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Abstract
Zigzag filtrations of simplicial complexes generalize the usual filtrations by allowing simplex deletions

in addition to simplex insertions. The barcodes computed from zigzag filtrations encode the evolution of
homological features. Although one can locate a particular feature at any index in the filtration using existing
algorithms, the resulting representatives may not be compatible with the zigzag: a representative cycle at one
index may not map into a representative cycle at its neighbor. For this, one needs to compute compatible
representative cycles along each bar in the barcode. Even though it is known that the barcode for a zigzag
filtration with m insertions and deletions can be computed in O(mω) time, it is not known how to compute
the compatible representatives so efficiently. For a non-zigzag filtration, the classical matrix-based algorithm
provides representatives in O(m3) time, which can be improved to O(mω). However, no known algorithm
for zigzag filtrations computes the representatives with the O(m3) time bound. We present an O(m2n) time
algorithm for this problem, where n ≤ m is the size of the largest complex in the filtration.

1 Introduction

Persistent homology and its computation have been a central theme in topological data analysis (TDA) [6, 7, 13].
Using persistent homology, one computes a signature called a barcode from data which is presented in the form
of a growing sequence of simplicial complexes called a filtration. However, the barcode itself does not provide
an avenue to go back to the data. For that, we need to compute a representative for each bar (interval) in the
barcode, that is, a cycle whose homology class exists exactly over the duration of the bar. In other words, we aim
to compute the interval modules themselves in the interval decomposition [9] instead of only the intervals.

In this paper, we consider computing representatives for the bars where the given filtration is no longer
monotonically growing but may also shrink, resulting in what is known as a zigzag filtration. A number of
algorithms have been proposed for computing the barcode from a zigzag filtration [2, 5, 6, 10, 11, 12]. All of them
maintain pointwise representatives, i.e., a homology basis for every step in the filtration, but they do not compute
the barcode representatives, i.e., a set of compatible pointwise bases, where elements of one basis are matched to
the elements of its neighbors (see Definition 2.3). Solving this problem is the main topic of this paper.

The barcode representatives are not readily available during the zigzag computation because basis updates
at any point may require changes both in the future and in the past to maintain the matching. To make this
precise, let m be the number of additions and deletions and n be the maximum size of complexes in a zigzag
filtration. The challenge is rooted in the fact that a barcode representative for a zigzag filtration (henceforth
also called a zigzag representative) may consist of O(m) different cycles [10] for each of the O(m) indices in a
bar (see Definition 2.3). Consequently, the space complexity for the straightforward way of maintaining a zigzag
representative is O(mn). This is in contrast to a non-zigzag representative which consists of the same cycle over
the entire bar. One obvious way to obtain the zigzag representatives is to adapt the O(mn2) algorithm proposed by
Maria and Oudot [10] which directly targets representatives. But then, the complexity increases to O(m2n2), which
stems from the need of summing two representatives each consisting of O(m) cycles. In total these summations
over the entire course of the algorithm incur an O(m2n2) cost. To see this, notice that the algorithm in [10] is
based on summations of bars (and their representatives) where each bar is associated with a single cycle from the
O(m) cycles in its representative. The algorithm performs O(mn) summations of bars and the associated cycles
resulting in an O(mn2) complexity. To adapt this algorithm for computing representatives, one instead maintains
the full representative consisting of O(m) cycles for each bar. Because a summation of two bars now costs O(mn)
time, the O(mn) bar summations in the algorithm [10] then result in an O(m2n2) complexity.
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It has remained tantalizingly difficult to design an algorithm that brings down the theoretical complexity to
O(m3), matching the complexity for non-zigzag filtrations [3, 12], while remaining practical. As mentioned already,
the bottleneck of the computation lies in the summation of two representatives each consisting of O(m) cycles. In
this paper, we present an O(m2n) algorithm which overcomes the bottleneck by compressing the representatives
into a more compact form each taking only O(m) space instead of O(mn) space. A preliminary implementation of
our O(m2n) algorithm shows its practicality (see Section 5).

Figure 1: an illustrative example. The compression of representatives in our algorithm is made possible
by adopting some novel constructs for computing zigzag persistence whose ideas are illustrated in Figure 1 (see
also the beginning of Section 3 for more explanations; formal definitions of concepts mentioned below are provided
in Section 2):

• First, we observe that the barcode of the regular (homology) zigzag module interconnects with the barcode of
another module, namely, the boundary zigzag module, which arises out of the boundary groups for complexes in
the input zigzag filtration. To see the interconnection, let z denote the bold cycle in K2 (and its continuation
in the complexes K3−K5) in Figure 1. In Figure 1 (top), the bar [2, 2] for the homology module born at
K2 and dying entering K3 (hence drawn as an orange dot at index 2) interconnects with the bar [3, 5] for
the boundary module born at K3 and dying entering K6 as the cycle z representing the bar [2, 2] becomes a
boundary in K3. The bar [3, 5], which is also represented by z, in turn interconnects with the bar [6, 6] for the
homology module as z becomes a non-boundary at K6.

• Second, we observe that the seamless transition between barcodes of the two modules allows us to define a
construct called wires each of which is a single cycle with a fixed birth index, presumably extending indefinitely
to infinity. A wire may be a boundary cycle (thus called a boundary wire) with its birth index coinciding
with a birth in the boundary module, or a non-boundary cycle (thus called a non-boundary wire) with its
birth index coinciding with a birth in the homology module. For the example in Figure 1, we have three
non-boundary wires (orange) and two boundary wires (blue) subscripted by the birth indices with respective
cycles also being illustrated.

A collection of such wires forms what we call a bundle for a zigzag bar. In Figure 1, we show the bundle for the
longest bar b = [1, 7]. One surprising fact we find is that representative cycles of a bar can be recovered from
index-wise summations of the wire cycles in its bundle even though a wire cycle involved in the summation
may not be present in each complex over the bar (see Section 3). Figure 1 (bottom) shows the representative
cycles of the bar b obtained by summing three wires {w1, w3, w4} even though the cycles for wires w1, w4 are
not present in K5−K7.

At each index in the filtration, there can be no more than one wire with birth at that index. Hence, each
bundle is represented as a set of O(m) wire indices in our algorithm. The summations among the bundles are
then less costly and can be done in O(m) time because each entails doing a symmetric sum among O(m) wire
indices rather than the actual O(m) cycles. When a bar is completed, its actual representative is read from
summing the cycles in its bundle. Wires and bundles allow our algorithm to have a space complexity of O(mn)
whereas the algorithm for computing representatives adapted from [10] has a space complexity of O(mn2).

Our compression using wires is also made possible by adopting a new way of computing zigzag barcodes,
which processes the filtration from left to right similar to the algorithm in [2] but directly targets maintaining the
zigzag representatives over the course of the computation. This is also in contrast to the other representative-based
algorithm [10] which always maintains a reversed non-zigzag filtration at the end. Section 3 briefly describes the
idea.

2 Core definitions

Throughout, we assume a simplex-wise zigzag filtration F as input to our algorithm:

(2.1) F : ∅ = K0
σ0←−→ K1

σ1←−→ · · · σm−1←−−−→ Km,

in which each Ki is a simplicial complex and each arrow Ki
σi←−→ Ki+1 is either a forward inclusion Ki

σi
↪−−→ Ki+1

(an addition of a simplex σi) or a backward one Ki
σi←−−↩ Ki+1 (a deletion of a simplex σi). Notice that assuming
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w4
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w6
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Bundle for bar b
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w3
w4

Representative for bar b

K1 K2 K3 K4 K5 K6 K7

↪→ ←↩ ←↩ ←↩↪→ ←↩

++

↪→ ←↩ ←↩ ←↩↪→ ←↩

z

Figure 1: An example of wires, bundles, and the boundary zigzag module which are major constructs leading
to the O(m2n) algorithm. Orange and blue colors are used for the constructs of homology and boundary zigzag
modules respectively.

