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Suppose you receive a sequence of qubits where each qubit is guaranteed to be in one of two pure states, but
you do not know what those states are. Your task is to determine the states. This can be viewed as a kind of
quantum state learning, or quantum state estimation. The problem is that, without more information, all that can
be determined is the density matrix of the sequence and, in general, density matrices can be decomposed into
pure states in many different ways. To solve the problem, additional information, either classical or quantum, is
required. We show that if an additional copy of each qubit is supplied (that is, one receives pairs of qubits, both
in the same state, rather than single qubits) the task can be accomplished. This is possible because the mixed
two-qubit state has a unique decomposition into pure product states. For illustration purposes, we numerically
simulate the symmetric, informationally complete measurement of a sequence of qubit pairs and show that
the unknown states and their respective probabilities of occurrence can be inferred from the data with high
accuracy. Finally, we propose an experiment that employs a product measurement and can be realized with
existing technology, and we demonstrate how the data tell us the states and their probabilities. We find that it is

enough to detect a few thousand qubit pairs.
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I. INTRODUCTION

Suppose we have a collection of data, about which we have
very little information, and we are interested in learning some-
thing about it. If the data are classical, an example of such a
problem is unsupervised machine learning. In this scenario,
the objective is to classify data into clusters with the idea that
the data within a cluster are related. There is no training phase
in which sample data with their classifications are provided;
in the unsupervised case, there are only the data to work with.
Quantum algorithms have been applied to obtain speedups of
the unsupervised learning of classical data [1-4] (for reviews
of quantum machine learning, see [5]). In these works, the
classical data are converted into quantum states, which can
then be processed by a quantum computer.

Quantum learning (or quantum estimation) is related to
classical machine learning, but because the objects to be
learned are quantum, new elements come into play. One can
learn a number of different quantum objects, unitary operators
[6], and measurements [7—10], for example. In many cases,
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there is a training set. In the case of a unitary operator, one is
allowed a certain number of uses of the operator, and in the
case of a measurement, one is given examples of the states
one wants the measurement to distinguish. What we want to
do here is to see what can be done in the case of learning a set
of unknown quantum states, in particular, determining what
states are in the set. In most approaches to quantum unsuper-
vised machine learning, one has access to unitary operators
that produce the data by acting on a reference quantum state
[4]. What, however, can be done if this is not the case and one
has access only to the raw data, that is, just the quantum sys-
tems themselves? The first treatment of this kind of quantum
learning was given in [11]. There one is given a sequence of
N particles, each in one of two unknown states, |Y) and |y ),
and one wants to determine the sequence. For any individual
qubit in the sequence, you do not know which state it is in.
The output of this procedure is classical, a sequence of Os and
1s, corresponding to the labels of the states, of length N that
is the best guess for the sequence of states.

A second approach was taken in [12]. There the setup was
the same as in [11], but the objective was to use the data
to construct a positive operator-valued measure (POVM) that
would distinguish the two states. The fundamental problem is
that all one can measure is the density matrix of the ensemble
that describes the sequence

Pigp = Pol¥o) (Yol + pil) (¥l (1)
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if |o) appears with probability py and |y) appears with
probability p;. A rank-two mixed state density matrix can
be decomposed into a sum of pure states in many different
ways. That means that additional information, either classical
or quantum, is required to determine |vy) and |v). Several
examples of additional classical information were explored in
[12]. In one example, it was specified that the two states lie
on a known circle of the Bloch sphere, e.g., the intersection of
the x, z plane and the sphere, and that pg = p; = 1/2. Under
those highly restrictive conditions, it is possible to construct a
POVM that will discriminate the states.

A simple example of how extra classical information al-
lows one to determine which of two ensembles with the same
density matrix one has is the following [13,14]. We have 2N
spin-1/2 particles, which are promised to be in one of two
ensembles. In the first, N spins point in the +x direction and
N point in the —x direction, and in the second, N spins point
in the 4z direction and N point in the —z direction. These
ensembles are described by the same single-particle density
matrix, but they can be distinguished with high probability by
measuring all the particles in the z direction. If you find that N
of the particles point in the 4z direction, the ensemble is with
high probability the second, and if you find that some number
other than N particles point in the +z direction, the ensemble
is definitely the first.

In this paper, we are going to use a model similar to that
employed in [11,12], but our objective will be to determine
the states. Our main tool will be a form of state tomography.
This is a form of state learning [15]. In state learning, one
receives many copies of the state to be learned and this state
is guaranteed to be a member of a certain set of states. One
then performs measurements on the copies, and the result is
a sufficiently accurate description of the state. The difference
in our case is that there are two states, not one, that one is
trying to learn, and the copies are scrambled; any given copy
could represent either of the quantum states, and you do not
know which. In addition, the two states could be any pure
states, and you do not know with what probability they occur.
This task sounds formidable, but, as we shall see, if the states
are received in pairs, where the members of each pair are
identical, tomography can be applied to determine the states.

