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Suppose you receive a sequence of qubits where each qubit is guaranteed to be in one of two pure states, but

you do not know what those states are. Your task is to determine the states. This can be viewed as a kind of

quantum state learning, or quantum state estimation. The problem is that, without more information, all that can

be determined is the density matrix of the sequence and, in general, density matrices can be decomposed into

pure states in many different ways. To solve the problem, additional information, either classical or quantum, is

required. We show that if an additional copy of each qubit is supplied (that is, one receives pairs of qubits, both

in the same state, rather than single qubits) the task can be accomplished. This is possible because the mixed

two-qubit state has a unique decomposition into pure product states. For illustration purposes, we numerically

simulate the symmetric, informationally complete measurement of a sequence of qubit pairs and show that

the unknown states and their respective probabilities of occurrence can be inferred from the data with high

accuracy. Finally, we propose an experiment that employs a product measurement and can be realized with

existing technology, and we demonstrate how the data tell us the states and their probabilities. We find that it is

enough to detect a few thousand qubit pairs.

DOI: 10.1103/tyf3-1zdd

I. INTRODUCTION

Suppose we have a collection of data, about which we have

very little information, and we are interested in learning some-

thing about it. If the data are classical, an example of such a

problem is unsupervised machine learning. In this scenario,

the objective is to classify data into clusters with the idea that

the data within a cluster are related. There is no training phase

in which sample data with their classifications are provided;

in the unsupervised case, there are only the data to work with.

Quantum algorithms have been applied to obtain speedups of

the unsupervised learning of classical data [1–4] (for reviews

of quantum machine learning, see [5]). In these works, the

classical data are converted into quantum states, which can

then be processed by a quantum computer.

Quantum learning (or quantum estimation) is related to

classical machine learning, but because the objects to be

learned are quantum, new elements come into play. One can

learn a number of different quantum objects, unitary operators

[6], and measurements [7–10], for example. In many cases,
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there is a training set. In the case of a unitary operator, one is

allowed a certain number of uses of the operator, and in the

case of a measurement, one is given examples of the states

one wants the measurement to distinguish. What we want to

do here is to see what can be done in the case of learning a set

of unknown quantum states, in particular, determining what

states are in the set. In most approaches to quantum unsuper-

vised machine learning, one has access to unitary operators

that produce the data by acting on a reference quantum state

[4]. What, however, can be done if this is not the case and one

has access only to the raw data, that is, just the quantum sys-

tems themselves? The first treatment of this kind of quantum

learning was given in [11]. There one is given a sequence of

N particles, each in one of two unknown states, |ψ0〉 and |ψ1〉,
and one wants to determine the sequence. For any individual

qubit in the sequence, you do not know which state it is in.

The output of this procedure is classical, a sequence of 0s and

1s, corresponding to the labels of the states, of length N that

is the best guess for the sequence of states.

A second approach was taken in [12]. There the setup was

the same as in [11], but the objective was to use the data

to construct a positive operator-valued measure (POVM) that

would distinguish the two states. The fundamental problem is

that all one can measure is the density matrix of the ensemble

that describes the sequence

ρ1qb = p0|ψ0〉〈ψ0| + p1|ψ1〉〈ψ1|, (1)
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if |ψ0〉 appears with probability p0 and |ψ1〉 appears with

probability p1. A rank-two mixed state density matrix can

be decomposed into a sum of pure states in many different

ways. That means that additional information, either classical

or quantum, is required to determine |ψ0〉 and |ψ1〉. Several

examples of additional classical information were explored in

[12]. In one example, it was specified that the two states lie

on a known circle of the Bloch sphere, e.g., the intersection of

the x, z plane and the sphere, and that p0 = p1 = 1/2. Under

those highly restrictive conditions, it is possible to construct a

POVM that will discriminate the states.

A simple example of how extra classical information al-

lows one to determine which of two ensembles with the same

density matrix one has is the following [13,14]. We have 2N

spin-1/2 particles, which are promised to be in one of two

ensembles. In the first, N spins point in the +x direction and

N point in the −x direction, and in the second, N spins point

in the +z direction and N point in the −z direction. These

ensembles are described by the same single-particle density

matrix, but they can be distinguished with high probability by

measuring all the particles in the z direction. If you find that N

of the particles point in the +z direction, the ensemble is with

high probability the second, and if you find that some number

other than N particles point in the +z direction, the ensemble

is definitely the first.

In this paper, we are going to use a model similar to that

employed in [11,12], but our objective will be to determine

the states. Our main tool will be a form of state tomography.

This is a form of state learning [15]. In state learning, one

receives many copies of the state to be learned and this state

is guaranteed to be a member of a certain set of states. One

then performs measurements on the copies, and the result is

a sufficiently accurate description of the state. The difference

in our case is that there are two states, not one, that one is

trying to learn, and the copies are scrambled; any given copy

could represent either of the quantum states, and you do not

know which. In addition, the two states could be any pure

states, and you do not know with what probability they occur.

This task sounds formidable, but, as we shall see, if the states

are received in pairs, where the members of each pair are

identical, tomography can be applied to determine the states.

