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We investigate the stability of statistically stationary conductive states for Rayleigh-Bénard convection that
arise due to a bulk stochastic internal heating. Our results indicate that stochastic forcing at small magnitude
has little to no effect, while strong stochastic forcing has a destabilizing effect. The methodology put forth in
this article, which combines rigorous analysis with careful computation, provides an approach to hydrodynamic
stability which is applicable to a variety of systems subject to a large scale stochastic forcing.

1. Introduction

Rayleigh Bénard convection, the buoyancy driven motion of a fluid
under the influence of a gravitational field, is ubiquitous in nature.
It is one of the driving forces in a variety of situations ranging from
boiling a pot of water, to geophysical processes, to pattern formation
in stellar dynamics. Yet, despite remarkable advances in mathemati-
cal, computational, and experimental analysis, fundamental aspects of
Rayleigh-Bénard convection remain poorly understood [1,2].

The seminal work of Lord Rayleigh [3], inspired by the experiments
of Bénard [4], quantified the onset of convection in terms of the
instability of purely conductive solutions of the Boussinesq equations.
In [3] it is established that when the Rayleigh number Ra (a di-
mensionless parameter proportional to the boundary heating) is less
than a critical value Ra,, then the purely conductive state is globally
attractive. Not only did [3] place the study of thermal convection on
a firm mathematical basis, but this work also yielded a now canonical
example in the study of hydrodynamic stability [5].

Various modifications to Rayleigh’s original model, including alter-
native boundary conditions and different sources of heat (see [6] for
example) have been considered in the past century. A natural further
extension is to define and quantify stability for convective flows driven
by stochastic forcing as many heat sources (as well as other sources
of buoyancy instability) are inherently noisy. For example, radioactive
decay in the earth’s mantle and thermonuclear reactions in large stars
are inherently stochastic, see [7,8].

Here we investigate the hydrodynamic stability of a conductive state
for a stochastic variation to the standard Rayleigh-Bénard convection
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model, when an internal bulk stochastic source is present. Specifically
we will focus on a spatially mean zero stochastic forcing which varies
according to the first handful of eigenmodes of the Laplacian for the
domain. Our approach relies on a combination of energy stability
methods, ergodic theory, and numerical computation. It is notable that
the methodology developed in this work applies to a larger class of
randomly forced hydrodynamic systems which we will address in future
studies. The current investigation is also closely related to previous
research by the authors on the ergodic theory and dynamical properties
of stochastically driven models for Rayleigh-Bénard convection [9-11].
Throughout the following, we provide some rigorous justification of
arguments and calculations leading to our final stability result.

While this investigation is new to the best of our knowledge, sig-
nificant previous efforts have been made to incorporate random per-
turbations into models of convection. To understand the influence of
thermal fluctuations, in [12-15] the Boussinesq system modulated by
singular (that is, active at all spatial frequencies) small noise in the
bulk is investigated, and a reduced model is derived to describe flow
statistics. This model leads to accurate predictions of the rate of heat
transfer near the onset of convection [16], but requires stochastic
forcing stronger than the predicted thermal fluctuations. We emphasize
that these efforts were motivated by experimental observations, and
the modeled noise was initiated in an effort to determine the potential
influence of thermal fluctuations on carefully calibrated experiments.

One significant difficulty in the approach initiated in [13] is that
the presence of a generic stochastic source eliminates the existence of
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a traditionally defined conductive state for which the velocity field
is zero, see [12-17] and containing references for relevant details.
The current investigation is not to ascertain the effect of thermal
fluctuations on the onset of convection, but rather to determine the
influence of stochastic effects that appear on the scale of the full system.
The goal of this investigation is to extend and further quantify a setting
similar to that proposed in [18] which considered the 2-dimensional
Boussinesq equations with stochastic horizontal boundary conditions,
and identified a substitute “quasi-conductive regime”, for which the
velocity of solutions is non-zero but small. In [18] the authors numeri-
cally showed that these quasi-conductive states maintain stability for a
wide range of Rayleigh numbers containing the classical critical value
Ra,.
The current investigation will extend the results of [18] to a setting
where the noise is physically motivated, yet difficult if not impossible
to imitate in the laboratory implying that the asymptotic and numerical
investigation detailed below is necessary. [13] and the studies that
followed addressed concerns raised by thermal fluctuations in an ex-
perimental setting. The current study is instead motivated by noise
that occurs on a larger scale that is not observed experimentally, but
is relevant in a practical setting as discussed below. As such, we will
not compare the results with experimental data, but infer that the
instabilities suggested by the current analysis are relevant in nature
and engineering applications. Essentially the goal of this study is to
evaluate the impact that a dominating, large-scale noise will have on
the stability of the determined conductive state, a situation that is not
realized to our knowledge in any current experimental investigation.

The numerical stability results and their rigorous justification de-
tailed below complement the theoretical development of rigorous er-
godic theorems for stochastically forced Navier-Stokes equations, and
related systems. For example, [19,20] have established that the pe-
riodic 2-dimensional Navier-Stokes equations with a bulk stochas-
tic forcing possesses a unique ergodic invariant measure provided
the stochastically forced modes satisfy a modest geometric constraint.
These results have been extended to the stochastic Boussinesq equa-
tions by the authors with various boundary conditions and parameter
constraints [9-11]. In these settings, the unique invariant measure is
almost surely globally attractive in a statistical sense. In contrast when
the stochastic forcing is “more degenerate”, that is, when the noise is
horizontally stratified then the long-time stability of statistics is much
less clear when the Rayleigh number is large. A discussion of this setting
is the main goal of the present manuscript.

The starting point of the current investigation is the observation
that, for certain classes of horizontally stratified volumetric forcing
the system admits a dynamically inactive, conductive state z(t, z). This
conductive solution has an explicit form and admits Gaussian statistics
whose mean and covariance are readily determined. Our primary goal
in the following is to investigate the onset of convection as a bifurcation
from this conductive state.

Note that our setup thus contrasts from the approach to onset
taken in [13,14,16,17] as the latter setting lacks such clearly defined
conduction states. Note furthermore that our investigations will mainly
focus on fixed temperature boundary conditions with a no-slip velocity
field, although comparison to the stress-free case will be made for
completeness.

Our approach to this problem may be summarized as follows. We
begin by observing that the conductive state z(z, z) (a random process
dependent on the vertical spatial variable) satisfies a linear stochas-
tic partial differential equation. We are able to explicitly compute
7(1,z) and also the (unique) stationary distribution. From an evolution
equation for the fluctuations about z(¢,z) we derive a constrained
optimization problem which provides a sufficient condition for decay
of the fluctuations at an explicit random rate, denoted by A(z(¢)), which
depends on the conductive state. This adapts the classical energy sta-
bility method from hydrodynamic stability [5] to the stochastic setting,
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and analyzes the stability of the conductive state by solving a stochastic
eigenvalue problem.

A crucial simplification both analytically and computationally fol-
lows because the system is stable about the conductive state provided
that

t
lim inf £ / A(z(s))ds > 0, m
t—oo f 0

almost surely. Since 7 is an ergodic process this expression is equivalent
to integration of A against the stationary law of z. Fixing the non-
dimensional stochastic heating strength H, and using the Dedalus
computational package [21], we identify a critical Rayleigh number
Ra, so that (1) holds for any Ra < Ra,.

We find that for small H the critical Rayleigh number is comparable
in value to the number obtained in [3]. However, we identify a rapid
transition when the non-dimensional strength of the stochastic heating
H is O(1) where the critical Rayleigh number Ra, quickly decays
to zero, and hence the stability of the conductive state is no longer
guaranteed for any value of Ra when H is sufficiently large. Although
the primary results presented here rely on computational investigation,
much of the framework that underlies the variational statements can
be made rigorous. In particular, we demonstrate that the variational
setup guarantees the existence of a critical Rayleigh number for which
the system is stable when Ra < Ra.. Under certain assumptions
we also justify the destabilizing effect of a strong stochastic internal
heating. The rigorous conclusions we reach are limited to a certain
set of simplifying assumptions to keep the corresponding calculations
tractable, but we fully anticipate that these results extend to the more
interesting situation presented in the body of this paper.

The results are presented as follows: Section 2 introduces the equa-
tions of motion and their non-dimensionalization. Section 3 sketches
the derivation of the nonlinear stability, outlining the rigorous es-
timates that justify the approach and numerical results. The proofs
for these rigorous results are included in the Appendices. Section 4
discusses the numerical and algorithmic implementation of this cal-
culation including convergence checks and criteria. Section 5 contains
the results including sample distributions of the critical growth factor
A. Finally in Section 6 we draw some broad conclusions and dis-
cuss the potential extension of this method to other problems where
stochasticity is present in a hydrodynamic setting.

2. Equations of motion

We explore stochastic perturbations of the standard
Rayleigh-Bénard system which arises via the Boussinesq approxima-
tion:
oil

—~+ﬁ~Vﬁ+iVﬁ=gﬂkT+vAﬁ, V-i=0, 2)
of Po
where @ = (i, 5, w)" is the three-dimensional velocity vector field,

5 is the pressure, and T is the temperature field. In this model the
parameters are p, a reference density, g the gravitational constant,
p the thermal expansion coefficient, and v is the kinematic viscosity.
We are interested in a horizontally periodic box D c R? of height A
complemented with either stress-free or no-slip boundaries for & on the
top and bottom plates.

The temperature field 7 satisfies an advection diffusion equation
augmented with a stochastic forcing in the bulk. Stochastic forcing
through the bulk is described by:

M
dT + (a- VT - xaT)di =y Y o dW*, (3a)
k=1

T(z=0)=T,>0, T(z=h)=0, (3b)

where « is the thermal diffusivity, and y is the strength of a mean zero
stochastic term that consists of M independent Brownian motions W*
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acting on M spatially orthogonal directions (in the L? norm) given by
{o)}.

Details on the mathematical setting of (3) can be found in [11]
(see [22,23] as well). The limit M — oo represents noise at all the
spatial scales of the system which resembles the setting considered
in [13,14,16,17]. Generically, we are interested in stochastic forcing on
physically relevant spatial scales, that is, we will not consider forcing
at scales below a given cutoff length scale.

2.1. Non-dimensionalization, significance of parameters, and physical mo-
tivation

We non-dimensionalize (2) and (3) by h spatially, h%/x temporally,
and T, for the temperature. This gives the following equivalent system
(we use the same labels for the non-dimensional system, modulo the
“tilde”):

1 (ou

—(—+u-Vu)+Vp=RakT+Au, Vou=0, @
Pr \ ot
1%

where the non-dimensional parameters are the Prandtl number Pr = =

capturing a kinematic property of the fluid and the Rayleigh number
3

Ra = @. The non-dimensional temperature field for the stochasti-

cally bulk forced fluid is governed by:

M

dT + - VT — AT)dt = H )’ o, dW*, (5a)
k=1

T(z=0)=1, T(z=1)=0, (5b)

where the heating parameter H = ZY s the non-dimensional ratio of
K

TV
the stochastic to deterministic heating.

