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Abstract—This paper presents a reinforcement learning 

(RL)-driven strategy to improve the transient stability of power 

systems via tuning parameters of multiple virtual synchronous 

generators (VSGs). We proposed a scalable method to support 

RL training convergence probability and speed, even when a 

large number of contingencies are considered. The proposed 

scalable RL framework first decomposes the large number of 

contingencies into multiple groups and then conducts parallel 

training for each group, decreasing the state space and 

complexity of each training. Additionally, we propose a 

contingency grouping algorithm to streamline the RL action 

space and facilitate the training. The proposed method is 

validated across various standard test systems. 
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I. INTRODUCTION 

The supply resources in the modern power grid are 
transitioning from centralized thermal synchronous generators 
to distributed renewable inverter-based resources (IBRs). 
Against this backdrop, integrating IBRs into the electrical grid 
has garnered significant interest. The latest studies highlight 
that incorporating inverters can influence the transient 
response of the power systems [1]. However, enhancing or 
maintaining systems’ synchronism with mixed IBRs and 
synchronous generators remains an unresolved issue. This 
work focuses on using the VSGs, a representative IBR, to 
offer supplementary aid for the transient stability of power 
systems with mixed IBRs and generators. 

In general, control methods to enhance transient stability 
can be applied at either the power plant level or the system 
level. The primary challenge with plant-level control lies in 
developing an algorithm capable of detecting faults, 
determining control actions with restricted observations, and 
implementing actions in real-time (within a second). 
Conversely, control at the system operator level can perform 
offline simulations with estimated contingency scenarios. Yet, 
vast controlled parameters and significant uncertainties on the 
potential contingencies and pre-fault power flow need to be 
considered. This work focuses on system-level control. 

Many studies have focused on formulating the transient 
stability enhancement as a preventive control [2] or a model 
predictive control problem [3]. While these methods yield 
near-optimal solutions for control decisions, they typically 
require linearization or simplification of the complex system 
model to ensure solvability in optimization. Moreover, 
applying these methods to large-scale power systems 
introduces great computational complexities in the solutions. 

Transient stability enhancement can also be achieved by 
calculating the transient stability margin based on Lyapunov 
theory [4], [5]. Then, control strategies or stability constraints 
can be constructed for generators/IBRs based on the computed 
margin. Although these methods have a solid theoretical 

foundation and superior computational efficiency, they 
normally depend on simplified power systems, thereby 
restricting their utility in complex applications. 

Some studies also involve formulating a transient stability 
assessment model and determining the control action response 
to assessment outputs [6], [7]. However, these techniques do 
not ensure complete assessment reliability, particularly with 
large-scale systems. 

Many studies have recently applied RL to enhance power 
system transient stability. RL is a technique for solving 
Markov decision process (MDP) problems. The RL-based 
methods first formulate the transient stability enhancement as 
an MDP by building a training environment, then let the RL 
agent solve the MDP by repeatedly interacting with the 
environment [8]-[11]. RL does not require the linearity and 
differentiability of the MDP, offering a viable approach to 
enhancing transient stability without simplifying the system. 

Although RL can effectively enhance the power system’s 
transient stability, it still suffers from poor training 
convergence and hard to scale. This is particularly pronounced 
when training encompasses large-number potential 
contingencies, where the vastness and sparsity of the state 
space present substantial hurdles to the training convergence. 
Moreover, when RL is employed to control multiple 
components, the expansion of the action space further 
complicates the convergence of training. To address the above 
issues, we propose a scalable reinforcement learning-based 
strategy for multiple VSG control considering large-number 
potential contingencies. The advantages and contributions of 
the proposed strategy are summarized as follows: 

1) A mathematical formulation of the transient stability 
enhancement problem via RL-based VSG parameter tuning 
was presented, considering a large number of potential 
contingency scenarios. A scalable RL framework is proposed 
to solve this problem, significantly enlarging the number of 
contingencies that could be handled by RL training. 

2) A contingency grouping (CG) algorithm is proposed to 
identify relevant machines for potential contingencies and 
exclude irrelevant machines, reducing the complexity of RL’s 
action space and improving the convergence of RL training. 