II. PAIRS

In this section, we will show that if the states are received
in pairs, the situation is much improved, and all you have to
know is that the two-qubit density matrix is an incoherent
superposition of two pure product states. Receiving an extra
copy of each state means that extra quantum information is
being provided. To be more specific, consider the following
scenario. You are sent a stream of pairs of qubits, and each
pair is in the state |Y) ® |¥o) or |¥1) ® |¥1) with

[¥o) = aol0) + ai[1),

[¥1) = bol0) + bi1), 2
where |0), |1) are single-qubit orthonormal kets that serve
as the reference basis (“computational basis”). The [) pair

occurs with probability py and the |11) pair occurs with prob-
ability p; = 1 — po. You do not know what |y) and [y) are,

and for any given pair, you do not know which kind of pair it
is. You also do not know pg and p;. The task is to find |v),
[¥1), po, and p;.

One can then, for example, use this to construct a POVM to
discriminate between the different types of pairs from a subset
of the pairs and then use it to discriminate the remaining
pairs. As only two states are involved, the purpose-appropriate
qubit POVM will be used for the pair states |o) ® |¥o) and
|[Y1) ® |¢) since their distinguishability is larger than that
of the single-qubit states. For instance, there are the POVMs
for unambiguous discrimination [16] or for extracting the
accessible information [17].

The ensemble we are looking at is described by the density
matrix

0 = polvo) (Yol ® (Vo) (Yol + prlvn) (¥l & Y1) (¥l (3)

The density matrix and the knowledge that it is composed of
two pure two-qubit product states is the only information to
which we have access. We will now show that this is sufficient
to find the states and probabilities.

To begin with, we note that |[y) ® |¥o) and |¥) ® |¥1)
span a two-dimensional subspace in the four-dimensional ket
space of the qubit pair; the subspace is analogous to the Bloch
sphere of a qubit. In the corresponding Bloch ball, the separa-
ble mixed states are located on a line that connects the points
for |Y¥o) ® |Yo) and |¥1) ® |¥;) on the sphere; see [18-20]
and, in particular, Fig. 2.2 in [20]. Once we learn p from the
data, its range is the Bloch sphere and hence we know the line
of separable states and their endpoints.

More specifically, p has support in the three-dimensional
symmetric subspace of two qubits, the triplet sector, and is of
rank two. That means that there is a direction |£) in the triplet
sector that is orthogonal to p, i.e., p|&) = 0. Set

&) = €0l00) + o1 (101) + [10)) + ci111), 4)

and let’s see what being orthogonal to |{) ® |o) implies.
The orthogonality condition is

(af)coo + 2aha;cor + (a}) e = 0. 6]
Dividing both by (a})* and setting z = ajj/a}, we find
¢ + 2c01z + coz” = 0. (6)

An identical equation holds for |y|) ® |;) except that, in
that case, z is bjj/b}. The above equation has two solutions
for z, one corresponding to [y) and the other to |). That
means that if we know |&), then we know both |{g) and |v).
That suggests that one way to proceed is to find a way to
determine |£). This can be done by finding p by performing
state tomography and then finding the solution to p|&) = 0.
One can also find explicit formulas for |¥) and |) in terms
of p, which we shall proceed to do.

Note that the argument we just used can be easily general-
ized. For example, suppose that our sequence consists of three
rather than two qubit states, and we receive not pairs but trios,
where all the states within a given trio are guaranteed to be
the same. The overall state of each trio lies in the symmetric
subspace of the space of three qubits (the space with total
spin 3/2, if we regard each qubit as a spin-1/2 object) which
is four-dimensional, while the density matrix for the trios is
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of rank three. That means there is a ket in the symmetric
subspace that is annihilated by all three of the states, and
consequently, by the trio density matrix. In analogy to the
two-state case, this ket will lead to a cubic equation whose
solutions will yield the three states. Clearly, the argument can
be carried further to N states, which would require receiving
identical N tuplets.

It is also possible to generalize this procedure to two states
in a d-dimensional space [21]. Initially you conduct single-
qubit tomography to find the single-particle density matrix,
which will be of rank two. You then find its two eigenstates,
call them |0),; and |1),. The states we are trying to find lie
in the two-dimensional subspace spanned by |0), and |1),,
and the problem is reduced to one of effective qubits. One
can then apply the reasoning in the previous paragraphs, but
substituting |0), for |0) and |1), for |1).