F to be simplex-wise and K0 = ∅ is a standard practice in the computation of non-zigzag persistence [8] and
its zigzag version [2, 10]. Also notice that any zigzag filtration in general can be converted into a simplex-wise
version, and the representatives computed for this simplex-wise version can also be easily mapped to the ones for
the original filtration. We let Fi denote the part of F up to index i, that is,

(2.2) Fi : ∅ = K0
σ0←−→ K1

σ1←−→ · · · σi−1←−−→ Ki.

Notice that F = Fm. The total complex K of F is the union of all complexes in F. Let n be the maximum size of
complexes in F (note that generally n is not equal to the size of K).

For a complex Ki, we consider its homology group H(Ki) (with Z2 coefficients) over all degrees, which is
the direct sum of Hp(Ki) for all p (so that the dimension of H(Ki) equals the sum of the dimensions of all
Hp(Ki)’s). Accordingly, C(Ki), Z(Ki), and B(Ki) denote the chain, cycle, and boundary groups of Ki over all
degrees respectively. Since we take Z2 as coefficients, chains or cycles in this paper are also treated as sets of
simplices. We also consider any chain c ∈ C(Ki) to be a chain in K in general and do not differentiate the same
simplex appearing in different complexes in F. For example, suppose that all simplices in c ∈ C(Ki) also belong to
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a Kj , we then have c ∈ C(Kj).
Taking the homology functor on Fi we obtain the following (homology) zigzag module:

H(Fi) : H(K0)
ψ∗

0←−→ H(K1)
ψ∗

1←−→ · · ·
ψ∗

m−1←−−−→ H(Ki).

Similarly, taking the boundary functor on Fi we obtain the (boundary) zigzag module:

B(Fi) : B(K0)
ψ#

0←−→ B(K1)
ψ#

1←−→ · · ·
ψ#

m−1←−−−→ B(Ki).

Each ψ∗
j : H(Kj) ↔ H(Kj+1) in H(Fi) is a linear map induced by inclusion between homology groups whereas

each ψ#
j : B(Kj)↔ B(Kj+1) in B(Fi) is an inclusion between chain groups. By [1, 9], for some index sets ΛH and

ΛB , H(Fi) and B(Fi) have decompositions of the form

H(Fi) =
⊕
k∈ΛH

I[bk,dk] and B(Fi) =
⊕
k∈ΛB

I[bk,dk],

in which each I[bk,dk] is an interval module over the interval [bk, dk] ⊆ {0, 1, . . . , i}. The set of intervals
PersH(Fi) := {[bk, dk] | k ∈ ΛH} for H(Fi) and the set of intervals PersB(Fi) := {[bk, dk] | k ∈ ΛB} for B(Fi)
are called the homology barcode and boundary barcode of Fi respectively. In this paper, we introduce the
computation of the intervals and representatives for B(F) as an integral part of the computation of those for
H(F), which is critical to achieving the O(m2n) complexity. We similarly define a barcode PersHp (Fi) for the

module Hp(Fi) over each degree p, so that PersH(Fi) =
⊔
p Pers

H
p (Fi). Notice that we can also define the barcode

PersBp (Fi) where PersB(Fi) =
⊔
p Pers

B
p (Fi).

Definition 2.1. (Homology birth/death indices) Since Fi is simplex-wise, each map ψ∗
j in H(Fi) is either

injective with a 1-dimensional cokernel or surjective with a 1-dimensional kernel but cannot be both. The set of
homology birth indices of Fi, denoted PH(Fi), and the set of homology death indices of Fi, denoted NH(Fi), are
constructively defined as follows: for each forward ψ∗

j : H(Kj)→ H(Kj+1), we add j+1 to PH(Fi) if ψ
∗
j is injective

and add j to NH(Fi) otherwise. Also, for each backward ψ∗
j : H(Kj)← H(Kj+1), we add j + 1 to PH(Fi) if ψ

∗
j is

surjective and add j to NH(Fi) otherwise. Finally, we add r copies of i to NH(Fi) where r is the dimension of
H(Ki).

Remark 2.1. Technically speaking, when we add r copies of i to NH(Fi), it becomes a multi-set.

Definition 2.2. (Boundary birth/death indices) Similarly as above, we define the boundary birth indices

PB(Fi) and boundary death indices NB(Fi) of Fi by considering the module B(Fi). Notice that ψ#
j is always

injective. So, for each forward ψ#
j : B(Kj)→ B(Kj+1) that is not surjective, we add j + 1 to PB(Fi). Also, for

each backward ψ#
j : B(Kj)← B(Kj+1) that is not surjective, we add j to NB(Fi). Finally, we add q copies of i to

NB(Fi) where q is the dimension of B(Ki).

Whenever ψ∗
j is injective, ψ#

j is an identity map; whenever ψ∗
j is surjective, ψ#

j is not surjective. Hence,

PH(Fi) ∩ PB(Fi) = ∅ while (different copies of) i could belong to both NH(Fi) and NB(Fi). Also notice that
[b, d] ∈ PersH(Fi) implies that b ∈ PH(Fi) and d ∈ NH(Fi) (similar facts hold for [b, d] ∈ PersB(Fi)). We provide
the definition of homology representatives (see Maria and Oudot [10]) as follows and then adapt it to define
boundary representatives:

Definition 2.3. (Homology representatives) Consider a filtration Fi and let [b, d] ⊆ [0, i] be an interval
where b ∈ PH(Fi) (notice that b > 0 because K0 = ∅ by assumption) and d ∈ NH(Fi). A sequence of cycles
rep = {zα ∈ Z(Kα) |α ∈ [b, d]} is called a homology representative (or simply representative) for [b, d] if for every
b ≤ α < d, either ψ∗

α([zα]) = [zα+1] or ψ
∗
α([zα+1]) = [zα] based on the direction of ψ∗

α. Furthermore, we have:

Birth condition: If ψ∗
b−1 : H(Kb−1) → H(Kb) is forward (thus being injective), zb ∈ Z(Kb) \ Z(Kb−1); if

ψ∗
b−1 : H(Kb−1)← H(Kb) is backward (thus being surjective), then [zb] is the non-zero element in ker(ψ∗

b−1).
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Death condition: If d < i and ψ∗
d : H(Kd)← H(Kd+1) is backward (thus being injective), zd ∈ Z(Kd) \ Z(Kd+1);

if d < i and ψ∗
d : H(Kd) → H(Kd+1) is forward (thus being surjective), then [zd] is the non-zero element in

ker(ψ∗
d).

Remark 2.2. By definition, all zα’s in a homology representative rep are p-cycles for the same p, so we can also
call rep a p-th homology representative.

Definition 2.4. (Boundary representatives) Let [b, d] ⊆ [0, i] be an interval where b ∈ PB(Fi) and
d ∈ NB(Fi). A sequence of cycles rep = {zα ∈ B(Kα) |α ∈ [b, d]} is called a boundary representative (or simply

representative) for the interval [b, d] if for every b ≤ α < d, either zα+1 = ψ#
α (zα)

def
= zα or zα = ψ#

α (zα+1)
def
= zα+1

based on the direction of ψ#
α . Furthermore, we have:

Birth condition: The cycle zb satisfies that zb ∈ B(Kb) \ B(Kb−1) where ψ#
b−1 : B(Kb−1) → B(Kb) is forward

because b ∈ PB(Fi).

Death condition: If d < i, then zd satisfies that zd ∈ B(Kd) \ B(Kd+1) where the map ψ#
d : B(Kd)← B(Kd+1)

is backward because d ∈ NB(Fi).

Remark 2.3. In the sequence rep in Definitions 2.3 and 2.4, we also call zα a cycle at index α.

The following Proposition (proof in Appendix A) is used later for proofs and algorithms.

Proposition 2.1. Let zB1 , . . . , z
B
k be the cycles at index j in representatives for all intervals of PersB(Fi) containing

j. Similarly, let zH1 , . . . , z
H
k′ be the cycles at index j in representatives for all intervals of PersH(Fi) containing j.