The rest of the paper is organized as follows: Section II 
provides a new problem formulation of transient stability 
enhancement via tuning VSGs’ parameters. The CG-assisted 
RL is proposed in Section III as the solution to the formulated 
problem. Section IV presents case studies of the proposed 
strategy. Finally, the conclusion is provided in Section V. 

II. PROBLEM STATEMENT 

A. Transient Stability Enhancement Problem Formulation 

The system-level stability enhancement can be formulated 
as an optimization problem to maximize the transient stability 



metric at each potential contingency scenario, as depicted in 
Fig. 1. Given a K-scenario contingency set for a power grid, 
the stability enhancement problem is defined as follows: 

max
𝐩𝑘

∑ 𝐹c𝑘(𝐱𝑘,1:𝑇 , 𝐲𝑘,1:𝑇)
𝐾

𝑘=1
(1a) 

s.t. 𝐱̇𝑘,𝑡 = 𝑓c𝑘(𝐱𝑘,𝑡 , 𝐲𝑘,𝑡 , 𝐩𝑘) (1b) 

0 = 𝑔c𝑘(𝐱𝑘,𝑡 , 𝐲𝑘,𝑡 , 𝐩𝑘) (1c) 

where t denotes the time index; T is the length of a time 
domain simulation; c𝑘  represents the k-th scenario in the 
contingency set; 𝐱𝑘,𝑡  and 𝐲𝑘,𝑡  are the transient state variable 

and algebraic variable with contingency c𝑘 ; 𝐩𝑘  are K 
dimensional parameters corresponding to various 
contingencies; 𝐹𝐜𝑘( )  denotes the metric of the system’s 

transient stability with contingency c𝑘 . 𝑓c𝑘 (·) and 𝑔c𝑘(·) are 

differential and algebraic equations which describe the power 
system model with contingency c𝑘 . Equations (1a)-(1c) 
constitute the problem of enhancing the system stability by 
controlling the parameters 𝐩𝑘  against various contingency 
c𝑘.The objective (1a) is to maximize the transient metric based 
on the complete system’s trajectories of various contingencies. 

B. Transient Stability Metric 

The transient stability metric in (1a) can be selected from 
widely used indicators, e.g., critical clearing time and transient 
stability index (TSI). In this study, we use TSI as the metric: 

𝐹c𝑘(𝐱𝑘,1:𝑇 , 𝐲𝑘,1:𝑇) =
360° − |𝛿c𝑘

𝑚𝑎𝑥|

360° + |𝛿c𝑘
𝑚𝑎𝑥|

× 100, (2) 

where 𝛿c𝑘
𝑚𝑎𝑥  is the maximum angle difference between any 

two generators/VSGs at any point of the system’s trajectory 
with contingency c𝑘. The system is stable when TSI >0. 

C. Parameter Tuning of VSG to Enhance Stability 

We consider tuning the control parameters of VSGs as the 
control action to improve the transient stability of the power 
system. Essentially, VSG is a digital controller for the 
inverter, can be turned more frequently, and has fewer tuning 
limitations than conventional generators.  

The classical swing equation of rotor dynamics, serving as 
a foundational component within the VSG model [12], is 
given as follows 

𝑀
𝑑𝜔

𝑑𝑡
= 𝑇𝑚,𝑡 − 𝑇𝑒,𝑡 − 𝑇𝐷,𝑡 . (3) 

where 𝑇𝑚 , 𝑇𝑒 , and 𝑇𝐷 , are the mechanical, electromagnetic, 
and damping torque of the VSG. 𝑀 denotes the virtual inertia 
of the VSG. 𝜔 is the virtual rotor speed of the VSG. Equation 
(3) states that the virtual rotor speed 𝜔  can be affected by 
tuning the virtual inertia M. Considering that the virtual rotor 
angle and rotor speed are linearly related through the 
relationship 𝛿 = 2𝜋𝑓(𝜔 − 1) and 𝛿 is employed to form TSI 

in (2), the tuning of M can effectively influence the transient 
stability metric of the system. 