Let us now return to the case of two qubit states and find
explicit formulas for the states and probabilities. If the Bloch
vectors for |y) and |Y) are @ and b, respectively, then the
two-qubit pair density matrix for |1) is

po=1hL+a-0)Q L +a- o)
=ili+a- (6" +0?)+0"V aa-0?), (D

and similarly for |) but with a replaced by b. Here, I, is the
d xd identity matrix, o is the generic vector of Pauli matrices,
oV = 6 ® L is that for qubit 1, and 6@ =, ® ¢ is that for
qubit 2. The ensemble pair density matrix is

P = popo + p1p1
Lts (W +0?)+0V.C-0?), 8

where
s = (o) = (®) = poa + pib,
C = (6Vo®) = poaa + p,bb. ®

Note that aa is the dyad with matrix elements a;ax, and
similarly for bb, and the dyad C has the matrix elements
Cir = (O';I)Ok(z)> = (0; ® o) = poajay + p1b;by; as is char-
acteristic for mixed triplet states, C is symmetric, Cj; = Cy;,
and has unit trace, Zj Cj;j=1

Full tomography of the qubit pairs will provide us with the
vector § and the dyad C, and we demonstrate now how knowl-
edge of these quantities can be converted into knowledge of a,

b, po, and p;. In the first step, we find
C —ss = popi(a —b)a—b); (10)

if C —ss =0, the source emits only one state and we are
done. Otherwise, s> < 1 and (C — ss)/(1 — s%) projects on the
direction of @ — b # 0. We remove the component parallel to
a — b from s and obtain

s—C-s

, 1

Then, (po — pi )2 and a — b are available from

(s — §')? s—s
2 Z(PO_PI)Za
1—s Po— P1

= %(a—b), (12)

and we arrive at
s —2pis’
a=———

2pos’ — s
Cop=P TS
Po — P1

) (13)
Po— P1

provided that py # p;. If po = p1 = %, when s’ = s, we iden-
tify @ — b as the eigenvector of C — ss with the eigenvalue
il —a-b).

In the following sections we shall discuss two schemes
for the state tomography that provides data from which one
can estimate o and thus s and C. Section III deals with the
symmetric informationally complete POVM (SIC POVM) in
the triplet sector; see [22], for example, for properties of SIC
POVMs. The high symmetry of the SIC POVM is attractive
and facilitates the analysis, but we do not know how to im-
plement the SIC POVM in the laboratory. By contrast, the
tetrahedron POVM of Sec. IV can definitely be realized with
existing technology.

II1. SIC POVM
A. Measurement

In the triplet sector, the symmetric subspace of two qubits,
we expand the kets in the basis used in Eq. (4),

01) + |10y __ [ %0
10D +110) al. 14
V2 a

The SIC POVM for these kets is analogous to the standard
SIC POVM for qutrits [23,24]. The nine POVM elements,
or probability operators, are proportional to one-dimensional
projectors,

lv) = aol00) + ai[11) + a>

I; = flv)(v;| for j=1,2,....9, (15)
with
(lvi)  lva) -+ ug)  [vo))
1 0 —1 00— 1 0-1 o
Al e T )
(16)

where @ = e2"/3 is the basic cubit root of unity. The sum of

the elements is the projector on the triplet sector,

1
DTy = 6L+l o) =1y, a7

j=1

After supplementing the triplet SIC POVM with the projector
on the singlet

Mo = ;(Ih —0V-0?) =y, (18)

we have a proper POVM for the qubit pair. Note that the rank
of I, is three and that of I, is one.
Since

Tr(I1T) = % + 158,
Tr (M;(121T; — 1)) = 8. (19)
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for j,k=1,2,...,9, we reconstruct any p in the triplet sec- (a)
tor from its SIC POVM probabilities 0.9000-
g; = Te(TL;p). (20)
in accordance with
0 0.99001
p =Y q;(1211; — ). 1)
j=1
In addition to being nonnegative and having unit sum, the 0.9990
nine probabilities g; are subject to constraints that follow
from p > 0. In particular, there is the purity constraint
3 < Tr(p?) < 1, that is, 0 4000 8000 12000 16000 20000
1< 1
sS2La <5 (22) (b)
/= 0.9000
Moreover, in the present context of Eq. (8), we note that these
separable rank-two triplet states make up a five-dimensional 0.9900 -
nonconvex set in the eight-dimensional triplet sector and that
restricts the permissible probabilities stringently. We do not
know, however, how to state these restrictions as explicit con- 0.9990
straints obeyed by the g;s.
0.9999 4
B. Simulated data
0 2000 4000 6000 8000 10000

For different choices of |vo), |¥1), po, and p;, the SIC
POVM was used to produce simulated measurement data; in
particular, it gave us a probability distribution from which we
then sampled. The data are the counts ny, ny, ..., ny for the
nine different outcomes of the simulated measurement. Two
different methods were then used to find the density matrix
from the data, linear inversion, and maximum likelihood. We
first used linear inversion to produce an empirical density
matrix from the data, that is, we took the relative frequencies
as estimates of the probabilities

0 9
P = Z %(121‘” —1Ip,) with N= an- (23)

j=1 j=1

With this in hand, we examined two methods to find the states
and probabilities.