Then,
{
[zH1 ], . . . , [zHk′ ]

}
is a basis of H(Kj),

{
zB1 , . . . , z

B
k

}
is a basis of B(Kj), and

{
zH1 , . . . , z

H
k′ , z

B
1 , . . . , z

B
k

}
is a

basis of Z(Kj).

We then define summations of representatives for intervals ending at i. These summations respect a total
order ‘≺’ on birth indices [10], that is, a representative for [b, i] can be added to a representative for [b′, i] if and
only if b ≺ b′ (see Figure 2).

Definition 2.5. (Total order on birth indices) For two birth indices b, b′ ∈ PH(Fi) ∪ PB(Fi), we have
b ≺ b′ if one of the following holds:

(i) b ∈ PB(Fi) and b
′ ∈ PH(Fi);

(ii) b, b′ ∈ PB(Fi) and b < b′;

(iii) b, b′ ∈ PH(Fi), b < b′, and Kb′−1 ↪−→ Kb′ is a forward inclusion;

(iv) b, b′ ∈ PH(Fi), b
′ < b, and Kb−1 ←−↩ Kb is a backward inclusion.

Definition 2.6. (Representative summation) For two intervals [b, i], [b′, i] ∈ PersHp (Fi) ∪ PersBp (Fi) so that
b ≺ b′, let rep = {zα | α ∈ [b, i]} and rep′ = {z′α | α ∈ [b′, i]} be p-th representatives for [b, i] and [b′, i] respectively.
The sum of rep and rep′, denoted rep⊞ rep′, is a sequence of cycles {zα | α ∈ [b′, i]} so that

• If b < b′ then zα = zα + z′α for each α; (Figure 2: (i) top, (ii), (iii))

• If b′ < b, then zα = z′α for α < b and zα = zα + z′α for α ≥ b. (Figure 2: (i) bottom, (iv))

Proposition 2.2. The sequence rep ⊞ rep′ in Definition 2.6 is a p-th representative for [b′, i] ∈ PersHp (Fi) ∪
PersBp (Fi).

Proof. See Appendix B.

Remark 2.4. From Figure 2, it is not hard to see that the representative resulting from the summation in
Definition 2.6 is still a valid representative for the interval. For example, in case (iii) of Figure 2, the resulting
representative is valid because zb′ + z′b′ still contains σb′−1 so that the birth condition in Definition 2.3 still holds.
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⇓ =
σb′−1

↪−−−→
zb′ + z′b′ zi + z′i· · ·

zb · · ·
σb−1←−→

=

z′b−1 z′iz′b · · ·z′b′ · · ·
σb′−1←−→

σb−1←−−↩
zizb · · ·

z′b−1 zi + z′izb + z′b · · ·z′b′ · · ·
σb′−1←−→

σb′−1

↪−−−→
z′b′ z′i· · ·

zb′ zi· · ·

⇓

(iii)

(iv)

(i)

(ii)

⇓ =
σb′−1

↪−−−→
zb′ + z′b′ zi + z′i· · ·

zb · · ·
σb−1

↪−−→

σb′−1

↪−−−→
z′b′ z′i· · ·

zb′ zi· · ·

⇓ =
σb′−1←−→

zb′ + z′b′ zi + z′i· · ·

zb · · ·
σb−1

↪−−→

=

z′b−1 z′iz′b · · ·z′b′ · · ·
σb′−1←−→

σb−1

↪−−→
zizb · · ·

z′b−1 zi + z′izb + z′b · · ·z′b′ · · ·
σb′−1←−→

σb′−1←−→
z′b′ z′i· · ·

zb′ zi· · ·

⇓

Figure 2: Illustration of how summations of representatives for intervals respect the order ‘≺’ for the different
cases in Definition 2.5, with the double arrows indicating the directions of the summations. Boundary module
intervals are shaded blue while homology module intervals are shaded orange.
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We then define wires and bundles as mentioned in Section 1 which compresses the zigzag representatives in a
compact form.

Definition 2.7. (Wire) A wire is a cycle ωi ∈ Z(Ki) with a starting index i ∈ PH(F) ∪ PB(F) s.t.

(i) Ki−1 ↪−→ Ki is forward and ωi ∈ Z(Ki) \ Z(Ki−1), or

(ii) Ki−1 ←−↩ Ki is backward and ωi ∈ B(Ki−1) \ B(Ki), or

(iii) Ki−1 ↪−→ Ki is forward and ωi ∈ B(Ki) \ B(Ki−1).

We also say that ωi is a wire at index i. The wires satisfying (i) or (ii) are also called non-boundary wires whereas
those satisfying (iii) are called boundary wires.

Remark 2.5. In cases (i) and (ii) above, i ∈ PH(F), whereas in case (iii), i ∈ PB(F).

Definition 2.8. (Wire bundle) A wire bundle W (or simply bundle) is a set of wires with distinct starting
indices. The sum of W with another wire bundle W ′, denoted W ⊞W ′, is the symmetric difference of the two
sets. We also call W a boundary bundle if W contains only boundary wires and call W a non-boundary bundle
otherwise.

As evident later, given an input filtration F, a wire at an index i is fixed in our algorithm, and we always
denote such a wire as ωi. Hence, a wire bundle is simply stored as a list of wire indices in our algorithm. Since
there are O(m) indices in F, a bundle summation takes O(m) time.

Definition 2.9. Let [b, d] ∈ PersH(Fi) ∪ PersB(Fi). A wire bundle W is said to generate a representative for
[b, d] (or simply represents [b, d]) if the sequence of cycles {zα =

∑
ωj∈W,j≤α ωj | α ∈ [b, d]} is a representative for

[b, d].

Remark 2.6. In the sum zα =
∑
ωj∈W,j≤α ωj in the above definition, we consider each ωj and the sum zα as a

cycle in the total complex K. Notice that if W generates a representative for [b, d], we may have that ωj ̸∈ Z(Kα)
for a ωj in the sum, but we still can have zα ∈ Z(Kα) due to cancellation of simplices in the symmetric difference.
See Figure 1.

Figure 1 and 4 provide examples for representatives generated by bundles. Notice that since we always
consider bundles that generate representatives in this paper, bundle summations also respect the order ‘≺’ in
Definition 2.5. The main benefits of introducing wire bundles are that (i) they can be summed efficiently and (ii)
explicit representatives can be generated from them also efficiently (see the Algorithm ExtRep below for the
detailed process).

Algorithm 2.1. (ExtRep: Extracting representative from bundle) Let W = {ωι1 , . . . , ωιℓ} be a wire
bundle where ι1 < · · · < ιℓ and let rep be the representative for an interval [b, d] generated by W . We can assume
ιℓ ≤ d because wires in W with indices greater than d do not contribute to a cycle in rep. Moreover, let ιk be the
last index in ι1, . . . , ιℓ no greater than b. We have that z =

∑ιk
j=ι1

ωj is the cycle at indices [b, ιk+1) in rep. We
then let λ iterate over k + 1, . . . , ℓ − 1. For each λ, we add ωιλ to z, and the resulting z is the cycle at indices
[ιλ, ιλ+1) in rep. Finally, we add ωιℓ to z, and z is the cycle at indices [ιℓ, d] in rep. Since at every λ ∈ [k + 1, ℓ],
we add at most one cycle to another cycle, the whole process involves O(m) chain summations.

3 Representatives as wire bundles

We first give a brief overview of our algorithm to illustrate how representatives in zigzag modules can be compactly
stored as wire bundles (see Section 4 for details of the algorithm). Consider computing only the homology
barcode PersH(F). Our algorithm in Section 4 stems from an idea for computing PersH(F) that directly maintains
representatives for the intervals: Before each iteration i, assume that we are given intervals in PersH(Fi) and
their representatives. The aim of iteration i is to compute those for PersH(Fi+1) by processing the inclusion

Ki
σi←−→ Ki+1. For the computation, we only need to pay attention to those active intervals in PersH(Fi) ending

with i because the non-active intervals and their representatives have already been finalized. Consider an interval
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=

σi←→

⇓

σj←−↩

ωj+1

j + 1 k

k

ωi+1

i+ 1

σi←→
k

ωi+1

i+ 1

ωj+1

[ )[ ]ωi+1 + ωj+1ωi+1

Figure 3: Summing the two representatives generated by a single wire results in a new representative generated by
a bundle containing the two wires.