The system evolves on the non-dimensional domain D = [0, L] x
[0, 1] for some L > 0 with periodic boundary conditions in the hori-
zontal, and either stress-free or no-slip boundaries along the top and
bottom. Analogous results are valid for the Navier-slip (Robin type
condition), but they are not explored here. Our setting allows for the
unitary boundary condition on the temperature field and since the
Rayleigh number is the same as in deterministic studies of convec-
tion [1], we recover the system originally proposed in [3] in the limit as
H — 0. This is a distinctly different non-dimensionalization compared
to our previous investigations of (3), where the relative role of the
bulk stochastic heating over the deterministic boundary forcing was
emphasized. In [11] we defined two ‘Rayleigh parameters’ Ra and
Ra whose product yield the Rayleigh number in this manuscript. The
reciprocal of Ra from [11] yields the stochastic heating number H
considered here.

The Prandtl number Pr is a material property of the fluid and
varies significantly depending on the specific fluid in question, and
is itself difficult to measure precisely for many fluids, particularly in
geophysical or astrophysical settings [24]. For instance in air Pr ~ 0.7,
for water Pr ~ 7, and analysis of the earth’s mantle indicates that Pr ~
10%* which is well approximated by infinity [10,25-28]. The Rayleigh
number, representing the strength of the boundary driven forcing, also
has a wide range in applications and is similarly difficult to estimate
in certain geophysical and astrophysical applications. In particular the
Rayleigh numbers in geophysics and astrophysics range from 10° to 102
(see [24] for example), although smaller Rayleigh numbers near the
onset of convection are also of fundamental mathematical and physical

interest.

The heating parameter H = 7{—\/2
stochastic internal heating to the bé)undary driven heating, weighted
appropriately by the cell height and thermal diffusivity. The parameter
H also has a significant range of physically relevant values, although
it is not as obvious what that range is. The regime H ~ 0 occurs

when the boundary forcing (characterized by T,) dominates the internal
stochastic heating (given by y = 0), modulated by the cell height and

is the relative impact of the
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Table 1

The relevant parameters used to determine the maximal value of H, the stochastic
heating parameter, assuming that TLI ~ 0.01 at maximum. The physically motivated
situations here are by no means exhaustive, but they do indicate a relative maximal
value of H that we may motivate physically. References that describe these values
include [7,29,30] as well as [24] and the references therein. Note that the final column
denoting the maximal value of H is computed from the physical parameters in the first
two columns.

Physical setting h (m) Kk (m?/s) Maximal H
Earth’s mantle 10° 1077 10%°
Earth’s oceans 103 1077 103

Earth’s troposphere 10* 1075 103
Earth’s convective updraft 107 1073 10'?
Convective zone in the sun 108 1073 1033

thermal diffusivity of the fluid. It is difficult to compare y relative to
T;, and therefore to determine which positive, large values of H are
physically viable. However, we do expect that the stochastic effects
are less significant [16]. For our purposes we assume that the noise
can be at most of the order of Tll ~ 0.01, but this assumption is not
required for our mathematical analysis. The other two quantities x and
h are properties of the system. Table 1 displays values of parameters
for several different physically relevant situations where Rayleigh—
Bénard convection is used as the first order model. The values of H
are computed for y/T; = 0.01, and may be adjusted if y /T, changes.
The table indicates that H is justifiably in the range from 0 to 10*.

2.2. The conductive state in the presence of a stochastic heat source

The conductive state for (4) and (5) occurs when u = 0. Unlike the
deterministic setting, we must retain time dependence of the temper-
ature profile in order to modulate the stochastic forcing. Moreover,
to maintain u = 0, the temperature field cannot be a function of
the horizontal variables, since the buoyancy term in (4) needs to be
absorbed into the pressure gradient. Hence, we seek a temperature field
7(z, 1) that satisfies the quasi-steady version of (5) where u = 0.

This indicates that z(z, 1) is a solution of

M
621' k

dt— —dt=H dw?”, 6

Tz ;ak ©)

and satisfies the non-homogeneous boundary condition z(z = 0) = 1
and 7(z = 1) = 0. To completely determine the solution to (6), we first
need to specify o,. For the current investigation, we select ¢, to be
the vertically dependent eigenfunctions of the Laplace operator on the
domain D, that is,

0(2) = V2 sin(zkz). @)

The function o, is ideal for an identification of length scales in the
forcing given by the vertical wave-number k.

The conductive state is found by separating spatial frequencies in
(6). The solution is the sum of Ornstein—Uhlenbeck processes:

M
w(z.0)=1-z+V2 Y e F717,(0)sin(zkz) ©)

k=1
M ‘o,
+HV2Y, [ / K= gk (s)| sin(zkz),
k=1 LJO

where 7,(0) is the coefficient of the sine series of the initial condi-
tion 7(z,0) (with subtracted linear profile) corresponding to o,. The
stationary distribution (see [31]) for 7 in (8) is given by

M

5(2)=1-2+V2 Yy sin(rkz), )
k=1

where y, are independent, normal random variables with mean 0 and

12 that is, Ve ~ N (0 ) We emphasize that 75 is

variance -5,

H?
’ 2k2x2
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ergodic as a stationary solution of (6), meaning

t—o0

1
lim %/ ¢(T(S,TO))ds:/¢(r);40(d1), (10)
0

for any 7z, and sufficiently regular ¢ : L>(D) — R, where y, is the law
of 5 on L*(D). This observation is crucial in the analysis that follows.

3. Nonlinear stability of the conductive state

In this section we formulate a sufficient condition for stability of the
stochastic conductive state r identified in (8) for systems with stochas-
tic bulk forcing. In Section 3.1, we show that, a sufficient condition for
stability is that a stochastic growth factor A (defined below in (14))
is positive when integrated against the stationary distribution 75 of
the conductive state, that is, r is almost surely stable provided that
E(A(z%)) > 0.

The growth factor A = Ap.(Ra,7) depends on Pr and Ra, as well
as the conductive state r, and the conductive state r depends on the
stochastic forcing parameter H. We first provide rigorous foundations
(under certain simplifying assumptions) for the variational approach,
demonstrating the existence of a critical Ra,, and proving that suf-
ficiently strong stochastic forcing is destabilizing. In Sections 4-5,
we numerically approximate a critical Rayleigh number Ra, at fixed
Pr such that for Ra < Ra, the sufficient condition for stability,
E(Ap,(Ra,7%)) > 0, is satisfied. The numerical results also quantify
how Ra, varies with the forcing parameters and demonstrates how the
distribution of 1p, is decidedly non-Gaussian even in the marginal case
E(ip,) ~ 0.

3.1. Energy stability and a stochastic variational problem

Since the conductive state is time dependent, we will not consider
linear stability but will focus entirely on nonlinear stability via the
energy method (see [5,6,32] for example). Specifically, we decompose
the temperature field as T'(x, y, z,t) = 7(z,t) + 0(x, y, z, 1) so that (4) and
(5) become

i(@+u-Vu)+Vﬁ=Rak0+Au, V.ou=0, 11
Pr \ ot
96 or
= 4u-Vo+w— =406, 12
a Y Yoz a2

where the pressure term p has been modified to absorb the buoyancy
term from the conductive profile . Note that this system is stochastic
only through the presence of 7, and in particular the perturbed system
obeys the rules of ordinary calculus. We compute the evolution of the
energy (L* norm of # and u) as

ld . 2\ _
3 4= (1617 + 5 lul?) = —0.0.7),
2 1 2 or
where Q. 6,7) = |V + — || Vul]® + w9<——1)dx (13)
Ra D 0z

and we define the L2 norm as || f|? = ||f||§ = [, 1f1%dx.
For fixed 7, let Q be a quadratic form in u and 6, and following the
energy stability method [5] we consider

. Qu,0,7)
A(tr) = min s

w0 ||0]|? + (PrRa)~" [lul|?
which is a random quantity depending on the parameters Pr, Ra,
and H. For a more precise formulation see details in Section 3.2
below. The Euler-Lagrange equations for the minimization problem
(14) with Lagrange multipliers A that enforces normalization, and g(x)
that guarantees incompressibility, are:

14

A 1 1 /dr
A u=—su+vVgrk= (1), 15
PrRa" = "RaMT VY 2(dz ) as
V-u=0, (16)
1 /dt
/16——A6+§(E—1)w. 17)
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It is important to notice that by testing (15) and (17) by u and 0
respectively, and using that u is incompressible, we obtain

1
PrRa
In particular, the minimum A(z) from (14) is the smallest eigenvalue
(Lagrange multiplier) of (15)—(17).

From (13) and (14) we conclude that 7 is a unique and exponentially
asymptotically stable state of (4) coupled with (5) provided that

(101 + = llull*) = Q. 6,).

1
1iminfl / Mz(s))ds > 0. (18)
t—o0 0

Invoking geometric ergodicity [31], with rigorous justification dis-
cussed in more detail below in Section 3.2, we have that

Jim % / Az (s)ds = EAGTS), 19
— 00 0

almost surely, independent of the initial condition, where ¥ is the
stationary distribution of the conductive state and E denotes the sta-
tistical mean. We conclude that a sufficient condition for almost sure
exponential stability of the conductive state 7 is EA(z5) > 0.

3.2. Rigorous analysis of the variational formulation

We will consider a range of physically plausible values for the
stochastic forcing parameter H, and numerically approximate a ‘crit-
ical’ Rayleigh number Ra = Ra, so that EA(zS) ~ 0. In this subsection,
we state rigorous results in support of

(i) EA(zS) > 0 provided that Ra < Ra,.
(ii) a strategy for estimating Ra, by a Monte Carlo algorithm.

The proofs of results stated in this subsection can be found in Appendix.
There are several instances in this subsection where simplifying as-
sumptions are imposed to make the resulting estimates more tractable.
We formulate these assumptions when appropriate, but emphasize that
we expect that most of the additional assumptions are not necessary for
the stated results, just necessary for obtaining tractable proofs.
We start with definitions and notation.

1. We seek to analyze (14) for (u,0) € H, where
H={w0):V-u=0, ueH)D), 6¢cH)D)} (20)

and H(; (D) is the usual Sobolev space of functions with square
integrable gradient and zero boundary conditions.