II. PAIRS

In this section, we will show that if the states are received

in pairs, the situation is much improved, and all you have to

know is that the two-qubit density matrix is an incoherent

superposition of two pure product states. Receiving an extra

copy of each state means that extra quantum information is

being provided. To be more specific, consider the following

scenario. You are sent a stream of pairs of qubits, and each

pair is in the state |ψ0〉 ⊗ |ψ0〉 or |ψ1〉 ⊗ |ψ1〉 with

|ψ0〉 = a0|0〉 + a1|1〉,
|ψ1〉 = b0|0〉 + b1|1〉, (2)

where |0〉, |1〉 are single-qubit orthonormal kets that serve

as the reference basis (“computational basis”). The |ψ0〉 pair

occurs with probability p0 and the |ψ1〉 pair occurs with prob-

ability p1 = 1 − p0. You do not know what |ψ0〉 and |ψ1〉 are,

and for any given pair, you do not know which kind of pair it

is. You also do not know p0 and p1. The task is to find |ψ0〉,
|ψ1〉, p0, and p1.

One can then, for example, use this to construct a POVM to

discriminate between the different types of pairs from a subset

of the pairs and then use it to discriminate the remaining

pairs. As only two states are involved, the purpose-appropriate

qubit POVM will be used for the pair states |ψ0〉 ⊗ |ψ0〉 and

|ψ1〉 ⊗ |ψ1〉 since their distinguishability is larger than that

of the single-qubit states. For instance, there are the POVMs

for unambiguous discrimination [16] or for extracting the

accessible information [17].

The ensemble we are looking at is described by the density

matrix

ρ = p0|ψ0〉〈ψ0| ⊗ |ψ0〉〈ψ0| + p1|ψ1〉〈ψ1| ⊗ |ψ1〉〈ψ1|. (3)

The density matrix and the knowledge that it is composed of

two pure two-qubit product states is the only information to

which we have access. We will now show that this is sufficient

to find the states and probabilities.

To begin with, we note that |ψ0〉 ⊗ |ψ0〉 and |ψ1〉 ⊗ |ψ1〉
span a two-dimensional subspace in the four-dimensional ket

space of the qubit pair; the subspace is analogous to the Bloch

sphere of a qubit. In the corresponding Bloch ball, the separa-

ble mixed states are located on a line that connects the points

for |ψ0〉 ⊗ |ψ0〉 and |ψ1〉 ⊗ |ψ1〉 on the sphere; see [18–20]

and, in particular, Fig. 2.2 in [20]. Once we learn ρ from the

data, its range is the Bloch sphere and hence we know the line

of separable states and their endpoints.

More specifically, ρ has support in the three-dimensional

symmetric subspace of two qubits, the triplet sector, and is of

rank two. That means that there is a direction |ξ 〉 in the triplet

sector that is orthogonal to ρ, i.e., ρ|ξ 〉 = 0. Set

|ξ 〉 = c00|00〉 + c01

(
|01〉 + |10〉

)
+ c11|11〉, (4)

and let’s see what being orthogonal to |ψ0〉 ⊗ |ψ0〉 implies.

The orthogonality condition is

(a∗
0 )2c00 + 2a∗

0a∗
1c01 + (a∗

1 )2c11 = 0. (5)

Dividing both by (a∗
1 )2 and setting z = a∗

0/a∗
1, we find

c11 + 2c01z + c00z2 = 0. (6)

An identical equation holds for |ψ1〉 ⊗ |ψ1〉 except that, in

that case, z is b∗
0/b∗

1. The above equation has two solutions

for z, one corresponding to |ψ0〉 and the other to |ψ1〉. That

means that if we know |ξ 〉, then we know both |ψ0〉 and |ψ1〉.
That suggests that one way to proceed is to find a way to

determine |ξ 〉. This can be done by finding ρ by performing

state tomography and then finding the solution to ρ|ξ 〉 = 0.

One can also find explicit formulas for |ψ0〉 and |ψ1〉 in terms

of ρ, which we shall proceed to do.

Note that the argument we just used can be easily general-

ized. For example, suppose that our sequence consists of three

rather than two qubit states, and we receive not pairs but trios,

where all the states within a given trio are guaranteed to be

the same. The overall state of each trio lies in the symmetric

subspace of the space of three qubits (the space with total

spin 3/2, if we regard each qubit as a spin-1/2 object) which

is four-dimensional, while the density matrix for the trios is
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of rank three. That means there is a ket in the symmetric

subspace that is annihilated by all three of the states, and

consequently, by the trio density matrix. In analogy to the

two-state case, this ket will lead to a cubic equation whose

solutions will yield the three states. Clearly, the argument can

be carried further to N states, which would require receiving

identical N tuplets.

It is also possible to generalize this procedure to two states

in a d-dimensional space [21]. Initially you conduct single-

qubit tomography to find the single-particle density matrix,

which will be of rank two. You then find its two eigenstates,

call them |0〉d and |1〉d . The states we are trying to find lie

in the two-dimensional subspace spanned by |0〉d and |1〉d ,

and the problem is reduced to one of effective qubits. One

can then apply the reasoning in the previous paragraphs, but

substituting |0〉d for |0〉 and |1〉d for |1〉.
Let us now return to the case of two qubit states and find

explicit formulas for the states and probabilities. If the Bloch

vectors for |ψ0〉 and |ψ1〉 are a and b, respectively, then the

two-qubit pair density matrix for |ψ0〉 is

ρ0 = 1
2
(I2 + a · σ) ⊗ 1

2
(I2 + a · σ )

= 1
4

(
I4 + a ·

(
σ

(1) + σ
(2)

)
+ σ

(1) · aa · σ
(2)

)
, (7)

and similarly for |ψ1〉 but with a replaced by b. Here, Id is the

d×d identity matrix, σ is the generic vector of Pauli matrices,

σ
(1) = σ ⊗ I2 is that for qubit 1, and σ

(2) = I2 ⊗ σ is that for

qubit 2. The ensemble pair density matrix is

ρ = p0ρ0 + p1ρ1

= 1
4

(
I4 + s ·

(
σ

(1) + σ
(2)

)
+ σ

(1) · C · σ
(2)

)
, (8)

where

s = 〈σ (1)〉 = 〈σ (2)〉 = p0a + p1b,

C = 〈σ (1)
σ

(2)〉 = p0aa + p1bb. (9)

Note that aa is the dyad with matrix elements a jak , and

similarly for bb, and the dyad C has the matrix elements

C jk = 〈σ (1)
j σ

(2)
k

〉 = 〈σ j ⊗ σk〉 = p0a jak + p1b jbk; as is char-

acteristic for mixed triplet states, C is symmetric, C jk = Ck j ,

and has unit trace,
∑

j C j j = 1.

