

Transient Stability Enhancement via a Scalable RL

Method with VSG Parameter Tuning

Xiaoge Huang, Ziang Zhang

Department of Electrical and Computer Engineering

Binghamton University - SUNY

Binghamton, U.S.A.

xhuang98@binghamton.edu, ziang.zhang@binghamton.edu

Shufan Wang, Jian Li

AMS department, CS department

Stony Brook University

Stony Brook, USA

Shufan.wang@stonybrook.edu, Jian.li.3@stonybrook.edu

Abstract—This paper presents a reinforcement learning

(RL)-driven strategy to improve the transient stability of power

systems via tuning parameters of multiple virtual synchronous

generators (VSGs). We proposed a scalable method to support

RL training convergence probability and speed, even when a

large number of contingencies are considered. The proposed

scalable RL framework first decomposes the large number of

contingencies into multiple groups and then conducts parallel

training for each group, decreasing the state space and

complexity of each training. Additionally, we propose a

contingency grouping algorithm to streamline the RL action

space and facilitate the training. The proposed method is

validated across various standard test systems.

Keywords—virtual synchronous generator, transient stability,

reinforcement learning, contingency-grouping, optimization

I. INTRODUCTION

The supply resources in the modern power grid are
transitioning from centralized thermal synchronous generators
to distributed renewable inverter-based resources (IBRs).
Against this backdrop, integrating IBRs into the electrical grid
has garnered significant interest. The latest studies highlight
that incorporating inverters can influence the transient
response of the power systems [1]. However, enhancing or
maintaining systems’ synchronism with mixed IBRs and
synchronous generators remains an unresolved issue. This
work focuses on using the VSGs, a representative IBR, to
offer supplementary aid for the transient stability of power
systems with mixed IBRs and generators.

In general, control methods to enhance transient stability
can be applied at either the power plant level or the system
level. The primary challenge with plant-level control lies in
developing an algorithm capable of detecting faults,
determining control actions with restricted observations, and
implementing actions in real-time (within a second).
Conversely, control at the system operator level can perform
offline simulations with estimated contingency scenarios. Yet,
vast controlled parameters and significant uncertainties on the
potential contingencies and pre-fault power flow need to be
considered. This work focuses on system-level control.

Many studies have focused on formulating the transient
stability enhancement as a preventive control [2] or a model
predictive control problem [3]. While these methods yield
near-optimal solutions for control decisions, they typically
require linearization or simplification of the complex system
model to ensure solvability in optimization. Moreover,
applying these methods to large-scale power systems
introduces great computational complexities in the solutions.

Transient stability enhancement can also be achieved by
calculating the transient stability margin based on Lyapunov
theory [4], [5]. Then, control strategies or stability constraints
can be constructed for generators/IBRs based on the computed
margin. Although these methods have a solid theoretical

foundation and superior computational efficiency, they
normally depend on simplified power systems, thereby
restricting their utility in complex applications.

Some studies also involve formulating a transient stability
assessment model and determining the control action response
to assessment outputs [6], [7]. However, these techniques do
not ensure complete assessment reliability, particularly with
large-scale systems.

Many studies have recently applied RL to enhance power
system transient stability. RL is a technique for solving
Markov decision process (MDP) problems. The RL-based
methods first formulate the transient stability enhancement as
an MDP by building a training environment, then let the RL
agent solve the MDP by repeatedly interacting with the
environment [8]-[11]. RL does not require the linearity and
differentiability of the MDP, offering a viable approach to
enhancing transient stability without simplifying the system.

Although RL can effectively enhance the power system’s
transient stability, it still suffers from poor training
convergence and hard to scale. This is particularly pronounced
when training encompasses large-number potential
contingencies, where the vastness and sparsity of the state
space present substantial hurdles to the training convergence.
Moreover, when RL is employed to control multiple
components, the expansion of the action space further
complicates the convergence of training. To address the above
issues, we propose a scalable reinforcement learning-based
strategy for multiple VSG control considering large-number
potential contingencies. The advantages and contributions of
the proposed strategy are summarized as follows:

1) A mathematical formulation of the transient stability
enhancement problem via RL-based VSG parameter tuning
was presented, considering a large number of potential
contingency scenarios. A scalable RL framework is proposed
to solve this problem, significantly enlarging the number of
contingencies that could be handled by RL training.

