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Figure 1: A summary of the LLooM concept induction algorithm. Status quo topic models tend to produce topics aligned with
low-level keywords (e.g., “feminist, feminism”). We introduce LLooM, a concept induction algorithm that takes in unstructured
text and produces high-level concepts (e.g., “Criticism of Feminism”) defined by explicit inclusion criteria. We instantiate this
algorithm in the LLooMWorkbench, a mixed-initiative text analysis tool that can amplify the work of analysts by automatically
visualizing datasets in terms of interpretable, high-level concepts.

ABSTRACT
Data analysts have long sought to turn unstructured text data into
meaningful concepts. Though common, topic modeling and clus-
tering focus on lower-level keywords and require significant inter-
pretative work. We introduce concept induction, a computational
process that instead produces high-level concepts, defined by ex-
plicit inclusion criteria, from unstructured text. For a dataset of
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toxic online comments, where a state-of-the-art BERTopic model
outputs “women, power, female,” concept induction produces high-
level concepts such as “Criticism of traditional gender roles” and
“Dismissal of women’s concerns.” We present LLooM, a concept
induction algorithm that leverages large language models to itera-
tively synthesize sampled text and propose human-interpretable
concepts of increasing generality. We then instantiate LLooM in a
mixed-initiative text analysis tool, enabling analysts to shift their
attention from interpreting topics to engaging in theory-driven
analysis. Through technical evaluations and four analysis scenarios
ranging from literature review to content moderation, we find that
LLooM’s concepts improve upon the prior art of topic models in
terms of quality and data coverage. In expert case studies, LLooM
helped researchers to uncover new insights even from familiar
datasets, for example by suggesting a previously unnoticed concept
of attacks on out-party stances in a political social media dataset.
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1 INTRODUCTION
Much of the world’s information is bound up in unstructured text,
but it is challenging to make sense of this data. Topic modeling
algorithms—such as Latent Dirichlet Allocation (LDA) and unsu-
pervised clustering based on language model embeddings such
as BERTopic—have become ubiquitous tools for wading through
large-scale, unstructured data [3, 51]. Spreading to domains like
social science and medicine, topic models have had far-reaching
impact: researchers have used these models to analyze scientific
abstracts, social media feed content, and historical newspaper cov-
erage in order to investigate phenomena like scientific research
trends, political polarization, public health measures, and media
framing [16, 18, 24, 47, 49, 57].

However, the topics produced by these models are defined rel-
ative to low-level text signals such as keywords, requiring sub-
stantial effort from the analyst who must interpret, validate, and
reason about those topics. For example, when applied to a dataset of
misogynistic social media posts, a state-of-the-art BERTopic model
produces competent but low-level topics such as “women, power,
female” and “feminists, feminism, feminist,” which are on-topic but
too generic to help an analyst answer questions such as “how are
women in power described?” and “what kinds of arguments are
levied against feminists?” This gap arises because topic models rely
on measures of term co-occurrence or embedding distances, which
are highly correlated with low-level textual similarity and are of-
ten unreliable proxies for human judgement [26, 37, 63]. Moreover,
topic models often produce topics that are too general, too spe-
cific, or that are generally incoherent (“junk” topics, e.g., “morning,
snoring, sir”) [1, 11]. Analysts lack recourse when input texts are
categorized into uninformative groups. The tasks that analysts must
perform—generating research questions, formulating hypotheses,
and producing insights—are dependent on the creation of high-
level concepts, which we define as human-interpretable descriptions
defined by explicit inclusion criteria.

In this paper, we introduce concept induction, the task of extract-
ing high-level concepts from unstructured text to amplify theory-
driven data analysis. For example, given the same dataset of po-
tentially misogynistic social media posts that the BERTopic model
labeled with “women, power, female” and “feminists, feminism,
feminist,” concept induction seeks to identify concepts such as

“Criticism of traditional gender roles” and “Dismissal of women’s
concerns.” Each concept is defined by detailed criteria in natural
language: e.g., “Does the example critique or challenge traditional
gender roles or expectations?”, or “Does the example dismiss or
invalidate women’s fears, concerns, or experiences?”. These defin-
ing criteria are supported by a set of representative text examples
that best demonstrate the idea of the concept, along with concept
scores ranging from 0 to 1 that indicate the extent to which every
example in the dataset aligns with that concept (Figure 1).

To enable these results, we develop a concept induction algo-
rithm called LLooM, which draws on the ability of large language
models (LLMs) like GPT-3.5 and GPT-4 [46] to generalize from
examples: LLooM samples extracted text and iteratively synthe-
sizes proposed concepts of increasing generality (Figure 2). Once
data has been synthesized into a concept, we can move up to the
next abstraction level; we can generalize from smaller, lower-level
concepts to broader, higher-level concepts by repeating the process
with concepts as the input. Since concepts include explicit inclu-
sion criteria, we can expand the reach of any generated concept
to consistently classify new data through that same lens and dis-
cover gaps in our current concept set. These core capabilities of
synthesis, classification, and abstraction are what allow LLooM to
iteratively generate concepts, apply them back to data, and bubble
up to higher-level concepts.

Instantiated in a mixed-initiative text analysis tool that we call
the LLooM Workbench, our algorithm amplifies the work of ana-
lysts by automatically visualizing datasets in terms of interpretable,
high-level concepts. The LLooM Workbench additionally offers an-
alysts a traceable and malleable process. Each extracted concept is
not just a final label, but can be unrolled into an auditable trace of
the lower-level subconcepts that led to the concept (e.g., “Women’s
responsibilities,” “Traditional gender roles,” and “Power dynam-
ics and women” led to the “Criticism of traditional gender roles”
concept), where each subconcept is again paired with reviewable
criteria and representative examples. Further, analysts can use the
LLooM Workbench to seed the algorithm, steering its attention
toward particular concepts.

With a series of four analysis scenarios, we first illustrate how
LLooM works in practice by comparing it to a state-of-the-art
BERTopic model. These scenarios span a variety of domains and
analysis goals: a content moderation task with a dataset of toxic on-
line content [35], an analysis of partisan animosity on social media
feeds with a political social media content dataset [30], a literature
review analyzing the industry impact of the field of HCI with paper
abstracts from the past 30 years [6], and an analysis of anticipated
consequences of AI research with a dataset of broader impact state-
ments from NeurIPS 2020 [45]. In these scenarios, LLooM not only
covers most topics surfaced by BERTopic, but also provides on
average 2.0 times the number of high-quality topics. Additionally,
cluster-based topic models struggle with large sets of uncategorized
examples (averaging 77.7% coverage), but LLooM concepts cover
on average 93% of examples.

Then, in a set of technical evaluations, we benchmark LLooM
against zero-shot GPT-4 variants and BERTopic for real-world and
synthetic datasets; we find that LLooM provides performance gains
over baseline methods. These benefits are especially strong for un-
seen datasets (𝑝 < .02) and nuanced concepts (𝑝 < .0001) where
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Figure 2: A process overview of the LLooM concept induction algorithm. Starting from (1) unstructured text data, LLooM
performs (2) concept generation aided by an LLM to produce (3) high-level concepts, which consist of generated natural language
descriptions and explicit criteria in the form of zero-shot LLM prompts. LLooM performs (4) concept scoring based on concept
criteria prompts and visualizes data in terms of concepts in the (5) LLooMWorkbench, a mixed-initiative text analysis tool.

baseline methods struggle; LLooM improves ground truth concept
coverage by at least 17.9% and 16.0% in those cases, respectively.
While both LLooM and GPT-4 can produce overarching, summary-
style concepts, LLooM is capable of additionally producing the
nuanced and grounded concepts that analysts seek to more richly
characterize patterns in data. In expert case studies, we also gave
original researchers for two of the analysis scenarios access to
LLooM to re-analyze their data. The researchers used LLooMWork-
bench to interactively steer concepts and initiate theory-driven
explorations (e.g., refining a concept of “Policy-related” social me-
dia posts to those where policy was blamed for a crisis, or drawing
on domain knowledge to add a new concept for “Social distrust”
defined by “distrust of other people or society”).

LLooM instantiates a novel approach to data analysis that allows
analysts to see and explore data in terms of concepts rather than
sifting through model parameters. By transforming unstructured
data into high-level concepts that analysts can understand and con-
trol, LLooM can augment analysts to draw out new insights, weave
together connections, and form a narrative tapestry supported by
input data. This paper introduces the following contributions:

• The LLooM algorithm. We introduce LLooM, a concept in-
duction algorithm that extracts and applies concepts to make
sense of unstructured text datasets. LLooM leverages large
language models to synthesize sampled text spans, generate
concepts defined by explicit criteria, apply concepts back to
data, and iteratively generalize to higher-level concepts.

• The LLooMWorkbench. We instantiate the LLooM algo-
rithm in the LLooM Workbench, a text analysis tool that
amplifies theory-driven data analysis by allowing users to
visualize and interact with text data in terms of high-level
concepts. The tool is available in computational notebooks
or a standalone Python package.1

• Evaluation with analysis scenarios, a technical evalu-
ation, and expert case studies. We present four analysis

1Code available at https://github.com/michelle123lam/lloom

scenarios and a technical evaluation demonstrating how
LLooM enables analysts to derive insights from data that
extend beyond status quo tools. LLooM improves upon the
quality and coverage of topic models and helps expert ana-
lysts to uncover novel insights even on familiar datasets.

2 RELATEDWORK
To instantiate a concept-centered approach for understanding and
interacting with data, LLooM draws on prior literature in topic
modeling and unsupervised clustering, qualitative analysis, and
mixed-initiative data analysis tools.

2.1 Topic Modeling and Clustering: Automated
Concept Development

A vast amount of important information exists as large and un-
structured text datasets—global social media posts, corpora of his-
torical documents, massive logs of model-generated output—but
it is challenging to make sense of this kind of data. Today, many
data analysts rely on topic modeling and unsupervised cluster-
ing to automatically summarize or explore data. Latent Dirichlet
Allocation (LDA), a classic topic modeling approach, represents
documents as distributions over topics and represents topics as
distributions over words, and generates latent topics based on the
co-occurrence of words in documents [3]. While easy to apply, a
persistent issue with LDA is that its topics may be incoherent or
irrelevant to the analyst [1, 7, 11]. Furthermore, its bag-of-words
(or low-dimensional n-gram) assumptions limit topics to simpler
ideas that can be captured with keywords.