Full tomography of the qubit pairs will provide us with the

vector s and the dyad C, and we demonstrate now how knowl-

edge of these quantities can be converted into knowledge of a,

b, p0, and p1. In the first step, we find

C − ss = p0 p1(a − b)(a − b) ; (10)

if C − ss = 0, the source emits only one state and we are

done. Otherwise, s2 < 1 and (C − ss)/(1 − s2) projects on the

direction of a − b �= 0. We remove the component parallel to

a − b from s and obtain

s′ =
s − C · s

1 − s2
=

1

2
(a + b). (11)

Then, (p0 − p1)2 and a − b are available from

(s − s′)2

1 − s′2
= (p0 − p1)2,

s − s′

p0 − p1

=
1

2
(a − b), (12)

and we arrive at

a =
s − 2p1s′

p0 − p1

, b =
2p0s′ − s

p0 − p1

, (13)

provided that p0 �= p1. If p0 = p1 = 1
2
, when s′ = s, we iden-

tify a − b as the eigenvector of C − ss with the eigenvalue
1
2
(1 − a · b).

In the following sections we shall discuss two schemes

for the state tomography that provides data from which one

can estimate ρ and thus s and C. Section III deals with the

symmetric informationally complete POVM (SIC POVM) in

the triplet sector; see [22], for example, for properties of SIC

POVMs. The high symmetry of the SIC POVM is attractive

and facilitates the analysis, but we do not know how to im-

plement the SIC POVM in the laboratory. By contrast, the

tetrahedron POVM of Sec. IV can definitely be realized with

existing technology.

III. SIC POVM

A. Measurement

In the triplet sector, the symmetric subspace of two qubits,

we expand the kets in the basis used in Eq. (4),

|v〉 = a0|00〉 + a1|11〉 + a2

|01〉 + |10〉
√

2
=̂

⎛
¿

a0

a1

a2

À
⎠. (14)

The SIC POVM for these kets is analogous to the standard

SIC POVM for qutrits [23,24]. The nine POVM elements,

or probability operators, are proportional to one-dimensional

projectors,

� j = 1
3
|v j〉〈v j | for j = 1, 2, . . . , 9, (15)

with
(
|v1〉 |v2〉 · · · |v8〉 |v9〉

)

=̂
1

√
2

⎛
¿

0 −1 1 0 −ω 1 0 −1 ω

1 0 −1 1 0 −ω ω 0 −1

−1 1 0 −ω 1 0 −1 ω 0

À
⎠,

(16)

where ω = ei2π/3 is the basic cubit root of unity. The sum of

the elements is the projector on the triplet sector,

9∑

j=1

� j =
1

4
(3I4 + σ

(1) · σ
(2)) = Itp. (17)

After supplementing the triplet SIC POVM with the projector

on the singlet

�0 = 1
4
(I4 − σ

(1) · σ
(2)) = Isg, (18)

we have a proper POVM for the qubit pair. Note that the rank

of Itp is three and that of Isg is one.

Since

Tr(� j�k ) = 1
36

+ 1
12

δ jk,

Tr
(
� j (12�k − Itp)

)
= δ jk, (19)
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for j, k = 1, 2, . . . , 9, we reconstruct any ρ in the triplet sec-

tor from its SIC POVM probabilities

q j = Tr(� jρ), (20)

in accordance with

ρ =
9∑

j=1

q j (12� j − Itp). (21)

In addition to being nonnegative and having unit sum, the

nine probabilities q j are subject to constraints that follow

from ρ � 0. In particular, there is the purity constraint
1
3
� Tr(ρ2) � 1, that is,

1

9
�

9∑

j=1

q2
j �

1

6
. (22)

Moreover, in the present context of Eq. (8), we note that these

separable rank-two triplet states make up a five-dimensional

nonconvex set in the eight-dimensional triplet sector and that

restricts the permissible probabilities stringently. We do not

know, however, how to state these restrictions as explicit con-

straints obeyed by the q js.

B. Simulated data

For different choices of |ψ0〉, |ψ1〉, p0, and p1, the SIC

POVM was used to produce simulated measurement data; in

particular, it gave us a probability distribution from which we

then sampled. The data are the counts n1, n2, . . . , n9 for the

nine different outcomes of the simulated measurement. Two

different methods were then used to find the density matrix

from the data, linear inversion, and maximum likelihood. We

first used linear inversion to produce an empirical density

matrix from the data, that is, we took the relative frequencies

as estimates of the probabilities

ρ (LI) =
9∑

j=1

n j

N
(12� j − Itp) with N =

9∑

j=1

n j . (23)

With this in hand, we examined two methods to find the states

and probabilities.

For the first, we found the eigenvector of the empirical 3×3

density matrix with the smallest eigenvalue and identified it

with |ξ 〉. This ket was used to create the quadratic equation in

Eq. (6) and find the states. Once we know the states and

the empirical density matrix, it is straightforward to find the

probabilities. For the second method, we used the empirical

density matrix to find the vector s and the dyad C, which then

allowed us to find the vectors a, b, and their probabilities.