2. To establish rigorous estimates on (19) we first prove bounds
on (14) for a fixed z(z). In the following, we will use #(z) to
refer to a fixed realization of the conductive state, and only use
7(z) when we are referring to the coupled Ornstein—Uhlenbeck
processes defined in Section 2.2. Specifically, z(z) refers to a ran-
dom variable while 5(z) is one specific deterministic realization
of 7(2).

3. Let Y be the set of all linear combinations of sin(kxz), that is,

Y = span{sin(krz), where k = 1,..., M}, 21

where M is the number of modes forced in (6).
4. Since (14) is invariant under the scaling (u,0) — (au,af), then
(14) is equivalent to

Apr(Ra,n) = (u,ggM Ou,0,n), (22)

1
Selul3=1}. @3

where M= {@.0) €7 : 0l +
where Q is given by (13).

We begin by establishing the existence of a minimizer and regularity
of A with respect to . In the following, we denote W1*([0,1]) the
space of Lipschitz functions, or equivalently the space of functions with
almost everywhere bounded derivatives.
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Theorem 1. Letn : [0,1] — R be a deterministic function.

1. If n € W([0, 1]), then there exists a minimizer (u,0) € H for the
variational problem (22).

2. For every fixed Ra and Pr, the map Ap,(Ra,-) : Wh([0,1]) - R
as defined by (22) is globally Lipschitz.

A detailed proof of Theorem 1 is found in Appendix A.1. With
Theorem 1 (and related lemmata established during its proof) at our
disposal, we are prepared to establish the sufficiency of the stability
condition identified in Section 3.1, and to prove that the notion of
a critical Rayleigh number extends to the stochastically bulk-forced
setting.

Theorem 2. The zero solution of (11)-(12) is exponentially asymptoti-
cally stable almost surely if

EAp,(Ra,75) > 0. 24
Furthermore,
Ep,(Ra, %) < EAp.(Ra,t5) (25)

whenever Ra > Ra. Thus there exists at most one Ra, such that Eip,
(Ra,7%) > 0 for Ra < Ra, and Ep,(Ra,75) <0 for Ra > Ra,.

The proof of Theorem 2 is presented in Appendix A.2. From Theo-
rem 2 we conclude a critical Rayleigh number Ra, can be obtained by
finding the root of E4p,(Ra,, 75) = 0, but we require numerical methods
to approximate this root and quantify its dependence on the forcing
parameters. The remainder of the theorems presented in this section are
devoted to analysis of the growth factor 4 in order to provide insight
into how Ra, can be estimated in various parameter regimes.

In particular, our next objective is to investigate the functional
dependence of the growth factor 4 = /Ap.(Ra,75) on the forcing
coefficients y = (7;,...,7)) defined in (9). To simplify notation, we
define

M
() = Y kr - yy cos(knz), (26)

k=1
where each component y, is independently distributed, with
H2

~N(0,—— . 27
T < 2k27r2> @7
Then by (9) we have 9,75 = ((y) — 1, allowing us to re-interpret
Ap(Ra,75) = Ap,(Ra,{(y))' using (13) and (22). We can further
simplify notation in subsequent statements, for fixed Ra and Pr, by de-

noting A(y) := Ap,(Ra,{(y)) for input deterministic forcing coefficients
y € RM, We establish the following results.

Theorem 3. The function y — A(y) : R" — R is continuous, concave,
and has one sided directional derivatives, in particular for any v € RM one
has

My +h -2 /w*e*g(v),
h w*0%)ez Jp

Ayt =20 /w*O*C(v)
h w*,05)eZ JD '

+ T
o100 1= Jy
0, A(y) := hl_i)r(r)lﬁ

where Z is the set of all global minimizers of the variational problem (22)
with functional Q(u, 9, ¢(y)). In addition, for any v € RM,

M
74/ RaPr
T;kw.

0% 4| < 28)

One consequence of Theorem 3 is that y — A(y) = 4p,.(Ra,{(y))
is continuous, and therefore the expected value Eip,(Ra,75) = Edp,

1 Note that we consider y € R™ as a new variable.
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(Ra, (7)) can be obtained by integrating A(y) against the law of y. The
proof of Theorem 3 is presented in Appendix A.3.

Next, we seek bounds on y — A(y) in order to estimate expectation
in (19), which consequently yields estimates on the critical Rayleigh
number Ra,. First we estimate A(0), which can be computed explicitly,
as this is the growth factor for the standard deterministically forced
Rayleigh-Bénard problem [3]. To avoid implicit formulas and to have
an explicit set of eigenfunctions of the Stokes operator, we consider
stress free boundary conditions on the horizontal plates:

o u(x,y,+1,1) = d,0(x, y, +1,1) = w(x,y, +1,1) = 0. (29)

As usual, we assume periodic conditions in the horizontal direction
of the domain D = [0, L]?> x [0, 1]. Then, we derive estimates on the
derivative 07 A(y = 0) which yield a tangent approximation at y = 0,
and due to concavity of y — A(y), the approximation is an upper bound
on A(y). The proof of the following theorem is given in Appendix A.4.
To illustrate the ideas, we restrict to a special choice of Prandtl number
Pr, as well as stress-free boundaries in order to make the necessary
calculations computable, however we expect that the same conclusions
are valid in general. The length-scale assumption in the Theorem below
restricts the size of the domain below that of the critical length scale at
onset for stress-free convection, but is only a technical condition needed
to make the calculations tractable.

Theorem 4. For simplicity of computations we assume that Pr = 1,
L < 24/2, and stress free boundary conditions (29).

4 2
1. If Ra< %, then for any v € RM,

My=0=x> and 9dTA(y=0)=0. (30)

4 2 4 2\3
2. If LT (2;% ) < Rg < TG (ﬁf ) then

2V Ra
\/4+L2’
VRa v

4+ 1227

ﬂ(y=0)=ﬂ2(1+%)—

31
and 0T Ay =0)=-

3. If Ra> %, then A(Ra,y) <0 for each y € RM.

Observe that the derivative 97 A(y = 0) is discontinuous at Ra =
% which is due to the fact that L is finite, and therefore the
spectrum of the operator is discrete.

Let us illustrate heuristic consequences that emerge from Theo-
rem 4. First, for Pr = 1 and L < 2\/5, it is clear from part 3 of
Theorem 4 combined with Theorem 2 that the critical Rayleigh number
satisfies Ra, < ,[4(4;52)3. Then, from parts 1 and 2 of Theorem 4 we
have A(y = 0) > 0 and 97 A(y = 0) < 0, and therefore by the concavity
of y = A(y) we find that for any fixed y € RM, the function & — A(ey)
is non-increasing for £ > 0.

For fixed y € RM, Fig. 1 depicts € ~ A(ey) in the solid (blue) plot.
The dashed line depicts the probability distribution of y given in (27)
projected to the one-dimensional subspace spanned by y. If M = 1, that
is, y is one dimensional, the critical Rayleigh number Ra, is the value
of Ra such that the integral of the product of the curves in Fig. 1 is
equal to zero. An analogous principle holds in higher dimensions, that
is, when M > 1.

Let us investigate the dependence of Ra. on the strength of the
forcing H. If H increases, then the variance of the Gaussian distribution
increases, meaning that the dashed curve in Fig. 1 widens (recall (27)).
Because the solid line (independent of H) is decreasing, EAp,(Ra, {(7))
decreases. On the other hand, decreasing Ra will raise the solid curve
in Fig. 1, increasing EAp,(Ra,{(y)) (recall Theorem 2), and therefore
to keep EAp,(Ra,,{(y)) = 0, we have to decrease the variance of the
distribution, which means that Ra, = Ra,(H) is a decreasing function of
H.
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== pdf of y

Fig. 1. An illustration of the growth factor dependence on y. On the horizontal axis is y € R, although the same concepts apply for y € RM. For evenly forced modes (14)
is symmetric in y so we only illustrate y > 0. The solid (blue online) curve is an illustration of A, (Ra,{(y)) as a function of y. In particular note that A,.(Ra,{(y)) is concave

everywhere, and as y — oo asymptotes to a linear function. The dashed (green online) curve represents the normal distribution from which y is drawn. E[Ap.(Ra,{)] is then

computed by integrating the product of these two functions.
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Fig. 2. An illustration of the dependence of the growth factor on y. The axes are the same as in Fig. 1 and the solid (blue online) curve is the same. The upper dash-dot (red
online) line represents the tangent line approximation at y = 0 and provides an upper bound on the growth factor, and an upper bound estimate on the intersection point y* wherein
Ape(Ra,&(y*)) = 0. The dashed lower (green online) line represents the lower bound obtained by considering the linearization with the maximally negative derivative and provides
a lower bound estimate on y*. Note that the exact value of y* is not estimated well in this illustration, but at asymptotically small or large values of H such approximations are

still quite useful.

4 2 4 2\3
FOI’MSR‘I<M

L4 = 414
Theorem 4 to obtain a decreasing tangent line approximation from
above for the function £ — A(ey), for any y € RM. Specifically, a
lower bound is obtained from the linear approximation having maximal
negative derivative (in any direction) given by (28). These two linear
approximations illustrated in Fig. 2 provide us with an upper and lower
bound on the growth factor 4.

, we combine parts 2 and 3 of

Appendix A.4.2 finally contains refined upper and lower bounds on
the growth factor 4 an their integral against the Gaussian distribution
of y. Fig. 3 illustrates how we obtained these refined bounds. The upper
bound is first obtained by applying a tangent approximation at the
point y = y* (the point at which the growth factor is zero) cut off by
the maximal value of the growth factor which is obtained at y = 0.

Recall that this is indeed an upper bound, since 4 is non-increasing and
concave.

The lower bound is also obtained as a piece-wise linear function.
First, a linear interpolation between the points at y = 0 and y = y* is
used for the region where the growth factor is positive. Then, a linear
approximation using the maximally negative derivative originating at
y = y* is used as a lower bound for negative values of A. Overall, we
use upper and lower bounds to estimate the dependence of the critical
Rayleigh number Ra, on the stochastic forcing parameter H.

First, the lower bound (depicted in Fig. 3) is used to show that for
small values of the internal heating H > 0 the system is more stable
(the critical Rayleigh number is larger with the addition of noise) than
the corresponding deterministic forcing. This is stated under certain
simplifying assumptions (only meant to provide an accessible proof, we
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Fig. 3. An illustration of the dependence of the growth factor on y. The axes are the same as in Fig. 1 and the solid (blue online) curve is the same. The dashed upper (green
online) lines represent upper bounds on Ap,(Ra,{(y)) as described in the text, and the dash-dot (red online) lines represent the lower bounds.

do not anticipate that these restrictions are necessary) in the following
theorem.