Recent study [10] have shown that it is promising to 
provide additional support for system stability with VSG by 
tuning the parameter M. In light of [10], we combine the 
tuning of parameter M with reinforcement learning via the 
learning framework proposed in Section III. Therefore, 𝐩𝑘 in 
this paper is the parameter M setting in multiple controlled 
VSGs in the system. However, note that the method can be 
general and extended to other VSG parameters. 

III. CONTINGENCY GROUPING-ASSISTED REINFORCEMENT 

LEARNING FOR VSG PARAMETER TUNING 

This section presents the proposed VSG parameter tuning 
method for transient stability enhancement. Firstly, we present 
the scalable reinforcement learning framework for VSG 
tuning. The modeling and implementation details of the CG 
model are proposed in Section III. B-C. 

A. Scalable Reinforcement Learning Framework 

Given the nonlinear dynamic of the system, the 
uncertainty on power flow, and the large number of 
contingency cases of problem (1a)-(1c), finding an optimal 
solution is challenging. Reinforcement learning, without 
demanding linearity, presents a promising and flexible 
solution for power system model optimization and parameter 
tuning. Fig. 2 (a) presents a regular application framework of 
RL to solve the problem (1a)-(1c), which consists of RL 
training and control decision-making stages. The RL training 
lets an agent interact with the power system environment, and 
the control performance of the agent will be evaluated with 
rewards. The training objective is to maximize the reward of 
control in iterations. Since the total contingency number K in 

(1a)-(1c) is normally large, only 𝐾  representative 
contingencies will be considered in the training, encapsulated 
as random samples in each iteration. The trained agent is 
applied in the decision-making stage to determine the optimal 
control action under all K contingencies. The optimal decision 
calculation is normally time costly due to problem (1a)-(1c) 
nonlinearity. RL decision-making takes only less than a 
second, highlighting its efficiency advantage. 

Note that the extensive setting of 𝐾 can lead to challenges 
such as poor convergence and inefficiency during RL training. 

 
Fig. 2.  Compare regular RL and the proposed scalable RL in transient 

stability improvement. (a) The regular framework to apply RL. (b) The 

proposed scalable framework to apply RL. 

 
Fig. 1.  The stability enhancement problem considers K contingencies. 



To avoid this problem, many studies maintain 𝐾 as a small 
value and only consider limited contingency in training. For 
example, the fault location is fixed, and only the fault duration 
can change in training [8]. In [9], only three types of fault 
setting are considered. While reducing the number of potential 
contingencies can improve the training efficiency and stability 
of RL, too few potential contingencies fail to adequately 
reflect the transient risks in systems, sacrificing the capability 
of the RL agent to handle diverse contingencies. 

To encompass a large number of potential contingencies 
in training, we proposed a scalable training framework, as 
shown in Fig. 2 (b). The proposed framework adds a grouping 
process ahead of the training. The CG is to identify the 
relevant machines and group the K contingencies based on 
their relevant machines. The CG enables contingencies with 
similar relevant machines to be trained with one independent 
RL agent, reducing the randomness of states in an 
environment. Besides, the RL agent will only apply control 
action on machines relevant to its contingency group, 
reducing the training difficulty from the action complexity. 
This training framework is termed CG-RL. The design of CG-
RL reduces the number of potential contingencies in each 
environment, allowing more contingencies to be considered in 
offline learning. During the online stage, the control action 
against the grouped contingencies will be determined by 
utilizing the agent specific to each group. 

B. Contingency Grouping Algorithm 

The CG method is designed to identify relevant machines 
for potential contingencies and exclude irrelevant machines in 
the RL agent’s action space, thereby reducing the complexity 
of RL training. The primary goal of CG is to assist and 
improve the RL training by increasing both the probability of 
convergence and the value achieved upon convergence. 

The CG algorithm consists of two steps to achieve this 
goal: i) identify relevant machines for each contingency, and 
ii) group the contingencies based on their relevant machines. 