2) A contingency grouping (CG) algorithm is proposed to
identify relevant machines for potential contingencies and
exclude irrelevant machines, reducing the complexity of RL’s
action space and improving the convergence of RL training.

The rest of the paper is organized as follows: Section II
provides a new problem formulation of transient stability
enhancement via tuning VSGs’ parameters. The CG-assisted
RL is proposed in Section III as the solution to the formulated
problem. Section IV presents case studies of the proposed
strategy. Finally, the conclusion is provided in Section V.

II. PROBLEM STATEMENT

A. Transient Stability Enhancement Problem Formulation

The system-level stability enhancement can be formulated
as an optimization problem to maximize the transient stability

metric at each potential contingency scenario, as depicted in
Fig. 1. Given a K-scenario contingency set for a power grid,
the stability enhancement problem is defined as follows:

max
𝐩𝑘

∑ 𝐹c𝑘(𝐱𝑘,1:𝑇 , 𝐲𝑘,1:𝑇)
𝐾

𝑘=1
(1a)

s.t. 𝐱̇𝑘,𝑡 = 𝑓c𝑘(𝐱𝑘,𝑡 , 𝐲𝑘,𝑡 , 𝐩𝑘) (1b)

0 = 𝑔c𝑘(𝐱𝑘,𝑡 , 𝐲𝑘,𝑡 , 𝐩𝑘) (1c)

where t denotes the time index; T is the length of a time
domain simulation; c𝑘 represents the k-th scenario in the
contingency set; 𝐱𝑘,𝑡 and 𝐲𝑘,𝑡 are the transient state variable

and algebraic variable with contingency c𝑘 ; 𝐩𝑘 are K
dimensional parameters corresponding to various
contingencies; 𝐹𝐜𝑘() denotes the metric of the system’s

transient stability with contingency c𝑘 . 𝑓c𝑘 (·) and 𝑔c𝑘(·) are

differential and algebraic equations which describe the power
system model with contingency c𝑘 . Equations (1a)-(1c)
constitute the problem of enhancing the system stability by
controlling the parameters 𝐩𝑘 against various contingency
c𝑘.The objective (1a) is to maximize the transient metric based
on the complete system’s trajectories of various contingencies.

B. Transient Stability Metric

The transient stability metric in (1a) can be selected from
widely used indicators, e.g., critical clearing time and transient
stability index (TSI). In this study, we use TSI as the metric:

𝐹c𝑘(𝐱𝑘,1:𝑇 , 𝐲𝑘,1:𝑇) =
360° − |𝛿c𝑘

𝑚𝑎𝑥|

360° + |𝛿c𝑘
𝑚𝑎𝑥|

× 100, (2)

where 𝛿c𝑘
𝑚𝑎𝑥 is the maximum angle difference between any

two generators/VSGs at any point of the system’s trajectory
with contingency c𝑘. The system is stable when TSI >0.

C. Parameter Tuning of VSG to Enhance Stability

We consider tuning the control parameters of VSGs as the
control action to improve the transient stability of the power
system. Essentially, VSG is a digital controller for the
inverter, can be turned more frequently, and has fewer tuning
limitations than conventional generators.

The classical swing equation of rotor dynamics, serving as
a foundational component within the VSG model [12], is
given as follows

𝑀
𝑑𝜔

𝑑𝑡
= 𝑇𝑚,𝑡 − 𝑇𝑒,𝑡 − 𝑇𝐷,𝑡 . (3)

where 𝑇𝑚 , 𝑇𝑒 , and 𝑇𝐷 , are the mechanical, electromagnetic,
and damping torque of the VSG. 𝑀 denotes the virtual inertia
of the VSG. 𝜔 is the virtual rotor speed of the VSG. Equation
(3) states that the virtual rotor speed 𝜔 can be affected by
tuning the virtual inertia M. Considering that the virtual rotor
angle and rotor speed are linearly related through the
relationship 𝛿 = 2𝜋𝑓(𝜔 − 1) and 𝛿 is employed to form TSI

in (2), the tuning of M can effectively influence the transient
stability metric of the system.

Recent study [10] have shown that it is promising to
provide additional support for system stability with VSG by
tuning the parameter M. In light of [10], we combine the
tuning of parameter M with reinforcement learning via the
learning framework proposed in Section III. Therefore, 𝐩𝑘 in
this paper is the parameter M setting in multiple controlled
VSGs in the system. However, note that the method can be
general and extended to other VSG parameters.