Theorem 5. Assume that N' = {2} with the corresponding coefficient
y =y, Pr = 1,L < 24/2, and boundary conditions (29). Denote (cf.
Theorem 4)

_4ntd+ 1Y) B ACEN Dk
== - v = —

Ray Iz 4L

(32)

Then for any Ra € [Ray,Ray] there exists unique ¥ > 0 such that
Ape=1 (Ra,¢(@)) = 0 (recall that y € R is a scalar and ¢ : R — R). However,

— 2
E,[4p,=1(Ra,{(y)] > 0, provided y = Ny ~ N <0, ;‘:’2 ) In other words

the deterministic system is marginally stable at (Ra,7), but the stochastically
forced system is almost surely stable for the corresponding internal heating.

Finally we state the final Theorem here that partially justifies the
computational calculations provided below, i.e. finite sampling of the
desired distribution will provide a viable approximation of the actual
expected value.

Theorem 6. Assume that Pr = 1 in addition to the other assumptions
incorporated in the previous Theorem. It follows that

1

3 (Zh ~Ra'?~Ra'\2z Y, klyk|> < Apeey (Ra, E(7)) (33)
keN

< %rr}(in (;ﬂk? - \/TERal/Z [\/Eﬂk|yk| +2]>. (34)

Hence, taking the expectation of this inequality, and because y, are Gaussian
(and hence so is |y,|) we see that Ap._;(Ra, ¢(y)) must have Gaussian tails
for 4 < 0 (4 is bounded from above).

The presence of Gaussian tails justifies the computational evidence
discussed below (Monte Carlo simulations of phenomena with Gaussian
tails are well justified as the low probability events can safely be
neglected computationally).

4. Algorithmic description, numerical comparisons, and rigorous
convergence

The computation of the marginally stable parameters, i.e. those
parameters for which EAp,(Ra,7%) = 0 is performed as follows. This
is a root-finding problem where the Prandtl number Pr is fixed and

the stochastic heating H and total number of forced modes M are
fixed parameters. The Rayleigh number Ra is the independent variable.
We approximate EA(zS) from a sample mean, and seek Ra, so that
E(Rac) =0, where

N
A(Ra) = % > A), (35)
k=1
and each r,f is drawn independently from the stationary distribution of
the conductive state. The number of samples N is a parameter that we
select. As lim N — oo is the desired situation, we will take N as large
as practical computational considerations will allow. Due to numerical
considerations, we also must seek Ra, such that IE(RaC)I < ¢, where ¢
is also selected via numerical considerations.

For each realization r,f of the stationary distribution, we consider
the Euler-Lagrange equations for the minimization of A(r) and identify
A(r,f ) as the solution of a one-dimensional eigenvalue problem which
is solved numerically via the Dedalus software package [21]. Starting
with the Euler-Lagrange equations (15)-(17) for A(z), we twice take
the curl of (15) and using the fact that curlcurl = Vdiv — 4 we have

A 1, l(dr )
Aw=——w+ (% _1)4,0, 36
PrRa w Ra w+2 dz H (36)
1 /dr
10 = —A0 -(—-1) , 37
AV w @7

where w is the third (vertical) component of the velocity and 4, =
0+ 65 is the horizontal Laplacian. Next, we decompose w and 6 into
horizontal Fourier series

w(x,y,2) = Y (DY 00y, 2) = YL B2t
kez? kez?

where Z2 = (2zk/L : k € Z*}, to obtain:
A 2 2\ o~ I (2 2\2 . 1 25
- ke (07, — [kI*) iy = X (02 = 1Kl?)” by + 5 (9z7 = 1) |KI*0
(38
. 51 .
16, =—(a§z—|k|2)9k+5 (0,7 —1) iy (39)

Since our operators are self-adjoint, 1 and all coefficients i, and §, are
real. The system also satisfies for each k € ZZL the boundary conditions:
W (0) = (1) = 3,10,(0) = 0,0, (1) =0,  §,(0) = ,(1) =0, (40)

for no-slip boundaries, where we used the identity u = v = 0 on dD,
which implies u, = v, = 0 and by the incompressibility condition, w, =
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Fig. 4. Comparisons of the numerical results for the bulk stochastic heat source under a variety of different numerical and physical configurations. For each plot, the vertical axis

is the critical Rayleigh number normalized by its deterministic value. The horizontal axis represents

different values of the non-dimensional heating parameter H. All the reported

cases in this Figure are computed for no-slip boundaries. The default values as indicated in the text are ¢ = 0.005, N' =768, M =1,2,3,4,5,6,7,8, and Pr=10. In each of these
comparisons, only one of these parameters is varied at a time, with all others held fixed at their default values.

0 on oD. Similarly, if u satisfies the stress-free boundary conditions, 3.
then w = 0, and d,u = d,v = 0 on 4D, and consequently d,,u =9d,.v=0.
Differentiating the divergence free condition V - u = 0 with respect to

z, implies 9,,w = —0d,,u — d,.v = 0 on 9D, and consequently

W (0) = (1) = 02,10, (0) = 20, (1)=0,  §,(0=8,(1)=0, (41)

for stress-free boundaries.

The numerical implementation uses a modification of the bisec-
tion root finding method on 7 to identify the approximate Ra,, for
each specified value of Pr and the pair (H, M) by taking previously
computed values for nearby parameter values as an initial guess. This
leads to several parameters in the algorithm that must be selected (nu-
merical comparisons are displayed in Fig. 4) for a variety of different
parameters.

Numerical details

1. Absolute error. Using e = 0.005 as the absolute tolerance allows 4.
for a determination of Ra, at H = 0 that is accurate up to 8
significant digits. We select ¢ = 0.005 for the results reported
here. The upper left plot in Fig. 4 shows the difference between
the calculated critical Rayleigh number between ¢ = 0.005 and
e = 0.01 with the other parameters set to their default values
as described below. The maximal difference between the critical 5.
Rayleigh number for H < 10 is less than 5%, jumping to a
maximum of 12% for the higher less physical values of H. All
other calculations reported here are for ¢ = 0.005.

2. Sample size. We choose N' = 768 Monte Carlo generated samples
to compute 1. As a control, similar calculations were performed
for N' = 1536, but as shown in the upper right plot of Fig. 4 6.
the differences are minimal particularly for H < 10. The max-
imal difference in this comparison is less than 9%. All other
parameters are the default values as explained in this section.

Forced modes. We choose to force the first 8 modes as the default
setup. The lower left plot in Fig. 4 demonstrates the effects of
varying the modes that are forced with all other parameters set
as default values. The differences here are far more significant,
with the primary conclusion being that the choice of the lowest
forced mode is the most influential on the stability calculation.
When only the 7 and 8 vertical modes are forced at sufficiently
large values of H, the viscous effects are not able to control the
asymptotically strong, small scale oscillations causing the Monte
Carlo sampling to fail to converge. This explains the jagged
nature of the plot in this figure for H > 10. In addition, the
root finding algorithm was unable to converge for ¢ = 0.005 and
N =768 for H larger than that shown in this plot. We expect
that increasing the sample size by an order of magnitude would
eliminate this issue, but would also be far to computationally
prohibitive to be useful.

Choice of the Prandtl number. The lower right plot in Fig. 4 shows
differences for variations on Pr for the default parameters. There
is certainly some dependence on Pr in this case, particularly
when comparing Pr =1 and Pr = 100, but these changes do not
qualitatively alter the primary conclusions, and hence we choose
Pr =10 as the default value.

Level of discretization. We chose to discretize the eigenvalue
problem with N, = 64 vertical Chebyshev modes. Results are
identical up to 6 significant digits for N, = 128 as long as
the highest forced mode was less than 8, i.e. M < 8. If the
highest forced mode was chosen higher than 8 then the vertical
discretization would need to be increased accordingly.
Boundary conditions. As the no-slip boundary condition is the
most physically relevant to modern experiments, we focus on
this boundary condition, but we have also performed compar-
isons with the stress-free boundary condition and found very
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Fig. 5. Normalized histograms of the growth factor A for the 768 samples that identified the critical Rayleigh number for a variety of values of H. All reported results used
€=0.005, N'=768, Pr=10, N_ =064 and the first 8 vertical modes of the bulk were forced. Note the difference in the horizontal scale between each plot.

little dependence on the velocity boundary condition. Although
the actual values of Ra, are significantly different for the dif-
ferent boundary conditions, Ra.(H)/Ra,(H = 0) are nearly
identical (within the numerical tolerance level specified above)
between the two different boundary conditions.

In summary, the default parameters for the simulations are: ¢ =
0.005, N' =768, Pr =10, N, = 64, and the first 8 modes of the bulk
are forced with no-slip boundaries. When comparing data for no-slip
boundaries we have normalized the critical Rayleigh Ra.(H) by the
deterministic value Ra,(H = 0) = 1708, and Ra.(H = 0) = %
stress-free boundaries.

for

5. Results

The primary takeaway from the numerical results is that weak
stochastic forcing has a stabilizing effect, essentially retaining the same
critical Rayleigh number for small to moderate values of H as when
H = 0. There is then a rapid transition (dependent on the number of
modes forced for the bulk heat source) as H is increased whereon the
system is strongly destabilized as Ra, — 0.

To fully investigate the transition from the conductive to the con-
vective regime, we consider the distribution of the growth factors A
from the 768 samples for each value of H at the transitional value of
Ra = Ra, as demonstrated in Fig. 5. We have chosen these particular
values of H as they represent different qualitative settings for the
onset of instability. The variance of 1 is clearly and unsurprisingly an
increasing function of H, but numerically it appears that the maximal
value of A is bounded from above (for rigorous proof in a special
case see Lemma 22), causing the distribution of 4 to skew strongly to
the left as H increases. By definition, the mean of these histograms
must remain zero for all values of H so that as the distribution skews
negatively then Ra, must decrease toward zero rather suddenly in H.

A more detailed picture regarding the appearance of these instabili-
ties comes from considering Fig. 6. Fig. 6 shows the dependence of the
growth factor 4 on the critical horizontal wavenumber k. which indi-
cates the spatial scale at which the instability will arise. For smaller val-
ues of H the results are physically intuitive. The more unstable modes

(negative values of 1) arise at the larger wave-numbers, i.e. smaller
scales. This indicates that when the noise is weak, there is a small-
scale instability which naturally may arise as a result of the inherent
randomness of the stochastic forcing. As the stochastic forcing increases
in strength, this relationship breaks down to some degree insomuch that
for H > 6.18 the unstable modes occur for k., > 1.5 with the most
unstable modes typically being at higher wave-numbers.