In both cases, we then computed the fidelities of the states

from the simulation with the original states that were used to

produce the data, and these were plotted versus the number of

pairs received. The results for two cases are shown in Fig. 1.

We used Eq. (6) for the plots in Fig. 1(a), while those in

Fig. 1(b) resulted from Eq. (13).

The rate of convergence depends on the overlap of |ψ0〉
and |ψ1〉; in particular, the larger the overlap the slower the

FIG. 1. Results from simulated data for the SIC POVM averaged

over 50 runs. The graphs show the fidelities of the states estimated

by linear inversion versus the number of detected pairs. The black

curves graph |〈ψ0|ψ
(LI)
0 〉|2 and the blue curves graph |〈ψ1|ψ

(LI)
1 〉|2.

Plot (a) is for the states |ψ0〉 = |0〉 and |ψ1〉 = (1/
√

2)(|0〉 + |1〉) and

the probabilities p0 = p1 = 1/2. In the simulation, we detect up to

20 000 pairs and infer the states by using Eq. (6). Plot (b) is for the

states |ψ0〉 = |0〉 and |ψ1〉 = |1〉 and the probabilities p0 = 0.75 and

p1 = 0.25. We learn the states from Eq. (13) for up to 10 000 detected

pairs and observe that the state with the higher probability converges

faster.

convergence. In the case in which one uses the ket |ξ 〉 to

find the two states, a large overlap between |ψ0〉 and |ψ1〉
will lead to a 3×3 density matrix ρ with one large and one

small eigenvalue as well as the eigenvalue 0 corresponding

to the eigenvector |ξ 〉, and that can lead to problems. The

ket |ξ 〉 satisfies ρ|ξ 〉 = 0, but the estimated density matrix

ρ (LI) is not in the five-dimensional space of physical ρs since

the relative frequencies n j/N do not obey the constraints that

restrict the probabilities q j . Rather than the exact eigenvalue

0 for |ξ 〉, ρ (LI) has an eigenvalue ≈0 that can be positive or

negative (while ρ (LI) is hermitian, nothing ensures ρ (LI) � 0).

If, then, the overlap of |ψ0〉 and |ψ1〉 is very large, ρ has a

small positive eigenvalue and it can be difficult to distinguish

the corresponding approximate eigenvalue of ρ (LI) from the

near-zero eigenvalue of |ξ 〉.
For the maximum likelihood method we parametrize the

density matrix suitably. The two states are expressed as
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|ψ j〉 = cos(θ j )|0〉 + eiφ j sin(θ j )|1〉 for j = 0, 1, so that

ax + iay = sin(2θ1) eiφ1 , az = cos(2θ1),

bx + iby = sin(2θ2) eiφ2 , bz = cos(2θ2), (24)

and the probabilities in terms of an angle α, p0 = cos(α)2 and

p1 = sin(α)2. Then, the two-qubit density matrix of Eq. (8) is

a function of θ = (θ0, φ0, θ1, φ1, α), the five parameters that

specify the qubit states and the probabilities, ρ(θ). We use

this density matrix to find the nine probabilities of Eq. (20) as

functions of θ, which enter the likelihood function [25]

L(θ) =
9∏

j=1

q j (θ)n j (25)

for the given simulated data. For the purpose of finding the

maximum of L(θ), we use a covariance matrix adaptation

evolution strategy (CMA-ES), adapted from [26], to find the

minimum of −N−1 log
(
L(θ)

)
. Once we do this, we know

the maximum likelihood estimates of both states and both

probabilities, which tell us ρ (ML), and no further processing

is necessary. The parametrization in terms of the five pa-

rameters ensures that every ρ in the competition is in the

five-dimensional set of permissible ρs. Put differently, the

constraints mentioned after Eq. (22) are obeyed by con-

struction. By contrast, the unconstrained maximization of

log(L) =
∑

j n j log(q j ) yields the linear inversion estimates

q j = n j/N with ρ (LI) outside of the set of permissible ρs; in

this sense, linear inversion is unconstrained likelihood max-

imization. Whereas ρ (ML) is assuredly in the set of separable

rank-two triplet density matrices, ρ (LI) is only guaranteed to

be a hermitian, unit-trace 3×3 matrix; it is usually of rank

three and has a roughly 50% chance of having a negative

eigenvalue.

Nevertheless, linear inversion yields reasonable results as

demonstrated by the plots in Fig. 1. This is so because, al-

though ρ (LI) is not in the five-dimensional physical set, it is

very close to the actual ρ, as measured by a proper distance

in the eight-dimensional convex space of hermitian unit-trace

ρs, when N is sufficiently large.

We observe that the maximum likelihood method produced

higher fidelities than the linear inversion method for a given

number N of data of simulated detection events. Here are

two examples comparing the results of linear inversion and

maximum likelihood. For the choice θ = ( π
6
, π

4
, 2π

3
, π

2
, π

6
),

we simulated 750 experiments with N = 1000 each.

Figure 2(a) shows the sum of errors (one minus the fidelity)

for |ψ0〉 and |ψ1〉 expressed in parts per million. We find that

the maximum likelihood method consistently outperforms the

linear inversion method, with average errors of 10546 ppm

and 11852 ppm, respectively.

The parameters ( π
12

, π
4
, 5π

12
, π

2
, π

3
) are used in the example

of Fig. 2(b). In this case, 1000 simulated experiments each

with N = 1000 were conducted. The average error for lin-

ear inversion was 15760 ppm and for maximum likelihood

9283 ppm.