[b, i] ∈ PersH(Fi) with a representative rep. If the last cycle zi (at index i) in rep resides in Ki+1, the interval
[b, i] ∈ PersH(Fi) can be directly extended to [b, i+ 1] ∈ PersH(Fi+1) along with the representative where the cycle
at i+ 1 equals zi. Otherwise, if zi ⊈ Ki+1, we perform summations on the representatives to modify zi in rep so
that zi becomes contained in Ki+1 and [b, i] can be extended.

In iteration i, whenever the inclusion Ki ↔ Ki+1 generates a new birth index i+ 1 ∈ PH(Fi+1), we have a
new active interval [i+ 1, i+ 1] ∈ PersH(Fi+1). We assign a representative repi+1 = {zi+1} to [i+ 1, i+ 1] where
zi+1 only needs to satisfy the birth condition in Definition 2.3. Suppose that [i+ 1, i+ 1] ∈ PersH(Fi+1) is directly
extended to [i+ 1, k] ∈ PersH(Fk) in later iterations without its representative repi+1 = {zα | α ∈ [i+ 1, k]} being
modified by representative summations. We then have that zα = zi+1 for each α, which means that repi+1 is
generated by the wire ωi+1 := zi+1 (see Figure 3.). Suppose that we have a similar interval [j + 1, k] ∈ PersH(Fk)
with a representative repj+1 also generated by a single wire ωj+1, where j+1 > i+1 and Kj ←↩ Kj+1 is backward.
Then, j + 1 ≺ i+ 1 according to Definition 2.5, and we can sum repj+1 to repi+1 to get a new representative for
[i+ 1, k]. We have that the new representative is generated by the bundle {ωi+1, ωj+1} as illustrated in Figure 3.

ω5

)[ ω2 + ω5ω2 )[ ω2 + ω5 + ω7 ]

ω7

10

ω3

3
[ ω3 )[ ω3 + ω7 ]

ω7

10

ω2

2
[

⇓

ω5

ω3

3
ω2 + ω3 + ω5 ]

10

ω2

ω2 + ω3 )[[

=

5 7

7

5

Figure 4: Summing two representatives generated by the bundles {ω2, ω5, ω7}, {ω3, ω7} respectively results in a
new representative generated by the bundle {ω2, ω3, ω5}.

In the computation of PersH(F), a representative can only be changed due to a direct extension or a
representative summation after being created. It is easy to verify that a representative is generated by a bundle
after being created and that a representative is still generated by a bundle after being extended given that it is
generated by a bundle before the extension. We then only need to show that rep ⊞ rep′ is still generated by a
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bundle if two representatives rep and rep′ are generated by bundles. Figure 4 provides an example involving two
intervals [2, 10], [3, 10] whose representatives are generated by the bundles {ω2, ω5, ω7}, {ω3, ω7} respectively. The
resulting representative of the summation is generated by the bundle {ω2, ω3, ω5} which is the symmetric difference.
In general, for two bundles W and W ′ generating representatives rep and rep′ respectively, it could happen that
the representative rep∗ generated by W ⊞W ′ is not equal to rep⊞ rep′. However, we have that each cycle in rep∗

is always homologous to the corresponding cycle in rep⊞ rep′. The rest of the section formally justifies the claim.
The reader may wonder why we need the boundary module and its representatives at all. While theoretically

PersH(F) and the bundles generating the representatives can be computed independently without considering
the boundary module B(F), introducing B(F) helps us achieve the O(m2n) time complexity. See Remark 4.4 in
Section 4 for a detailed explanation.

For any interval in PersH(Fi)∪ PersB(Fi), our algorithm maintains a wire bundle generating its representative.
Proposition 3.1 lets us replace representatives with wire bundles.

Proposition 3.1. Let [b, i], [b′, i] ∈ PersH(Fi) ∪ PersB(Fi) and b ≺ b′. Suppose that W and W ′ generate
a representative for [b, i] and [b′, i] respectively. Then, the sum W ⊞ W ′ generates a representative for
[b′, i] ∈ PersH(Fi) ∪ PersB(Fi).

Before proving Proposition 3.1, we prove a result (Proposition 3.2) which says that wires in a bundle for an
interval, which gets added to other intervals, produce only boundaries outside the interval and those boundaries
reside in the respective complexes. This, in turn, helps to prove Proposition 3.1.

Each time we extend an interval [b, i − 1] in PersH(Fi−1) (resp. PersB(Fi−1)) to [b, i] in PersH(Fi) (resp.
PersB(Fi)), the birth index b does not change. So we denote the bundle associated with [b, i] as W b in this section.
After being created, W b only changes when another bundle W x is added to it because the representative generated
by W x needs to be added to the representative for [b, i] generated by W b.

Definition 3.1. A boundary bundle W is said to be alive till index b if the cycle zα =
∑
ωj∈W,j≤α ωj is in B(Kα)

for every α ≤ b. Notice that zα is the empty chain if there is no ωj ∈W s.t. j ≤ α.

Proposition 3.2. Let [b, i] ∈ PersH(Fi) with Kb−1 ←−↩ Kb being backward, or [b, i] ∈ PersB(Fi). Let W
b ⊆W b be

defined as W
b
= {ωj ∈W b | j < b}. Then, W

b
is a boundary bundle alive till b.

Proof. Let X be the set containing each index x ≤ i so that either x ∈ PH(Fi) with backward Kx−1 ←−↩ Kx, or
simply x ∈ PB(Fi). Let W

x
= {ωj ∈W x | j < x} for each x ∈ X.

Let a0, a1, . . . , ak denote the series of all operations that change a bundle W x for x ∈ X, i.e., each aj either
creates a bundle W x at an index x ∈ X or sums a bundle W y to W x for x ∈ X. Notice that y is necessarily in X
because the bundle summation respects the order ‘≺’ in Definition 2.5. We show by induction on the number of
operations k that the bundle W x for any x ∈ X maintains the property that the derived W

x
is a boundary bundle

alive till index x. The operation a0 starts a representative with a single cycle z ∈ Z(Kx) at some index x ∈ X
with the wire ωx = z. The bundle W x then equals {ωx} and the claim is trivially true.

For the inductive step, assume that the claim is true after an operation aℓ for ℓ ≥ 0. If the the operation aℓ+1

starts a representative, the claim holds trivially. Assume that aℓ+1 adds a wire bundle W y, y ∈ X, to a W x. By
the inductive hypothesis, W

x
= {ωj |ωj ∈ W x, j < x} and W y

= {ωj |ωj ∈ W y, j < y} are boundary bundles
alive till x and y respectively. There are two possibilities:

(i) y > x: Let W = W x ⊞W y. Observe that, for α ≤ x, the cycle zα =
∑
ωj∈W,j≤α ωj =

∑
ωj∈W

x
,j≤α ωj +∑

ωj∈W
y
,j≤α ωj is a boundary in Kα because the two cycles given by the two sums on RHS are boundaries in Kα.

It follows that W = {ωj ∈W | j < x} is a boundary bundle alive till x and the inductive hypothesis still holds for
x.

(ii) y < x: Let W = W x ⊞W y. In this case, y ∈ PersB(F). It can be verified that, since y ∈ PersB(F), W y

is necessarily a boundary bundle because the bundle summations respect the order in Definition 2.5. Then, the
bundle W ′ = {ωj |ωj ∈W y, j < x} is a boundary bundle alive till x. By the inductive hypothesis, the wire bundle

W
x
is a boundary bundle alive till x. Therefore, the sum W ′ ⊞W

x
, which is the updated W

x
, is a boundary

bundle alive till x; the inductive hypothesis follows.