The upper bound on 1 is also clearly seen in Fig. 6 for H > 3.35,
and interestingly it appears that there is also an upper bound on k, so
that even for the extreme case of H = 316.23, the maximal k, either
stable or unstable is less than 5. These bounds on both 4 and k, in the
presence of a stochastic forcing with increasing variance (with respect
to H) leads to an increasingly varied scattering of both 1 and k. below
the upper bounds, i.e. an extremely non-symmetric distribution. Even
so, the largest scales indicated by k, < 1.5 remain stable.

Another interesting feature that emerges from Fig. 6 is the nearly
linear relationship between A and k. for smaller values of H. Although
there is significant variation from this behavior for H > 1, the same
banded structure still appears in each of the plots shown in Fig. 6. This
feature is indicative of the instability that arises in the deterministic
setting when H = 0 (near the known critical value of k, ~ 3.1), with
the stochastic noise yielding stability for larger scales and instability
for smaller ones. As H increases this behavior still holds, but an
additional trend appears wherein stable modes appear for nearly all
wave-numbers below the cut-off of k, = 5, and as the variance of
the noise increases dramatically, the scatter about these two trends
increases as well.

6. Conclusions and stability of generic stochastically driven hy-
drodynamic systems

We have investigated the nonlinear stability of a convective system
with additive stochastic white noise on the first 8 vertical modes of the
system. When the stochastic heating is weak, it has a stabilizing effect,
then transitions to strongly destabilizing as the strength of the noise
increases. This is an effect of the distribution of the growth factor 4
and its dependence on the strength of the stochastic heating.
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Fig. 6. Scatter plots of the critical horizontal wave number k, against the corresponding growth factor A at the critical state, i.e. the mean of A is 0. All reported results used
€ =0.005, N'=768, Pr=10, N_ =64 and the first 8 vertical modes of the bulk were forced. Note the difference in scale between each plot.

The results discussed above have demonstrated the need to better
quantify the role that stochasticity plays in physically relevant fluid
systems. If the internal heat source were modeled as a deterministic
bulk forcing, then the stability of the resultant conductive state would
be very different, particularly for the physically relevant setting of
H = o(l). This implies that at least in this idealized convective
setting, if there is an inherently noisy source, we will miss some of the
fundamental physics by modeling the system in a purely deterministic
fashion. We are not claiming here that the precise nature of the noise
we have chosen is the ‘best’ way to model noisy convection, but we do
insist that accounting for noise in such physical systems is necessary to
achieve physically realistic results.

Further considerations of the onset of convection in such stochastic
settings are natural extensions of the current work. For instance, is
there an analogue of the finite amplitude equations in this context,
and if so, is their derivation and application the same or similar?
Do coherent structures such as the roll-states present in low Rayleigh
number deterministic convection exist in the stochastic setting, and
if so are they defined only in a mean sense? If such structures exist,
can similar statements be made regarding their stability, or does the
stochastic nature of the problem preclude the utility of such investiga-
tions? Further analysis and computation is required to answer these
questions, and ascertain the influence that noise can play in fully
developed turbulent convection.

Finally, we note that the methodology developed in this article ap-
plies not only to Rayleigh-Bénard convection under these constraints,
but is applicable to any hydrodynamic system driven by a stochastic
forcing where a basic (time dependent) state still exists. In particu-
lar, we can extend this approach to shear flow, particularly where
there is noise present in the induced shear boundary condition, or
Rayleigh-Bénard convection when there is noise introduced through
the temperature boundary condition.
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Appendix. Proofs of rigorous bounds on the growth factor

A.1. A priori estimates and necessary prerequisites

We begin with an estimate that proves existence of a solution to the
minimization problem and indicates that there are indeed cases such
that Ap,(Ra,n) <O0.

Lemma 7. For a fixed n € WH*([0, 1]) there exists a minimizer (u,6) €
H \ {0} of (22) where H is given by (20). In addition, if n € Y (see (21)
for the definition of Y) then there exists a constant C(Ra, Pr) > 0 so that
if 17’ |l, = C(Ra, Pr), then Ap,(Ra,n) < 0, where 1’ is the first derivative of
n.

Proof. We note that for (u,0) € M (see (23)), there is a constant
C = C(Pr, Ra) such that

/we(azn— Dax < (Inllyre + 1) Nl 1611
D

IN

il + 1 (1013 +
il + 1),

1 2)
PrRa ||u||2

implying that Q(u, 0, ) is bounded from below. We note that Q(u, 9, n)
contains a part which is equivalent to the H! norm of u and 6 and
a part which is compact, and therefore Q(u,6,n) is weakly lower
semicontinuous in (u, §) for any fixed 5. In addition, M is weakly closed
(the embedding of H into (L?)* is compact) in the topology of H'.
Then from the direct methods in the calculus of variations, there exists
a minimizer of (14).

Fix any compact set K C D and let yx be a smooth function
compactly supported in D so that yx = 1 on K. The set Vg = {¢prk :
¢ € Y} is a finite dimensional space of trigonometric polynomials
restricted to K, then all norms on Yy are equivalent. In particular,

nk llgs < collmillos

for any 7, € Yg. Choose & = (an,O,—n%)T and § = |n}| as
test functions in (14). Then (@,6) is compactly supported in D, @ is
divergence free, and therefore admissible. In particular, (14) and the
equivalence of norms show that

1
P12+ o (I 12 + 200 12) = W I3+ D 2

12 /12
EARALAE

[l
Ap,(Ra,n) < C

IA

C( = climlly).

where the constants C and ¢ depend only on Pr, Ra, and D. The second
assertion in the statement of the lemma follows immediately if ||r/;< Il
is sufficiently large. []
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Remark 8. Uniqueness of the specified minimizer is not guaranteed,
and in fact is not true in general. We can show that there is at most a
one-parameter family of minimizers for each 7. As this does not reflect
on the results that follow the details are omitted here.

In all of the following we will also need the following lemma which
asserts the smoothness of the map 5 — Ap,(Ra,n).

Lemma 9. For every fixed Ra and Pr, the map Ap,(Ra,-) : W1([0, 1])
— R as defined in (14) is globally Lipschitz.

Proof. Fix 7 € W'®(0,1) and let (,6) € M be the minimizer of
(14) with 7 replaced with 7 (for the existence of such minimizer see
Lemma 7). For any n € W*(0,1) we find that
Ap.(Ra,7) = Q(u,0,7)

> 0@, 0,n) — 11— nlly1. @l 11611

> Q(@. 0.1) = Cll7 — nlly 1.0

> Apr(Ra» n) —Clln - "I”Wl,w»

where C is a constant depending on Ra > 0. Then,

Ap,(Ra,n) — IIP,.(Ra,ﬁ) <Clln - '7”14/1700» (A1)

which upon interchanging # and 7 gives the statement of the

lemma. [

We frequently make use of the following result which indicates
properties obeyed by the minimizer of (14).

Lemma 10. Fix n € W>([0, 1]) and let (u, ) be a minimizer of (14) as
in Lemma 7 with = replaced by n. Then

/ w6(0,n — 1)dx < 0. (A.2)

D

Moreover, if Ap.(Ra,n) <0, then

/ w00, — 1)dx < —cy min{Pr, 1}, (A.3)
D

where c, depends only on D. In particular if n € Y and |||l > C as
described in Lemma 7, then (A.3) holds.

Proof. As (u, 5) is a minimizer of Ap.(Ra,#), then

Q. 0, n) Q@,—6,n)

7112 Loz~ onan2 U2’ (A4)
1612 + = [@l2 ~ 10112 + = 1al)2
or equivalently
/ wO(a,n — 1dx <O0. (A.5)
D

If 2p,(Ra,n) <0, then by the Poincaré inequality there exists ¢ depend-
ing only on D such that

—— - 1 — - 1 -
/D 60,0 — Ddx < =|[VOI> = 2= IVal* < — (1181 + ol

| -
@i )
RaPr

(A.6)

< —emin(Pr, 1} (161 +
< —cmin{Pr, 1},

as desired. []
A.2. The existence of a critical Rayleigh number

The goal of the present subsection is to prove the following propo-
sition:

Proposition 11. The zero solution of (11)-(12) is exponentially asymp-
totically stable almost surely if

EAp,(Ra, 75) > 0. (A7)
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Furthermore, there is ¢ = ¢(Pr) > 0 such that for any Ra* > Ra we have

EAp,(Ra*,75) < EAp.(Ra,75) — ¢c(\/ Ra* — V/ Ra)

and therefore Ra ~— Eip.(Ra,t5) is strictly decreasing. Also, for any
Ra*, Ra > 0, we obtain

|EAp,(Ra,75) = EAp,(Ra*, )| < Cmax{Pr,1}|V/Ra - v/ Ra*|,

and in particular Ra — EAp,(Ra, ) is continuous.
Thus there exists at most one Ra, such that Eip,(Ra,v5) > 0 for
Ra < Ra, and EAp,(Ra,75) < 0 for Ra > Ra,.

(A.8)

(A.9)

First, however, for each y € W1*([0,1]) we need to establish the
monotonicity and continuity of Ra — Ap.(Ra, n) and hence the existence
of a critical Ra, for any fixed n € W1>([0, 1).

Lemma 12. For a given n € W'*([0,1]) and Pr > 0, the map

Ra v~ Ap,(Ra,n) : [0,00) — R is decreasing and

|Ap,(Ra,n) = Ap,(Ra*,n)| < ||’1||W1-M([0,1]) max{Pr, 1}|V Ra - V Ra*|.
(A.10)

Moreover if n € Y (see (21) for the definition), with ||4'|l, > C, where
C = C(Ra*, Pr) given in Lemma 7, then

Ap,(Ra,n) = Ap,(Ra*,n) + cmin{1,Pr}(/ Ra — V Ra*),

where ¢ = ¢(D). In particular, if ||#'||, is large, then Ra — Ap,(Ra,n) is
strictly decreasing.