More recent approaches perform unsupervised clustering on
high-dimensional vector embeddings to uncover latent topics with-
out relying directly on keywords. Popular packages like BERTopic [25]
streamline the common pipeline of embedding text data (e.g., using
a pre-trained model like BERT [17, 51]), performing dimensional-
ity reduction, and applying a clustering algorithm (e.g., k-means,
agglomerative clustering, HDBSCAN [40]) to recover groups of

https://github.com/michelle123lam/lloom
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similar examples based on distance metrics. Unsupervised clus-
tering loosens the mapping from topics to keywords, but because
embedding distances are still highly correlated with low-level text
similarity rather than human judgment of semantic similarity, re-
sulting topics frequently align with surface level features [26, 37].
While today’s topic models appear highly performant based on
automated metrics, recent work has highlighted that these metrics
may be strongly misaligned with true human evaluations of topic
quality [28, 29]—there is still a critical gap between automatically
generated topics and meaningful interpretations. LLooM addresses
this gap by supporting a workflow for data analysts to extract
interpretable, high-level concepts from unstructured text.

2.2 Qualitative Analysis: Manual Concept
Development

In contrast to common machine learning approaches, qualitative
analysis methods have long acknowledged that data interpreta-
tions are varied, subjective, and highly dependent on one’s analysis
goals [2, 44]. Qualitative coding processes, such as grounded theory
methods, have the researcher engage in manually reviewing and
interpreting the data, typically starting from line-by-line, lower-
level summaries and proceeding to rounds of thematic grouping
and synthesis into codes [8, 43]. Once codes have been synthesized,
they are applied back to the data in a process of “constant compari-
son,” which both elucidates the data and tests the robustness and
richness of the current codes. These synthesized codes also serve
as the input for each successive round of coding to derive broader,
more abstractive insights. The LLooM algorithm draws inspiration
from qualitative coding processes, seeking to bring the benefits
of iterative interpretation, code development, and refinement to
automated data analysis tools.

Given the substantial labor involved in conducting qualitative
analysis, researchers have explored algorithmic systems that use AI
to aid qualitative analysts with both inductive coding (generating
codes from data) and deductive coding (applying codes back to
data) [9, 19, 52]. Most recently, research at the intersection of LLMs
and qualitative analysis has focused on amplifying deductive coding
processes and found that LLMs perform fairly well in coding data
with existing codebooks, though not enough for full reliance [62, 64].
Meanwhile, novel systems designed to aid inductive coding, such
as PaTAT [22] and Scholastic [27], have explored opportunities for
human-AI collaboration that keep the inductive code generation
work in the hands of human analysts and leverage AI to sample
and re-organize data or to formalize themes into decision rules.
We build on this work to augment analysts who seek to extract
meaningful high-level concepts from their data. However, LLooM
investigates whether options for AI-initiated concept generation
can further extend the work of analysts as a tool for thought to
reflect on a wider range of potential data analysis directions.

2.3 AI-Assisted Data Analysis: Mixed-Initiative
Concept Development

Ourwork builds on a substantial body ofmixed-initiative approaches
to aid data analysis, and we especially draw attention to prior work
that similarly seeks to extract human-interpretable concepts from
data. Work in topic modeling investigated the challenges—such as

technical barriers, interpretability, and trust—that social scientists
and data analysts encounter when using topic models [2, 13, 50]. In
the face of uninterpretable topics, researchers found that interactive
visual analysis systems such as Termite, LDAvis, and Semantic Con-
cept Spaces could enable analysts to identify coherent themes and
build trust in topic models [12, 15, 20, 55]. LLooM analogously en-
ables analysts to visualize and iterate on model outputs to facilitate
interpretability and trust.

Beyond topic modeling, work at the intersection of HCI and
AI has assisted data sensemaking by aligning technical abstrac-
tions to user-understandable concepts. Interactive machine learning
tools such as FeatureInsight [4] and AnchorViz [10] help users to
build dictionary- or example-based concepts to explore data and
improve classifier performance. Model Sketching leverages LLMs to
allow ML practitioners to create sketch-like models by composing
human-understandable concepts [36]. Systems like GANzilla [21]
and Sensecape [56] support sensemaking with generative models
by organizing outputs into conceptual groupings that are meaning-
ful to the user, such as system-provided image-editing directions or
user-curated hierarchical canvases. In statistical data analysis, sys-
tems like Tisane [33] aid an often-overlooked process of hypothesis
formalization [32] by allowing analysts to iterate back and forth
between conceptual hypotheses and model implementations.

Meanwhile, recent work in NLP has explored how LLMs might
aid text analysis by proposing natural language explanations for
clusters [60], augmenting expert demonstrations for semi-supervised
text clustering [58], or generating and assigning interpretable top-
ics [48]. LLooM builds on the goal of orienting data analysis around
human-understandable concepts, but takes a stronger stance about
the requirements, scope, and application of extracted concepts. To be
most useful for the data analysis tasks of forming hypotheses and
answering research questions, we require concepts to be defined by
a human-understandable description and explicit inclusion criteria.
To support a rich understanding of text, the LLooM algorithm pro-
duces concepts at the scope of not just broad topic-level patterns,
but also nuanced and specific text attributes. Finally, while the tasks
of text clustering and topic modeling focus on producing outputs
to aid data interpretation, the LLooM Workbench instantiates con-
cepts as bidirectional representations that both serve as an output
modality to interpret data and an input modality to proactively
author concepts and investigate new research questions.

3 LLOOM: CONCEPT INDUCTION USING
LARGE LANGUAGE MODELS

We define concept induction as a process that takes an unstructured
text dataset as input and produces a set of emergent, high-level
concepts as output, each of which are defined by explicit criteria.We
first describe LLooM, a concept induction algorithm that leverages
large language models to iteratively extract and synthesize concepts
from raw data. Then, we present the LLooM Workbench, a text
analysis tool that uses the LLooM algorithm to enable analysts to
generate, visualize, and refine high-level concepts from text data.
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3.1 The LLooM Algorithm
The LLooM algorithm performs concept induction by executing
iterative rounds of concept generation and scoring using a large lan-
guage model (LLM). We specifically use GPT-3.5 and GPT-4 in our
implementation. Summarized in Figure 3, the primary goal of our
algorithm is to execute the critical synthesis step of bridging from
low-level text signals to high-level concepts, which we define as
human-interpretable descriptions defined by explicit inclusion cri-
teria, specifically a natural-language description of decision rule(s)
for whether an input matches the concept. With prior methods, an-
alysts must carry out this critical bridging work from low-level text
signals to high-level concepts themselves; LLMs provide assistance
with this step.

First, for the concept generation step, LLooM implements the
Synthesize operator that prompts the LLM to generalize from
provided examples to generate concept descriptions and criteria in
natural language. As we demonstrate empirically in our technical
evaluations (§5), directly prompting an LLM like GPT-4 to perform
this kind of synthesis produces broad, generic concepts rather than
nuanced and specific conceptual connections (e.g., that a set of
posts are feminist-related, rather than that they all constitute men’s
critiques of feminism). While generic concepts may be helpful for an
overarching summary of data, analysts seek richer, more specific
concepts that characterize nuanced patterns in the data, as supported
by our expert case studies (§6). Additionally, such synthesis is not
possible for text datasets that exceed LLM context windows.

To address these issues, the LLooM algorithm includes two op-
erators that aid both data size and concept quality: (1) a Distill
operator, which shards out and scales down data to the context win-
dow while preserving salient details, and (2) a Cluster operator,
which recombines these shards into groupings that share enough
meaningful overlap to induce meaningful rather than surface-level
concepts from the LLM.

Finally, for the concept scoring step, we leverage the zero-shot
reasoning abilities of LLMs to implement a Score operator that
labels data examples by applying concept criteria expressed as zero-
shot prompts. With these labels, we can visualize the full dataset
in terms of the generated concepts or further iterate on concepts
by looping back to concept generation. We now walk through the
LLooM algorithm in detail.

3.1.1 Concept Generation. The key to our concept induction algo-
rithm is the Synthesize operator, which leverages the capability
of LLMs to synthesize high-level, conceptual similarities shared
among sets of examples. When chained together with other auxil-
iary operators to form a Distill–Cluster–Synthesize pipeline,
the Synthesize operator allows the LLooM algorithm to generate
high-level concepts (Figure 3).

Synthesize . This operator takes as input a group of text
examples and is tasked with producing one or more unifying, high-
level concepts that connect the examples. By our definition, these
high-level concepts must consist of both a human-understandable
description and inclusion criteria. LLMs have capabilities that are
well-suited to aid this task. For example, GPT-3.5 Turbo and GPT-4
can successfully generalize from a small number of examples; i.e., to
identify unifying concepts and carry them forward to new examples.

This capability, also referred to as few-shot reasoning, is often
leveraged in cases where the user already knows the underlying
pattern and wants the model to apply it repeatedly (e.g., to translate
text to different formats, or to transfer a writing style) [5]. However,
we can also leverage this capability in situations where the user
does not know ahead of time what concepts exist in their data to
aid discovery. While LLMs can hallucinate and produce unreliable
outputs, by constructing our task to not just produce concepts, but
the criteria to evaluate those concepts, we can verify LLM outputs
by reviewing the criteria and re-evaluating the original data to test
if concepts hold.

Building on this insight, LLooM implements the Synthesize
operator as a zero-shot prompt that instructs an LLM (gpt-4) to
identify unifying high-level concepts from a provided cluster of
examples. The instructions ask the model to generate a name that
describes the concept, provide IDs of the representative examples
that best match this concept, and generate its own prompt that can
evaluate a novel text example and determine whether the concept
applies. Each of these components is useful output for understand-
ing the meaning of a concept. These components also leverage a
chain-of-thought (CoT) prompting strategy [34, 61] that instructs
the model to provide a trace of its work and improve the likelihood
of internal consistency.

We include our prompt template below.2 Users can vary the con-
cept name length, the number of representative concept examples,
and the number of concepts to suggest; we use 2-4 word concept
names and request 1-2 representative examples by default.

I have this set of bullet point summaries of text

examples:

{bullets_json}

Please write a summary of {n_concepts} unifying

patterns for these examples {seed_phrase }.

For each high -level pattern, write a {n_name_words}

word NAME for the pattern and an associated one -

sentence ChatGPT PROMPT that could take in a new text

example and determine whether the relevant pattern

applies.

Please also include {n_example_ids} example_ids for

items that BEST exemplify the pattern.