In conclusion, the maximum likelihood method is more

computationally demanding than the linear inversion method,

due to the maximization, but produces better results. It also

directly finds the two unknown states because, once the opti-

FIG. 2. The abscissa is the sum of ppm errors for the esti-

mated |ψ0〉 and |ψ1〉 and the histograms show the frequencies

with which these errors occur in each bin of 1000 abscissa

units. The blue histogram is for the linear inversion method

and the red histogram for the maximum likelihood method. We

report results of simulated experiments (a) for the parameters

(θ0, φ0, θ1, φ1, α) = ( π

6
, π

4
, 2π

3
, π

2
, π

6
) and (b) for the parameters

( π

12
, π

4
, 5π

12
, π

2
, π

3
). Observe that, in both plots, the frequency of small

errors is considerably larger for the maximum likelihood method.

mal parameters are known, then so are the states, whereas the

linear inversion first yields a density matrix, and then that has

to be diagonalized to find the states. The simulations of Figs. 1

and 2 confirm that these two point estimators are consistent,

that is, ρ (LI) → ρ and ρ (ML) → ρ as N → ∞; a quantitative

statement about this is provided in Sec. IV B in the context of

the tetrahedron POVM, see Eqs. (47) and (48), with additional

details in the Appendix.

IV. TETRAHEDRON POVM

A. Measurement

A tomography experiment that could be performed with

existing technology is sketched in Fig. 3. The elements of the

single-qubit tetrahedron POVM are

�
(4)
j = 1

4
(I2 + t j · σ) with j = 1, 2, 3, 4 ; (26)
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FIG. 3. A pump laser (not indicated), pulsed or continuous, illu-

minates a crystal for type-I spontaneous parametric down conversion

(SPDC), which acts as a source of pairs of photons that propagate

in the same direction and have the same polarization, both vertically

polarized, say. A set of wave plates is used to change the polarization

from vertical to any other kind. We switch at random between the

two settings of the wave plates that correspond to the polarizations

specified by the Bloch vectors a and b with the respective proba-

bilities p0 and p1 for the next pair. The photons are detected by a

tetrahedron measurement [27–30], the SIC POVM for single qubits,

where we either register both photons in one exit port (four cases) or

get a coincidence between two different exit ports (six cases).

the four tetrahedron vectors have the properties

t j · tk =
4

3
δ jk −

1

3
,

4∑

k=1

tk = 0,

4∑

k=1

tktk =
4

3
1, (27)

where 1 is the unit dyad. Accordingly, the four POVM ele-

ments for detecting both photons at the same exit are

�
(s)
k

= �
(4)
k

⊗ �
(4)
k

= 1
16

(
I4 + tk ·

(
σ

(1) + σ
(2)

)
+ σ

(1) · tktk · σ
(2)

)
(28)

for k = 1, 2, 3, 4 and the six elements for the coincidence

counts are

�
(c)
jk

= �
(4)
j ⊗ �

(4)
k

+ �
(4)
k

⊗ �
(4)
j

=
1

16

(
2I4 + (t j + tk ) ·

(
σ

(1) + σ
(2)

)

+ σ
(1) · (t jtk + tkt j ) · σ

(2)
)

(29)

for 1 � j < k � 4. Clearly, the SIC POVM of Eqs. (15) to

(18) is not of the kind realized by the elements in Eqs. (28)

and (29) or any other product POVM. In particular, we have

nonzero probabilities for qubit pairs in the singlet state

Tr
(
�

(s)
k

Isg

)
= 0, Tr

(
�

(c)
jk

Isg

)
= 1

6
. (30)

The ten-outcome measurement with the POVM elements in

Eqs. (28) and (29) is tomographically complete in the space of

density operators that are convex sums of the singlet state and

any mixed state in the triplet sector, that is,

ρ = 1
4

(
I4 + s ·

(
σ

(1) + σ
(2)

)
+ σ

(1) · C · σ
(2)

)
, (31)

with C jk = Ck j . The singlet in Eq. (18) is of this kind and so is,

of course, the state emitted by the source with s and C of the

particular forms in Eq. (9). We recall the single-qubit identity

Tr
(
�

(4)
j R

(4)
k

)
= δ jk with R

(4)
k

= 1
2
(I2 + 3tk · σ ), (32)

and recognize that the reconstruction operators R
(s)
k

and R
(c)
jk

that are defined by

Tr
(
�

(s)
k

R
(s)
k′

)
= δkk′ , Tr

(
�

(s)
k

R
(c)
j′k′

)
= 0,

Tr
(
�

(c)
jk

R
(s)
k′

)
= 0, Tr

(
�

(c)
jk

R
(c)
j′k′

)
= δ j j′ δkk′ , (33)

are

R
(s)
k

= R
(4)
k

⊗ R
(4)
k

= 1
4

(
I4 + 3tk ·

(
σ

(1) + σ
(2)

)
+ 9σ

(1) · tktk · σ
(2)

)
,

R
(c)
jk

= 1
2
R

(4)
j ⊗ R

(4)
k

+ 1
2
R

(4)
k

⊗ R
(4)
j

= 1
8

(
2I4 + 3(t j + tk ) ·

(
σ

(1) + σ
(2)

)

+ 9σ
(1) · (t jtk + tkt j ) · σ

(2)
)
. (34)

Accordingly,

ρ =
4∑

k=1

q
(s)
k

R
(s)
k

+
∑

j<k

q
(c)
jk

R
(c)
jk

, (35)

reconstructs ρ from the probabilities

q
(s)
k

= Tr
(
�

(s)
k

ρ
)
, q

(c)
jk

= Tr
(
�

(c)
jk

ρ
)
, (36)

which means

s = 3

4∑

k=1

q
(s)
k

tk +
3

2

∑

j<k

q
(c)
jk

(t j + tk ),

C = 9

4∑

k=1

q
(s)
k

tktk +
9

2

∑

j<k

q
(c)
jk

(t jtk + tkt j ), (37)

for the Bloch vector s and the dyad C. For the s and C in

Eq. (9), the sum rules

4∑

k=1

q
(s)
k

=
1

3
,

3∑

j=1

4∑

k= j+1

q
(c)
jk

=
2

3
(38)

apply.