III. CONTINGENCY GROUPING-ASSISTED REINFORCEMENT

LEARNING FOR VSG PARAMETER TUNING

This section presents the proposed VSG parameter tuning
method for transient stability enhancement. Firstly, we present
the scalable reinforcement learning framework for VSG
tuning. The modeling and implementation details of the CG
model are proposed in Section III. B-C.

A. Scalable Reinforcement Learning Framework

Given the nonlinear dynamic of the system, the
uncertainty on power flow, and the large number of
contingency cases of problem (1a)-(1c), finding an optimal
solution is challenging. Reinforcement learning, without
demanding linearity, presents a promising and flexible
solution for power system model optimization and parameter
tuning. Fig. 2 (a) presents a regular application framework of
RL to solve the problem (1a)-(1c), which consists of RL
training and control decision-making stages. The RL training
lets an agent interact with the power system environment, and
the control performance of the agent will be evaluated with
rewards. The training objective is to maximize the reward of
control in iterations. Since the total contingency number K in

(1a)-(1c) is normally large, only 𝐾 representative
contingencies will be considered in the training, encapsulated
as random samples in each iteration. The trained agent is
applied in the decision-making stage to determine the optimal
control action under all K contingencies. The optimal decision
calculation is normally time costly due to problem (1a)-(1c)
nonlinearity. RL decision-making takes only less than a
second, highlighting its efficiency advantage.

Note that the extensive setting of 𝐾 can lead to challenges
such as poor convergence and inefficiency during RL training.

Fig. 2. Compare regular RL and the proposed scalable RL in transient

stability improvement. (a) The regular framework to apply RL. (b) The

proposed scalable framework to apply RL.

Fig. 1. The stability enhancement problem considers K contingencies.

To avoid this problem, many studies maintain 𝐾 as a small
value and only consider limited contingency in training. For
example, the fault location is fixed, and only the fault duration
can change in training [8]. In [9], only three types of fault
setting are considered. While reducing the number of potential
contingencies can improve the training efficiency and stability
of RL, too few potential contingencies fail to adequately
reflect the transient risks in systems, sacrificing the capability
of the RL agent to handle diverse contingencies.

To encompass a large number of potential contingencies
in training, we proposed a scalable training framework, as
shown in Fig. 2 (b). The proposed framework adds a grouping
process ahead of the training. The CG is to identify the
relevant machines and group the K contingencies based on
their relevant machines. The CG enables contingencies with
similar relevant machines to be trained with one independent
RL agent, reducing the randomness of states in an
environment. Besides, the RL agent will only apply control
action on machines relevant to its contingency group,
reducing the training difficulty from the action complexity.
This training framework is termed CG-RL. The design of CG-
RL reduces the number of potential contingencies in each
environment, allowing more contingencies to be considered in
offline learning. During the online stage, the control action
against the grouped contingencies will be determined by
utilizing the agent specific to each group.

B. Contingency Grouping Algorithm

The CG method is designed to identify relevant machines
for potential contingencies and exclude irrelevant machines in
the RL agent’s action space, thereby reducing the complexity
of RL training. The primary goal of CG is to assist and
improve the RL training by increasing both the probability of
convergence and the value achieved upon convergence.

The CG algorithm consists of two steps to achieve this
goal: i) identify relevant machines for each contingency, and
ii) group the contingencies based on their relevant machines.

For step i), we identify the relevant machines by measuring
the electrical distance from the machine to the fault. Recent
results have reflected that machines closer in electrical
distance to the fault contribute more effectively to stabilizing
the post-fault system [10]. We used a threshold of electrical
distance to separate machines into relevant and irrelevant
machines, which measures machines’ potential contribution to
the fault. However, the measurement of electrical distance
poses challenges because transmission grids typically feature
meshed connections, and the combined characteristics of line
impedance vary between series and parallel configurations.

For simplicity, we use the fault-on voltage drops to measure
electrical distance. An illustration of relevant machine
identification using voltage drops is given in Fig. 3.