Proof. [Proof of Proposition 3.1] Let rep = {zα |α ∈ [b, i]}, rep′ = {z′α |α ∈ [b′, i]} be the representatives generated
by W and W ′ respectively. We have the following cases to consider:
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Case 1, b < b′: In this case, every cycle zα, α ∈ [b′, i], in rep ⊞ rep′ satisfies that zα = zα + z′α. Since
zα =

∑
ωj∈W,j≤α ωj and z

′
α =

∑
ωj∈W ′,j≤α ωj , we have that

zα =
∑

ωj∈W,j≤α

ωj +
∑

ωj∈W ′,j≤α

ωj =
∑

ωj∈W⊞W ′,j≤α

ωj .

This means that W ⊞W ′ generates rep⊞ rep′, a representative for [b′, i] by Proposition 2.2.
Case 2, b′ < b: We have zα in rep⊞ rep′ equals z′α for b′ ≤ α < b. However, the wire bundle W may have wires in
W = {ωj ∈W | j < b} whose addition to z′α, b

′ ≤ α < b, may create a different cycle in the representative generated
byW⊞W ′. By Proposition 3.2, W is necessarily a boundary bundle alive till index b. Let z′α be the cycle at index α
in the representative generated byW⊞W ′, where b′ ≤ α < b. Then, z′α =

∑
ωj∈W⊞W ′,j≤α ωj = z′α+

∑
ωj∈W,j≤α ωj ,

which means that z′α is homologous to z′α. Hence, z
′
α can be taken as a cycle in a representative for [b′, i]. This

means that W ⊞W ′ generates a representative for [b′, i].

Theorem 3.1. There is a wire bundle W = {wι | ι ∈ PH(F) ∪ PB(F)} so that a representative for any
[b, d] ∈ PersH(F) ∪ PersB(F) is generated by a wire bundle that is a subset of W .

Proof. We give a constructive proof. Assume inductively that we have constructed a wire bundle Wi = {wι | ι ∈
PH(Fi)∪PB(Fi)} so that for every [b, d] ∈ PersH(Fi)∪PersB(Fi), we have a wire bundleW [b,d] ⊆Wi that generates
a representative for [b, d]. The base case when i = 0 holds trivially. For the inductive step, consider extending the
filtration Fi to Fi+1 while assuming the hypothesis for Fi. Since any [b, d] ∈ PersH(Fi) ∪ PersB(Fi) where d < i is
not affected by the extension, we do not consider them in the arguments below.

Case 1, Ki
σi
↪−−→ Ki+1 and i+ 1 ∈ PH(Fi+1): Any [b, i] ∈ PersH(Fi) extends to [b, i+ 1] ∈ PersH(Fi+1) because

the representative cycle zi at index i for [b, i] is also in Ki+1 and thus we choose zi+1 = zi for [b, i+ 1]. Then, the
wire bundle W [b,i] also represents [b, i+ 1]. The same holds for intervals in PersB(Fi). We also have a new interval
[i+ 1, i+ 1] ∈ PersH(Fi+1). Let a new wire ωi+1 be any cycle in Z(Ki+1) containing σi. We have that the bundle
{ωi+1} generates a representative for [i+ 1, i+ 1]. Subsets of the wire bundle Wi+1 =Wi ∪ {ωi+1} then represent
intervals in both PersH(Fi+1) and PersB(Fi+1).

Case 2, Ki
σi
↪−−→ Ki+1 and i ∈ NH(Fi): In this case, ∂σi becomes a boundary in Ki+1, an interval in PersH(Fi) does

not extend to i+1, and a new interval [i+1, i+1] in PersB(Fi+1) begins. To determine the interval [b, i] ∈ PersH(Fi)
that does not extend to i+ 1, consider the cycle ∂σi which is in Z(Ki) \ B(Ki). Let [b1, i], . . . , [bk, i] be all the
intervals in PersH(Fi) and PersB(Fi) with representatives rep1, . . . , repk respectively. Let z1, . . . , zk be their cycles
at index i respectively. Since these cycles form a basis for Z(Ki) by Proposition 2.1, the cycle ∂σi is a linear
combination of them. Without loss of generality (WLOG), assume that after reindexing, ∂σi = z1 + · · ·+ zℓ for
some ℓ ≤ k where b1 ≺ · · · ≺ bℓ. Add the representatives rep1, . . . , repℓ−1 to repℓ to obtain a new representative

rep′ℓ for [bℓ, i] ∈ PersH(Fi) (Proposition 2.2). The cycle of rep′ℓ at index i is ∂σi by construction which becomes a

boundary in Ki+1. Therefore, rep
′
ℓ is a representative for [bℓ, i] ∈ PersH(Fi+1) and W

[b1,i] ⊞ · · ·⊞W [bℓ,i] represents

[bℓ, i] ∈ PersH(Fi+1) by Proposition 3.1. All other intervals in PersH(Ki) and PersB(Ki) extend to PersH(Ki+1) and
PersB(Ki+1) with their wire bundles remaining the same. A new interval [i+ 1, i+ 1] ∈ PersB(Fi+1) begins whose
representative is given by the cycle ∂σi. So, the wire ωi+1 = ∂σi represents this interval in PersB(Fi+1). Subsets of
the wire bundle Wi+1 =Wi ∪ {ωi+1} then generate representatives for all intervals in PersH(Fi+1) ∪ PersB(Fi+1).

We have two remaining cases whose details are provided in Appendix C. To finish the proof, we also need to
show that the zigzag barcodes we have are correct whenever we proceed from Fi to Fi+1. Since all intervals we
have admit representatives, the correctness of the barcodes follows from Proposition 4.1 presented in Section 4.

4 Algorithm

We present the O(m2n) algorithm WiredZigzag computing PersH(F), PersB(F), and their representatives based
on exposition in the previous section. As mentioned, the general idea of the algorithm is to maintain a wire bundle
for each interval in PersH(F) and PersB(F) so that the bundle generates a representative for the interval. In each

iteration i, the algorithm processes the inclusion Ki
σi←−→ Ki+1 in F starting with i = 0. Before iteration i, we

assume that we have computed all intervals in PersH(Fi) and PersB(Fi) along with the wire bundles. The aim of
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iteration i is to compute those for PersH(Fi+1) and PersB(Fi+1). In each iteration i, we have two sets of active
intervals (ending with i) for PersH(Fi) and PersB(Fi) respectively,{

[b̂j , i] ∈ PersH(Fi) | j = 1, 2, . . . , r
}
,

{
[b′k, i] ∈ PersB(Fi) | k = 1, 2, . . . , q

}
where r is the dimension of H(Ki) and q is the dimension of B(Ki). All non-active intervals in PersH(Fi) (resp.
PersB(Fi)) are automatically carried into PersH(Fi+1) (resp. Pers

B(Fi)) and their wire bundles do not change.

For each homology interval [b̂j , i], we let W j denote the (non-boundary) bundle maintained for [b̂j , i], and for
each boundary interval [b′k, i], we let Uk denote the (boundary) bundle maintained for [b′k, i]. At the end of the

algorithm, we have all intervals and bundles in PersH(Fm) = PersH(F) and PersB(Fm) = PersB(F). We then
generate a representative for each interval from its bundle.

4.1 Maintenance of pivoted matrices For the computation, we maintain three 0-1 matrices Z, B, and C
where each column represents a chain s.t. the k-th entry of the column equals 1 iff the simplex with index k
belongs to the chain. We also do not differentiate a matrix column and the chain it represents when describing the
algorithm. In each iteration i, the following invariants hold:

1. Z has r columns each corresponding to an active interval in PersH(Fi) s.t. a column Z[j] equals the last cycle

(at index i) in the representative for [b̂j , i] generated by W j .

2. B has q columns each corresponding to an active interval in PersB(Fi) s.t. a column B[k] equals the last cycle
in the representative for [b′k, i] generated by Uk.