For the first, we found the eigenvector of the empirical 3 x3
density matrix with the smallest eigenvalue and identified it
with |€). This ket was used to create the quadratic equation in
Eq. (6) and find the states. Once we know the states and
the empirical density matrix, it is straightforward to find the
probabilities. For the second method, we used the empirical
density matrix to find the vector s and the dyad C, which then
allowed us to find the vectors a, b, and their probabilities.

In both cases, we then computed the fidelities of the states
from the simulation with the original states that were used to
produce the data, and these were plotted versus the number of
pairs received. The results for two cases are shown in Fig. 1.
We used Eq. (6) for the plots in Fig. 1(a), while those in
Fig. 1(b) resulted from Eq. (13).

The rate of convergence depends on the overlap of |v)
and |y); in particular, the larger the overlap the slower the

FIG. 1. Results from simulated data for the SIC POVM averaged
over 50 runs. The graphs show the fidelities of the states estimated
by linear inversion versus the number of detected pairs. The black
curves graph [(y,|¥¢")|* and the blue curves graph [(, ||
Plot (a) is for the states |/o) = |0) and |v/;) = (1/+/2)(|0) + [1)) and
the probabilities pyp = p; = 1/2. In the simulation, we detect up to
20000 pairs and infer the states by using Eq. (6). Plot (b) is for the
states |Y9) = |0) and |y;) = |1) and the probabilities py = 0.75 and
p1 = 0.25. We learn the states from Eq. (13) for up to 10 000 detected
pairs and observe that the state with the higher probability converges
faster.

convergence. In the case in which one uses the ket |£) to
find the two states, a large overlap between |v) and |¢)
will lead to a 3x3 density matrix p with one large and one
small eigenvalue as well as the eigenvalue O corresponding
to the eigenvector |£), and that can lead to problems. The
ket |&) satisfies p|&) = 0, but the estimated density matrix
o™ is not in the five-dimensional space of physical ps since
the relative frequencies n; /N do not obey the constraints that
restrict the probabilities g;. Rather than the exact eigenvalue
0 for |£), p™ has an eigenvalue ~0 that can be positive or
negative (while o is hermitian, nothing ensures o™ > 0).
If, then, the overlap of |y) and |v) is very large, p has a
small positive eigenvalue and it can be difficult to distinguish
the corresponding approximate eigenvalue of p™ from the
near-zero eigenvalue of |£).

For the maximum likelihood method we parametrize the
density matrix suitably. The two states are expressed as
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[;) = cos(6;)|0) + el sin(6,)|1) for j = 0, 1, so that
a, +ia, = sin(26;) e,
b, + ib, = sin(26,) €',

a, = cos(26y),
b, = cos(26,), 24)

and the probabilities in terms of an angle &, pg = cos(er)* and
p1 = sin(a)?. Then, the two-qubit density matrix of Eq. (8) is
a function of 6 = (6, ¢o, 01, ¢1, &), the five parameters that
specify the qubit states and the probabilities, p(0). We use
this density matrix to find the nine probabilities of Eq. (20) as
functions of @, which enter the likelihood function [25]

9
L®) =] ]q;0)" (25)
j=1

for the given simulated data. For the purpose of finding the
maximum of L(#), we use a covariance matrix adaptation
evolution strategy (CMA-ES), adapted from [26], to find the
minimum of —N~'log (L(#)). Once we do this, we know
the maximum likelihood estimates of both states and both
probabilities, which tell us p™", and no further processing
is necessary. The parametrization in terms of the five pa-
rameters ensures that every p in the competition is in the
five-dimensional set of permissible ps. Put differently, the
constraints mentioned after Eq. (22) are obeyed by con-
struction. By contrast, the unconstrained maximization of
log(L) =) ;1jlog(g)) yields the linear inversion estimates
g; = n;j/N with p™ outside of the set of permissible ps; in
this sense, linear inversion is unconstrained likelihood max-
imization. Whereas p™") is assuredly in the set of separable
rank-two triplet density matrices, o™ is only guaranteed to
be a hermitian, unit-trace 3x3 matrix; it is usually of rank
three and has a roughly 50% chance of having a negative
eigenvalue.

Nevertheless, linear inversion yields reasonable results as
demonstrated by the plots in Fig. 1. This is so because, al-
though p™ is not in the five-dimensional physical set, it is
very close to the actual p, as measured by a proper distance
in the eight-dimensional convex space of hermitian unit-trace
ps, when N is sufficiently large.