For step i), we identify the relevant machines by measuring 
the electrical distance from the machine to the fault. Recent 
results have reflected that machines closer in electrical 
distance to the fault contribute more effectively to stabilizing 
the post-fault system [10]. We used a threshold of electrical 
distance to separate machines into relevant and irrelevant 
machines, which measures machines’ potential contribution to 
the fault. However, the measurement of electrical distance 
poses challenges because transmission grids typically feature 
meshed connections, and the combined characteristics of line 
impedance vary between series and parallel configurations. 

For simplicity, we use the fault-on voltage drops to measure 
electrical distance. An illustration of relevant machine 
identification using voltage drops is given in Fig. 3. 

For step ii), we formulate a contingency grouping model: 
min

𝜇, 𝐶𝐺𝐼𝑘,𝑛, 𝐺𝑅𝑀𝑛,𝑣
𝜇 (4a) 

s.t. RM𝑘,𝑣 ∙ 𝐶𝐺𝐼𝑘,𝑛 ≤ 𝐺𝑅𝑀𝑛,𝑣 (4b) 

∑ 𝐶𝐺𝐼𝑘,𝑛 = 1
𝑁

𝑛=1
(4c) 

∑ 𝐺𝑅𝑀𝑛,𝑣 ≤
𝑉𝑆𝐺𝑠

𝑣=1
𝜇 (4d) 

where n denotes the n-th group in N contingency groups; v 
represents the v-th VSG in V VSGs; 𝜇 ∈ ℝ is an auxiliary 
variable that denotes the max number of group-relevant 
machines in CG; 𝑪𝑮𝑰 ∈ {0,1}𝐾×𝑁  is a binary matrix that 
records the group index of contingencies, 𝐶𝐺𝐼𝑘,𝑛=1 denotes 

the k-th contingency is allocated to the n-th group; 𝑮𝑹𝑴 ∈
{0,1}𝑁×𝑉𝑆𝐺𝑠  is a binary matrix that represents the group-
relevant machine, 𝐺𝑅𝑀𝑛,𝑣 =1 denotes the v-th VSG is 

identified as a group-relevant machine of the n-th group; 
𝐑𝐌 ∈ {0,1}𝐾×𝑉𝑆𝐺𝑠  is a parameter matrix that records the 
relevant machines of all contingencies, obtained from step i). 

Constraint (4b) specifies that if the k-th contingency is 
allocated to the n-th group, its relevant machines will be 
identified as belonging to the n-th group-relevant machines. 
Constraint (4c) limits each contingency to only one group. 
Constraint (4d) specifies that 𝜇 denotes the maximum number 
of group-relevant machines. Constraints (4b)-(4d) allocate 
potential contingencies to their groups and identify group-
relevant machines for each group. Objective (4a) minimizes 
the controlled VSGs in groups, thereby reducing the action 
space of RL to simplify the training. 

The model (4a)-(4d) is formulated as a strictly mix-integer 
linear programming problem, which can be solved using 
commercial solvers such as Gurobi or Moseck. 

Note that the CG outputs are sensitive to the selection of 
parameters such as threshold 𝜏𝑣 and number of contingency 
groups N. The procedure of CG is outlined in Algorithm 1 to 
select optimal parameters. Rows 4-9 in Algorithm 1 constitute 
the selection procedure of 𝜏𝑣. The main idea of this selection 

 
Fig. 3.  Illustration of a three-phase fault on a simple 5-bus system: The 

voltage drops at each VSG point of interconnection during the fault-on 

period reflect the electrical distance between the VSG and the fault location. 

If the voltage drops are in a pre-defined threshold 𝜏𝑣 , the corresponding 

machines 2 and 3 will be identified as relevant machines to this fault. 

Algorithm 1. The contingency grouping algorithm 

1 

Given: contingencies c𝑘; initial voltage settings of VSG 

𝑉set,𝑣; search step of threshold d; upper limit of group 

number 𝑁; upper limit of relevant machine number 𝜂̅. 
2 Simulate voltage drops at contingency-on period 𝑉𝐷𝑘,𝑣. 