3. C also has q columns s.t. B[k] = ∂(C[k]) for each k.

By Proposition 2.1, columns in Z and B form a basis of Z(Ki). Throughout the algorithm, we also always
ensure that columns in Z, B, and C form a basis for C(Ki) in each iteration. This can be inductively proved based
on the details of the algorithm presented in this section and Appendix D. The detailed justification is omitted. Let
the pivot of a matrix column be the index of its lowest entry equal to 1. Our algorithm maintains the invariant
that columns in Z and B altogether have distinct pivots so that getting the coordinates of a cycle in Z(Ki) in
terms of the basis represented by columns of Z and B takes O(n2) time. This is an essential part of our algorithm
as demonstrated in its description below.

Remark 4.1. Since a bundle is just a set of wire indices and we have no more than one wire born at each index,
we maintain all wires in a matrix representing the containments ωi 7→ {σ ∈ Ki | σ ∈ ωi}. Similarly, bundles are
maintained in a matrix representing the containments W 7→ {ωi ∈W}.

4.2 Detailed processing in iteration i of WiredZigzag Iteration i of the algorithm has the following
processes in different cases (more details such as how we ensure the distinct pivots in Z,B and how to determine
the injective/surjective cases are provided in Appendix D):

Ki
σi
↪−−→ Ki+1 is forward, ψ∗

i is injective: We have:

Birth in homology module (i+ 1 ∈ PH(F)): An interval [i + 1, i + 1] ∈ PersH(Fi+1) active in the next
iteration is created. We find a new non-boundary wire ωi+1 which is a cycle in Ki+1 containing σi
so that condition (i) in Definition 2.7 is satisfied. We also have a new non-boundary bundle {ωi+1}
for [i + 1, i + 1] ∈ PersH(Fi+1). (The validity of the new bundle {ωi+1} can be seen by examining

Definitions 2.3 and 2.7.) Each [b̂j , i] ∈ PersH(Fi) extends to be an active interval [b̂j , i+ 1] ∈ PersH(Fi+1).

Since Z[j] ⊆ Ki+1 because Ki
σi
↪−−→ Ki+1 is forward, W j stays the same for the next iteration. Finally,

since ωi+1 is the cycle at index i+ 1 in the representative generated by the bundle {ωi+1}, we add ωi+1

as a new column to Z corresponding to the new active interval.

Since B(Ki) = B(Ki+1), each [b′k, i] ∈ PersB(Fi) extends to be an active interval [b′k, i+ 1] ∈ PersB(Fi+1) and
the bundle Uk stays the same.
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Ki
σi
↪−−→ Ki+1 is forward, ψ∗

i is surjective: Both of the following happen:

Death in homology module (i ∈ NH(F)): By performing reductions on ∂σi and the columns in Z and B,
we find a subset of columns (J ⊆ {1, . . . , r}) in Z s.t.

(4.3)
∑
j∈J

[Z[j]] = [∂σi]

in H(Ki). Let b̂λ be the maximum birth index in {b̂j | j ∈ J} w.r.t the order ‘≺’. We have that [b̂λ, i] ceases

to be active, i.e., [b̂λ, i] ∈ PersH(Fi+1). Let W
∗ be the sum of all the bundles in {W j | j ∈ J}. We have

that W ∗ generates a representative rep∗ for [b̂λ, i] ∈ PersH(Fi+1). (To see this, notice that the last cycle in
rep∗ is

∑
j∈J Z[j] which is homologous to ∂σi in Ki, and so the death condition in Definition 2.3 is satisfied.

The validity of W ∗ then follows from Proposition 3.1.) For each j ∈ {1, . . . , r} \ {λ}, [b̂j , i] ∈ PersH(Fi)

extends to be [b̂j , i + 1] ∈ PersH(Fi+1) for which W j stays the same because Ki
σi
↪−−→ Ki+1 is forward.

Finally, we delete Z[λ] from Z.

Birth in boundary module (i+ 1 ∈ PB(F)): A new active interval [i+ 1, i+ 1] ∈ PersB(Fi+1) is created.
We have a new boundary wire ωi+1 = ∂σi satisfying condition (iii) in Definition 2.7. We also have a
new boundary bundle {ωi+1} for [i + 1, i + 1] ∈ PersB(Fi+1). Each [b′k, i] ∈ PersB(Fi) extends to be

[b′k, i+ 1] ∈ PersB(Fi+1) for which U
k stays the same. Finally, we add ∂σi as a new column to B and add

a new column containing only σi to C.

Ki
σi←−−↩ Ki+1 is backward, ψ∗

i is surjective: Both of the following happen:

Birth in homology module (i+ 1 ∈ PH(F)): A new active interval [i+ 1, i+ 1] ∈ PersH(Fi+1) is created.
We find a new non-boundary wire ωi+1 which is a cycle homologous to ∂σi in Ki+1 so that condition (ii)
in Definition 2.7 is satisfied. The rest of the processing is the same as in the previous birth event for the
homology module. Notice that each W j stays the same because Z(Ki) = Z(Ki+1).

Death in boundary module (i ∈ NB(F)): Since σi is not in a cycle in Ki and columns in Z, B, and C
form a basis of C(Ki), at least one column in C contains σi. Whenever there are two columns C[j], C[k]
in C containing σi with b

′
k ≺ b′j , set C[j] = C[j] +C[k], B[j] = B[j] +B[k], and U j = U j ⊞ Uk to remove

σi from C[j]. After this, only one column C[λ] in C contains σi and we have that [b′λ, i] ∈ PersB(Fi+1)

ceases to be active. Notice that Uλ still generates a representative for [b′λ, i] ∈ PersB(Fi+1). For each

k ∈ {1, . . . , q} \ {λ}, [b′k, i] ∈ PersB(Fi) extends to be [b′k, i+ 1] ∈ PersB(Fi+1) for which U
k now stays the

same because σi ̸∈ C[k] so that B[k] ∈ B(Ki+1). Finally, we delete B[λ] from B and delete C[λ] from C.

Ki
σi←−−↩ Ki+1 is backward, ψ∗

i is injective: We have:

Death in homology module (i ∈ NH(F)): We have that at least one column in Z contains σi. (To see
this, notice that σi cannot be in a column in B because σi has no cofaces in Ki. So σi has to be in
a column in Z because Z and B provide a basis for Z(Ki) and there is a cycle in Ki containing σi.)

Whenever there are two columns Z[j], Z[k] in Z with b̂k ≺ b̂j containing σi, set Z[j] = Z[j] + Z[k] and
W j =W j ⊞W k to remove σi from Z[j]. After this, only one column Z[λ] in Z contains σi and we have

that [b̂λ, i] ∈ PersH(Fi+1) ceases to be active. The remaining processing resembles what is done in the
death event for the boundary module and is omitted. Notice that we also need to remove σi from C and
the details are provided in Appendix D.

Since B(Ki) = B(Ki+1), each [b′k, i] ∈ PersB(Fi) extends to be [b′k, i + 1] ∈ PersB(Fi+1) and the bundle Uk

stays the same.

Remark 4.2. We can also consider our algorithm to have a ‘pairing of birth/death points’ structure as adopted by

the algorithm for computing standard persistence [8], where, e.g., b̂1, . . . , b̂r are carried as ‘unpaired’ birth indices
to be paired for the homology module.
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The following proposition from [4] (Proposition 9) helps draw our conclusion:

Proposition 4.1. Let π : PH(Fi)→ NH(Fi) be a bijection. If every b ∈ PH(Fi) satisfies that b ≤ π(b) and the
interval [b, π(b)] has a representative, then PersH(Fi) = {[b, π(b)] | b ∈ PH(Fi)}.

Remark 4.3. Similar facts hold for PB(Fi), N
B(Fi), and PersB(Fi).

Theorem 4.1. The barcodes PersH(F) and PersB(F) along with the representatives for the intervals can be
computed in O(m2n) time and O(mn) space.