We observe that the maximum likelihood method produced
higher fidelities than the linear inversion method for a given
number N of data of simulated detection events. Here are
two examples comparing the results of linear inversion and
maximum likelihood. For the choice 0 = (%, 7, 27” 3 )
we simulated 750 experiments with N = 1000 each.
Figure 2(a) shows the sum of errors (one minus the fidelity)
for |vp) and |y;) expressed in parts per million. We find that
the maximum likelihood method consistently outperforms the
linear inversion method, with average errors of 10546 ppm
and 11852 ppm, respectively.

The parameters ({5, 7, 51—’2’, 7. %) are used in the example
of Fig. 2(b). In this case, 1000 simulated experiments each
with N = 1000 were conducted. The average error for lin-
ear inversion was 15760 ppm and for maximum likelihood
9283 ppm.

In conclusion, the maximum likelihood method is more
computationally demanding than the linear inversion method,
due to the maximization, but produces better results. It also
directly finds the two unknown states because, once the opti-

100

(a)
80

60 1

401

0 B il

0 20000 40000 60000
sum Of ppm errors

80000

100+ (b)
80+
60

401

209

T A =] Ll
40000 60000 80000
sum of ppm errors

0 20000

FIG. 2. The abscissa is the sum of ppm errors for the esti-
mated |Yp) and |i;) and the histograms show the frequencies
with which these errors occur in each bin of 1000 abscissa
units. The blue histogram is for the linear inversion method
and the red histogram for the maximum likelihood method. We
report results of simulated experiments (a) for the parameters
(6o, do, 501, $,a)= (%, 7 %” 5. %) and (b) for the parameters
(%’ z z z Z

T T 3 3). Observe that, in both plots, the frequency of small

errors is considerably larger for the maximum likelihood method.

mal parameters are known, then so are the states, whereas the
linear inversion first yields a density matrix, and then that has
to be diagonalized to find the states. The simulations of Figs. 1
and 2 confirm that these two point estimators are consistent,
that is, p™ — p and p™Y — p as N — oo; a quantitative
statement about this is provided in Sec. IV B in the context of
the tetrahedron POVM, see Eqs. (47) and (48), with additional
details in the Appendix.

IV. TETRAHEDRON POVM
A. Measurement

A tomography experiment that could be performed with
existing technology is sketched in Fig. 3. The elements of the
single-qubit tetrahedron POVM are

1'[§.4)=i(12+tj~a) with j=1,2,3,4; (26)
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-1 are
type-1 SPDC wave tetrahedron -2
pair source plates measurement 3 R](:) = R](<4) ® R1(<4)
=4

FIG. 3. A pump laser (not indicated), pulsed or continuous, illu-
minates a crystal for type-I spontaneous parametric down conversion
(SPDC), which acts as a source of pairs of photons that propagate
in the same direction and have the same polarization, both vertically
polarized, say. A set of wave plates is used to change the polarization
from vertical to any other kind. We switch at random between the
two settings of the wave plates that correspond to the polarizations
specified by the Bloch vectors a and b with the respective proba-
bilities py and p; for the next pair. The photons are detected by a
tetrahedron measurement [27-30], the SIC POVM for single qubits,
where we either register both photons in one exit port (four cases) or
get a coincidence between two different exit ports (six cases).

the four tetrahedron vectors have the properties

Ztk—O

where 1 is the unit dyad. Accordingly, the four POVM ele-
ments for detecting both photons at the same exit are

4
4

ti-ty = -3]k Ztktk = 51, (27)

k=1

niS) _ 1-[l((4) ® 1-124)
=L+t (6P +0P)+0V 18- 6®)  (28)

for k =1,2,3,4 and the six elements for the coincidence
counts are

ng =nPen®+m?en®

= %(214 + @ +t)- (6(1) + 0(2))

+oM @ty +tut) - o?) (29)

for 1 < j < k < 4. Clearly, the SIC POVM of Egs. (15) to
(18) is not of the kind realized by the elements in Egs. (28)
and (29) or any other product POVM. In particular, we have
nonzero probabilities for qubit pairs in the singlet state

Tr(MPLe) =0, Tr(M%1L,) = (30)

The ten-outcome measurement with the POVM elements in
Eqgs. (28) and (29) is tomographically complete in the space of
density operators that are convex sums of the singlet state and
any mixed state in the triplet sector, that is,

= L+s-(0V+0?)+0V.C-0?), (31

with Cj;y = Cy;. The singlet in Eq. (18) is of this kind and so is,
of course, the state emitted by the source with s and C of the
particular forms in Eq. (9). We recall the single-qubit identity

Tr(MPRY) =85 with R =1(h+3t-0). (32)

and recognize that the reconstruction operators R,(f) and Rﬁ)
that are defined by
() p(s)) (s) ple) y _
Tr(M,RY) = 8w, Tr(ILVR;,) =0,

Tr(TORY) =0,  Tr(MYRS)) =85 S (33)

= (L +3t (0 +0@) + 96 14t - 0?),
© _ 1p® o p@ | 1p® o p@)
Ry = 3R @R + 3R ®R]

=32L+3¢;+1) - (e +0?)