(A11)

Proof. Fix any 7 € W!*([0,1]) and Ra* > Ra > 0. Let (\/Rau, 0) be the
minimizer of (14) as in Lemma 7. Then using Lemma 10, Ra < Ra*,
V62 + IVa|l? + v/ Ra [, w6(d.n — 1)dx
7112 L2
oll; + = llll;
V62 + |Vl + V/Ra* [, w6(0,n — 1)dx
12 + Lg2
o1l5 + - llull;
. (V/Ra - /Ra*) [, w8(d_n — Ddx
D112 L2
o135 + - llull;
Qp,(u.0.1)

> inf
WO O] + ez 13
2 PrRa* u 2

Ap,(Ra,n) =

= Ap,(Ra*,n),

and the monotonicity follows. If in addition ||5’||, > C, then Ap.(Ra,n) <
0, by Lemma 7, and consequently, by (A.6) we have

Apy(Ra,n) > Ap,(Ra*,n) + cmin{1,Pr}(/ Ra — V Ra*),

where ¢ depends only on D. To prove the continuity, let (v/ Ra*u*, ")
be the minimizer of Ap,.(Ra, 7). Then, as above with (1/ Rau, 0) replaced
by (v Ra*u*,0*) we have the following by the Cauchy inequality

(VRa—\/Ra*) [, w6(d.n - 1)dx
1912 + o- I3

> Jpp(Ra.n) = Inlly1.e0q0.1 max (Pr. 1}|VRa = VRa*|

]

We note here that not only is the monotonicity with Ra of fun-
damental importance in establishing a rigorous stability result, but
it is also invaluable in the algorithmic development. In simulations
we desire to find values of Ra for which Ap.(Ra,n) ~ 0, and the
monotonicity of Ra — Ap,(Ra,n) allows us to know whether we need
to increase or decrease Ra. The stochastic setting is more complicated,
but the same general principle applies.

Lemma 12 immediately yields the following Corollary which we
phrase as a remark as it applies only to the deterministic setting:

(A.12)

Ap,(Ra*.n) > Ap,(Ra,m) +

(A.13)

and the lemma follows.
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Remark 13. Given 7 € C((0, 00), W ([0, 1])), there exists Ra, € [0, c]
such that

/ Ap,(Ra,n()dt = oo (A.14)
0

holds true for all 0 < Ra < Ra, and does not hold if Ra > Ra.. When 7
is replaced by the OU process 7%, then in general Ra, can depend on
the realization of the noise. However, due to ergodicity, we show in the
proof of Proposition 11 that Ra, is almost surely constant.

Proof of Proposition 11. Exponential decay follows once we establish
that

liminf & (A.15)

t—-oo f

'
/ Ap.(Ra,7(s))ds > 0.
0

Let u, be the unique invariant measure for the Ornstein-Uhlenbeck
(OU) process 7 defined in (8). It is known that yu, is ergodic and
supported on the whole state space Y. Also, by Lemma 9, the function
n + Ap.(Ra,n) is globally Lipschitz. In addition, since u, is Gaussian
it necessarily has p-moments for any p > 1 and we have by standard
ergodicity arguments [33-35] that

t
lirminf % / Ap.(Ra,t(s))ds = / Ap.(Ra,mpu (dn) = EAp.(Ra, X),

(A.16)

where X has law y, on Y.
Moreover, by Lemma 12, Ra — Ap,.(Ra,n) is decreasing and (A.11)
holds if n € K := {n € Y : |I#|l, = ¢*} and ¢* sufficiently large

(see Lemma 12). Let yx and yg. be the characteristic functions of
respectively K and the complement K¢ of K. Since u_(K) > 0, we obtain

Ep,(Ra*,75) = Edp.(Ra*,75)(xk + xxe) (A.17)
< EAp,(Ra*,v5)(xx + zxe) = ¢(VRa* = VRa)E g (A.18)
= EAp,(Ra*,75) - ¢(VRa* — VRa)P(K) (A.19)
and (A.8) follows.

Finally, since 75 has Gaussian distribution on finitely many modes,
then E|I7(ly 1.00(50.1)) < 0, and from (A.10) we obtain (A.9). [J

A.3. Concavity of the growth factor and implications

To determine the functional dependence of Ra, on y, we first
investigate how Ap,.(Ra, {(y)) depends on y € RM the source of the noise
in the bulk heating. Then, we can estimate Elp,(Ra, %) by integrating
Ap(Ra, (7)) against the law of y (the law of r5) which has a Gaussian
distribution. The primary result is Lemma 17 which establishes the
concavity of y = Ap.(Ra,{(y)). Recall the definition of ¢ from (26):

M
Ey) = Z mrxy,, cos(mrz), (A.20)

m=1
so that 9,7 = {(y) — 1. Before establishing the concavity of y
Ap:(Ra, ¢ (y)) we show the following deterministic uniform bound on the
minimizers of (14).

Lemma 14. Let (u,.0,) be a minimizer of
. 1
Ra,l(r) = f{v2—v2 2 }.A.21
pe(Ra,Cr) = int {IVOI3 + o IVl + | wocr) - 2dx . (2D

If K is any bounded set in RM then

sup{ [V, |13 + |V, |13} < oo. (A.22)
yek

Proof. Assume that K C By, where By C RM is the ball of radius R
centered at the origin. Since (u,,0,) € M, then we see that

1
dpe(Ra,E(r) 2 V0, 11 + Euwyui = RC|lu, 11,118, I,
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1 1
> 196, 1 + -1V, 2 = RC (5l I3 + 116,13 )

1
> Vo, 13+ R—a||\7uy||§ - RC,

where C depends on Pr, Ra, and |[{]|,, but is independent of R and y.
On the other hand, for any fixed (u*, 0*) € M,

dpe(Ra,E(r) < IVO*I3 + Enwnﬁ + RC|lu*|I,116% I,
<C(R+1).

Since u* and 6* are fixed independently of y, the desired result
follows. []

Next, we establish the continuity of the map y — Ap.(Ra,{(y)).
Although later, we prove a stronger statement (concavity), we need the
continuity as a preliminary step.

Lemma 15. The function y — Ap.(Ra,{(y)) is continuous.

Proof. Fix y,, € RM and a sequence (y,), C RM converging to
Y- Then by Lemma 14, the sequence of corresponding minimizers
{(u,,6,)} is bounded in (H")? x H', and therefore it has a weakly
convergent subsequence {(“nk’enk)}z’;l converging to (u*, 6*). By stan-
dard imbedding theorems this convergence is strong in (L?)* x L? and

in particular we have (u*, 6*) € M and

lim / 10,0, () ~2) = / WO (1) = 2). (A.23)
Then by the weak lower semi-continuity of norms we obtain
Apr(Ra, {(1s)) < Qra™, 0", (7)) < kll_g)lo Apc(Ra, £(¥y, ) - (A.24)

Since each sequence (y,) has a convergent subsequence satisfying
(A.24) we obtain
Apr(Ra, {(re)) < liyrg ;nf Ap(Ra, {(y)). (A.25)

On the other hand, let (u, 6,,) € M be the minimizer of Ap.(Ra,{(¥,))-
Then, for any n > 1,

Ap(Ra, £(r,)) < 1IVO 15 + ﬁnwwné + / Wl (1) =2)  (A.26)
= Jpr(Ra,{(70) + / Weo O € (1) = £ (o)) (A.27)
< Apr(Ra, §(76o)) + Cro)Voo — Vil » (A.28)

and consequently

lim sup Ap, (Ra, {(7)) < Ap,(Ra, £ (1o,)) (A.29)

Iame

and the assertion follows from (A.25) and (A.29). O

The continuity established in Lemma 15 allows us to prove the
strong convergence of minimizers, which is an important step in the
proof of concavity. Specifically, fix a sequence )2, C RM, such that
Yn = Yoo Let (u,,0,) be minimizers of Ap.(Ra,{(y,)). By Lemma 14, the
sequence {(u,,6,)}  is bounded in (H')’ x H', and therefore up to a
sub-sequence {(u,,6,)}% , is weakly convergent to (u*, 6*) in (H')*xH'.
The strong convergence is proved in the following corollary.
Corollary 16.  Fix a sequence (1,)®, C RM, such that y, — 7.
Let (u,, 0,) be the minimizers of Ap.(Ra,{(y,)) and assume {(u,, 0,12, is
weakly convergent to (u*,0%) in (H')> x H'. Then (u*,0*) is a minimizer
of Ap(Ra,{(rs,)) and {(u,.6,)}  converges strongly in (HY} x H' to
(u*, 0).

Proof. By (A.24) and the continuity of y = Ap.(Ra, {(y)), see Lemma 15,
we have

QraW", 0%, {(r)) < Apr(Ra, (1)),
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and therefore (u*,6*) is a minimizer of Ap.(Ra,{(yy))-
From the continuity of y — Ap.(Ra, {(y)) and the strong convergence
of cross terms (cf. (A.23)) we obtain

1 1 * £
Ellvunll2 +11vo,I1* — EIIVu 1>+ 1ver|*. (A.30)
In addition, the weak lower semicontinuity of norms yields
limsup || Vu, || < ||Vu*|?, limsup || V6, ||*> < ||VO*|)? (A.31)

n—o0 n—oo

and by (A.30) neither of the inequalities in (A.31) is strict. Hence,

limsup [|Vu, [I* = [ Vu*||?,

n—oo

limsup || VO, |1> = |[VO*||*. (A.32)
n—0oo

However, weak convergence and convergence of norms in Hilbert
spaces imply strong convergence, for example by the use of a parallel-
ogram equality. This completes the proof of the desired assertion. []

Next, we establish the concavity of y — Ap.(Ra,{(y)) and calculate

its one-sided derivatives.

Lemma 17. The function y — Ap.(Ra,{(y)) is concave and has one sided
directional derivatives. Specifically, for any y,v € RM one has

Apr(Ra, {(y + hv)) — Ap(Ra, { (7))

+ e
0} Ap(Ra.C(7) o= lim, - (A.33)
= (u*}ﬁﬁezz)w 0*¢(v), (A.34)
9, Apr(Ra,{(y)) = hlir(r)l_ Ap:(Ra, {(y + hv:l) — Ap(Ra,{(y)) (A.35)
= sup / w*0*¢(v), (A.36)
u*,0%)eZ JD

where Z is the set of all global minimizers of Ap,(Ra,{(¥)).