Proof. First, to see that the algorithm presented above runs in O(m2n) time, we notice that there are no more
than O(n) summations of matrix columns and wire bundles in each iteration, which can be verified from the
details presented in this section and Appendix D. Hence, each iteration runs in O(mn) time where the costliest
steps are the bundle summations. At the end of the algorithm, we also need to generate a representative for each
interval from the maintained bundle. Generating representatives for all the O(m) intervals can be done in O(m2n)
time (see the Algorithm ExtRep). The O(m2n) complexity then follows. The space complexity follows from
maintaining O(m) wires each being a cycle of size O(n), O(n) bundles for the active intervals each of size O(m),
and the three matrices of size at most O(n2).

Based on Proposition 4.1, the correctness of the algorithm follows from the fact that wire bundles always
correctly generate representatives for the intervals in our algorithm. The validity of the wire bundles follows from
Proposition 3.1 (the only way a bundle changes after being created is by summations) and how we assign a bundle
to an interval in the algorithm when an interval is created or ceases to be active (finalized).

Remark 4.4. The key to achieving the O(m2n) time complexity are the following two invariants maintained in
our algorithm as described in Section 4.1: (i) pivots for the matrices Z and B are always distinct and (ii) Z[j]

always equals the last cycle in the representative for [b̂j , i] generated by W j. By invariant (i), we can obtain the
sum in Equation (4.3) in O(n2) time by reductions. By invariant (ii), we can take the sum W ∗ of the bundles

{W j | j ∈ J} based on Equation (4.3) for the finalized interval [b̂λ, i] when a death happens in the homology module.

It ensures that the last cycle in the representative for [b̂λ, i] ∈ PersH(Fi+1) generated by W ∗ satisfies the death
condition in Definition 2.3. As evident in Appendix D, in order to maintain the distinctness of pivots, one cannot
avoid summations of columns in B to columns in Z. Without incorporating the module B(F) and its bundles,
invariant (ii) would not hold when columns in B are summed to columns in Z.

5 Experiments

We generate zigzag filtrations using the oscillating Rips [14] which are produced from point clouds of size 2000 –
4000 sampled from triangular meshes (Space Shuttle from an online repository∗; Bunny and Dragon from the
Stanford Computer Graphics Laboratory). Table 1 lists the running time for the these filtrations with different
maximum dimensions for the simplices taken.

Table 1: Running time for WiredZigzag on several filtrations. All tests were run on a Ubuntu 20.04 server with
two AMD EPYC 7513 2.6 GHz CPUs having 32 cores and 1TB memory (program is single-threaded).

Filtration Max. Dim. Length Runtime

bunny 1 1,012,198 37s

space shuttle 3 5,135,721 5m57s

dragon 4 5,811,311 5m24s

∗Ryan Holmes: http://www.holmes3d.net/graphics/offfiles/
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A Proof of Proposition 2.1

First, the fact that
{
[zH1 ], . . . , [zHk′ ]

}
is a basis of H(Kj) and

{
zB1 , . . . , z

B
k

}
is a basis of B(Kj) follows from the

definition of interval decomposition and representatives. Consider any cycle z in Z(Kj). Then, there exists a
unique αt ∈ {0, 1} for each 1 ≤ j ≤ k′ so that [z] =

∑
t αt[z

H
t ]. Then, [z] +

∑
t αt[z

H
t ] = [z +

∑
t αtz

H
t ] = 0.

It follows that (z +
∑
t αtz

H
t ) ∈ B(Kj), which implies that there exists a unique βℓ for each 1 ≤ ℓ ≤ k so that

z+
∑
t αtz

H
t =

∑
ℓ βℓz

B
ℓ . So, z =

∑
t αtz

H
t +

∑
ℓ βℓz

B
ℓ for unique αj ’s, 1 ≤ t ≤ k′ and βℓ’s, 1 ≤ ℓ ≤ k. It follows that

the union of the cycles {zBℓ } and {zHt } generate Z(Kj). Since k + k′ = dim(B(Kj)) + dim(H(Kj)) = dim(Z(Kj)),
they form a basis.

B Proof of Proposition 2.2

Case 1, b < b′: In this case, every cycle zα, α ∈ [b′, i], in rep ⊞ rep′ satisfies that zα = zα + z′α. It can be
verified that we only have three different cases: (i) b ∈ PB(Fi), b

′ ∈ PH(Fi), (ii) b ∈ PB(Fi), b
′ ∈ PB(Fi), and

(iii) b ∈ PH(Fi), b
′ ∈ PH(Fi). We take up the case (i) and the proof for the other cases is similar. Assuming

Kα ↪−→ Kα+1 is forward for b′ ≤ α < i, we have ψ#
α (zα) = zα = zα+1 and ψ∗

α([z
′
α]) = [z′α+1]. Therefore,

ψ∗
α([zα]) = ψ∗

α([zα]) + ψ∗
α([z

′
α]) = [zα+1] + [z′α+1] = [zα+1] as required. The same applies when Kα ←−↩ Kα+1 is
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backward. Finally, we verify that the birth and death conditions hold for zb′ . First assume that Kb′−1 ↪−→ Kb′ is
forward. For the birth condition, we have that zb′ = zb′ + z′b′ ∈ Z(Kb′) \ Z(Kb′−1) because z

′
b′ ∈ Z(Kb′) \ Z(Kb′−1)

and zb′ = zb′−1 ∈ Z(Kb′) ∩ Z(Kb′−1). One can also verify the death condition for the cycle zi. For a backward
Kb′−1 ←↩ Kb′ , we omit the verification for the birth and death conditions. It follows that in case (i), rep⊞ rep′ is a
homology representative for [b′, i], b′ ∈ PH(Fi), as required. We also have that the justification for case (ii) and
(iii) can be similarly done.

Case 2, b′ < b: In this case, we have zα = z′α for α ∈ [b′, b− 1] and zα = zα + z′α for α ∈ [b, i]. We have only two
possible cases: (i) b ∈ PB(Fi) and b

′ ∈ PH(Fi); (ii) b, b
′ ∈ PH(Fi) and Kb−1 ←−↩ Kb is backward. Again, using the

case analysis, one can show that ψ∗
α([zα]) = [zα+1] if ψ

∗
α is forward and ψ∗

α([zα+1]) = [zα] otherwise. Moreover,
the birth and death conditions can also be verified easily implying that rep ⊞ rep′ in both cases is a homology
representative for [b′, i], b′ ∈ PH(Fi).

C Missing cases in the proof of Theorem 3.1

Case 3, Ki
σi←−−↩ Ki+1 and i + 1 ∈ PH(Fi+1): In this case, an interval [b, i] ∈ PersB(Fi) does not extend to

i+ 1 and a new interval [i+ 1, i+ 1] ∈ PersH(Fi+1) begins. Let [b1, i], . . . , [bk, i] be all the intervals in PersB(Fi)
with representatives rep1, . . . , repk respectively, and let zji be the cycle at index i in repj for each 1 ≤ j ≤ k.

Since zji ∈ B(Ki), z
j
i has a ‘bounding chain’ cj ∈ C(Ki) s.t. z

j
i = ∂(cj). Assuming after reindexing zj1, . . . , z

j
ℓ are

all the cycles whose bounding chains contain σi where b1 ≺ · · · ≺ bℓ. We add rep1 to rep2, . . . , repℓ to remove
σi from their bounding chains. Then, the new representatives rep′2 := rep1 ⊞ rep2, . . . , rep

′
ℓ := rep1 ⊞ repℓ for

the intervals [b2, i], . . . , [bℓ, i] can extend to i + 1 because their bounding chains now do not contain σi. By
Proposition 3.1, W [bj ,i] ⊞W [b1,i] represents [bj , i + 1] ∈ PersB(Fi+1) for 2 ≤ j ≤ ℓ. So, we update W [bj ,i] as
W [bj ,i] ⊞W [b1,i] for 2 ≤ j ≤ k. The interval [b1, i] does not extend to i + 1 with the wire bundle W [b1,i] still
representing [b1, i] ∈ PersB(Fi+1). A new interval [i+ 1, i+ 1] ∈ PersH(Fi+1) begins with a representative {∂σi}
which is generated by a new wire ωi+1 = ∂σi. Subsets of the wire bundle Wi+1 = Wi ∪ {ωi+1} then generate
representatives for all intervals in PersH(Fi+1) ∪ PersB(Fi+1).