+95V - (¢t + it ) - 7P). (34)
Accordingly,
0= Zq(b)R(S) + Zq(C)R(;{)7 (35)
Jj<k

reconstructs p from the probabilities
4=,

which means

s—3Zq(5)t + = Zq t;+t0),

]<k

= Tr(11% p). (36)

=9 Zq(s)tktk 42 Zq“)(t,tk +tt;),  (37)
]<k

for the Bloch vector s and the dyad C. For the s and C in
Eq. (9), the sum rules

Zq(s) Z Z q(C) — (38)

Jj=1k=j+1

apply.
The data are the counts n,(:) and n(,? of the ten different
outcomes with the total count of detected pairs

N = Z <S>+Zn<°>. (39)

Jj<k

The law of lar%e numbers states that the relative frequencies

(S) /N and n(° /N approximate the respective probabilities
when N> 1 and therefore, we get an estimate for p by re-
placing the probabilities in Eq. (35) by the relative frequencies

o= (LI) Z (s)R(5)+ Z ﬁ)Rﬁ)’ (40)

/<k

the analog of Eq. (23). As discussed above, this linear inver-
sion is problematic because the relative frequencies do not
obey the constraints that apply to the probabilities, such as
the sum rules in Eq. (38). For instance, while Tr (/sz0) = 0 for
the actual p, we have

Tr(Is,p(”))———Z n + — Znﬁ,ﬁ (41)

j<k

which is almost always nonzero and negative half the time.
While we can improve matters a bit by removing the singlet
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component from p™, the resulting mixed triplet state is al-
most always not a rank-two separable state and can have a
negative eigenvalue in the triplet sector.

B. Plausible states

Rather than merely finding the point estimators of the lin-
ear inversion method, the maximum likelihood method, or yet
other methods, we identify the plausible region in the param-
eter space [31, Sec. 4.5.2], the set of all separable rank-two
triplet states that are supported by the data. Every p in the
plausible region is an acceptable point estimator; additional
criteria, beyond what the data tell us, would be needed for
selecting a particular one. While the linear inversion estimator
o™ is usually improper, the maximum likelihood estimator
o™V is always plausible because the plausible region is one of
the optimal error regions, which happen to be regions around
the maximum likelihood estimator [32].

If we denote the prior probability element of the vicinity of
0(0) by (d@), the posterior probability element is

(d0) L(9)
[(de") L")
The data give evidence in favor of p(8) if (d€)posc > (d#) and
evidence against p(@) if (df)y0se < (df); the data are neutral

when (d@),0sc = (d#). The plausible region is composed of all
0(0)s with evidence in their favor, that is,

(do )post = (42)

the density matrix p(0) is plausible if

L) > /(dG’)L(G')
and only then. 43)

This is an application of the principle of evidence
[31, Sec. 4.2]; another application to quantum data is reported
in [33].

For the given data, we find the maximum likelihood esti-
mator p™) = p(@™) and then the number

1
Apl = T / (d0)L(6) < 1, (44)

so that p(0) is plausible if

L(#)
The data give strong evidence if the prior content (“size”) of
the plausible region is small and its posterior content (“credi-
bility”) is large; these are

size:  sp = /(d())x()»(O) > K1),

credibility: ¢y = / (dB)post X (A(0) > Ap1), (46)

where x (A) = 1 if the statement A is true and x(A) = 0 if it
is false.

When there are many data so that the total count N of
detection events is large and the law of large numbers (central
limit theorem) is applicable, the N dependence of Ay, sp1, and

cpl is given by [34, Sec. 7.4]
hpr o N2, (47)

with the proportionality factor depending on the relative fre-
quencies and

log(1/Ap)*"

50 = T TR N~ log(N)"?,
Apl lo (1 )\-)3/2

l—cp =0 —cperr. = / di. ‘(;(3/#
A !

5 15
= Sy <5 log(1/Ap) ™" + T log(1 /Ap,)—2>

+ erfe(log(1/Ap)"?)

., log(1/hy)*
P 3/2)!

Accordingly, the size of the plausible region shrinks with
growing N and so does the gap between its credibility and
unity. When there are many data, the plausible region is very
small and has very large credibility (very small prior and very
large posterior probability).

The five-dimensional integrals in Egs. (42) to (46) are eval-
uated with Monte Carlo methods as follows [34, Sec. 8.2]. We
draw a large sample of #s from the prior distribution and store
the corresponding A(@) values: A1), A2 A0m M)
Then,

o« N7/?log(N)*/. (48)

1 M
2_2 (m)
ol = g 24

m=1

M
1
~ (m)
= E XA > Apr),

m=1

M
1
el = —— ) A"y > 49
pl M, Z x( pl) (49)
m=1
are approximate values for Ay, spi, and cp; with a sampling

error x 1/+/M. As it is usually CPU-cheap to draw from the
prior distribution, we can easily have samples that are so large
that the sampling error is of no concern.