The data are the counts n
(s)
k

and n
(c)
jk

of the ten different

outcomes with the total count of detected pairs

N =
4∑

k=1

n
(s)
k

+
∑

j<k

n
(c)
jk

. (39)

The law of large numbers states that the relative frequencies

n
(s)
k

/N and n
(c)
jk

/N approximate the respective probabilities

when N 
 1 and, therefore, we get an estimate for ρ by re-

placing the probabilities in Eq. (35) by the relative frequencies

ρ ∼= ρ (LI) =
1

N

4∑

k=1

n
(s)
k

R
(s)
k

+
1

N

∑

j<k

n
(c)
jk

R
(c)
jk

, (40)

the analog of Eq. (23). As discussed above, this linear inver-

sion is problematic because the relative frequencies do not

obey the constraints that apply to the probabilities, such as

the sum rules in Eq. (38). For instance, while Tr(Isgρ) = 0 for

the actual ρ, we have

Tr(Isgρ
(LI)) = −

2

N

4∑

k=1

n
(s)
k

+
1

N

∑

j<k

n
(c)
jk

, (41)

which is almost always nonzero and negative half the time.

While we can improve matters a bit by removing the singlet

062428-6



STATE LEARNING FROM PAIRS OF STATES PHYSICAL REVIEW A 111, 062428 (2025)

component from ρ (LI), the resulting mixed triplet state is al-

most always not a rank-two separable state and can have a

negative eigenvalue in the triplet sector.

B. Plausible states

Rather than merely finding the point estimators of the lin-

ear inversion method, the maximum likelihood method, or yet

other methods, we identify the plausible region in the param-

eter space [31, Sec. 4.5.2], the set of all separable rank-two

triplet states that are supported by the data. Every ρ in the

plausible region is an acceptable point estimator; additional

criteria, beyond what the data tell us, would be needed for

selecting a particular one. While the linear inversion estimator

ρ (LI) is usually improper, the maximum likelihood estimator

ρ (ML) is always plausible because the plausible region is one of

the optimal error regions, which happen to be regions around

the maximum likelihood estimator [32].

If we denote the prior probability element of the vicinity of

ρ(θ) by (dθ), the posterior probability element is

(dθ)post =
(dθ) L(θ)∫
(dθ

′) L(θ′)
. (42)

The data give evidence in favor of ρ(θ) if (dθ)post > (dθ) and

evidence against ρ(θ) if (dθ)post < (dθ); the data are neutral

when (dθ)post = (dθ). The plausible region is composed of all

ρ(θ)s with evidence in their favor, that is,

the density matrix ρ(θ) is plausible if

L(θ) >

∫
(dθ

′) L(θ′)

and only then. (43)

This is an application of the principle of evidence

[31, Sec. 4.2]; another application to quantum data is reported

in [33].

For the given data, we find the maximum likelihood esti-

mator ρ (ML) = ρ(θ(ML)) and then the number

λpl =
1

L(θ(ML))

∫
(dθ) L(θ) < 1, (44)

so that ρ(θ) is plausible if

λ(θ) =
L(θ)

L(θ(ML))
> λpl. (45)

The data give strong evidence if the prior content (“size”) of

the plausible region is small and its posterior content (“credi-

bility”) is large; these are

size: spl =
∫

(dθ) χ
(
λ(θ) > λpl

)
,

credibility: cpl =
∫

(dθ)post χ
(
λ(θ) > λpl

)
, (46)

where χ (A) = 1 if the statement A is true and χ (A) = 0 if it

is false.

When there are many data so that the total count N of

detection events is large and the law of large numbers (central

limit theorem) is applicable, the N dependence of λpl, spl, and

cpl is given by [34, Sec. 7.4]

λpl ∝ N−5/2, (47)

with the proportionality factor depending on the relative fre-

quencies and

spl
∼= λpl

log(1/λpl)
5/2

(5/2)!
∝ N−5/2 log(N )5/2,

1 − cpl
∼= (1 − cpl)c.l.t. =

∫ λpl

0

dλ
log(1/λ)3/2

(3/2)!

= spl

(
5

2
log(1/λpl)

−1 +
15

4
log(1/λpl)

−2

)

+ erfc
(

log(1/λpl)
1/2

)

∼= λpl

log(1/λpl)
3/2

(3/2)!
∝ N−5/2 log(N )3/2. (48)

Accordingly, the size of the plausible region shrinks with

growing N and so does the gap between its credibility and

unity. When there are many data, the plausible region is very

small and has very large credibility (very small prior and very

large posterior probability).

The five-dimensional integrals in Eqs. (42) to (46) are eval-

uated with Monte Carlo methods as follows [34, Sec. 8.2]. We

draw a large sample of θs from the prior distribution and store

the corresponding λ(θ) values: λ(1), λ(2), . . . , λ(m), . . . , λ(M ).