Please respond ONLY with a valid JSON in the

following format:

{{

"patterns ": [

{{

"name": "<PATTERN_NAME_1 >"

"prompt ": "<PATTERN_PROMPT_1 >"

"example_ids ": ["<EXAMPLE_ID_1 >", "<

EXAMPLE_ID_2 >"]

}}

{{

"name": "<PATTERN_NAME_2 >"

"prompt ": "<PATTERN_PROMPT_2 >"

"example_ids ": ["<EXAMPLE_ID_1 >", "<

EXAMPLE_ID_2 >"]

}}

]

}}

2Within the prompt, we use the term “pattern” as a synonym for “concept”; through
experimentation, we found that this term was more effective for concisely conveying
that the concepts needed to be shared among multiple items, while “concept” is a more
generic term that resulted in less reliable instruction-following.
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Figure 3: Concept generation in the LLooM algorithm, demonstrated with sample text inputs. The process starts with unstruc-
tured text data and an optional Seed from the analyst. Then, the Distill operator condenses the input data with an LLM by
filtering to excerpts and summarizing to bullet points (gpt-3.5-turbo). The Cluster operator pools and groups the distilled
bullet points using a clustering algorithm. Finally, the Synthesize operator proposes high-level concepts using an LLM prompt
(gpt-4). The Loop operator can optionally repeat this process multiple times to produce higher-level concepts.

Notably, this operator starts where topic modeling typically ends:
with data groupings that are likely to share similarities. However,
in contrast to approaches that seek to assign a label to clusters, a
key differentiator of our Synthesis operator is that it is not bound
to labeling an entire group of examples, but frames the task around
selectively proposing salient connections among items in a group.
Our prompt instantiates this by asking the model to identify subsets
of examples that best exemplify concepts rather than requiring that
all examples match the concept and phrasing the task as pattern
identification rather than holistic label assignment. Since clusters
are often noisy, instead of attempting to holistically summarize the
cluster, which could lead to a vague connection, our approach is to
identify pockets of examples that have unifying connections.

Auxiliary operators. The remaining operators of the concept
generation phase are designed to improve the performance of our
core Synthesize operator by mitigating several challenges of large
language models, such as token limits and uneven output quality.

Distill . The Distill operator condenses input data into a
more compact representation while preserving important or distinc-
tive attributes, which both addresses LLM context window limits
and grants the ability to “zoom” into areas of interest to improve
concept generation. In LLooM, we take a multi-step approach to
implement our Distill operator in natural language. First, we
perform a Filter step of zero-shot summarization by providing the
input text example and prompting an LLM (gpt-3.5-turbo) to
generate an extractive summarization that selects exact quotes from
the original text; this step can be omitted if the text is not very
long. Users can adjust the number of quotes to select, but by default
the parameter is left empty such that the model may extract any
number of quotes. Below is an example of the Filter prompt:

I have the following TEXT EXAMPLE:

{text_example_json}

Please extract {n_quotes} QUOTES exactly copied from

this EXAMPLE {seed_phrase }.

Please respond ONLY with a valid JSON in the

following format:

{{

"relevant_quotes ": [ "<QUOTE_1 >", "<QUOTE_2 >", ...

]

}}

Then, we perform a Summarize step, which prompts an LLM
(gpt-3.5-turbo) to generate an abstractive summarization in the
form of bullet point text summaries. Users can adjust the number
of bullet points to generate and the length of the bullet points if
necessary, but we use a default of “2-4” bullet points with lengths
of “5-8” words. We include an example prompt below:

I have the following TEXT EXAMPLE:

{text_example_json}

Please summarize the main point of this EXAMPLE {

seed_phrase} into {n_bullets} bullet points, where

each bullet point is a {n_words} word phrase.

Please respond ONLY with a valid JSON in the

following format:

{{

"bullets ": [ "<BULLET_1 >", "<BULLET_2 >", ... ]

}}

The Distill operator allows us to pare down each example to
its salient attributes and is inspired by initial line-by-line coding or
open coding in qualitative analysis [8, 43].

Cluster . Next, the Cluster operator groups together related
items based on patterns in their representations from the Distill
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step. For the Cluster operator to generate cross-cutting concepts,
all of the distilled bullet points are detached from their original
examples and pooled together. Thus, the input of the Cluster oper-
ator is the set of condensed bullet points from the Distill operator,
and the output is a set of group assignments, such that each isolated
bullet point is assigned to a group of related items. The LLooM al-
gorithm transforms bullet points into embeddings using a specified
pre-trained embedding model and then clusters the items using a
provided clustering algorithm. Our implementation uses OpenAI’s
text-embedding-ada-002model due to its relatively long context
and fast generation time. For clustering, we select HDBSCAN, a hi-
erarchical clustering algorithm, because its density-based approach
does not require heavy parameter tuning and does not require
all points to be placed in a cluster. These properties increase the
likelihood that our dynamically-generated clusters will contain
salient examples without manual intervention. The Cluster oper-
ator resembles the initial phases of processes like affinity grouping
and axial coding in that it coalesces examples into possible group-
ings, which is a critical step before the Synthesize operator can
complete the process to identify similarities and conceptual themes.

Seed . What if the analyst wants to steer LLooM’s attention
toward particular aspects of the data? LLooM allows the analyst to
guide the system to attend to “social issues” for a political dataset,
“evaluation methods” for an academic papers dataset, or “displays
of emotion” for a text conversations dataset. The optional Seed op-
erator accepts a user-provided seed term to condition the Distill
or Synthesize operators, which can improve the quality and align-
ment of the output concepts. This seed term provides additional
instructions in the LLM prompt to ask the model to attend to a
particular aspect of the data.3 For the Distill operator, this will
instruct the model to generate summaries that focus on parts of
the data related to the seed term. Similarly, for the Synthesize
operator, this will instruct the model to propose unifying concepts
among the examples that are related to the seed term. Taking in-
spiration from qualitative analysis, which acknowledges that there
are multiple valid interpretations of data, the Seed operator grants
the analyst control to steer the concept generation process based
on their analysis goals and desired interpretive lens.

3.1.2 Concept Scoring. The concept generation phases of the LLooM
algorithm are followed by a concept scoring phase that applies the
generated concepts back to the full dataset.

Score . Armed with the concepts, LLooM next applies a score
(e.g., 0-1) that describes the association between each input and
the concept. For each high-level concept, the system applies the
Score operator to all examples (input texts) to generate a concept
score that estimates how well each example matches the generated
concept prompt. This is implemented using a batched zero-shot
prompt that includes a set of examples in JSON format, the concept
prompt, and instructions to generate an answer in multiple-choice
format. Prior work has found that LLMs do not provide calibrated
0-1 confidence scores in zero-shot settings [38]. However, recent
work has found that for instruction-tuned OpenAI models such as

3The seed term is inserted as the seed_phrase shown in the example prompts above
in the format “related to {seed_term}.”

GPT-3.5, multiple choice prompting [53, 54] can provide approxi-
mate answer probabilities. We use multiple choice prompting to
instruct the model to generate a multiple-choice answer4 for each
provided example along with a rationale. These answers are parsed
and converted to bucketed numerical scores with “Strongly agree”
mapping to 1.0 and “Strongly disagree” mapping to 0.0. The scores
are then thresholded to a binary label; users can adjust the thresh-
old at which an example should be considered a concept match.
Given 𝑛 examples and 𝑐 high-level concepts, this phase results in a
𝑛 × 𝑐 matrix with a binary concept label for each example.

This concept scoring phase is designed to bring some of the ben-
efits of the deductive coding process in qualitative analysis, which
applies codes back to the data. This deductive coding process both
allows an analyst to make sense of their data and also exposes
potential gaps, biases, or limitations in their codebook, which can
be addressed in further iterations of inductive coding.

Loop . Finally, based on the concept scoring results, LLooM can
use a Loop operator to execute multiple iterations of the algorithm.
This operator executes the logic to revise the inputs to the next
iteration of the pipeline. We use data coverage to determine which
examples will be processed in each subsequent iteration. After the
concept scoring phase completes, the Loop operator identifies two
classes of outliers: 1) not-covered examples, which did not match any
of the current high-level concepts and 2) covered-by-generic exam-
ples, which only matched “generic” concepts, those that matched a
majority of examples (at least 50%). All such examples are provided
as input to the next iteration of the algorithm, and the concepts
generated by subsequent runs are added to the full set of concepts.

3.1.3 ImplementationDetails. The LLooM algorithm is implemented
as a Python library that can be imported into computational note-
books like Jupyter or web application frameworks like Flask. We
primarily use GPT-3.5 (gpt-3.5-turbo) for all operators except for
the Synthesize operator, which benefits from the improved reason-
ing capabilities of GPT-4. For the Distill operator, both the Filter
and Summarize steps are executed with zero-shot prompts to the
gpt-3.5-turbo model using the OpenAI API with a temperature
of 0 to provide more consistent results. For the Cluster operator,
we use OpenAI embeddings from the text-embedding-ada-002
model, and we use the HDBSCAN clustering algorithm. For the
Synthesize operator, we use the OpenAI API with options for ei-
ther gpt-3.5-turbo or gpt-4, again using a temperature of 0. The
Score operator provides options to use either the OpenAI API with
gpt-3.5-turbo or the Google PaLMAPIwith the chat-bison-001
model, both with a temperature of 0 for consistency. As a point
of reference, across the scenarios that we describe in §4, the total
cost of one run of the LLooM algorithm averaged $1.44 in total cost,
used 848, 323 tokens (combining input and output), and took on
average 13.7 minutes to complete. Notably, the concept scoring step
is substantially more costly and time-intensive than the concept
generation step, on average consuming 79.9% of the total cost and
58.4% of the total time. Full prompts are provided in Appendix A.

3.1.4 Algorithm Limitations. We note several limitations of the
current LLooM algorithm that may be fruitful areas for future work.

4Our multiple choice options are: A: Strongly agree, B: Agree, C: Neither agree nor
disagree, D: Disagree, E: Strongly disagree
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Figure 4: The LLooMWorkbench, an interactive text analysis tool that leverages LLooM’s concept induction capabilities. The
tool consists of the (A) Matrix view with an overview of the prevalence of concepts among user-defined data slices. Selecting a
concept row displays the associated (B) Concept detail view, which displays the concept criteria, subconcepts, and matching
examples. Selecting a slice column displays the corresponding (C) Slice detail view, which displays a similar overview of the
examples within the slice.

First, the LLooM algorithm has a number of available parameters,
such as the number of quotes to extract and the number of bullet
points to generate in the Distill phase. While these parameters
are interpretable to a user, they are not straightforward for a user
to set in advance, so it would be best for the system to dynamically
set these values when possible. Our system has default values and
formulas to calculate parameter values, but these have not been
robustly tested for appropriateness on a wide variety of datasets.

