 = by (x3 — x4), 2

Yy1=x1

7.7 NF-xB model

This model comes from [27] and was used for identifiability anal-
ysis in [2]. The ODE system consists of 15 equations, (24),

561 =kp —kdxl —klxlu,

Xy = —k3 xo — kd X9 — Az X2 X10+

+t1 X4 — a3 X2 X13 + t2 x5 + (k1 x1 — k2 X2 x8) 4,
5C3 = k3X2 —kdx3+k2xzxgu,

X4 = az x2 x10 — t1 X4,

X5 = as Xz X13 — b2 Xs,

X6 = Coa X13 — a1 X6 X10 + £2 X5 — 1 Xe,

X7 = i1 ko X6 — a1 x11 X7,

Xg = €4 X9 — C5 Xg, (29)
X9 = 2 +C1 X7 — €3 X9,

X10 = —A2 X2 X10 — a1 X10 X6 + C4aX12—
—C50X10 — i1aX10 + €1aX11,

X11 = —a1 X11 X7 + i1 ko X10 — €1a ko x11,

X12 = C2a + Cla X7 — C3a X12,

X13 = a1 X10 X6 — C6a X13 — A3 X2 X13 + €24 X14,

X14 = a1 X11 X7 — €2q kp X14,

X15 = C2c + C1c X7 — €3¢ X15
and the outputs, (25):

Y2 = X10 + X13,

Y1 = X2, Y3 = Xo,
Yq = X1 + X2 + X3, Ys = X7,

Y6 = X12,

(25)

We use the values of these parameters from [27] to reduce the num-
ber of target identifiability candidates:
ai, az, as, C1g, €54, Cic, C3¢» C2¢, C1, €2, €3, C4, €14, Ky. The output func-
tions of (24) yields these weights (not listed states get weight of 1):
c5 = 3, X4, X5, X6, X8, X11, X14 = 2.

7.8 Two SEIR epidemiological models

The following two SEIR models were presented in [29, Examples 34
and 16]. Example 34 is presented in (26), while example 16 is given

ISSAC °24, July 16-19, 2024, Raleigh, NC, USA

by (27). We also provide our weight assignments.

S=A-rBSI/N —us,
E=PBSI/N —€E - pe,

. E= 2
I=€eE-yl—pl, S =3 (26)
. y = 4
R=yIl-puR,
y=I+R.
S$=-BSI,
E=psi-e5 £E= 2
I=eE-(p+pl, p =3 (27)
R=pI—-dR, fy’ZZ
y=I+R

The output functions for both examples are structurally similar.
They are different from those in the original paper to increase the
computational difficulty for SIAN’s Grébner basis routine.

7.9 HPV models

We considered two HPV models studied in [6]. The model itself is
given by (28) with indices i, j € {F, M}. We present the Grobner
basis computation timings for two cases of outputs given in equa-
tions (30) and (29). The outputs in (30) result in the weight of 2
assigned to the following parameters and states provided in (32)
where i, j € {M, F}. Everything else gets weight 1. The output col-
lection from (29) results in (31).

S =By I0+yC 10 = Sip -5 (PO UL +109)

+HBGO U7 +1P9)) = Si (B (IR +109)+

+5° (U7 +109)),

17 =5 (BOC P +109) + pGO (IF +199)) +y T 1P7€

—IP (]G +yP +p+ BC (1P +109)+

+45° (IF +I79)),

IF =5 (BC P +109) + 50 (IF +1P9)) +yP 1€
—I18 (VGO +yC + +ﬁﬁo (I9 +1°9)+
+B5C (IF +109)),

IPS =12 (v§)9 + B5C (1P +1P) + pGC (IF +199))
HT (9 + PO (IP +1P9) + B5O (IF +109))