3 Normalize voltage drop: 𝑉𝐷𝑘,𝑣 ⟵ 𝑉𝐷𝑘,𝑣/𝑉set,𝑣 
4 Initialize: 𝜏𝑣 = 𝑑. 
5 While 𝜏𝑣 ≤ 1: 

6 
 Calculate the relevant machine number of each 

contingency 𝜂𝑘. 
7  If the 𝑚𝑎𝑥𝑘∈{1,…,𝐾}(𝜂𝑘) ≤ 𝜂̅: break 

8  Else: 𝜏𝑣 += d 
9 End While 

10 Calculate the relevant machine matrix 𝐑𝐌 using 𝜏𝑣. 
11 For N = 2,…, 𝑁 

12  Solve (4a)-(4d) and record the N-th minimum 𝜇(𝑁)
∗ . 

13 End for 

14 Optimal 𝑁 ⟵ argmin𝑁∈{2,…𝑁}(𝜇(𝑁)
∗ ). 

15 
Output: The group number N; the CG result from solving 

(4a)-(4d) with the selected N. 

 



is to gradually increase the threshold until the relevant 
machine number of all contingencies can be bounded in a pre-
defined limit. Rows 11-14 in the algorithm select the optimal 
N within a pre-defined range. The core objective of the 
parameter selection is to further minimize the maximum 
number of group-relevant machines. 

C. Reinforcement Learning-based VSG Parameter Tuning 

The scalable RL decomposes the model (1a)-(1c) into N 
subproblems. Each subproblem is formulated as an MDP and 
handled by an independent RL agent. 

In terms of model representation, the n-th subproblem 

SP(𝑛) is defined as follows: 

SP(𝑛) = {
max
𝐩𝑘,𝑡

∑ 𝐹c𝑘(𝐱𝑘,𝑡 , 𝐲𝑘,𝑡)
𝑘∈𝒦𝑛

s. t. (1b)-(1c), and (2)

} (5) 

where 𝒦𝑛  denotes the index set of training contingencies 
allocated to the n-th contingency group. 

SP(𝑛) can be represented by a MDP, which is specified by 

a tuple ( 𝒮(𝑛), 𝒜(𝑛), 𝒫(𝑛)(𝑠𝜍+1
(𝑛)
|𝑠𝜍
(𝑛)
, 𝑎𝜍
(𝑛)
), 𝑅(𝑛)(𝑠𝜍

(𝑛)
, 𝑎𝜍

(𝑛)
) ). 

Where 𝒮(𝑛) is the state space, 𝒜(𝑛) is the action space, 𝒫(𝑛) 
is the state transition probability, and 𝑅(𝑛) is the reward. The 
index of steps in training episodes is denoted as 𝜍.  

1) State Space: States are the contingency, and the TSI 

corresponds to the current VSGs parameter settings. The state 

is a partial observation of the operating condition of the 

system at step 𝜍. The vector of state is defined as: 

𝑠𝜍
(𝑛)

= (c𝑘, 𝐹c𝑘) (6) 

where k is sampled from 𝒦𝑛  prior to the initial step and 
remains constant throughout an episode. 

2) Action Space: The RL agent decides the parameters of 

relevant VSGs of SP(𝑛). The vector of action is defined as: 

𝑎𝜍
(𝑛)

= (𝑀𝑣∈{𝑣|𝐺𝑅𝑀𝑛,𝑣≠0}
) (7) 

where 𝑀𝑣 denotes the setting of the v-th controlled VSG.  

3) State Transition Probability: The state transition 
probability encompasses all transitions of states in the RL 
environment, specifically addressing the problem (5). For 
each training episode, only one contingency 𝑐𝑘  will be 
sampled and employed. Given that different contingencies 
are independent of each other, the objective for one episode 
is to improve the transient metric only against the sampled 
contingency. The RL agent can improve the transient metric 
under various contingencies through iterations over multiple 
episodes, thus fulfilling the objective in (5). 