Additionally, the current implementation does not make use
of verification steps, for example to ensure that quotes are exact
matches, that bullet points are accurate to quotes, and that concept
scores and rationale appear correct. While reliable verification is
an ongoing challenge for LLMs, future extensions of LLooM could
benefit from programmatic checks and LLM operators explicitly de-
signed to verify outputs at each phase. Our use of LLMs also means
that there is variability in the results upon re-run. While this can
be a useful feature to explore parallel analysis paths and simulate
variations, it may be undesirable in cases where analyses must be
replicable or where robust, consistent alignment is necessary [14].

3.2 The LLooMWorkbench
We instantiate the LLooM concept induction algorithm in an in-
teractive text analysis tool called the LLooM Workbench. With
this tool, an analyst can upload their unstructured text dataset,
and LLooM will automatically extract and display concepts in an
interactive visualization (Figure 4).

3.2.1 Workbench Components. The LLooM Workbench allows an-
alysts to see and interact with data in terms of high-level concepts.

Matrix View. Concept threads are the focal point of the work-
bench’s matrix visualization (Figure 4A). In this view, the generated
concepts are displayed as rows, and user-specified data slices are
displayed as columns. By default, an “All” slice is initially shown
for all datasets, but users can specify their own custom slices by
authoring filters on any metadata column from the original dataset
or any generated concept. Then, each cell in the matrix at the inter-
section of concept 𝑐 and slice 𝑠 displays a circle whose size indicates
the prevalence of concept 𝑐 in slice 𝑠 , and can be normalized by
the total size of the concept or the total size of the slice. This vi-
sualization allows users to perform consistent comparisons of a
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particular concept’s prevalence across data slices (within a row)
or of all concepts’ prevalence within a particular slice (within a
column). The user can select any row to dive into a Concept Detail
View or a column to dive into a Slice Detail View.

Concept Detail View. In this panel, a user can both inspect the
meaning of a selected concept and review the subset of the dataset
that matched this concept (Figure 4B). The upper left portion of
the panel displays a concept summary that includes the generated
concept name, the generated criteria (which is executed to eval-
uate whether unseen examples match the concept), subconcepts
that led to this concept, and representative text examples for each
subconcept. The upper right side of the panel displays a histogram
for a more detailed view of concept prevalence across slices. Fi-
nally, the bottom section of the panel displays a concept match
table, which displays examples that potentially match the concept
based on LLooM concept scores. The primary dataset text column
and concept score column are displayed by default, but users can
specify to include any additional column from the original dataset.
For cases where the algorithm performed the Filter step to extract
relevant quotes, the filtered text is highlighted in the table.

Slice Detail View. Similarly, this panel displays details of a user-
defined slice. The upper portion of the panel displays the user-
provided slice name (e.g., “Low toxicity”) and filtering criteria (e.g.,
toxicity < 0.25), along with a histogram for a more compre-
hensive view of concept prevalence for the slice (Figure 4C). The
bottom of the panel displays a slice summary table, which includes
all examples that met the filtering criteria. Each row in the table rep-
resents an example, and the table displays the primary text column
and all concept score columns by default; users can again specify
to include any additional metadata column from the dataset.

3.2.2 Workbench Actions. In addition to the core visualizations,
the LLooM Workbench supports a range of actions for analysts to
build on the initial set of LLooM concepts.

Adding and Editing. Users can manually add custom concepts by
specifying a concept name and an associated criteria prompt that
defines the concept. The concept will be applied to the data with
the Score operator, and it will be added to the matrix visualization
as an additional row. Users may also edit an existing concept by
modifying its name and/or criteria prompt, and they can similarly
initiate concept rescoring after making these modifications.

Merging and Splitting. Users can also merge multiple related
concepts, which prompts the system to generate a new concept
name and criteria that combine the selected concepts. Conversely,
users can split concepts when they are too general, which prompts
the system to author new subconcepts for the selected concept.

3.2.3 Implementation Details. The LLooM Workbench is imple-
mented as Jupyter widget for use in computational notebooks. The
widget draws on the LLooM algorithm Python library described
in §3.1 and implements a library of Svelte UI components. We use
the anywidget Python library5 to render the Svelte components as
notebook widgets. The interactive LLooM matrix visualization is
implemented using the D3 JavaScript library.6

5https://anywidget.dev
6https://d3js.org

4 LLOOM SCENARIOS
By surfacing conceptual threads as an interpretable and malleable
material with which to work with data, LLooM opens up new ways
to understand and interact with text data. In the next three sections,
we walk through a multi-part evaluation to: demonstrate the con-
cepts that LLooM surfaces from a variety of real-world datasets (§4:
LLooM Scenarios), understand the technical performance of the
LLooM algorithm compared to existing approaches (§5: Technical
Evaluations), and explore how expert analysts make sense of data
with concepts in the LLooM Workbench (§6: Expert Case Studies).

First, to demonstrate LLooM’s outputs on real-world datasets
in a variety of domains, we present four data analysis scenarios:
developing content moderation policies for toxic content (§4.2),
mitigating partisan animosity on social media (§4.3), analyzing
academic paper abstracts (§4.4), and investigating anticipated con-
sequences of AI research (§C.1). These cases were selected to span
a variety of text formats and lengths (from short social media posts
to paper abstracts) and analysis goals (from surveying literature to
developing a decision-making policy or ML model).

4.1 Method
The goal of the scenarios is to qualitatively illustrate how LLooM
works in practice. Thus, we compare against topic models because
they are the de facto standard in unstructured text analysis today.

4.1.1 Baseline result generation. Weuse a state-of-the-art BERTopic
model as a representative baseline topic model. For each scenario,
we ran BERTopic using OpenAI text-embedding-ada-002 embed-
dings and HDBSCAN with a minimum cluster size set to 2 − 3%
of the full dataset size. Then, we gathered all resulting topics and
their associated keywords (generated by BERTopic using c-TF-IDF)
along with the documents assigned to each topic. To run LLooM,
we initiated a new session that executed one iteration of the LLooM
process. Within LLooM, we randomly sampled up to 200 items
to run this process and set a limit of at most 20 final concepts to
generate. We focused on data samples of these sizes to prioritize
interactive concept induction completion times ranging from 5-15
minutes and concept scoring times under 20 seconds to support
manual concept authoring. For these runs, we used gpt-3.5-turbo
to perform all distilling and synthesizing operations, and we used
OpenAI text-embedding-ada-002 embeddings for the clustering
phase. To assign items to concepts, we gathered all items that re-
ceived a positive label for each concept, using a threshold set at the
highest score option (1.0: Strongly agree).

4.1.2 Baseline qualitative analysis. For each dataset, a member of
the research teammanually reviewed all results. For BERTopic, they
reviewed each topic by inspecting the generated keywords (e.g., “oil,
gas, energy,” “house, republicans, democrats”) and all documents
assigned to the topic, and they wrote their own manual label to
synthesize the unifying theme of the topic (e.g., Environmental
policy, Political parties).

By design, LLooM has the advantage of generating highly spe-
cific concepts described in natural language (e.g., User interface en-
hancement and User experience enhancement). However, BERTopic
outputs are unlikely to communicate such nuance with keywords
alone (e.g., “user, users, interaction”), so it would seem unfair to

https://anywidget.dev
https://d3js.org
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Figure 5: For the toxic content dataset, LLooM generates content-related concepts such as Empowerment of women and Gender
inequality, but also surfaces style- and tone-related concepts such as Expressing frustration and Reflection and introspection.

penalize the method largely because it lacks such expressivity. Thus,
to facilitate a direct comparison with BERTopic outputs, we take a
conservative approach to estimate overlap by grouping together
sets of LLooM concepts that would be unreasonable for BERTopic to
produce. The research team member reviewed all LLooM concepts
and grouped together any concepts that overlapped in meaning:
either if one concept was a subset of another concept (e.g., Advo-
cacy for Policies and Advocacy), or if two concepts appeared to be
synonymous (e.g., User interface enhancement and User experience
enhancement). Using this simplified set of results, BERTopic top-
ics and LLooM concepts deemed as having shared meaning were
considered overlapping results.

4.2 Scenario 1: Developing Moderation Policies
for Toxic Content

First, we investigate a content moderation task where a social me-
dia platform is developing a model to perform automated content
moderation of text posts. Prior research has found substantial dis-
agreement among the population on what constitutes toxic con-
tent [23, 35], so unstructured text analysis might grant moderators
greater nuance in understanding and triaging emergent user be-
havior. We use a dataset of social media posts (from Twitter, Reddit,
and 4chan) that gathers a diverse set of annotators’ perspectives on
content toxicity with ratings from 17, 280 U.S. survey participants
on over 100, 000 examples [35]. We applied BERTopic to the full
dataset, filtered to the largest clusters, and selected the feminism-
related cluster (𝑛 = 496) because it aligned with a distinct user
community and potentially controversial topics.

4.2.1 Results. LLooM generated 10 unique sets of concepts, such
as “Devaluation of men,” “Empowerment of women,” and “Gender
inequality and discrimination,” as summarized in Figures 5 and
6. Meanwhile, BERTopic generated 8 topics with keywords such
as “feminists, feminism, feminist” and “women, men, like.” Based
on manual inspection of the BERTopic results, these were fairly
high-level groupings aligned with particular keywords such as fem-
inism, power, and men/women. Meanwhile, LLooM results were
not bound to keywords, but often captured attitudes (e.g., “De-
valuation of men”) and interpretations (e.g., “Men’s perception of
unfair treatment,” “Reflection and introspection”) that went beyond
surface-level features of text. We observed that 50% of BERTopic
results were covered by LLooM while 40% of LLooM results were
covered by BERTopic, so there was some divergence between the
two methods. In addition, 44.4% of examples were uncategorized
by BERTopic, while 9.5% were uncategorized by LLooM, so LLooM
achieved higher data coverage.