OG (,,0 G
_Ii (Yi +Y; +),

(28)

y1 =IG+I9C, yp =19 +19C,

(29)
— 710G oG
Y3 = IM + IF

Output set 1: {

y1 =I5 +I9C, yp =19 +155,

(30)
ys = IS +19€, y, =19 +19¢

Output set 2: {

G 10 7O0G
18,19,196,5p = 2
Output set 1 weights: Sp,yg,yl?, vfo, VI?G, (31)
GG GO ROG ROO
ene P Pup Pur = 3
Sy v 2w vEO, vPG, BEC, BSC, BIO,
. . idi i i 1 Jt Y
Output set 2 weights: { GO gOG OG OO, OO
i P Py P P

(32)

7.10 Example with slowdown: a SIR-model

In (33) from [29, Table 1, ID 26], we present an example in which
the weight assignment generated by our algorithm increases the

ISSAC ’24, July 16-19, 2024, Raleigh, NC, USA

running time of F4. In MAPLE, we observed an increase in CPU
time from around 12 to 50 minutes while memory usage slightly
decreases from 11.5 to 10.8 GB. In Magma, this system shows a
larger increase in memory from 5.6 to 18.8 GB with an increase in
CPU time from around 7 to 32 minutes.

S=bN-S(IA+AQeseq+AeqA+AejJ+d+1),
jzklA—(gl+/,lz+d2)I,

R=giIn+gy] —d3R,
A=S(UA+AQeqeq+AeqA+Aej]) — (ki+py+dy) A
O=mA-(kz+ds)Q,

J=ka Q+paI— (g2 +ds)],

y1=0,
y2 =]
(33)
i Model information T Memory (GB) Primes
Model num. [num. | old STANTdi
name polys.| vars. | | ordering | degrevlex |ordering
8), (30) 79 75 N/A N/A N/A N/A N/A N/A N/A N/A
COVID Model 2,
(7.5) 49 48 N/A 3762.7) N/A 23.5 o N/A 84
Pharmacokinefics,
48 47 N/A 102.5) N/A 8.0 00 N/A 212
HPV;
28), (29) 97 92 N/A 179.0) N/A 4.0 oo N/A 82
Goodwin Oscillator
19 42 43 148.6 7.8 19.0 11.0 0.8 13.7 103 103
1 SEIR-T,
(26) 44 45 10.2 0.8 12.6 3.3 0.1 24.7 68 68
COVID Model T,
(21) 51 50 1346.9 5.0 173.9 15.7 0.3 45.7 120 120
NF-xB;
(24) 120 | 109 40.6 13.7 3.0 6.3 3.2 19 38 89
1 SEIRP,
(20) 50 42 83 3.5 2.4 17 0.3 6.3 32 32
SEIR-2,
(27) 44 43 2.9 1.7 1.8 0.8 0.2 4.6 38 38

Table 4: Weighted ordering applied to the Grébner ba-
sis computation step of SIAN with zero characteristic
using MAPLE 2021.2. “N/A” stands for the MAPLE error
“Error, (in Groebner:-F4:-GroebnerBasis) numeric
exception: division by zero” without a clear direct cause.

Memory (GB)
Speedup|old STAN

| Model information Primes

[Model num.

I
Ol STAN

num., di

name polys.| vars, | | ordering | degrevlex |ordering ordering | degrevlex
HPV,
(28), (30) 79 | 75 31.2 85.2 0.4 2.8 2.7 1.0 3 74
COVID Model 2,
(7.5) 49 48 20722.2 6784.6 3.1 38.6 24.1 1.6 36 93
Pharmacokinetics,
23 48 47 1181.6 202.7 5.8 9.4 10.8 0.9 17 275
HPV,
(28), (29) 97 92 1229.2 457.4 2.7 10.6 18.8 0.6 167 185
Goodwin Oscillator
(19) 42 43 112.5 3.5 318 3.1 0.5 6.0 109 169
SEIR-T,
(26) 44 45 18.5 0.3 73.2 2.1 0.2 9.9 84 87
COVID Model T,
(21) 51 50 7626.9 3.1 2468.9 3.8 18 4.9 237 260
NF-xB,
(24) 120 | 109 78.7 12,5 6.3 28 0.7 4.8 9 107
1 SEIRP,
(20) 50 42 41.5 3.3 12.6 13 1.6 0.8 62 41
1 SEIR-Z,
(27) 44 43 7.6 1.1 6.9 14 0.7 17 30 78

Table 5: Weighted ordering applied to the Grobner basis com-
putation step of SIAN with zero characteristic using Magma
V2.26-8.