C. Simulated data

We simulated five runs of the experiment of Fig. 3 for the
Bloch vectors specified by

a-t -3
a-t| _ 1 —1
a-t3)| 7|1
a-ty 5
b-t -3
b-t, 1 9
= , 50
b-t3] J105| ! (50)
b-ty —7

and the probabilities py = 0.37, p; = 0.63. Figure 4 shows
Apls Spl, and ¢, for N =100, 200, 300, ...,5000 for the
five runs. There is very little variation between the runs.
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FIG. 4. The values of Ay, sp, and ¢y as a function of N for 1 56 000 007 © Cog@9gg0 gggéezgsoeg"g%fﬁ?%og
five simulated experiments with up to 5000 detected pairs each. We 50.0 - ot %o
observe that there is little variation between the experiments and that 1 d
riat . e )
a few thousand detected pairs is enough to ensure a small size and 1—cp %
large credibility of the plausible region. (1- Cpl)c.l 1o : :°8é’aa I U

The plausible region has a credibility that exceeds 0.9999
for N =1000, 0.99999 for N = 2000, and 0.999999 for
N = 5000, while the size is less than 103, 10~*, and 107,
respectively. It follows that a few thousand detected pairs are
quite enough to acquire very strong evidence in favor of a tiny
subset of the separable rank-two triplet states and against all
others. We verified that the p(#) used for the simulation is
in the plausible region for N = 100, 200, ..., 5000, as it is
expected to be: For N = 100 already, the credibility is 0.99
so that the true state has an outside probability of only 1%.
In passing, we note that the Monte Carlo integration requires
ridiculously large samples for N > 5000 because the peak
of the likelihood function around the maximum likelihood
estimator is then extremely narrow.

We used a sample with M = 2x10° entries for the Monte
Carlo integration. It was drawn from the prior probability
distribution that has the Bloch vectors a and b independently
uniformly (isotropically) distributed on the unit sphere and
the probability parameter o uniformly distributed between 0
and 7t /2. This prior correctly reflects our complete ignorance
about a, b, po, and p; before we take data, whereby we recall
Wootters’s insight [35] that the Jeffreys prior [36] is most
natural for the probabilities.

Let us exploit the simulated data for a check of the large-N
approximations in Eqs. (47) and (48). Figure 5 summa-
rizes the data of the five simulated experiments. Figure 5(a)
shows the values ofNS/zkpl : 5(b) those of N*/2 log(N)’S/zspl ;
5(c) those of N>2log(N)~3/%(1 —cp1); and 5(d) those of
(1 — cp1)/(1 — cp1)ey- It appears that a few thousand detected
pairs are sufficiently many to reach the asymptotic regime,
where the ratio in Fig. 5(d) is unity, and Figs. 5(a) to 5(c) show
fluctuations around an N-independent value. We observe that
the ratio in Fig. 5(d) is least sensitive to the fluctuations in the
relative frequencies.

D. Imperfections in real-life experiments

The above discussion of the tetrahedron POVM assumes
an ideal realization, whereas an actual experiment will have
imperfections. In particular, there are deviations from the per-

' 2000 3000 4000 5000
N

0 1000

FIG.5. An illustration of the large-N approximations
in Egs. (47) and (48). For N = 100,200, 300,...,5000,
panel (a) shows the values of N*?\,; panel (b) those of
N3?10g(N)™/%s, ; panel (c) those of N¥?1og(N)=/*(1 — ¢y) ; and
panel (d) those of (1 — ¢p)/(1 — cpi)eyy- As in Fig. 4, there is one
circle for each of the five simulated runs of the experiment of Fig. 3.

fect tetrahedron geometry, the detectors at the four outputs
have nonideal detection efficiencies, and the optical elements
between the source and the detectors will absorb or deflect a
small fraction of the photons. As a consequence, there will
be cases where only one of the two photons is detected or
both escape detection. The ten POVM elements of Egs. (28)
and (29) are then modified accordingly and supplemented by
five additional elements that account for the single-photon
detection events and the null event. It is well known how to
do all that (see, for example, [33,37]) and we shall address
these matters in due course, namely when experimental data
will be available for evaluation.

V. CONCLUSION

To conclude, we considered the following problem. One
receives a sequence of qubits, where each qubit is in one of
two unknown states, and the goal is to determine the states.
Solving this requires some extra information. We showed
that providing additional quantum information, in the form
of an additional copy of the state, so that one is receiving a
sequence of pairs of states instead of individual states, allows
one to determine the unknown quantum states as well as their
probabilities of occurrence.