Proof. Fix any sequence y, — 7 and any (u;.6;) € Z. Since
Apc(Ra,{(y,)) is the minimum over M and (u;,6;) € M, then

Jpe(Ra, {(7,)) < ||v07||§+ﬁ||w7u§+ /D wy0,((r,) —dx  (A.37)

= Ap;(Ra, £(7)) +/ w05 (r,) = E(FNdx. (A.38)
D

Since (u;, 6;) € Z was arbitrary, by setting y,, := y+h,v for some h, — 0,
we obtain by linearity of y — {(y) that

}'Pr(Ras g(? + hnv)) - }'Pr(R‘L g(ﬂ)
/ w O (¥ + hyv) = L()dx
D

inf

<
T Wr0*)EZ (A.39)

=h nf

i w e ¢(v).
"(u*,H*)eZm/D ¢wv)

On the other hand, for any minimizer (u,, 6,) of Ap.(Ra,{(y)) we have
1 _
ip(Ra.C7)) < 190, 13 + 2= [1Vu, 1} + / 10,0,(C(7) - Ddx
D

= Ap(Ra,{(y + h,v) + /D w0, = & + h,v))dx,
and consequently by linearity of y ~ {(y)
Ape(Ra, (7 + h,v)) — Ap.(Ra,{(¥)) > h, / w,0,C(v). (A.40)
D

To prove (A.34), if h, > 0, then by (A.39) and (A.40)

Apr(Ra, {(v + h,v) — Ap(Ra, {(7))
h

/ w,0,l(v)ydx <
D

n

< inf w*o* dx.
.. /D [44%)

Since by Corollary 16 the sequence {(E,,,@,,)}s":l converges strongly in
(H")} x H' to some (u,,,0,) € Z,, we obtain

Apc(Ra. {(y + h,V)) — Ap(Ra. (7))
h

/ w0, ,¢(WV)dx < lim
D n—oo

n
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< inf *9* dx.
—W,;%ezw/uw tldx

Since the sequence (h,) C (0, ) was arbitrary,

inf “0* dx.
e, fywrsoas
To prove (A.36) assume h, < 0, which by (A.39) and (A.40) implies

/ w0, EWydx > 2 REETH hn,vl)) — Apr(Ra,£P))
D

0F Ap;(Ra,{(7)) = (A.41)

n

> sup / w*0*¢(vydx.
w*,0MeZ JD

Employing strong convergence just as above, we find that:

(A.42)

0, Ap;(Ra,{(y)) = sup

/ w*0*¢(v)dx.
W 00)eZs JD

Finally, concavity of y — Ap.(Ra, {(y)) is equivalent to showing that
for any y,,7, € RM and t € (0, 1) one has

0 < Ap(Ra, {(tyy + (1 = D)yp)) — tAp(Ra, {(y1)) — (1 — 1) Ap.(Ra, {(1,))
=1 [Ap(Ra.{(yy + (1 = O(ra — 1)) — Ape(Ra. {(1))]
+ (1= 1) [Ap(Ra, E(ra + 1(ry = 12))) — Ape(Ra, {(12))] -
After dividing by #(1 — ) > 0, this is equivalent to showing that
Apc(Ra, {(yy + (1 = 1)v)) — Ap.(Ra, {(r}))
+ Apr(Ra, §(y, — :V)t)t— Apr(Ra, {(1,)) >0

where v = y, —y,. However, by (A.34), (A.36), and y; + (1 —t)v =y, —tv

we see that

Ape(Ra, E(yy + (1 =0v)) = Ap(Ra, §(r1))  Ap(Ra, {(y, — 1V)) = Ap(Ra, {(1,))
1—t —t

2 /D“’y.+<1—r>v‘9n+(1—r)vC(V)dx - /D w,,_,0,,_,E(V)dx

=0,

R (A.43)

O

The following bound on the one-sided derivatives is used when we
integrate against a Gaussian random variable below.

and the concavity follows.

Corollary 18. For any y € RM,

\ RaPr fm
ok .

0 Ape(Ra. {(1)] < (A.44)

2r

Proof. Using the definition of ¢ from (26), and the definition of M
from (23), we have for any (u,0) € M,

vV RaPr

2 1 2
] /D wor(r)dx| < Y= 18 (1013 + 5 Nl ) (A.45)
RaPr < |7
< ;—k ) (A.46)

The infimum and supremum preserve this inequality and the desired
result follows from Lemma 17. []

A.4. Shape of the growth factor and consequences

In this section we establish estimates on the growth factor 4 and
obtain bounds on the critical Rayleigh number as a function of the
strength of the forcing H.

A.4.1. Basic estimates on the growth factor

Recall that in Lemma 17 we established that y — Ap.(Ra,{(y)) is
concave, and we derived bounds on its one-sided derivatives. Next, we
need to understand the behavior at y = 0.

14

Physica D: Nonlinear Phenomena 465 (2024) 134196
If y = 0, then

inf £

A.
u0)eM Ra (A47)

Ape(Ra. £O) = IVull +1IVoll3 -2 / wodx.
D
Using standard arguments from the Calculus of Variations [36], we
obtain that w and 6 satisfy (38) and (39) with 9,7 = —1 and recall
that u satisfies stress-free boundary conditions (29). As in [3] we can

expand w into Fourier series

w(x', z) = 2 Z Wy & (X' sin(mrz), (A.48)
keZZL mely

where x = (x/,z) € RZx R and
cos(k-x") k,>0ork,=0and k; >0

s =1 " : 7 ! (A.49)
sin(k - x’)  otherwise .

We remark that for the no-slip boundary conditions, we have to use
expansions with less explicit eigenfunctions that lead to rather compli-
cated expressions. Thus, to avoid unnecessary and tedious manipula-
tions, we opted to only discuss stress-free boundary conditions. Then,
(38) and (39) with 9,7 = —1 becomes

A

2\2 o 25
PrRa (mZ + |k| ) wk,m - |k| ek,m’

(m? + 1kI?) diy (A.50)

a

Wy =~ + (m* + KI*) Oy - (A.51)

Moreover, for given m € Z, \ {0} and k € Z2L, (A.50), (A.51) has a
non-trivial solution (b, 9,(’,") # (0,0) if and only if (zero determinant
and quadratic equation):

Apr e m(Ra, £(0))

4Pr Ra

=1 (Pr+1)(m* + |k[*) — 4 [(Pr —=1)2(m? + |k|*)2 +
2 m? + |k|?

|k|2), (A.52)
where we have chosen the negative sign in the quadratic root in (A.52)
as we are interested in the smallest eigenvalue Ap, ; ,,(Ra,{(0)) (see the
discussion below (15)—(17)). To find the minimum with respect to k
and m we first compute for each fixed m € Z, \ {0} and k € Zi we have

—_1\2(m?2 2y _ _2PrRa 2
OprsmRarco) | E DO o M
om
—1)2(m2 2 4Pr Ra 2
\/(Pr 1)2(m? + |k| )+—m2+|k|2|k|
12 (2 2
> m|Pr+1— (Pr —1)=(m* + |k|*)
A/ (Pr =12(m? + |k|*)?
=2m>0.

Thus minimum m € Z, + Ap 4 (Ra,{(0)) occurs for the minimal
vertical wave number m = . The minimum of k +— Ap; ,,(Ra.{(0))
is slightly more complicated and is analyzed in Lemma 19 below. Note
that Ap. ; ,,(Ra,{(0)) depends only on |k| rather than on .

Recall that for each Ra and ¢

iznf
keZ; ,mEly

Apr(Ra, ) = Apr km(Ra, §). (A.53)
Next, we show in Lemma 21 below that if Ap.(Ra,{(0)) < 0 for some
Ra, then Ap.(Ra,{(y)) < 0 for all y and hence by (19) the conductive
state is trivially unstable. The following lemma gives the optimal upper

bound on the Rayleigh number which guarantees that Ap.(Ra, £(0)) > 0.

Lemma 19. To simplify calculations, assume that Pr = 1, and define

j0=sup{va2+bzgi :a,beZ}, (A.54)
2v2

ji = inf{ Ve+ip >t . ape Z}. (A.55)
22
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Also denote ry = % joand r; = % Jji and observe that for large L, one has
and L < 2v/2 for j, = 0. Then, Miny ez2 Aprat fomer(Ra,C(0))

1
\_6,
> 0 if and only if

rg, 'y ®

(1+r2)?
Ra < z* min — s (A.56)
1€{0,1} r12
1+)3

where we set —;
;
1

=o0ifr,=0.

Proof. From (A.52) and the fact that the minimum is attained at m = «,
Apr=1 k.m=r(Ra,£(0)) > 0 is equivalent to

4Ralk|?
2a” + k%) 2 “—"2 (A.57)
2+ |k|
for all k € Z2, and therefore
2 k 253
Ra < M (A.58)

[k]?

for all k € ZzL. The right hand side of (A.58) is a convex function

2
of |k| and its minimum is attained for |k|*> = ”7 After substitution

21412
|k]? = % we obtain that the unique minimum (even unique critical
point) is attained at |j| = L By the definition of Z?, we have that

2v2
j is a vector with integer coefficients, and therefore the minimum is
attained either at j, or j;. A substitution into (A.58) gives the desired
result. []

Remark 20. We want to emphasize that the restriction Pr = 1 is
not necessary for validity of Lemma 19, but reduces algebraic ma-
nipulations in the proof and very similar results hold for all Pr >
0.

Also, in almost all of the derivations below we will assume that
L < 2v/2 to simplify the definition of j, and j; in Lemma 19, which
become j, = 0 and j; = 1. This is not an essential hypothesis, but it
will let us avoid number theoretical discussion and make the relevant
calculations more tractable.

The following result gives Ra dependent estimates on the growth
factor A at and near y = 0. In other words, we estimate the behavior of
the growth factor when the internal heating is very small.

Lemma 21. Assume that Pr =1, L <2V/2, 2 € N, and ip,(Ra, (0)) >

243
74 —(41’24) , see Lemma 19). Then we have the

0 (or equivalently Ra <

following results dependent on the value of Ra:

4 2
1. IfRa < %, then

ipoi(Ra.CO) =2, and 0¥ dp_y(Ra.((y =0)=0.  (A.59)
2. If%#z) <Ra< %, then:
Apr_y (Ra, £(0)) = 72 (1 + %) - j@, (A.60)
4+ 12
97 Apr—; (Ra, {(y = 0) = — VRar, (A.61)

ZEW .

We remark that if 2 ¢ N, then a;fﬁprzl(Ra, Ly =0) =0.
3. Finally, if Ra > ’#(iz—fz)}, then Ap.—;(Ra,{(y)) <0 forall y € RV,
Proof. First we prove part 3 assuming that part 2 holds. Indeed, by part
2 for Ray = “D" then 4y, (Ray.¢(0)) = 0 and 0} 4p,_; (Ray. (y =
0)) < 0, and therefore by concavity Ap._;(Ray,{(y)) < 0 for each y.

15
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Moreover, by Lemma 12 the function Ra — Ap,_;(Ra,¢(y)) is non-
increasing, and thus Ap,_;(Ra,{(y)) < O for each Ra > Ray, as
desired.

To prove parts 1 and 2, we assume Ra < Ray note that the minimum
with respect to m is attained at m = = and A depends only on |k|. To
find the minimum of the function |k| = Ap,_; ,—,(Ra, y(0)) we calculate

aAl’r:],k,m:zr(Ras g(o)) _ |k| ) V Ra 7[2
0|kl (22 + [k|2)3/2 |kl )’

and observe that if |k| = 0, then the derivative is negative, and therefore
|k| = 0 is not the minimizer. Using Ra < Ray, we see that

VR 2, a2

—_— — — >
(z2 + |k|?)3/2 1k |&|*

whenever |k|? > 72 /2. Thus, k = Ap,_ . m=r(Ra,{(0)) is an increasing
function of |k| for |k| > n/\/i. Since |k| = 2T”ljl for some j € Z? and
L< 2\/5, then the function increases if |j| > 1.