Then,

λpl
∼=

1

M

M∑

m=1

λ(m),

spl
∼=

1

M

M∑

m=1

χ (λ(m) > λpl),

cpl
∼=

1

Mλpl

M∑

m=1

λ(m)χ (λ(m) > λpl) (49)

are approximate values for λpl, spl, and cpl with a sampling

error ∝ 1/
√

M. As it is usually CPU-cheap to draw from the

prior distribution, we can easily have samples that are so large

that the sampling error is of no concern.

C. Simulated data

We simulated five runs of the experiment of Fig. 3 for the

Bloch vectors specified by
⎛
⎜⎜¿

a · t1

a · t2

a · t3

a · t4

À
⎟⎟⎠ =

1
√

27

⎛
⎜⎜¿

−3

−1

−1

5

À
⎟⎟⎠,

⎛
⎜⎜¿

b · t1

b · t2

b · t3

b · t4

À
⎟⎟⎠ =

1
√

105

⎛
⎜⎜¿

−3

9

1

−7

À
⎟⎟⎠, (50)

and the probabilities p0 = 0.37, p1 = 0.63. Figure 4 shows

λpl, spl, and cpl for N = 100, 200, 300, . . . , 5000 for the

five runs. There is very little variation between the runs.
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FIG. 4. The values of λpl, spl, and cpl as a function of N for

five simulated experiments with up to 5000 detected pairs each. We

observe that there is little variation between the experiments and that

a few thousand detected pairs is enough to ensure a small size and

large credibility of the plausible region.

The plausible region has a credibility that exceeds 0.9999

for N = 1000, 0.99999 for N = 2000, and 0.999999 for

N = 5000, while the size is less than 10−3, 10−4, and 10−5,

respectively. It follows that a few thousand detected pairs are

quite enough to acquire very strong evidence in favor of a tiny

subset of the separable rank-two triplet states and against all

others. We verified that the ρ(θ) used for the simulation is

in the plausible region for N = 100, 200, ..., 5000, as it is

expected to be: For N = 100 already, the credibility is 0.99

so that the true state has an outside probability of only 1%.

In passing, we note that the Monte Carlo integration requires

ridiculously large samples for N > 5000 because the peak

of the likelihood function around the maximum likelihood

estimator is then extremely narrow.

We used a sample with M = 2×109 entries for the Monte

Carlo integration. It was drawn from the prior probability

distribution that has the Bloch vectors a and b independently

uniformly (isotropically) distributed on the unit sphere and

the probability parameter α uniformly distributed between 0

and π/2. This prior correctly reflects our complete ignorance

about a, b, p0, and p1 before we take data, whereby we recall

Wootters’s insight [35] that the Jeffreys prior [36] is most

natural for the probabilities.

Let us exploit the simulated data for a check of the large-N

approximations in Eqs. (47) and (48). Figure 5 summa-

rizes the data of the five simulated experiments. Figure 5(a)

shows the values of N5/2λpl ; 5(b) those of N5/2 log(N )−5/2spl ;

5(c) those of N5/2 log(N )−3/2(1 − cpl) ; and 5(d) those of

(1 − cpl)/(1 − cpl)c.l.t. It appears that a few thousand detected

pairs are sufficiently many to reach the asymptotic regime,

where the ratio in Fig. 5(d) is unity, and Figs. 5(a) to 5(c) show

fluctuations around an N-independent value. We observe that

the ratio in Fig. 5(d) is least sensitive to the fluctuations in the

relative frequencies.

D. Imperfections in real-life experiments

The above discussion of the tetrahedron POVM assumes

an ideal realization, whereas an actual experiment will have

imperfections. In particular, there are deviations from the per-

FIG. 5. An illustration of the large-N approximations

in Eqs. (47) and (48). For N = 100, 200, 300, . . . , 5000,

panel (a) shows the values of N5/2λpl ; panel (b) those of

N5/2 log(N )−5/2spl ; panel (c) those of N5/2 log(N )−3/2(1 − cpl) ; and

panel (d) those of (1 − cpl)/(1 − cpl)c.l.t. As in Fig. 4, there is one

circle for each of the five simulated runs of the experiment of Fig. 3.

fect tetrahedron geometry, the detectors at the four outputs

have nonideal detection efficiencies, and the optical elements

between the source and the detectors will absorb or deflect a

small fraction of the photons. As a consequence, there will

be cases where only one of the two photons is detected or

both escape detection. The ten POVM elements of Eqs. (28)

and (29) are then modified accordingly and supplemented by

five additional elements that account for the single-photon

detection events and the null event. It is well known how to

do all that (see, for example, [33,37]) and we shall address

these matters in due course, namely when experimental data

will be available for evaluation.

V. CONCLUSION

To conclude, we considered the following problem. One

receives a sequence of qubits, where each qubit is in one of

two unknown states, and the goal is to determine the states.

Solving this requires some extra information. We showed

that providing additional quantum information, in the form

of an additional copy of the state, so that one is receiving a

sequence of pairs of states instead of individual states, allows

one to determine the unknown quantum states as well as their

probabilities of occurrence.

Proper quantum state tomography provides the data from

which one can learn the unknown states and probabilities. We

analyzed the SIC POVM and showed that the linear inversion

method and the maximum likelihood method can be used,

the former with caution. We also proposed a tomography

experiment that can be realized with available technology and
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demonstrated that a few thousand detected pairs are enough to

locate the states and probabilities within a very small region

with very high probability.
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APPENDIX A: SIC POVM AND LINEAR INVERSION

When the qubit pairs are measured by the SIC POVM of

Eqs. (15) to (18), there are no counts associated with �0 so

that

L(n|q) =
N!

∏9
j=1 n j!