For step ii), we formulate a contingency grouping model:
min

𝜇, 𝐶𝐺𝐼𝑘,𝑛, 𝐺𝑅𝑀𝑛,𝑣
𝜇 (4a)

s.t. RM𝑘,𝑣 ∙ 𝐶𝐺𝐼𝑘,𝑛 ≤ 𝐺𝑅𝑀𝑛,𝑣 (4b)

∑ 𝐶𝐺𝐼𝑘,𝑛 = 1
𝑁

𝑛=1
(4c)

∑ 𝐺𝑅𝑀𝑛,𝑣 ≤
𝑉𝑆𝐺𝑠

𝑣=1
𝜇 (4d)

where n denotes the n-th group in N contingency groups; v
represents the v-th VSG in V VSGs; 𝜇 ∈ ℝ is an auxiliary
variable that denotes the max number of group-relevant
machines in CG; 𝑪𝑮𝑰 ∈ {0,1}𝐾×𝑁 is a binary matrix that
records the group index of contingencies, 𝐶𝐺𝐼𝑘,𝑛=1 denotes

the k-th contingency is allocated to the n-th group; 𝑮𝑹𝑴 ∈
{0,1}𝑁×𝑉𝑆𝐺𝑠 is a binary matrix that represents the group-
relevant machine, 𝐺𝑅𝑀𝑛,𝑣 =1 denotes the v-th VSG is

identified as a group-relevant machine of the n-th group;
𝐑𝐌 ∈ {0,1}𝐾×𝑉𝑆𝐺𝑠 is a parameter matrix that records the
relevant machines of all contingencies, obtained from step i).

Constraint (4b) specifies that if the k-th contingency is
allocated to the n-th group, its relevant machines will be
identified as belonging to the n-th group-relevant machines.
Constraint (4c) limits each contingency to only one group.
Constraint (4d) specifies that 𝜇 denotes the maximum number
of group-relevant machines. Constraints (4b)-(4d) allocate
potential contingencies to their groups and identify group-
relevant machines for each group. Objective (4a) minimizes
the controlled VSGs in groups, thereby reducing the action
space of RL to simplify the training.

The model (4a)-(4d) is formulated as a strictly mix-integer
linear programming problem, which can be solved using
commercial solvers such as Gurobi or Moseck.

Note that the CG outputs are sensitive to the selection of
parameters such as threshold 𝜏𝑣 and number of contingency
groups N. The procedure of CG is outlined in Algorithm 1 to
select optimal parameters. Rows 4-9 in Algorithm 1 constitute
the selection procedure of 𝜏𝑣. The main idea of this selection

Fig. 3. Illustration of a three-phase fault on a simple 5-bus system: The

voltage drops at each VSG point of interconnection during the fault-on

period reflect the electrical distance between the VSG and the fault location.

If the voltage drops are in a pre-defined threshold 𝜏𝑣 , the corresponding

machines 2 and 3 will be identified as relevant machines to this fault.

Algorithm 1. The contingency grouping algorithm

1

Given: contingencies c𝑘; initial voltage settings of VSG

𝑉set,𝑣; search step of threshold d; upper limit of group

number 𝑁; upper limit of relevant machine number 𝜂̅.
2 Simulate voltage drops at contingency-on period 𝑉𝐷𝑘,𝑣.

3 Normalize voltage drop: 𝑉𝐷𝑘,𝑣 ⟵ 𝑉𝐷𝑘,𝑣/𝑉set,𝑣
4 Initialize: 𝜏𝑣 = 𝑑.
5 While 𝜏𝑣 ≤ 1:

6
 Calculate the relevant machine number of each

contingency 𝜂𝑘.
7 If the 𝑚𝑎𝑥𝑘∈{1,…,𝐾}(𝜂𝑘) ≤ 𝜂̅: break

8 Else: 𝜏𝑣 += d
9 End While

10 Calculate the relevant machine matrix 𝐑𝐌 using 𝜏𝑣.
11 For N = 2,…, 𝑁

12 Solve (4a)-(4d) and record the N-th minimum 𝜇(𝑁)
∗ .

13 End for

14 Optimal 𝑁 ⟵ argmin𝑁∈{2,…𝑁}(𝜇(𝑁)
∗).

15
Output: The group number N; the CG result from solving

(4a)-(4d) with the selected N.

is to gradually increase the threshold until the relevant
machine number of all contingencies can be bounded in a pre-
defined limit. Rows 11-14 in the algorithm select the optimal
N within a pre-defined range. The core objective of the
parameter selection is to further minimize the maximum
number of group-relevant machines.

C. Reinforcement Learning-based VSG Parameter Tuning

The scalable RL decomposes the model (1a)-(1c) into N
subproblems. Each subproblem is formulated as an MDP and
handled by an independent RL agent.