A training episode consists of multiple steps allowing the 
RL agent to try different VSG parameter settings. The 
objective of one episode is to search for the optimal VSG 
parameter setting for the 𝑐𝑘 sampled in this episode. As such, 
each step transition probability is defined as 

𝒫(𝑛) (𝑠𝜍+1
(𝑛)
 s.t. {𝐩𝑘 = 𝑎𝜍

(𝑛), (1b)-(1c), (2)}|𝑠𝜍
(𝑛)
, 𝑎𝜍

(𝑛)
) . (8) 

For each step, the RL agent will pick a set of VSG parameters 
based on the transient stability metric of the current step. Then, 
a complete time domain simulation will be simulated to 
calculate the transient stability metric based on the VSG 
setting picked by the RL agent, subject to (1b)-(1c) and (2). 
The calculated transient stability metric will be used as the 
next step state. It should be noted that the state transition is 

probabilistic, considering the randomness of pre-contingency 
power flow in different episodes. 

4) Reward Function and Stopping Criteria: The reward 

evaluates the RL agent’s capability to improve the system 

transient metric. Thus, the reward function is defined as: 

𝑅𝜍
(𝑛)

=

{
 
 

 
 1 −

𝜍 − 1

Σ
,      𝑖𝑓 𝐹c𝑘

(𝜍+1)
> 𝐹c𝑘

(𝜍)

0,                      𝑖𝑓 𝐹c𝑘
(𝜍+1)

= 𝐹c𝑘
(𝜍)

−1 +
𝜍 − 1

Σ
,    𝑖𝑓 𝐹c𝑘

(𝜍+1)
< 𝐹c𝑘

(𝜍)

(9) 

where Σ denotes the maximum step number of an episode, and 
reward (9) indicates that the RL agent will receive a positive 
reward if the action improves the transient metric. Otherwise, 
it will receive a zero or negative reward. The term (𝜍 − 1)/Σ 
motivates the agent to initiate improvement actions promptly. 

The stopping criterion for one episode is twofold: i) the 
episode reaches step Σ; ii) the agent receives a negative reward. 

5) Implementation of RL Algorithms: RL is a technique 

for solving MDP problems by learning to make decisions that 

maximize cumulative rewards. Given (5) is formulated as an 

MDP, any state-of-the-art RL algorithms can be applied as 

the solution of (5). The transient stability enhancement 

problem (1) consists of N of subproblem (5). Therefore, 

parallel training using RL algorithms is required across N 

environments. The selection of RL algorithms is flexible. 

Different environments can use distinct RL algorithms. 

IV. CASE STUDIES 

This section is dedicated to the case studies on a Modified 
Kundur system and a Modified NPCC system to demonstrate 
the effectiveness of the proposed scalable RL method. Test 
configuration, comparative experiments, and scheme analysis 
are presented. The transient simulations are conducted using 
ANDES [13]. The model and parameters of used transient 
models can also be found in ANDES. The Proximal Policy 
Optimization (PPO)-based RL agents are applied via the open-
source tool Tianshou [14]. The max training episodes is 1000, 
and the max steps of an episode Σ is 10. All tests are conducted 
with an Intel Core i7 CPU. 

A. Case I: The Modified Kundur System 

To demonstrate the execution process of the proposed 
method, we start with a simple Modified Kundur system, as 
shown in Fig. 4. The system consists of 10 buses and 4 VSGs 
with identical settings. The system is divided into two areas: 
Area 1 comprises buses 1, 2, and 5 to 7, while Area 2 
comprises the remaining buses. The generation and load on 
the two areas are symmetrical. We assume the three-phase-to-
ground fault contingency can occur at any location on the lines 
in Modified Kundur, and the fault duration is a random value 
of 0.05-0.2 seconds. Loads on bus 7 and bus 8 were randomly 

 
Fig. 4.  An example of contingency grouping output on Modified Kundur. 