9∏

k=1

q
nk

k
. (A1)

is the likelihood of the data n = (n1, n2, . . . , n9), the list of

detection event counts, given the list of detection probabilities

q = (q1, q2, . . . , q9); the combinatorial factor is that for a

prechosen number N of detected pairs. The expected value

of a function of the data

E
(

f (n)
)

=
∑

n

f (n)L(n|q), (A2)

considers all thinkable data. The generating function

g(x) = E

⎛
¿

9∏

j=1

x
n j

j

À
⎠ =

⎛
¿

9∑

j=1

x jq j

À
⎠

N

(A3)

provides the expected values of powers of the counts n j , in

particular,

E(nk ) = xk

∂

∂xk

g(x)

∣∣∣∣
all x j=1

= Nqk,

E
(
n jnk

)
= N (N − 1)q jqk + δ jkNqk . (A4)

It follows that the linear inversion estimator in Eq. (23) is un-

biased, E(ρ (LI)) = ρ. The Hilbert–Schmidt norm of the error

�ρ = ρ (LI) − ρ is given by

‖�ρ‖2 = Tr
(
(�ρ)2

)
= 12

9∑

j=1

(
n j

N
− q j

)2

; (A5)

as a consequence of the purity constraint in Eq. (22), the

expected value

E
(
‖�ρ‖2

)
=

12

N

⎛
¿1 −

9∑

j=1

q2
j

À
⎠ (A6)

is bounded by 10/N � E
(
‖�ρ‖2

)
� 32/(3N ).

We want to use the empirical density matrix ρ (LI) to find

the triplet ket |ξ 〉 orthogonal to |ψ0〉 ⊗ |ψ0〉 and |ψ1〉 ⊗ |ψ1〉.

We recall that

ρ (LI) =
2∑

j=0

r j |u j〉〈u j | with r0 � r1 � r2 (A7)

is hermitian, but it has rank three almost always and the

eigenvalue r0 can be negative in this spectral decomposition.

We have that ρ|ξ 〉 = 0 and want to find a lower bound on

the overlap between |ξ 〉 and |u0〉 under the assumption that

‖�ρ‖ = ε � 1, which we can ensure by choosing N large

enough. The eigenvalues of ρ (LI) are then ε-close to those

of ρ,

r0
∼= 0,

r1

r2

}
∼=

1

2
∓

1

2

√
(p0 − p1)2 + 4p0 p1|〈ψ0|ψ1〉|4. (A8)

We take for granted that ε is small enough that we can distin-

guish between r0
∼= 0 and r1 > 0.

Now,

|〈ξ |�ρ|ξ 〉| =

∣∣∣∣∣

2∑

j=0

r j |〈u j |ξ 〉|2
∣∣∣∣∣ � ε, (A9)

where

|〈u0|ξ 〉|2 = 1 −
2∑

j=1

|〈u j |ξ 〉|2. (A10)

Since

2∑

j=1

|〈u j |ξ 〉|2 �
1

r1

2∑

j=1

r j |〈u j |ξ 〉|2 �
ε

r1

(A11)

if r0 � 0, it follows that

|〈u0|ξ 〉|2 � 1 −
ε

r1

(A12)

in this case. If r0 < 0, then

ε � −|r0| |〈u0|ξ 〉|2 +
2∑

j=1

r j |〈u j |ξ 〉|2

� −|r0| |〈u0|ξ 〉|2 + r1(1 − |〈u0|ξ 〉|2), (A13)

so

|〈u0|ξ 〉|2 �
r1 − ε

r1 + |r0|
. (A14)

Note that 〈u0|�ρ|u0〉 = r0 − 〈u0|ρ|u0〉 so that ε � |r0| +
〈u0|ρ|u0〉 � |r0| in this case. Therefore,

|〈u0|ξ 〉|2 � 1 −
|r0| + ε

r1 + |r0|
� 1 −

2ε

r1 + |r0|
, (A15)

and the second term is of order ε.

What we see from this is that if r1 is small (recall that

|r0| is assumed to be substantially smaller) then a very small

value of ε will be required for |〈u0|ξ 〉| to be close to one. We

can identify ε with the square root of the expected value in
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Eq. (A6), so this gives us an estimate for how many qubit pairs

we will have to detect to obtain a good estimate of |ξ 〉.

APPENDIX B: PLAUSIBLE REGION WHEN N � 1

The consideration of all thinkable data in Eqs. (A1) to

(A6) is appropriate when planning the experiment. Once the

experiment has been performed, we draw inference form the

actual data in conjunction with what we knew before we

had the data. This prior knowledge is reflected in the prior

probability element

(dθ) = dθ0 dφ0 dθ1 dφ1 dα w(θ), (B1)

where w(θ) is the prior probability density in this parametriza-

tion. For the list q of the ten probabilities of the tetrahedron

POVM in Eq. (36) and the corresponding list n of counts, the

fractional likelihood is

L
(
n|q(θ)

)

L
(
n|q(θ(ML))

) =
∏

j

(
q j (θ)/q j (θ

(ML))
)n j

∼= exp

⎛
¿−

N

2

5∑

j,k=1

ε jQ jk (θ(ML))εk

À
⎠, (B2)

where θ − θ
(ML) = (ε1, . . . , ε5) and Q jk (θ(ML)) is a matrix ele-

ment of a symmetric positive 5×5 matrix; the approximation

is valid when N is so large that we can invoke the central

limit theorem. Under these circumstances, only the vicinity

of θ
(ML) contributes substantially to the integrals in Eqs. (44)

and (46), and correspondingly, the prior probability element

can be replaced by

(dθ) ∼= dε1 · · · dε5 w(θ(ML)). (B3)

The large-N approximations in Eqs. (47) and (48) follow [34].
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