4.3 Scenario 2: Mitigating Partisan Animosity
on Social Media

Political polarization is a dominant concern in the United States,
and it poses potential existential risks to democracy. If social media
algorithms play a role in amplifying partisan animosity [30, 42],
how might we redesign social media algorithms to mitigate this
effect? Our next scenario investigates political social media posts to
explore whether we can detect and downrank content that ampli-
fies partisan animosity. We use a dataset of public Facebook posts
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Figure 6: Scenario 1: Toxic content dataset—BERTopic places a large proportion of examples (44.3%) in an uncategorized cluster
(in grey) while most other clusters contain between 2 − 10% of examples. LLooM concepts display a range of prevalence values
from 1 − 50%, and the outlier category contains 9.5% of examples.

from Jia et al. [30]. This dataset was generated by filtering for polit-
ical posts on CrowdTangle using politics-related page categories
such as “politics,” “politician,” “political organization,” and “polit-
ical party.” The dataset consists of 405 posts that were randomly
sampled and manually coded for partisan animosity.7

4.3.1 Results. LLooM generated 14 distinct concepts, such as “Con-
cerns about National Security,” “Political Affiliation Mentioned,”
and “Advocacy for Policies,” summarized in Figure 7. Meanwhile,
BERTopic generated 8 topics with keywords such as “house, repub-
licans, democrats,” “care, vaccine, mandate,” and “oil, gas, energy.”
BERTopic produced data groupings that aligned with major entities
(e.g., manual labels of “Political Parties” and “Community”) and
political issues (e.g., manual labels of “Border Policy” and “Environ-
mental Policy”). LLooM concepts similarly covered many of these
same entities and political issues, but also captured certain user be-
haviors such as expressions of condolences and specific mentions of
individuals (such as political figures) in the Facebook posts. LLooM
also captured several additional political issues such as social justice
and access to affordable services. While 87.5% of BERTopic results
were covered by LLooM, 50% of LLooM results were covered by
BERTopic, so there was a sizeable portion of LLooM concepts that
were novel additions. Here, 26.2% of examples were uncategorized
by BERTopic while 2.5% were uncategorized by LLooM.

4.4 Scenario 3: Analyzing UIST Paper Abstracts
A recent large-scale literature review investigated the impact of
HCI research on industry by analyzing patent citations [6]. This
prior work used LDA topics to describe trends among research
that influenced patents. We explore whether LLooM could help to
characterize research from the past 30 years at major HCI venues

7The scores consist of 8 sub-scores that are summed together. Each sub-score can
range from 1-3, so the score range is from 8 to 24, where 8 corresponds to the lowest
partisan animosity and 24 corresponds to the highest partisan animosity.

with the same dataset of HCI paper abstracts. We filter to those from
UIST (𝑛 = 1733) because the Cao et al. [6] paper identified that UIST
papers had an extremely outsized proportion of patent citations,
and we sought to better understand the nature of UIST research
over time and potential factors underlying its high industry impact.
To enable comparisons across time periods, we gathered a stratified
random sample across each decade from 1989-1998, 1999-2008, and
2009-2018 with 70 papers from each decade for a total sample of
𝑛 = 210 papers for this exploratory analysis.

4.4.1 Results. LLooM generated 16 distinct concepts, such as “Ges-
ture Recognition,” “Visualization Techniques,” and “Sensor Integra-
tion,” shown in Figure 8. Meanwhile, BERTopic generated 12 distinct
topics with keywords such as “control, user, haptic,” “reality, vr, vir-
tual,” and “speech, audio, multimodal.” For this dataset, BERTopic
outputs were more coherent than for the other scenarios, perhaps
in part because academic abstracts are written to clearly signal their
subject matter. Additionally, for this kind of analysis, low-level key-
words are more useful than is typical since many keywords are
precise technical terms (e.g., “VR,” “haptics,” and “multimodal UIs.”)
that are generally used in a standard, narrow sense. Meanwhile, the
LLooM concepts aligned quite strongly with the BERTopic topics,
but areas of non-overlap appeared to surface several unique con-
cepts. While most outputs were aligned with recognizable research
topics, the concepts of “Performance improvement,” “Prototype Sys-
tems,” and “Mathematical Frameworks” appeared to characterize
aspects of the work like the higher-level methods and evaluation
strategies and all raised interesting questions about the common
evaluation metrics and implementation approaches used at UIST
compared to other HCI venues. By contrast, the non-overlapping
BERTopic topics appeared to be additional research topic areas, but
not new kinds of topics. While 83.3% of BERTopic results were cov-
ered by LLooM, 62.5% of LLooM results were covered by BERTopic,
so LLooM achieved somewhat higher coverage. Here, 18.6% of
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Figure 7: Scenario 2: Partisan animosity dataset—The largest topic from BERTopic is again an uncategorized topic with 26.2%
of examples. A set of seven LLooM concepts captured more generic, high-prevalence political topics, but there is a range of
concept prevalence values, and only 2.5% of examples were outliers.
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Figure 8: Scenario 3: HCI UIST papers dataset—BERTopic again places a sizeable portion of examples into an uncategorized set
with 18.6% of examples. LLooM concepts display a long tail distribution with a few high-frequency user interface concepts and
a longer set of more nuanced concepts; 6.7% of examples were outliers.

examples were uncategorized by BERTopic while 6.7% were uncat-
egorized by LLooM.

4.5 Scenario Limitations
We note several limitations of these analysis scenarios. First, to
provide a fairer comparison between LLooM and BERTopic, we only
conducted one iteration of the LLooM algorithm. Then, because
we prioritized interactive completion times for our scenarios, we
sampled approximately 200 examples to use within LLooM for each
scenario, but some of the datasets were much larger. Thus, there
are risks that LLooM was not fully representative of the data and
that its concepts could differ if run on a significantly larger dataset.

However, we note that a benefit of LLooM’s generated concept
criteria is that even if concepts are induced from a smaller data
sample, they can be applied to a much larger set to assess concept
generalizability and coverage.

We do not have manual annotations for the scenario datasets
on “ground truth” concepts, so we cannot report on global cover-
age of LLooM concepts nor their alignment with manual analysts’
generated concepts. We perform a ground truth concept coverage
analysis in the next section, §5, with annotated datasets. Finally,
while the scenarios were selected to span a variety of topic areas,
dataset sizes, and analysis goals, LLooM results may differ when
applied to other kinds of datasets.
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5 TECHNICAL EVALUATIONS
Next, we perform technical evaluations to compare LLooM con-
cept generation against human annotations and state-of-the-art
methods for unstructured text analysis. We investigate how well
LLooM can generate concepts that recover ground truth concepts
in two evaluations using (1) real-world benchmark datasets drawn
from Wikipedia articles and U.S. Congressional bills (§5.1) and (2) a
synthetic dataset for greater experimental control (§5.2). As in the
LLooM scenarios, we include a BERTopic baseline as a state-of-the-
art topic modeling method. Since this evaluation is performance-
oriented, we add GPT-4 and GPT-4 Turbo baselines to understand
how LLooM performs relative to base LLMs.

5.1 Concept Generation: Benchmark Dataset
First, we evaluate LLooM concept generation on real-world datasets
drawn from prior work in topic modeling [48] that have unstruc-
tured text documents and human topic annotations: a Wikipedia
articles dataset [41] and a U.S. Congressional bills dataset [29].
These annotations are explicitly defined as topics, which tend to
align with more generic concepts and may not fully capture the
set of concepts that LLooM can generate. However, the topic anno-
tations provide a helpful point of comparison with existing topic
modeling methods.

5.1.1 Metric. The goal of concept induction with LLooM is to
reliably surface informative, valid concepts from unstructured text.
Thus, we assess the validity and comprehensiveness of LLooM’s
concepts by measuring how well they recover ground truth topics,
which are generated by human annotators and known to occur in
a given dataset. We use a metric of concept coverage to assess how
well LLooM and baseline methods recover ground truth concepts
from a human-annotated dataset, whether that be a benchmark
dataset or the synthetic dataset we describe in §5.2.

For eachmethod and dataset, we run 10 independent trials of con-
cept generation for a total of 80 trials. Each trial randomly shuffles
the dataset documents, uses new sessions for calls to the OpenAI
API for LLooM and the GPT-4 variants, and trains a new topic
model for BERTopic. For every trial, we determine coverage, the
proportion of ground truth topics that are covered by the generated
concepts. We calculate automated coverage metrics using GPT-3.5
(gpt-3.5-turbo). Our few-shot prompt provides the ground truth
and generated concepts and asks model to match each ground truth
concept with at most one generated concept if its meaning matches
the ground truth concept (Appendix A.5). To verify this automated
coverage metric, we randomly sample the results of 16 trials (4 from
each concept generation method) and manually match all ground
truth and generated concepts for each trial. Treating the manual
coverage as ground truth, we observe a mean absolute error (MAE)
of 0.07 (i.e., an average case may have a manual coverage of 40%
and an automated coverage of 33%).

5.1.2 Method. We evaluated four concept generation methods:
LLooM, BERTopic, GPT-4, and GPT-4 Turbo. We use the same
LLooM process and BERTopic setup described in §4, but for parity
with our GPT-4 baselines, we use GPT-4 for the Synthesize oper-
ator; we continue to use GPT-3.5 for the Distill operator steps.
Additionally, we increase the input and output batch sizes of the
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Figure 9: On the real-world benchmark datasets, LLooM
exceeds baseline performance for the likely-unseen Bills
dataset and matches GPT-4 baseline performance for the
possibly-seen Wiki dataset, achieving coverage rates of 0.74
and 0.81 on the respective datasets.

LLooM Cluster and Synthesize operators to accommodate the
longer documents of our benchmark datasets. We add baselines that
directly query GPT-4 and GPT-4 Turbo with zero-shot prompts. For
these baselines, we use the same prompt that underlies the LLooM
Synthesize operator, but instead provide the full document text
instead of the distilled and clustered text excerpts. Since GPT-4 has
a limited context window, we randomly sample documents to fill
the context window; all documents fit into the larger GPT-4 Turbo
context window.

5.1.3 Datasets. The Wikipedia articles dataset (Wiki) consists of
14,290 articles and human annotations for 15 Generic topics, such
as “Art and architecture” and “Language and literature”. The Con-
gressional Bills dataset (Bills) consists of 32,661 bill summaries
and human annotations for 28 Generic topics, such as “Education,”
“Environment,” and “Health”. We use random samples of dataset
documents (n=205 and n=213, respectively) stratified across top-
ics, to accommodate context window limits for the GPT-4 baseline.
A downside of using publicly-available annotated datasets is that
they may have appeared in the GPT pre-training corpus, which
in part motivates our synthetic dataset evaluation. As prior work
has noted, text-to-label mappings for the Wiki dataset may have
appeared in the pre-training data [48], so this dataset may present
inflated estimates for the GPT-4 baselines. Meanwhile, the Bills
dataset may provide a more realistic performance estimate: the data
is less likely to have appeared in the GPT-4 training data since the
bill summary texts and labels are stored separately. The LLooM
algorithm substantially transforms text spans before performing
concept generation, so it likely does not “benefit” as greatly from
GPT-4’s potential knowledge of the Wiki dataset.