 



initialized within 95%-105% of the default setting. The RL 
agent is applied to control the transient parameters of each 
VSG in the system. In this study, we use a discrete action 

space: 𝑀𝑣𝑠𝑔=1,..,4 ∈ {𝑀𝑣𝑠𝑔
𝑑𝑓𝑙𝑡

, 𝑀𝑣𝑠𝑔
↑ }, which means the RL agent 

will pick the optimal parameter for each VSG. Where 𝑀𝑣𝑠𝑔
𝑑𝑓𝑙𝑡

 

and 𝑀𝑣𝑠𝑔
↑  denote the default and increased settings of the 

VSG’s virtual inertia. Since we have 4 VSGs, the space scale 
for the regular PPO agent is 24. 

Fig. 4 also depicts a grouping output example of 10-
contingency on Modified Kundur. As observed, contingencies 
are grouped into 2 groups based on areas, and the 2-VSG in 
each area are identified as the group-relevant machines. In this 
case, we need two independent RL agents to handle the two-
group contingencies. The group 1 agent will control the 
parameter setting of VSG1 and VSG2, and the group 2 agent 
will control the setting of VSG3 and VSG4. Therefore, the 
space scale for each agent reduces to 22. Given the 
contingencies in each group are basically limited to one region, 
the diversity of the state that each RL agent may observe is 
also limited, reducing the complexity of the training task. 

Fig. 5 shows the computation times required to solve the 
contingency grouping model (4) on Modified Kundur. The 
solution’s efficiency is sensitive to the pre-setting of 

parameters. Increasing 𝐾  and N both lead to longer 
computation times. The contingency grouping model can be 
solved within 2 minutes, deemed acceptable for an offline 
computation task. On average, the 1000-episode RL training 
on Modified Kundur takes 43.3 minutes. Compared to RL 
training, the computation time of (4) is negligible. 

For comparison, we benchmark the proposed CG-assisted 
PPO (CG-PPO) against the regular application of PPO. Table 

I compares the convergence probability using PPO and CG-
PPO on Modified Kundur. Given that CG-PPO undertakes 
two parallel training sessions to encompass all contingencies, 
a CG-PPO training session is deemed converged only if both 
sessions achieve convergence. Considering the relatively 
simple constitution of Modified Kundur, the application of 
PPO and CG-PPO yields comparable results in convergence 
probabilities. The convergence probability based on PPO 
drops to 95% with 500 considered contingencies and further 
to 85% as contingencies increase to 1,000. This demonstrates 
a clear trend where the convergence probability of PPO 
training diminishes as more contingencies are considered in 
the training process. Fig. 6 compares moving average rewards 
using PPO and CG-PPO, with 100 considered contingencies 
in training. Moving average rewards monitor the performance 
of RL agents in the iteration of episodes, which reflects the 
training progress of RL algorithms. Rewards based on CG-
PPO exhibit smaller fluctuations and converge to higher 
values than those based on PPO. This indicates that CG-PPO 
training is more stable, and trained agents via CG-PPO can 
perform better in decision-making. Table I and Fig. 6 verify 
that CG-PPO can improve the convergence of regular PPO. 

We conduct simulations for 1,000 contingencies to verify 
the trained agents on Modified Kundur. Three types of 
parameter settings are compared: default parameters, pure 
PPO-based parameters, and CG-PPO-based parameters. Fig. 
7 shows examples of transient dynamics in Modified Kundur. 
The maximum absolute relative angle of all machines in the 
system is used to demonstrate the synchronization level. The 
system loses synchronization when the maximum absolute 
relative angle exceeds 90 degrees. In example 1, machines 
with default parameter settings lose synchronization after the 
fault, while PPO and CG-PPO agents have the same control 
action. Example 2 shows that CG-PPO outperforms PPO in 

 

 
Fig. 5.  Efficiency of the contingency grouping model on Modified Kundur 

with different numbers of potential contingencies 𝐾 and group numbers N. 

 
 

Fig. 7.  Examples of transient dynamics on Modified Kundur. Ex. 1: fault on 

line 8-9, 50% along its electrical distance, lasting 0.35s (left). Ex. 2: fault on 
line 5-6, 10% along its electrical distance, lasting 0.35s (right). 

 

 
Fig. 8.  An example of contingency grouping output on modified NPCC. 

Distinct colors represent contingencies and relevant VSGs across 5 groups. 