8 INVERTED WEIGHTS

The weight assignment we discussed above is not unique. In fact,
we can even find an alternative assignment given the same weight
generation procedure as described earlier. Instead of simply using

10

Bessonoy, et al.

il Model information Time (min) 1T Memory (GB) Tl
Model num. [num. | [eq. (18)] eq. (18), |speedup| |eq. (18)] eq. (18), |reduction
H name polys. | vars. | | order |inv. weights order |inv. weights
HPV,
(28), (30) 79 | 75 || NA N/A N/A N/A
COVID Model 2,
(7.5) 49 48 N/A 607.1 0 N/A 33.6 S}
Pharmacokinetics,
48 47 N/A 127.0 0 N/A 6.02 0
HPV,
(28), (29) 97 | 92 N/A 19.1) N/A 3.4)
Goodwin Oscillator
42 43 29.8 0.6 72.6 10.6 0.1 21.7
SEIR-1,
(26) 44 45 2.2 0.23 14.9 3.3 0.1 16.2
COVID Model 1,
(21) 51 50 321.9 148.2 2.2 15.2 3.4 4.4
NF-xB,
(24) 120 | 109 7.1 5.3 13 6.1 1.9 3.2
I SEIRP,
(20) 50 42 2.0 4.5 0.5 1.6 0.8 2.1
SEIR-Z,
(27) 44 43 0.8 0.7 1.2 0.7 0.1 6.7

Table 6: Results of applying the inverted weighted ordering
to only Grébner basis computation step of SIAN with char-
acteristic p = 11863279 using MAPLE 2021.2. “N/A” stands for
the MapPLE error “Error, (in Groebner:-F4:-GroebnerBasis)
numeric exception: division by zero” without a clear di-
rect cause.

the rule of higher level, as in (7), we can generate the following
assignment:

Weight(x) := M — Level(x) + 1,
where M = max Level(x) is a maximal possible level of each state.

With this strategy, we can also see improvement. In fact, for cer-
tain systems, such as (19), this assignment is more beneficial in
reducing the runtime. At the same time, in case of (28), (30), we
observe a similar error message in MAPLE as if weights were not
present. The results of this new assignment are presented in Ta-
ble 6. It shows that there is still room for improvement in finding
a weight assignment rule.

One would expect that many of the same phenomena from the
previous weight assignment would happen with these models as
well. In particular, it should attempt to force the variables of low
level to appear in the leading monomials of the corresponding
equations, thus making the pairs involving these equations to be
of higher formal degree, which would, once again, avoid selecting
too many pairs at once and steer the computation towards first
working with the variables and equations at a high level only. This
heuristic is similar to how one would solve a “simple” ODE system
by integration. In particular, if one would try to solve the equations

xy=a (34)
X1 = X2 (35)
y=x, (36)
one would first solve for x; by integrating the constant a in (34)

to get x; = at + x2(0), then would integrate x; in (35) to get
x1 = at? + x2(0)t +x1 (0), and finally after substituting for y in (36)
we get y(t) = at? +x2(0)t +x1(0). The inverted weight assignment
heuristic models the way a human would naturally solve such an
ODE system. While we expect the regular weight assignment to
be useful more often, we also expect there to be ODE systems that
have a nice structure in the equations coming from higher deriva-
tives that the inverted weights select first before other equations.