5.1.4 Results. LLooM exceeds baseline coverage by 17.9% on the
Bills dataset (LLooM: 𝑀 = 0.74, GPT-4 Turbo: 𝑀 = 0.56) and
matches GPT-4 baselines on the Wiki dataset (LLooM: 𝑀 = 0.81,
GPT-4: 𝑀 = 0.83, GPT-4 Turbo: 𝑀 = 0.82), as shown in Figure 9.



CHI ’24, May 11–16, 2024, Honolulu, HI, USA M.S. Lam, J. Teoh, J.A. Landay, J. Heer, M.S. Bernstein

Supporting our note on the Wiki dataset’s possible inclusion in the
GPT pre-training data, GPT-4 andGPT-4 Turbo display substantially
higher coverage on the Wiki dataset than the Bills dataset; the
Wiki performance metrics may be inflated due to memorization
of text-to-label mappings. Thus, it is promising that on the Bills
dataset, LLooM maintains relatively consistent high coverage (only
dropping 8.7%), while GPT-4 Turbo coverage drops 25.6%. In line
with our LLooM scenarios, BERTopic displays substantially lower
concept coverage for both datasets (Bills: 𝑀 =0.29, Wiki:𝑀 =0.63)
compared to the GPT-4 baselines and LLooM.

We further investigate these findings using a linear model with
a fixed effect of method: coverage ~ 1 + method. We use a sep-
arate model for each dataset. For the Bills dataset, we observe a
significant main effect of method (𝐹 (3, 36) = 22.36, 𝑝 < .001). A
posthoc pairwise Tukey test finds statistically significant differ-
ences in coverage between all pairs of methods except for GPT-4
vs. GPT-4 Turbo (𝑝 = 0.997 for GPT-4 vs. GPT-4 Turbo, 𝑝 < .02
for GPT-4 Turbo vs. LLooM, 𝑝 < .01 for all other pairs). For the
Wiki dataset, we also observe a significant main effect of method
(𝐹 (3, 36) = 3.568, 𝑝 < .05). A posthoc pairwise Tukey test only finds
a statistically significant (𝑝 < .05) difference in coverage between
BERTopic and GPT-4; there was no significant difference between
any other pairs of methods.

We qualitatively compared the generated topics by inspecting all
outputs for each method that matched a given ground truth topic
(Tables 17 and 18). BERTopic topics were generally more vague
(e.g., “album, band, music” for a ground truth Wiki music topic or
“game, series, fantasy” for a Wiki video games topic). GPT-4 and
GPT-4 Turbo topics often closely matched ground truth topics (e.g.,
“Video Games” for a Wiki video games topic and “Transportation
Policy” for a Bills transportation topic), but GPT-4 displayed failure
modes of combining multiple ground truth topics in a single topic
(e.g., “Artistic Works,” which had a definition that mapped to Wiki
music or art and architecture topics) while GPT-4 Turbo did not
display this failure mode. LLooM produced topics that matched
closely with ground truth topics (e.g., “Educational Policies” for a
Bills education topic), but it also generated topics that highlighted
other notable aspects of content within a topic area (e.g., “Commu-
nity Development: Does the text discuss promoting education for
community development?” for the same Bills education topic). For
example, in a ground truth Wiki video games topic, LLooM gener-
ated concepts like “Video Game Discussion,” “Game Setting,” and
“Character Design,” and in a Wiki music topic, LLooM generated
concepts like “Band Formation” and “Musician’s Career.”

Overall, LLooMmaintains high concept coverage on both datasets
and provides substantial coverage benefits over baselines on the
Bills dataset (𝑝 < 0.02). GPT-4 Turbo is the nearest competitor on
coverage metrics, but LLooM provides the added benefit of con-
cepts that extend beyond matching ground truth labels to describe
unique characteristics of data within a ground truth topic.

5.2 Concept Generation: Synthetic Dataset
After demonstrating LLooM’s performance on real-world datasets,
we further probe its performance in a controlled setting. Our syn-
thetic dataset evaluation assesses how LLooM performs when we
vary the documents and concepts contained in a corpus. Synthetic

datasets grant us experimental control to independently study
how performance is impacted by factors like document length and
within-document concept prevalence, while holding constant the
set of ground truth concepts and their across-document prevalence.
Additionally, since we construct these datasets, we can guarantee
that these mappings of texts to ground truth labels do not occur in
the GPT-4 pre-training data.

5.2.1 Dataset generation. Our synthetic dataset is generated from a
seed set of ground truth Generic and Specific concepts that are held
consistent, while we vary document length and within-document
concept prevalence.

Parameters. First, we vary document length since unstructured
text can vary significantly in length depending on the domain (e.g.,
social media posts versus academic papers). Additionally, large lan-
guage models like GPT-4 have limited context windows and display
uneven performance across the context window [39]. We test docu-
ment lengths of 5 or 10 sentences; this approximately matches the
range of document lengths in our LLooM scenarios (mean lengths
of 2 to 8 sentences). Then, whether concepts comprise a small or
large portion of a document, we still want LLooM to recover them
since analysts are interested in both subtle and obvious concepts.
Thus, we vary within-document concept prevalence, operationalized
as the percentage of sentences in the document related to a pro-
vided seed concept. We test concept prevalence values of 20% or
40%. Finally, concepts are not monolithic: some concepts are lower-
level, specific ideas explicitly discussed in a document, while others
are higher-level, more generic themes that emerge from multiple
lower-level concepts, and we want our method to capture both.
While Generic concepts are useful in contexts like text clustering
to surface overarching patterns, Specific concepts are useful in con-
texts like discourse analysis and can characterize nuanced patterns
that inform theory-driven analysis. Thus, our dataset instantiates
both Generic and Specific ground truth concepts.

Generation procedure. For our synthetic dataset, we chose an over-
all “politics” topic to align with politics-related datasets from our
benchmark dataset evaluation (Bills dataset) and analysis scenarios
(Partisan Animosity dataset). We manually created a hierarchy of
ten Generic concepts (e.g., “Healthcare”), each of which has four
constituent Specific concepts (e.g., “Mental health,” “Health insur-
ance”), all listed in Appendix C.4.

For each unique combination of document length and concept
prevalence, we generated 40 documents using GPT-4. Each docu-
ment was generated by selecting one of the 40 Specific concepts,
prompting the model to generate a document of doc_length sen-
tences about the overall “politics” topic, and requesting a fixed
number of sentences related to the selected Specific concept based
on concept_prevalence (see sample generations in Figure 10).

Write a {doc_length}-sentence paragraph about

'politics '.

In {concept_prevalence * doc_length} sentences of the

paragraph, include content related to a SEED TOPIC '{

low_level_concept }'.

Please only return a JSON with this format:

{{

"paragraph ": "<PARAGRAPH >"

"seed_topic_sentences ": "<The sentences from

PARAGRAPH related to SEED TOPIC >"

}}
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Figure 10: Sample synthetic dataset documents. We generated documents for combinations of document length, concept
prevalence, and seed topic. The bolded portion indicates the seed concept sentences.
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Figure 11: On the synthetic datasets, LLooM exceeds baselines
on Specific concept coverage (0.71) and exceeds or matches
baselines on Generic concept coverage (0.98).

This approach allowed us to explicitly include Specific concepts
in the text while implicitly invoking Generic concepts as themes
that unify multiple Specific concepts.

Verification. During the generation process, we programmati-
cally verified that the total number of sentences in the documents
matched the requested length and that the number of seed concept
sentences aligned with the requested concept prevalence. We re-
viewed all documents and manually verified that the seed concept
sentences sufficiently conveyed the specified concept.

5.2.2 Method. We experimented with the same four methods—
LLooM, BERTopic, GPT-4, and GPT-4 Turbo—using the same pro-
cedure as the benchmark dataset evaluation (Section 5.1). For each
combination of document length and concept prevalence, we evalu-
ated each method on the corresponding set of synthetic documents
with 𝑛 = 10 independent trials. We again calculated automated
coverage metrics using GPT-3.5. We computed coverage for both
Generic and Specific ground truth concepts.

5.2.3 Results. Overall, we observe that LLooM achieves 16.0%
higher coverage than the nearest baselines on Specific concepts
(LLooM:𝑀 = 0.71, GPT-4 Turbo:𝑀 = 0.55) and matches or exceeds
baselines on Generic concepts (LLooM: 𝑀 = 0.98, GPT-4 Turbo:
𝑀 = 0.98, GPT-4: 𝑀 = 0.69, BERTopic: 𝑀 = 0.46), as shown in
Figure 11. These trends are stable across document lengths and
concept prevalence levels (Figure 12) and are consistent with our
benchmark dataset findings, which have ground truth topics similar
in form to Generic concepts. Notably, LLooM especially appears to
provide benefit for Specific concepts and maintains high coverage
while baseline methods substantially decline in coverage.

We analyze these results using a linear model with fixed effects of
method, document length, and concept prevalence: coverage ~ 1 +
method + doc_length + concept_prevalence. We use separate
models for Generic concept coverage and Specific concept coverage.
For Specific concepts, we observe a significantmain effect ofmethod
(𝐹 (3, 154) = 227.4, 𝑝 < .0001), concept prevalence (𝐹 (1, 154) =

22.0, 𝑝 < .0001), and document length (𝐹 (1, 154) = 5.8, 𝑝 < .05). A
posthoc pairwise Tukey test finds statistically significant differences
in coverage between all pairs of methods (𝑝 < .0001), statistically
significant differences between concept prevalence levels (𝑝 <

0.0001), and statistically significant differences between document
lengths (𝑝 < 0.05). In other words, Specific concept coverage is
highest for LLooM, then GPT-4 Turbo, then GPT-4, then BERTopic,
and Specific concept coverage is higher for longer documents and
those with higher concept prevalence. For Generic concepts, we
observe a significant main effect of method (𝐹 (3, 154) = 115.03, 𝑝 <

.0001). A posthoc pairwise Tukey test finds a statistically significant
(𝑝 < .0001) difference in coverage between all pairs of methods
except for GPT-4 Turbo vs. LLooM. Generic concept coverage is
significantly higher for LLooM compared to GPT-4 and BERTopic,
but not significantly different from GPT-4 Turbo.