In terms of model representation, the n-th subproblem

SP(𝑛) is defined as follows:

SP(𝑛) = {
max
𝐩𝑘,𝑡

∑ 𝐹c𝑘(𝐱𝑘,𝑡 , 𝐲𝑘,𝑡)
𝑘∈𝒦𝑛

s. t. (1b)-(1c), and (2)

} (5)

where 𝒦𝑛 denotes the index set of training contingencies
allocated to the n-th contingency group.

SP(𝑛) can be represented by a MDP, which is specified by

a tuple (𝒮(𝑛), 𝒜(𝑛), 𝒫(𝑛)(𝑠𝜍+1
(𝑛)
|𝑠𝜍
(𝑛)
, 𝑎𝜍
(𝑛)
), 𝑅(𝑛)(𝑠𝜍

(𝑛)
, 𝑎𝜍

(𝑛)
)).

Where 𝒮(𝑛) is the state space, 𝒜(𝑛) is the action space, 𝒫(𝑛)
is the state transition probability, and 𝑅(𝑛) is the reward. The
index of steps in training episodes is denoted as 𝜍.

1) State Space: States are the contingency, and the TSI

corresponds to the current VSGs parameter settings. The state

is a partial observation of the operating condition of the

system at step 𝜍. The vector of state is defined as:

𝑠𝜍
(𝑛)

= (c𝑘, 𝐹c𝑘) (6)

where k is sampled from 𝒦𝑛 prior to the initial step and
remains constant throughout an episode.

2) Action Space: The RL agent decides the parameters of

relevant VSGs of SP(𝑛). The vector of action is defined as:

𝑎𝜍
(𝑛)

= (𝑀𝑣∈{𝑣|𝐺𝑅𝑀𝑛,𝑣≠0}
) (7)

where 𝑀𝑣 denotes the setting of the v-th controlled VSG.

3) State Transition Probability: The state transition
probability encompasses all transitions of states in the RL
environment, specifically addressing the problem (5). For
each training episode, only one contingency 𝑐𝑘 will be
sampled and employed. Given that different contingencies
are independent of each other, the objective for one episode
is to improve the transient metric only against the sampled
contingency. The RL agent can improve the transient metric
under various contingencies through iterations over multiple
episodes, thus fulfilling the objective in (5).

A training episode consists of multiple steps allowing the
RL agent to try different VSG parameter settings. The
objective of one episode is to search for the optimal VSG
parameter setting for the 𝑐𝑘 sampled in this episode. As such,
each step transition probability is defined as

𝒫(𝑛) (𝑠𝜍+1
(𝑛)
 s.t. {𝐩𝑘 = 𝑎𝜍

(𝑛), (1b)-(1c), (2)}|𝑠𝜍
(𝑛)
, 𝑎𝜍

(𝑛)
) . (8)

For each step, the RL agent will pick a set of VSG parameters
based on the transient stability metric of the current step. Then,
a complete time domain simulation will be simulated to
calculate the transient stability metric based on the VSG
setting picked by the RL agent, subject to (1b)-(1c) and (2).
The calculated transient stability metric will be used as the
next step state. It should be noted that the state transition is

probabilistic, considering the randomness of pre-contingency
power flow in different episodes.

4) Reward Function and Stopping Criteria: The reward

evaluates the RL agent’s capability to improve the system

transient metric. Thus, the reward function is defined as:

𝑅𝜍
(𝑛)

=

{

 1 −

𝜍 − 1

Σ
, 𝑖𝑓 𝐹c𝑘

(𝜍+1)
> 𝐹c𝑘

(𝜍)

0, 𝑖𝑓 𝐹c𝑘
(𝜍+1)

= 𝐹c𝑘
(𝜍)

−1 +
𝜍 − 1

Σ
, 𝑖𝑓 𝐹c𝑘

(𝜍+1)
< 𝐹c𝑘

(𝜍)

(9)

where Σ denotes the maximum step number of an episode, and
reward (9) indicates that the RL agent will receive a positive
reward if the action improves the transient metric. Otherwise,
it will receive a zero or negative reward. The term (𝜍 − 1)/Σ
motivates the agent to initiate improvement actions promptly.

The stopping criterion for one episode is twofold: i) the
episode reaches step Σ; ii) the agent receives a negative reward.