 

TABLE I. CONVERGENCE PROBABILITY ON MODIFIED KUNDUR 

Considered 

Contingencies  

Convergence Probability 

PPO CG-PPO 

100 20/20 (100%) 20/20 (100%) 

500 19/20 (95%) 20/20 (100%) 

1,000 17/20 (85%) 20/20 (100%) 

 
Fig. 6.  Means and standard deviations of moving average reward curves 
using pure PPO and CG-PPO based on Modified Kundur environment.  

Higher reward denotes the RL agent have better performance in training. 

 



performance. The average TSIs of 1,000 contingencies based 
on three parameter settings are 23.07 (default), 32.44 (PPO), 
and 37.12 (CG-PPO), respectively, which also proves the 
effectiveness of the proposed CG-RL. 

B. Case II: The Modified NPCC 140-bus System 

The proposed CG-RL is also verified on the Modified 
NPCC system, as shown in Fig. 8. The system consists of 140 
buses and 48 machines with identical settings. Generators on 
buses 21, 22, 24, 26, 27, 50, 51, 55, 57, 79, 91, 101, 133, 134, 
and 135 are replaced as VSGs, respectively. We assume the 
three-phase-to-ground fault contingency can occur at any 
location on lines 121, 95, 207, 9, 213, 15, 20, 22, 18, 13, 1, 55, 
54, 45, 41, 48, 136, 130, 231, 66, 223, 65, 119,120, 198, 202, 
201, and 204. The fault duration is a random value of 0.03-
0.13 seconds. Loads on buses connected to the fault were 
randomly initialized within 95%-105% of the default setting. 
The RL agent is applied to control 15 VSGs. Thus, the space 
scale for the regular PPO agent is 215. 

Fig. 9 shows the computation times required to solve the 
contingency grouping model (4) on Modified NPCC. The 
solution’s efficiency shows a similar trend as in Fig. 5. Since 
Modified NPCC is much more complex, solving (4) on 
Modified NPCC takes longer than on Modified Kundur. 
However, the solution can generally be completed within 2.5 
minutes, which is acceptable for an offline computation. 

Table II compares the convergence probability using PPO 
and CG-PPO on Modified NPCC. The difference between 
PPO and CG-PPO in convergence probabilities can be seen as 
Modified NPCC is much more complex than Modified 
Kundur. The convergence probability based on PPO drops to 
less than 20% with complex contingencies in training. 

We conduct transient simulations for 1,000 contingencies 
to verify trained agents on Modified NPCC. Fig. 10 shows two 
examples of transient dynamics. The average TSIs of 1,000 
contingencies based on various parameter settings are 44.13 
(default), 45.88 (PPO), and 46.75 (CG-PPO), respectively. 
These results all show the effectiveness of CG-PPO. 

V. CONCLUSIONS 

This paper proposed a scalable RL framework to enhance 
power system transient stability by tuning multiple VSGs’ 
parameters, enabling a large number of contingencies to be 
considered in RL training. Specifically, a CG algorithm is 
added to the regular RL to reduce the complexity and improve 
the convergence of RL training. The proposed framework was 
applied and verified in two standard test systems. The RL 
training assisted by the CG algorithm maintains a 100% 
convergence probability compared to merely 5% without the 
CG algorithm. Additionally, the proposed framework yields 
the TSI improvement on both test configurations. 
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TABLE II. CONVERGENCE PROBABILITY ON MODIFIED NPCC 

Considered 

Contingencies  

Convergence Probability 

PPO CG-PPO 

100 3/20 (15%) 20/20 (100%) 

500 1/20 (5%) 20/20 (100%) 

1,000 1/20 (5%) 20/20 (100%) 

 
Fig. 10.  Examples of transient dynamics on Modified NPCC. Example 1: fault 

on line 213, 80% along its electrical distance, lasting 0.07s (left). Example 2: 
fault on line 95, 80% along its electrical distance, lasting 0.13s (right). 

 

 
Fig. 9.  Efficiency of the contingency grouping model on Modified NPCC 

with different numbers of potential contingencies 𝐾 and group numbers N. 

 



 