We again compare the concepts generated by each method that
successfully matched ground truth concepts (Table 19). Again,
BERTopic produces the most vague outputs (e.g., “fiscal, economic,
hoping” for an economy concept) that are supersets of Specific con-
cepts. Consistent with the benchmark datasets, GPT-4 and GPT-4
Turbo produce concepts that tend to align closely with Generic
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Figure 12: Synthetic dataset results by document parameters. Across document lengths and concept prevalence levels, LLooM
achieves substantially higher Specific concept coverage andmatches or exceeds Generic concept coverage compared to baselines.

concepts (e.g. “Healthcare Policy” for a healthcare concept). GPT-4
again displays an occasional failure mode of combining multiple
ground truth concepts (e.g., “Political Influence,” which was de-
fined in such a way that could map to economy or foreign policy),
but GPT-4 Turbo does not appear to face this issue. Meanwhile,
LLooM produces concepts that match both Generic as well as Spe-
cific ground truth concepts, as we saw for the benchmark dataset.
For example, LLooM produces “Economic Policies” for an economy
concept, but it also produces concepts like “Fiscal Measures” and
“Economic Stability” that are more specific and nuanced portrayals
of data within the economy concept.

In summary, LLooM performs strongly across all datasets, and it
particularly excels relative to baseline methods for Specific concepts
(𝑝 < .0001), where baseline performance suffers. LLooM, GPT-4,
and GPT-4 Turbo produce competent Generic concepts, but LLooM
is additionally able to recover Specific concepts in the dataset.

5.3 Concept Classification
We then evaluate LLooM’s Score operator against human annota-
tors (Appendix C.2). LLooM attains inter-rater reliability (𝜅 = 0.63,
𝜅 = 0.645) very similar to that of human annotators (𝜅 = 0.64)
and achieves moderate to high performance levels (Accuracy: 0.91,
Precision: 0.70) on subjective concepts generated from our LLooM
scenario datasets.

6 EXPERT CASE STUDIES
Building on our analysis scenarios that showcase LLooM’s concepts
and our technical evaluation that supports the validity and coverage
of these concepts, we explore how LLooM might aid realistic data
analysis tasks that go beyond the standalone task of concept gen-
eration. We carry out first-use sessions with expert data analysts
who have authored publications on two of our scenario datasets:
(1) Mitigating Partisan Animosity on Social Media and (2) Ana-
lyzing the Industry Impact of HCI. These sessions are intended as
exploratory probes to demonstrate how data analysts interact with
LLooM concepts to make sense of their own data. While the goal
of the LLooM scenarios and technical evaluation was to validate
LLooM outputs, the goal of the expert case studies was to surface
design opportunities for the LLooM analysis experience by high-
lighting preliminary differences from status quo data analysis tools.
We focused on a small number of experienced analysts because they
are a discerning and critical audience who may already hold strong
understanding of a dataset, so they can provide expert feedback on
the utility of LLooM outputs for data analysis.

Details on participant recruitment and session format are in-
cluded in Appendix B.1. As a brief summary, each study consisted
of a 1-hour session that included a BERTopic analysis task, a LLooM
Workbench analysis task, and a concluding interview. During the
session, participants engaged in a think-aloud protocol as they con-
ducted exploratory data analysis of the same dataset that they had
analyzed for a prior publication.
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Figure 13: Expert Analyst Assessments of Concept Quality. Experts familiar with these datasets consistently rated a higher
proportion of LLooM concepts as helpful, interpretable, and unique (non-overlapping).

6.1 Expert 1: Mitigating Partisan Animosity on
Social Media

In the first session, the LLooM Workbench helped the expert an-
alyst to identify previously-unnoticed trends and activated rele-
vant domain knowledge to inspire theory-driven analyses. For the
BERTopic topics, the analyst labeled 5 as helpful (62.5%), one as
uninterpretable (12.5%), and one as overlapping with another topic
(12.5%), as shown in Figure 13. For LLooM concepts, the analyst
labeled 18 as helpful (90%), none as uninterpretable (0%), and one
as overlapping with another concept (5%).

6.1.1 BERTopic Analysis Process—Making sense of vague and over-
lapping topics. The analyst reviewed topic keywords (e.g., “oil, gas,
energy, strategic”) and attempted to explain each topic (e.g., Natural
resources and energy) based on prior knowledge of the dataset. They
spent time exploring examples primarily to compare two highly
similar topics (“house, republicans, democrats” and “rep, congress-
man, great”), but could not identify a meaningful difference.

6.1.2 LLooM Analysis process—Exploring data through the lens of
concepts. By contrast, with the LLooM Workbench, the analyst did
not need to spend time interpreting each concept and primarily
spent time inspecting the data through the lens of the concept.

Exploring concepts that match or violate expectations. The ana-
lyst selectively explored concepts that differentiated low and high
partisan animosity examples based on the concept prevalence his-
tograms. Several concepts matched the analyst’s expectations as
associated with high partisan animosity (e.g., “Government-Related
Themes” and “Political Commentary”) or low partisan animosity
(e.g., “Government Accountability” and “Public Health Concern”).
However, LLooM helped the analyst to discover an unanticipated
and particularly helpful “Political Party Positions” concept that
was prevalent among high partisan animosity posts and surfaced a
pattern of attacks on out-party stances.

Investigating nascent patterns. Starting from an existing “Policy-
related” concept, the analyst noticed a pattern of posts dramatizing
the impact of particular policies (e.g., immigration and border poli-
cies). They explored this pattern further by creating a variant of

the original concept named “Crisis” with the criteria, “Does this
example mention crisis due to a policy?” In a few seconds, they
were pleased to see that they had successfully identified a salient
cluster of posts that carried high partisan animosity scores.

Activating relevant domain knowledge. Prompted by this explo-
ration, the analyst was reminded of their domain knowledge on
anti-democratic attitudes in political science literature [59], which
included social distrust. They created a new concept named “Social
Distrust” with the criteria, “Does this example display distrust of
other people or society?” The analyst found that these examples
received mid-to-high partisan animosity scores, but did not fall in
the highest bucket of scores, so perhaps that factor was less predic-
tive of the most severe cases of partisan animosity. While it would
ordinarily be challenging to extract examples that display social
distrust, which manifests implicitly rather than explicitly, LLooM
allowed the analyst to successfully capture the concept.

6.1.3 Interview Takeaways. Overall, while BERTopic allowed the
analyst to see data in terms of loose groupings, LLooM allowed them
to navigate and understand data in terms of meaningful concepts.

BERTopic is a map, LLooM is a vehicle. BERTopic topics helped
the analyst to “visualize the main patterns.” They felt that for fu-
ture qualitative coding, topics like these could simplify their work
because examples within each cluster would likely have similar
ratings for constructs like partisan animosity. With LLooM Work-
bench, the analyst felt that the system “[did] a much better job in
terms of visualizing and helping me navigate concepts as well as
examples under those concepts.”

LLooMmay aid preliminary phases of qualitative analysis. The an-
alyst expressed that the LLooMWorkbenchwould “help [them] a lot
in providing guidance on different categorizations of the data” for
qualitative analysis. They raised a potential concern that LLooM’s
outputs could impact their judgment in categorizing data: since
it “already gives me an initial categorization, it might affect my
judgement.” However, “given how precise the concepts are,” they
felt that as a first step of coding, LLooM would be extremely helpful
to save time and grant a better understanding of the whole dataset,
especially for large datasets.
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6.2 Expert 2: Analyzing UIST Paper Abstracts
LLooM Workbench helped the second analyst to actively explore
hypotheses and carry out analysis ideas that were previously chal-
lenging to enact. For the BERTopic topics, they labeled 8 as helpful
(66.7%), 3 as uninterpretable (25%), and none as overlapping with
another topic (0%), as shown in Figure 13. For LLooM concepts, the
analyst labeled all 16 as helpful (100%), none as uninterpretable
(0%), and none that were overlapping with each other (0%).

6.2.1 BERTopic Analysis Process—Dealing with incoherent and overly-
generic topics. The second analyst spent most of their time review-
ing the BERTopic keywords and only inspected examples to make
sense of topics with uninterpretable keywords. They primarily
looked for coherent groups of terms within the keyword sets, such
as “reality, vr, virtual,” but struggled to author manual labels for 3
of the topics (25%).

Difficulties iterating on uninformative topics. Several clusters con-
sisted of terms like “user” and “interface” that might be informative
in a general sense, but were uninformative in this analysis context.
Given the ubiquity of users and interaction in HCI research, such
clusters didn’t help the analyst to understand the patterns happen-
ing within a conference like UIST. This was a major painpoint when
they had previously used LDA for topic modeling on this dataset,
as they had to perform multiple rounds of iteration to catch stop-
words and optimize output clusters, which was time-consuming
and caused them to doubt whether their results were robust.

6.2.2 LLooM Analysis Process—Leveraging concepts to explore hy-
potheses. When using the LLooM Workbench, the analyst noted
that it contrasted sharply with their prior experience with tradi-
tional topic models.

Less time validating, more time exploring. With LLooM, they were
able to immediately understand the extracted concepts and verify
how they mapped to specific documents. The analyst deemed all
of the LLooM concepts as both interpretable and helpful for their
analysis task of understanding research at UIST, and they found
the criteria prompt especially helpful in clarifying the meaning of
concepts. Most of the analyst’s time was spent using the concepts
to compare changes in paper topics or methods over the decades.

Exploring their own hunches and analysis ideas. The analyst was
particularly excited about authoring new concepts with LLooM, as
this was a barrier with traditional topic modeling tools where ana-
lysts cannot proactively specify their own topics that theywish to ex-
plore. The analyst was curious about whether more HCI researchers
were incorporating AI into their systems, since this appeared to
be the case from their anecdotal experience. They authored a new
concept called “AI” with the criteria “Does this example include
concepts of artificial intelligence?” and indeed found that there was
a steady rise in AI-related papers across the decades.

Investigating concepts that are challenging to describe. In past
analyses where the analyst had a hypothesis and wanted to “zoom
in” on that phenomenon, they had to rely on keyword search, which
was time-intensive, required domain knowledge, and could result
in coverage gaps. They felt that LLooM would be highly useful
for these analysis tasks not only to lower effort, but to increase
coverage. LLooM successfully surfaced examples in the AI concept
that didn’t explicitly use the AI term, such as a paper that only

mentioned “object recognition,” and the analyst commented that
even researchers in the field would likely struggle to come up with
terms like this before diving into the data.

6.2.3 Interview Takeaways. In summary, the analyst found LLooM
helpful in not only providing a “straightforward, high-level idea”
of data, but also fostering proactive analyst-led data explorations.