Case 4, Ki
σi←−−↩ Ki+1 and i ∈ NH(Fi): In this case, an interval [b, i] ∈ PersH(Fi) does not extend to i + 1.

Let rep1, . . . , repk be all the representatives for [b1, i], . . . , [bk, i] ∈ PersH(Fi) respectively whose cycles at index i
contain σi. WLOG, assume that b1 ≺ · · · ≺ bk. We cannot extend these representatives to i+1 because σi ⊈ Ki+1.
We add rep1 to rep2, . . . , repk to obtain new representatives rep′2, . . . , rep

′
k for the intervals whose cycles at index i

now do not contain σi. Similar to previous cases, the bundle W [bj ,i] ⊞W [b1,i] represents [bj , i+ 1] ∈ PersH(Fi+1)
for 2 ≤ j ≤ k. So, we update W [bj ,i] as W [bj ,i] ⊞W [b1,i] for 2 ≤ j ≤ k. The interval [b1, i] does not extend to i+ 1
and rep1 remains a representative for [b1, i] ∈ PersH(Fi+1).

D Implementation details

We provide implementation details for the algorithm presented in Section 4. For a column c of the matrices
maintained, we denote the pivot of c as pivot(c). Also, in our algorithm, each simplex σi added in F is assigned
an id i. This means that a simplex has a new id when it is added again after being deleted. We then present the
details for the different cases.

D.1 Forward Ki
σi
↪−−→ Ki+1 We need to determine whether ∂σi is already a boundary in Ki. If this is true, a

new cycle containing σi is created in Ki+1 and ψ∗
i is injective; otherwise, the homology class [∂σi] becomes trivial

in H(Ki+1) and ψ
∗
i is surjective. To determine this, we perform reductions on ∂σi and the columns in Z and B to

get a sum ∂σi =
∑
j∈J Z[j] +

∑
k∈I B[k]. We then have that ∂σi is a boundary in Ki iff J = ∅.

D.1.1 ψ∗
i is injective Since ∂σi =

∑
k∈I B[k], we let the new wire ωi+1 containing σi be ωi+1 = σi+

∑
k∈I C[k],

where ∂(σi+
∑
k∈I C[k]) = ∂σi+

∑
k∈I B[k] = 0. Notice that as mentioned, we need to add ωi+1 as a new column

to the matrix Z. Since pivot(ωi+1) = i, columns in Z and B still have distinct pivots.

D.1.2 ψ∗
i is surjective The subset J derived from the reductions is the same as the subset J in Equation (4.3)

in the corresponding case of Section 4. So the processing for the corresponding case described in Section 4 can be
directly performed. Notice that we add a new column to B in this case. Since the pivot of the new column of B
may conflict with the pivot of another column in Z or B, we use a loop to repeatedly sum two columns whose
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pivots are the same until the pivots become distinct again. In each iteration of the loop, three cases can happen:

1. Two columns B[j] and B[k] have the same pivot: WLOG, assume that b′k ≺ b′j . Let B[j] = B[j] + B[k],

C[j] = C[j] + C[k], and U j = U j ⊞ Uk.

2. Two columns Z[j] and B[k] have the same pivot: We have b′k ≺ b̂j . Let Z[j] = Z[j]+B[k] and W j =W j ⊞Uk.

3. Two columns Z[j] and Z[k] have the same pivot: WLOG, assume that b̂k ≺ b̂j . Let Z[j] = Z[j] + Z[k] and
W j =W j ⊞W k.

Since in each iteration of the above loop we change only one column of Z and B, there are at most two
columns of Z and B with the same pivot at any time. Hence, the above loop ends in no more than n iterations
because the pivot of the two clashed columns is always decreasing.

D.2 Backward Ki
σi←−−↩ Ki+1 We need to determine whether σi is in a cycle z in Ki. If this is true, z is a cycle

in Ki but not in Ki+1 indicating that ψ∗
i is injective; otherwise, ψ∗

i is surjective. Since columns in Z and B form
a basis for Z(Ki), we only need to check whether σi is in a column in Z or B. Moreover, since σi has no cofaces in
Ki, we have that σi cannot be in a boundary in Ki. Therefore, we only need to check whether σi is in a column in
Z.

D.2.1 ψ∗
i is surjective Since columns in Z, B, and C form a basis for C(Ki) and σi is not in a column in Z or

B, we have that σi must be in at least one column of C. Since σi ̸∈ Ki+1, we need to remove σi from C when
proceeding from Ki to Ki+1. To do this, we use a loop to repeatedly sum two columns in C containing σi until
only one column in C contains σi. Notice that whenever we sum two columns in C, we also need to sum the
corresponding columns in B and their wire bundles. Hence, the summations have to respect the order ‘≺’. We use
the following loop to perform the summations:

1. α1, . . . , αℓ ← indices of all columns of C containing σi

2. sort and rename α1, . . . , αℓ s.t. b
′
α1
≺ · · · ≺ b′αℓ

.

3. c1 ← C[α1]

4. c2 ← B[α1]

5. U ← Uα1

6. for α← α2, . . . , αℓ do:

7. if pivot(B[α]) > pivot(c2) then:

8. C[α]← C[α] + c1

9. B[α]← B[α] + c2

10. Uα ← Uα ⊞ U

11. else:

12. temp c1← C[α]

13. C[α]← C[α] + c1

14. c1 ← temp c1

15. temp c2← B[α]

16. B[α]← B[α] + c2

17. c2 ← temp c2

18. temp U← Uα

19. Uα ← Uα ⊞ U

20. U ← temp U
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We always maintain the following invariants for the loop: (i) c2 = ∂(c1); (ii) c2 is the last cycle (at index i)
in the representative generated by U ; (ii) the birth index corresponding to c2 (and U) is always less than b′α in
the total order ‘≺’; (iv) c2 along with B[α2], . . . , B[αℓ] have distinct pivots. When the loop terminates, we are
left with a single column C[λ] := C[α1] in C containing σi. Notice that B[λ] = ∂(C[λ]) = ∂(C[λ] \ {σi}) + ∂σi,
where C[λ] \ {σi} ⊆ Ki+1. This indicates that B[λ] is homologous to ∂σi in Ki+1. So we let the new wire ωi+1

be B[λ] and need to add ωi+1 as a new column to Z. Notice that we also delete B[λ] and C[λ] from B and C
respectively. Since the pivot of the newly added column in Z may clash with that of another column in B or Z,
we need to perform summations as in Section D.1.2 to make the pivots distinct again. Notice that assumptions on
the matrices Z, B, and C still hold. For example, columns in B still form a basis for B(Ki+1) because columns in
B are still linearly independent and the dimension of B(Ki+1) is one less than that of B(Ki).

D.2.2 ψ∗
i is injective We first update C so that no columns of C contain σi. Let Z[k] be a column of Z

containing σi. For each column C[j] of C containing σi, set C[j] = C[j] +Z[k]. Notice that ∂(C[j]) stays the same
but the updated C[j] does not contain σi.

As indicated in Section 4, whenever there are two columns in Z which contain σi, we sum the two columns
and their corresponding bundles to remove σi from one column. We implement the summations as follows, which
is similar to the loop in Section D.2.1:

1. α1, . . . , αℓ ← indices of all columns of Z containing σi

2. sort and rename α1, . . . , αℓ s.t. b̂α1
≺ · · · ≺ b̂αℓ

.

3. z ← Z[α1]

4. W ←Wα1

5. for α← α2, . . . , αℓ do:

6. if pivot(Z[α]) > pivot(z) then:

7. Z[α]← Z[α] + z

8. Wα ←Wα ⊞W

9. else:

10. temp z← Z[α]

11. Z[α]← Z[α] + z

12. z ← temp z

13. temp W←Wα

14. Wα ←Wα ⊞W

15. W ← temp W

16. delete the column Z[α1] from Z

In the above pseudocodes, α1 is the index ‘λ’ as in the corresponding case in Section 4.
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