5) Implementation of RL Algorithms: RL is a technique

for solving MDP problems by learning to make decisions that

maximize cumulative rewards. Given (5) is formulated as an

MDP, any state-of-the-art RL algorithms can be applied as

the solution of (5). The transient stability enhancement

problem (1) consists of N of subproblem (5). Therefore,

parallel training using RL algorithms is required across N

environments. The selection of RL algorithms is flexible.

Different environments can use distinct RL algorithms.

IV. CASE STUDIES

This section is dedicated to the case studies on a Modified
Kundur system and a Modified NPCC system to demonstrate
the effectiveness of the proposed scalable RL method. Test
configuration, comparative experiments, and scheme analysis
are presented. The transient simulations are conducted using
ANDES [13]. The model and parameters of used transient
models can also be found in ANDES. The Proximal Policy
Optimization (PPO)-based RL agents are applied via the open-
source tool Tianshou [14]. The max training episodes is 1000,
and the max steps of an episode Σ is 10. All tests are conducted
with an Intel Core i7 CPU.

A. Case I: The Modified Kundur System

To demonstrate the execution process of the proposed
method, we start with a simple Modified Kundur system, as
shown in Fig. 4. The system consists of 10 buses and 4 VSGs
with identical settings. The system is divided into two areas:
Area 1 comprises buses 1, 2, and 5 to 7, while Area 2
comprises the remaining buses. The generation and load on
the two areas are symmetrical. We assume the three-phase-to-
ground fault contingency can occur at any location on the lines
in Modified Kundur, and the fault duration is a random value
of 0.05-0.2 seconds. Loads on bus 7 and bus 8 were randomly

Fig. 4. An example of contingency grouping output on Modified Kundur.

initialized within 95%-105% of the default setting. The RL
agent is applied to control the transient parameters of each
VSG in the system. In this study, we use a discrete action

space: 𝑀𝑣𝑠𝑔=1,..,4 ∈ {𝑀𝑣𝑠𝑔
𝑑𝑓𝑙𝑡

, 𝑀𝑣𝑠𝑔
↑ }, which means the RL agent

will pick the optimal parameter for each VSG. Where 𝑀𝑣𝑠𝑔
𝑑𝑓𝑙𝑡

and 𝑀𝑣𝑠𝑔
↑ denote the default and increased settings of the

VSG’s virtual inertia. Since we have 4 VSGs, the space scale
for the regular PPO agent is 24.

Fig. 4 also depicts a grouping output example of 10-
contingency on Modified Kundur. As observed, contingencies
are grouped into 2 groups based on areas, and the 2-VSG in
each area are identified as the group-relevant machines. In this
case, we need two independent RL agents to handle the two-
group contingencies. The group 1 agent will control the
parameter setting of VSG1 and VSG2, and the group 2 agent
will control the setting of VSG3 and VSG4. Therefore, the
space scale for each agent reduces to 22. Given the
contingencies in each group are basically limited to one region,
the diversity of the state that each RL agent may observe is
also limited, reducing the complexity of the training task.

Fig. 5 shows the computation times required to solve the
contingency grouping model (4) on Modified Kundur. The
solution’s efficiency is sensitive to the pre-setting of

parameters. Increasing 𝐾 and N both lead to longer
computation times. The contingency grouping model can be
solved within 2 minutes, deemed acceptable for an offline
computation task. On average, the 1000-episode RL training
on Modified Kundur takes 43.3 minutes. Compared to RL
training, the computation time of (4) is negligible.

For comparison, we benchmark the proposed CG-assisted
PPO (CG-PPO) against the regular application of PPO. Table

I compares the convergence probability using PPO and CG-
PPO on Modified Kundur. Given that CG-PPO undertakes
two parallel training sessions to encompass all contingencies,
a CG-PPO training session is deemed converged only if both
sessions achieve convergence. Considering the relatively
simple constitution of Modified Kundur, the application of
PPO and CG-PPO yields comparable results in convergence
probabilities. The convergence probability based on PPO
drops to 95% with 500 considered contingencies and further
to 85% as contingencies increase to 1,000. This demonstrates
a clear trend where the convergence probability of PPO
training diminishes as more contingencies are considered in
the training process. Fig. 6 compares moving average rewards
using PPO and CG-PPO, with 100 considered contingencies
in training. Moving average rewards monitor the performance
of RL agents in the iteration of episodes, which reflects the
training progress of RL algorithms. Rewards based on CG-
PPO exhibit smaller fluctuations and converge to higher
values than those based on PPO. This indicates that CG-PPO
training is more stable, and trained agents via CG-PPO can
perform better in decision-making. Table I and Fig. 6 verify
that CG-PPO can improve the convergence of regular PPO.