Thus the minimum of k = Ap,_; 4 ,—,(Ra,{(0)) is attained either at
|j] =0 or |j|=1,thatis,atk=00rk=2T”.

This leads to two possible cases if (A.58) is satisfied:
Apr=1 k=0 m=r(Ra, £(0)) = 7,

4 4Ra

2\ 7z +4)>‘
After standard algebraic manipulation we find that Ap._ =2/ m=r
(Ra,£(0)) < Apr=i g=0,m=r(Ra,£(0)) if and only if

Ape=1 k=2x/L.m=r(Ra, £(0)) = = <1 +

< 444 + Lz)'
S
With this in mind we are ready to analyze parts 1 and 2 of the lemma.

Ra (A.62)

4 2
1. If Ra < 28D then ming Ap,—y 4 mer (Ra, {(0)) = #? is attained

at k = 0. Since m = = and k = 0, then a substitution into (A.50)
and (A.51) and standard manipulations imply that the minimum
is attained at u = 0 and 0 = sin(xz). We chose the normalization
such that (u,0) € M, that is, [|0]|3 = 1. Then Lemma 17 implies
0, Apr=1(Ra, y(0)) = 0.

4 2 4 2\3
2. If % < Ra< M, then m = z and |k| = ZT” for which

414
4 2V Ra
Ape(Ra,(O) = 7% (1 + — ) - 22— (A.63)
( L2 ) V4 + L?
and the minimum in the definition of A is achieved for
0= g sin(z2)sin@rx/L),  w= —Y2RY Gn(rz)sin@rx/L),

LV4+ L2

ﬂ cos(rz)cos(Qzx/L), v=0.
4412

where the velocity field is u(x, y, z) = (4, v, w)". We remark that
there are other minimizers shifted by a phase in x-direction
or with x and y-directions exchanged, but they give the same
results. The normalization constants are chosen such that the
normalization 1 = ||0]|?> + #llull2 is satisfied and the velocity
field is indeed incompressible. Then, by Lemma 17 we calculate
the derivative

0 Apr=1 (Ra,£(0) = / wol(y)
D
_ 2yRa [!

- sin?(zz)¢(y)dz
V4+ L2 70
1
— _ﬂ cos(rz)¢(y)dz

V4+ 1270
271:\/4+L22

>
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where y, is the coefficient for m = 2 in (A.20). If 2 ¢ W, then
¢(y) is orthogonal to the test functions wé in L? so the derivative
vanishes. []

A.4.2. Asymptotic behavior of Ra.(H)

In all of the following we will make the simplifying assumption that
N = {2}, that is, only the 2nd mode is forced. This restriction is not
necessary, but significantly reduces the calculations that follow. We do
want to emphasize that forcing the 2nd mode does seem necessary for
the results that follow, but we cannot determine if this is only a product
of our method of proof, or if this is in fact a physical property of the
system.

Proof for Theorem 5. Fix any Ra € [Ra;, Ray). Then from Lemma 21
it follows that API:l(E, 0) > 0 and 0, Ape= I(E, 0) < 0, and consequently
by concavity and continuity proved in Lemma 17 we have that y —
Apr=1(Ra, &(y)) is strictly decreasing. In particular, there is exactly one
value 7 so that Ap._;(Ra;,{(7)) = 0.

The concavity of the growth factor 4 yields the following bounds
(see Fig. 2) for each y > 0:

Apec (Ras £0)) = 7 5up 0 ey (Ra £ )| (a.64)
y>
< Ap—i (Ra, £()) (A.65)
< Ape—y (Ra.£0)) = 7|05 Aprey (Ra,£O))] (A.66)
Because Ap,_,(Ra, (7)) = 0, then
Ape=1(Ra, £@0) <7< /1pr=1(RasC(0)) (A.67)

|suBys0 |05 2ot (Ras S|~ |05 Apec (R CCOD)|

that is, given Ra, we obtained bounds on the strength of the determin-
istic internal heating that yields marginal criticality.
The concavity and (A.64) also yields the lower bound (see Fig. 3)

Apr=i (Ra, (7)) (A.68)

7 - 2B 5 G )]0t dp, (Ra 0| 7 € 0.7
(7 = 7)5up, 0 [0 Apecy (Ra, L)

r2v

Using the hypotheses that ' = {2}, Rae [Ra;, Ray), and L < 2\/5 we
see from Lemma 21 and Corollary 18 that

SUP, 0|05 Ape-t (Ra, £)| VD _
|0f b Ra,con| 2 T

(A.69)

E— 2
Now we estimate E,[4p,_;(Ra,{(y))], where y = Ny ~ N (0 T >

’ 872
(recall that we are only considering k = 2). Note that after the
substitution, z — 1 — z, we obtain that {(y) - —{(y), and therefore
it suffices to assume y > 0. In particular, we bound Ey[lprzl(ﬂ, S,
where y = |[Ny|. Let c,, be the relevant normalization constant of the
normal distribution. Then using (A.68) and (A.69) we see that

CYH

————F, [Ap= (Ra*, { ()]
|05 Apeci (R, £(0))

2

o 22 y/jsﬂ) * 22 V/(Snz)
z/ (i =1 7 dy+x/§/ (i = e D dy.
0

YH

(A.70)

we have

i : — YH
Using the change of variables y = x5 v

/4
2z \/ECyH

|05 Apecr (Ra, €O)| 72,

Znﬁ 2 © 2
2/ (1— X Ve Tdx+V3 (1— x >e‘zdx
0 2][\/5 27’:\/5 zﬂ'\/i

E, [Ap=(Ra*,{(1))]
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/“67.@ \/3 /er72 \/E ﬁ

> 2dx -
2?2

and the result follows. []

A.4.3. Gaussian tails for the growth factor

To prove Theorem 6 we need to rigorously establish the upper
and lower bound. We first investigate the upper bound. As stated in
Theorem 6 we will assume that Pr = 1 to simplify the calculations
below. We also assume that the forced modes k are all even although
this restriction could be removed with some additional calculations.
Moreover, we suppose that the horizontal domain length L is an
even integer. The basic approach to establish the upper bound on
Ap:(Ra,{(y)) is to construct an admissible test function and to prove
the lower bound we use general estimates.

Lemma 22. For evenly forced modes k, and horizontal domain size L an
even integer, we find that

\/_

p
Apey (Ra, (7)) < % min (n2k2 - YoRa' [\/Enk|yk| + 2]) . (A7

Proof. For m € N\ {0} (specified below), let ¢, = sin(znz), g, =
sin(2zmx/L) and g,, = cos(2rmx/L). Then

[ = (=gu(0)e}(2),0, g}, (x)e, (2))" (A.72)

is a divergence free vector field. Then our trial flow field is given by
u= Y\/E f and the trial temperature fluctuation by 6 = Xg,,(x)e;(z).
To belong to the set M (see (23) for the definition), (u,6) must satisfy
lenz+ é llull? = 1 (recalling the assumption Pr = 1) which becomes the
following constraint on X and Y:

1 m?  n? 1

ZX2+71'2 <E+?>Y2= z

Inserting these fields into the variational form of the definition of 4
we also arrive at

L 472 m? Ar’m? 2
Apr—1(Ra,E(n) < 7 [XZ <T + 75212> +v? (T + 2n?

1 L
+ Ra'?XY2rm / / (&(y) = 2) sin(znz) sin(xlz) cos>(2rxmx/L)dxdz.
0 0

Recalling the definition (A.20) of {(y) and the orthogonality of trigono-
metric functions, we find that

1
/ (& (y) = 2)sin(znz) sin(zlz)dz
0
_ 2 \/Ekﬂ'

T (8kmnt = Smntt) = % (8t = Bup) -
keN

Fix any k € N and since, by assumption, k is even (this choice is only
to simplify the algebra at this point), depending on the sign of y, we
set n =1 = k/2 or n = —I = k/2 such that the non-zero terms on the
right-hand side have the same sign. Note that only the terms with the
fixed k can be non-zero. Moreover, because the cross term is odd in Y
we can always choose Y so that this term is negative, and hence

2.2 212 ) 2,2\ 2
Apr=1<Ra,c<y))s§ [x2<4” u +ﬂ>+yz<4n m | 7k > ]

L? 4 L? 4

2rk
_ Ral/ZXYﬂ'WI(\/;” |}/k|+%>,

where

k 1 2 2 m2 k2 2 1
Ko m=m, ix LN S 7 S
g =li=iml. g X7+ x <L2+16 L
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Since L and k are even integers, we select m = Lk/4 and obtain an
upper bound

Ypsi(RaCON) _ 72K | o7kt 21k 1
e < x4 y?P R R _RA'PXYrk -,

L = 2 T 4 Iricl + 2
(A.73)

2.2
with X2+ kT”YZ = %. After rescaling (note that X and Y are arbitrary)

. 2 2v2 i X2 472 =
X and Y respectively by ﬁX and ” ﬁY we obtain X-+Y* =1 and
2,2 242 Ok
o (Ra iy < PR 2R ey (V2rk 1Y
2 2 4 2
(A.74)
or equivalently,
2k2 2k 1
Ape=i (Ra.£() < =~ — V2RaXY \/; 7l + 5 (A.75)

By standard arguments, the minimum of the right hand side is attained
for X =Y = \/5/2, and therefore

2k2 /2R 2k 1
Ipemi (Ra, L)) < T = 5 ‘ ‘/;” Il + 3 (A.76)

for any k € N. After we take the minimum of the right-hand side in
(A.76) with respect to k, we obtain the desired upper bound. []

The lower bound on the growth factor is much easier to obtain, but
consequently also far less likely to be realized. Using Cauchy-Schwarz
and Poincaré inequalities, definition of M implying ||0||§+ ||u||§ =1we
see that

Apr=1(Ra, (1))

> inf & A (10012 + ulD) - Ra'* [ 14+ V22 Y kil ) lullplioll,
(u.0)em KeN
>4, - inf Ra(1+v2z Y kil el + ol
=L (u,ll91;IEM a ”kEJ\/ Tk 2
Ra'/?
=i - == 1+V2r ¥ knd ).

keN

and the lower bound in Theorem 6 follows, where we used that 4; is
the principal eigenvalue of the Laplace operator on the domain D.
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