Proper quantum state tomography provides the data from
which one can learn the unknown states and probabilities. We
analyzed the SIC POVM and showed that the linear inversion
method and the maximum likelihood method can be used,
the former with caution. We also proposed a tomography
experiment that can be realized with available technology and
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demonstrated that a few thousand detected pairs are enough to
locate the states and probabilities within a very small region
with very high probability.
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APPENDIX A: SIC POVM AND LINEAR INVERSION

When the qubit pairs are measured by the SIC POVM of
Egs. (15) to (18), there are no counts associated with Iy so
that

L(n|q) =

l_[ an

jl/kl

(A)

is the likelihood of the data n = (ny, na, ..., ng), the list of
detection event counts, given the list of detection probabilities
q=1(q1,q2,.-.,q9); the combinatorial factor is that for a
prechosen number N of detected pairs. The expected value
of a function of the data

E(f(n)) = Z fm)L(nlg), (A2)
considers all thinkable data. The generating function
N
9 9
gx)=E ij’ ijqj (A3)
= j=1

provides the expected values of powers of the counts 7;, in
particular,

= Ngx,

allx;=1

= NN — Dqjqr + 8 xNgy.

0
E(ng) = x; B_xkg(x)

E(njnk)

It follows that the linear inversion estimator in Eq. (23) is un-
biased, E(p®") = p. The Hilbert—Schmidt norm of the error
Ap = p™ — pis given by

(A4)

9 _ 2
1Pl =Tr((Ap)?) =12 (% — q,-) ; (A5)

j=1

as a consequence of the purity constraint in Eq. (22), the
expected value

E(lap|?) = ijq

j=1

(A6)

is bounded by 10/N < E (|| Ap[l%) < 32/(3N).
We want to use the empirical density matrix p™ to find
the triplet ket |&) orthogonal to |{g) ® |¥o) and |¥) ® [¥r).

‘We recall that

2
P = "rilup)ugl with ro <y <1 (AT)

is hermitian, but it has rank three almost always and the
eigenvalue ry can be negative in this spectral decomposition.
We have that p|&) = 0 and want to find a lower bound on
the overlap between |£) and |up) under the assumption that
lAp] = € < 1, which we can ensure by choosing N large
enough. The eigenvalues of p) are then e-close to those
of p,

ro =0,

r
rn

1 1
} = 5T 5\/(170 — p1)? +4popil(Wolyr)|*. (A8)

We take for granted that € is small enough that we can distin-
guish between ryp = 0 and r; > 0.

Now,
2
[(EIAPIEN = | D ril(ul€)| < e, (A9)
j=0
where
2
(ol €)1 = 1= | (u;1£)] (A10)
j=1
Since
2 2
Z st} < LS lwle (Al1)
j=1 j=1
if ry > 0, it follows that
o) 2 > 1— = (A12)

in this case. If ry < 0, then

2
€ > —rol 1ol&) P + > rilu;16) P
j=1

> —|rol [{uol&)1* + ri(1 — [(uol€)|*) (A13)
SO
uplE) 2 > ——< (A14)
0 o+ ol
Note that (ug|Ap|ug) = ro — (uolplug) so that € > |rg| +
(uo|plug) = |ro| in this case. Therefore,
[ro| + € 2¢
luol&)> = 1 — — >1-—— (A15)
ri + [rol ry + [rol

and the second term is of order €.

What we see from this is that if r; is small (recall that
|ro| is assumed to be substantially smaller) then a very small
value of € will be required for |(uy|&)| to be close to one. We
can identify € with the square root of the expected value in
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Eq. (A6), so this gives us an estimate for how many qubit pairs
we will have to detect to obtain a good estimate of |£).

APPENDIX B: PLAUSIBLE REGION WHEN N > 1

The consideration of all thinkable data in Eqs. (Al) to
(AO6) is appropriate when planning the experiment. Once the
experiment has been performed, we draw inference form the
actual data in conjunction with what we knew before we
had the data. This prior knowledge is reflected in the prior
probability element

(d6) = dby dgo O, dep; dar w(B), (B1)

where w(#) is the prior probability density in this parametriza-
tion. For the list ¢ of the ten probabilities of the tetrahedron
POVM in Eq. (36) and the corresponding list n of counts, the

fractional likelihood is

M— . (ML)
L(nlg(@™™)) 1:[(61/(0)/61,(0 )

5
N
= exp 5 Z Sijk(o(ML))sk . (B2)
k=1

where 8 — ™) = (g1, ..., &) and Q3 (™) is a matrix ele-
ment of a symmetric positive 5x5 matrix; the approximation
is valid when N is so large that we can invoke the central
limit theorem. Under these circumstances, only the vicinity
of 8™ contributes substantially to the integrals in Eqs. (44)
and (46), and correspondingly, the prior probability element
can be replaced by

(d8) = de; - - - des w(O™). (B3)
The large-N approximations in Egs. (47) and (48) follow [34].
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