We conduct simulations for 1,000 contingencies to verify
the trained agents on Modified Kundur. Three types of
parameter settings are compared: default parameters, pure
PPO-based parameters, and CG-PPO-based parameters. Fig.
7 shows examples of transient dynamics in Modified Kundur.
The maximum absolute relative angle of all machines in the
system is used to demonstrate the synchronization level. The
system loses synchronization when the maximum absolute
relative angle exceeds 90 degrees. In example 1, machines
with default parameter settings lose synchronization after the
fault, while PPO and CG-PPO agents have the same control
action. Example 2 shows that CG-PPO outperforms PPO in

Fig. 5. Efficiency of the contingency grouping model on Modified Kundur

with different numbers of potential contingencies 𝐾 and group numbers N.

Fig. 7. Examples of transient dynamics on Modified Kundur. Ex. 1: fault on

line 8-9, 50% along its electrical distance, lasting 0.35s (left). Ex. 2: fault on
line 5-6, 10% along its electrical distance, lasting 0.35s (right).

Fig. 8. An example of contingency grouping output on modified NPCC.

Distinct colors represent contingencies and relevant VSGs across 5 groups.

TABLE I. CONVERGENCE PROBABILITY ON MODIFIED KUNDUR

Considered

Contingencies

Convergence Probability

PPO CG-PPO

100 20/20 (100%) 20/20 (100%)

500 19/20 (95%) 20/20 (100%)

1,000 17/20 (85%) 20/20 (100%)

Fig. 6. Means and standard deviations of moving average reward curves
using pure PPO and CG-PPO based on Modified Kundur environment.

Higher reward denotes the RL agent have better performance in training.

performance. The average TSIs of 1,000 contingencies based
on three parameter settings are 23.07 (default), 32.44 (PPO),
and 37.12 (CG-PPO), respectively, which also proves the
effectiveness of the proposed CG-RL.

B. Case II: The Modified NPCC 140-bus System

The proposed CG-RL is also verified on the Modified
NPCC system, as shown in Fig. 8. The system consists of 140
buses and 48 machines with identical settings. Generators on
buses 21, 22, 24, 26, 27, 50, 51, 55, 57, 79, 91, 101, 133, 134,
and 135 are replaced as VSGs, respectively. We assume the
three-phase-to-ground fault contingency can occur at any
location on lines 121, 95, 207, 9, 213, 15, 20, 22, 18, 13, 1, 55,
54, 45, 41, 48, 136, 130, 231, 66, 223, 65, 119,120, 198, 202,
201, and 204. The fault duration is a random value of 0.03-
0.13 seconds. Loads on buses connected to the fault were
randomly initialized within 95%-105% of the default setting.
The RL agent is applied to control 15 VSGs. Thus, the space
scale for the regular PPO agent is 215.

Fig. 9 shows the computation times required to solve the
contingency grouping model (4) on Modified NPCC. The
solution’s efficiency shows a similar trend as in Fig. 5. Since
Modified NPCC is much more complex, solving (4) on
Modified NPCC takes longer than on Modified Kundur.
However, the solution can generally be completed within 2.5
minutes, which is acceptable for an offline computation.

Table II compares the convergence probability using PPO
and CG-PPO on Modified NPCC. The difference between
PPO and CG-PPO in convergence probabilities can be seen as
Modified NPCC is much more complex than Modified
Kundur. The convergence probability based on PPO drops to
less than 20% with complex contingencies in training.

We conduct transient simulations for 1,000 contingencies
to verify trained agents on Modified NPCC. Fig. 10 shows two
examples of transient dynamics. The average TSIs of 1,000
contingencies based on various parameter settings are 44.13
(default), 45.88 (PPO), and 46.75 (CG-PPO), respectively.
These results all show the effectiveness of CG-PPO.

V. CONCLUSIONS

This paper proposed a scalable RL framework to enhance
power system transient stability by tuning multiple VSGs’
parameters, enabling a large number of contingencies to be
considered in RL training. Specifically, a CG algorithm is
added to the regular RL to reduce the complexity and improve
the convergence of RL training. The proposed framework was
applied and verified in two standard test systems. The RL
training assisted by the CG algorithm maintains a 100%
convergence probability compared to merely 5% without the
CG algorithm. Additionally, the proposed framework yields
the TSI improvement on both test configurations.

ACKNOWLEDGMENT

This work was supported by the U.S. DOE’s Office of
Energy Efficiency and Renewable Energy under the Solar
Energy Technologies Office Award Number DE-EE0009341.

REFERENCES

[1] B. Tan, and J. Zhao, “Data-Driven Time-Varying Inertia Estimation of
Inverter-Based Resources,” IEEE Trans. Power Systems, vol. 38, no. 2,
pp. 1795-1798, Mar. 2023.

[2] T. Su et al., “Deep Sigma Point Processes-Assisted Chance-
Constrained Power System Transient Stability Preventive Control,”
IEEE Trans. Power Systems, vol. 39, no. 1, pp. 1965-1978, Jan. 2024.

[3] A. Bonfiglio et al., “Improving power grids transient stability via model
predictive control,” in Proc. 18th Power Syst. Comput. Conf., 2014, pp.
18–22.

[4] P. Bhui and N. Senroy, “Real-time prediction and control of transient
stability using transient energy function,” IEEE Trans. Power Syst.,
vol. 32, no. 2, pp. 923–934, Mar. 2017.

[5] Z. Shuai et al., “Transient Angle Stability of Virtual Synchronous
Generators Using Lyapunov’s Direct Method,” IEEE Trans. Smart
Grids, vol. 10, no. 4, pp. 4648-4661, Jul. 2019.

[6] S. Yang, Z. Hao, B. Zhang, and M. Hojo, “An Accurate and Fast Start-
Up Scheme for Power System Real-Time Emergency Control,” IEEE
Trans. Power Syst., vol. 34, no. 5, pp. 3562-3572, Sept. 2019.

[7] L. Zhao et al., “An online power system transient stability assessment
method based on graph neural network and central moment
discrepancy,” Front. Energy Res., vol. 11, p. 1082534, Feb. 2023.

[8] Q. Huang et al., “Adaptive Power System Emergency Control Using
Deep Reinforcement Learning,” IEEE Trans. Smart Grid, vol. 11, no.
2, pp. 1171-1182, Mar. 2020.

[9] Y. Chen et al., “Distributed Hierarchical Deep Reinforcement Learning
for Large-Scale Grid Emergency Control,” IEEE Trans. Power
Systems, vol. 39, no. 2, pp. 4446-4458, Mar. 2024

[10] X. Huang et al., “Transient Stability Preventive Control via Tuning the
Parameters of Virtual Synchronous Generators,” in Proc. 2023 IEEE
Power & Energy Society General Meeting, 2023, pp. 1-5.

[11] Z. Liu, Y. Liu, J. He, X. Huang, and Z. Ding, “Double DQN-based
Power System Transient Stability Emergency Control with Protection
Coordinations,” in Proc. 2023 IEEE 6th International Electrical and
Energy Conference, 2023, pp. 4182-4187.

[12] D. Li, Q. Zhu, S. Lin, and X. Y. Bian, “A Self-Adaptive Inertia and
Damping Combination Control of VSG to Support Frequency Stability,”
IEEE Trans. Energy Conver., vol. 32, no. 1, pp. 397-398, March 2017.

[13] H. Cui, F. Li, and K. Tomsovic, “Hybrid Symbolic-Numeric
Framework for Power System Modeling and Analysis,” IEEE Trans.
Power Syst., vol. 36, no. 2, Mar. 2021.

[14] J. Weng, H. Chen, D. Yan, K. You, A. Duburcq, M. Zhang, Y. Su, H.
Su, and J. Zhu, “Tianshou: A highly modularized deep reinforcement
learning library,” J. Mach. Learn. Res., vol. 23, no. 261, pp. 1-6, 2022.

TABLE II. CONVERGENCE PROBABILITY ON MODIFIED NPCC

Considered

Contingencies

Convergence Probability

PPO CG-PPO

100 3/20 (15%) 20/20 (100%)

500 1/20 (5%) 20/20 (100%)

1,000 1/20 (5%) 20/20 (100%)

Fig. 10. Examples of transient dynamics on Modified NPCC. Example 1: fault

on line 213, 80% along its electrical distance, lasting 0.07s (left). Example 2:
fault on line 95, 80% along its electrical distance, lasting 0.13s (right).

Fig. 9. Efficiency of the contingency grouping model on Modified NPCC

with different numbers of potential contingencies 𝐾 and group numbers N.