LLooM should help analysts calibrate their trust. One limitation
that they raised was that data scientists and computational social
scientists would likely want to have quantitative metrics to indicate
the robustness and reliability of the tool to increase their confidence
in building on the output concepts. Additionally, users in these
domains would likely want to better understand LLooM’s internal
process to calibrate their trust in the tool.

LLooM can facilitate theory-driven analysis. The analyst was
most enthusiastic about the possibility for the tool to support more
theory-driven analyses in response to LLooM’s automatically ex-
tracted concepts. While they had wanted to analyze data in this
way in prior research projects, it was challenging to execute this
kind of analysis with existing tools.

7 DISCUSSION
In this paper, we present LLooM, a concept induction algorithm
that extracts high-level, interpretable concepts from unstructured
text datasets. LLooM not only improves topic quality and coverage,
but also provides benefits to steerability and interpretability. Here,
we discuss design implications, limitations, and opportunities for
future work.

7.1 Design Implications
LLooM points toward several design opportunities in the realms of
topic modeling and interactive data analysis.

7.1.1 Redesigning data analysis abstractions to support theory-
driven analysis. With LLooM, we ask whether it is possible to re-
design the core abstractions of our data analysis systems to center
around the way analysts would like to think about their data. Based
on our evaluations and preliminary findings, it appears that it is
indeed possible to orient a topic modeling process entirely around
human-understandable concepts expressed in natural language,
and enable analysts to steer the model’s attention toward specific
analytic goals. By linking data-driven results with human-readable
ideas, we can enact a very different data analysis experience where
an analyst can “read” emergent patterns from data and, in response,
“write” their theory to apply it back onto the data.

7.1.2 Introducing automation to aid reflection on analysis processes.
By automating elements of the data analysis process, we can free
analysts to step back one level and not just enact their analysis
process, but reflect and identify potential gaps therein. Moreover,
in contexts such as computational social science, analysts may need
to make credible commitments for replicability and generalizability
purposes that they have not overly biased the analysis process.
In these cases, LLooM can automatically carry out key aspects of
manual data analysis, such as distilling data, grouping together
relevant items, synthesizing trends into concepts, and applying
those concepts to categorize data. LLooM can aid reflection by
guiding users to clarify the meaning of concepts, catch blindspots
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in their analysis that aren’t covered by concepts, and initiate parallel
re-runs to explore a variety of data interpretations. In contrast, if
the analyst does wish to inject their insight and perspectives into
the analysis, as is more common in ethnomethodological traditions,
LLooM can operate in a closed loop with the analyst.

7.1.3 Innovating on our core algorithmic operators. To implement
LLooM, we combined the core operators introduced in this work
(e.g., Distill, Cluster, and Synthesize) into an architecture that drew
inspiration from the qualitative analysis process. However, there is
a much broader design space of operators and implementations. We
see exciting opportunities to dynamically rearrange and restruc-
ture these operators as building blocks for different analysis tasks
depending on an analyst’s goals. Going further, we could innovate
new operators that align with the cognitive processes of not just
data analysts, but other human domain experts for tasks beyond
data analysis.

7.2 Limitations and Future Work
LLooM also presents critical design challenges, especially given its
use of large language model outputs and its specific use of OpenAI’s
GPT models. These point to important future work directions.

7.2.1 Uncertain LLM behaviors: risks of uneven cross-domain perfor-
mance. One core limitation of this work, and any work that builds
upon large language models, is that we currently lack reliability
and performance guarantees. LLM performance can vary widely
across domains and greatly depends on the training data, which is
often withheld from public knowledge. While we can expect LLMs
like GPT-4 to perform strongly on text similar to the distribution of
large-scale Internet text data on which they were trained, perfor-
mance may decline in specialized domains such as law, medicine,
and fields requiring technical expertise. Novel techniques may be
needed to enable concept induction in areas underrepresented in
LLM training data. LLMs often err in following instructions, strug-
gle with logical statements, or produce outputs with hallucinations
that are not faithful to the original data. We cannot entirely re-
move the possibility of such foundational errors, but our system
additionally mitigates the risk of downstream harm by heavily in-
corporating human review: analysts can trace concepts back to
lower-level concepts and original data examples, and they can re-
view concept scores and rationales to catch when models fail.

7.2.2 Drawbacks of closed-source LLMs: cost and lack of trans-
parency. Compounded on the uncertainties of large language mod-
els in general, there are additional downsides of closed-source mod-
els like OpenAI’s GPT models, which we use in our LLooM imple-
mentation. Since we lack transparency on both the data on which
these models were trained and the design of the models themselves,
we have limited ability to anticipate blindspots that would impact
LLooM’s functionality. Additionally, the use of OpenAI models
presents barriers to reproducibility: the model versions underlying
the APIs may change at any time without our knowledge, and we
lack the control to invoke the same model version we may have
used in the past. We opt to use the closed-source OpenAI GPT
models because they represent the state-of-the-art; our preliminary
testing with other models could not reliably execute the synthe-
sis operations central to our approach. However, as open-source

model capabilities improve, future work should explore strategies
for using open-source models for concept induction.

Another limitation of closed-source LLMs is that it is costly to run
our process at extremely large scales since our method depends on
calls to external APIs that charge by token usage and that enforce
token limits. In the years since the original releases of APIs for
LLMs, costs have already dramatically decreased, so we anticipate
that cost and efficiency issues will become less of a barrier in the
future. Given that concept scoring is an especially costly part of
the pipeline, if analysts need to scale up classification, they could
explore training distilled models using a smaller set of LLM-labeled
examples to reduce the cost and speed of inference, or drawing on
open-source LLMs.

7.2.3 Potential to bias analysts. Lastly, as surfaced by our expert
case studies and in prior literature on AI-assisted data analysis [27,
31], AI-based analysis tools like LLooM may risk biasing analysts
or limiting their agency to lead analyses. If analysts too heavily
depend on LLooM outputs—by not inspecting the concepts, not
exploring potential gaps outside of the set of generated concepts,
or overrelying on the automated concept scores—they may miss
important patterns in the data or may inadvertently build on low-
quality or faulty model outputs. Thus, future work should help
users to calibrate their trust in LLooM with indicators of reliability
and potential knowledge gaps. This work should further aid users in
verifying system outputs, manually inspecting results, and leading
follow-up analyses to augment exploratory LLooM analyses. Along
this line, an important limitation of LLM tools is that the values and
biases encoded in LLMs are unclear, but they certainly can shape
the concepts that our system generates. Future tools need to design
around this challenge and provide greater transparency and control
about the values embedded in LLM-led data analysis.

8 CONCLUSION
Unstructured text holds a vast amount of information, but it remains
difficult to derive meaningful insights from data in this form. It is es-
pecially challenging to enact theory-driven analyses of unstructured
text. Current tools like topic modeling and clustering are helpful,
but tend to output surface features like “rep, congressman, great”
that require substantial effort to interpret and validate.We introduce
the task of concept induction, a computational process that takes
in unstructured text and produces high-level concepts—human-
interpretable descriptions defined by explicit inclusion criteria (e.g.,
a “Government and community collaboration” concept defined by
criteria like “Does the text example mention a government program
or initiative and community engagement or participation?”). High-
level concepts provide the affordances to “read” out data patterns
in an interpretable form and to “write” out actionable theories that
can be applied back to data. We present LLooM, a concept induc-
tion algorithm that implements a novel LLM-powered Synthesize
operator to iteratively sample unstructured text and propose high-
level concepts of increasing generality. By instantiating LLooM in
a mixed-initiative text analysis tool called the LLooM Workbench,
we demonstrate that its concepts are able to exceed the quality of
topic models. With LLooM, analysts can see and interact with data
in terms of interpretable, actionable concepts to lead theory-driven
analyses of unstructured text.
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{n_bullets} bullet points, where each bullet point is

a {n_words} word phrase.

Please respond ONLY with a valid JSON in the

following format:

{{

"bullets ": [ "<BULLET_1 >", "<BULLET_2 >", ... ]

}}

A.3 Synthesize operator prompt
I have this set of bullet point summaries of text

examples:

{bullets_json}

Please write a summary of {n_concepts} unifying

patterns for these examples {seed_phrase }.

For each high -level pattern, write a {n_name_words}

word NAME for the pattern

and an associated 1-sentence ChatGPT PROMPT that

could take in a new text example

and determine whether the relevant pattern applies.

Please also include {n_example_ids} example_ids for

items that BEST exemplify the pattern.

Please respond ONLY with a valid JSON in the

following format:

{{

"patterns ": [

{{

"name": "<PATTERN_NAME_1 >"

"prompt ": "<PATTERN_PROMPT_1 >"

"example_ids ": ["<EXAMPLE_ID_1 >", "<

EXAMPLE_ID_2 >"]

}}

{{

"name": "<PATTERN_NAME_2 >"

"prompt ": "<PATTERN_PROMPT_2 >"

"example_ids ": ["<EXAMPLE_ID_1 >", "<

EXAMPLE_ID_2 >"]

}}

]

}}

A.4 Score operator prompt
CONTEXT:

I have the following text examples in a JSON:

{examples_json}

I also have a pattern named {concept_name} with

the following PROMPT:

{concept_prompt}

TASK:

For each example, please evaluate the PROMPT by

generating RATIONALE of your thought process

and providing a resulting ANSWER of ONE of the

following multiple -choice options, including just

the letter:

- A: Strongly agree

- B: Agree

- C: Neither agree nor disagree

- D: Disagree

- E: Strongly disagree

Respond with ONLY a JSON with the following

format, escaping any quotes within strings with a

backslash:

{{

"pattern_results ": [

{{

"example_id ": "<example_id >"

"rationale ": "<rationale >"

"answer ": "<answer >"

}}

]

}}

A.5 Automated coverage prompt
I have this set of CONCEPTS:

{ground_truth_concepts}

I have this set of TEXTS:

{generated_concepts}

Please match at most ONE TEXT to each CONCEPT. To

perform a match, the text must

EXACTLY match the meaning of the concept.

Do NOT match the same TEXT to multiple CONCEPTS.

Here are examples of VALID matches:

- Global Diplomacy, International Relations;

rationale: "The text is about diplomacy between

countries ."

- Statistical Data, Quantitative Evidence;

rationale: "The text is about data and quantitative

measures ."

- Policy and Regulation, Policy issues and legislation

;

rationale: "The text is about policy, laws, and

legislation ."

Here are examples of INVALID matches:

- Reputation Impact, Immigration

- Environment, Politics and Law

- Interdisciplinary Politics, Economy

If there are no valid matches, please EXCLUDE the

concept from the list.

Please provide a 1-sentence RATIONALE for your

decision for any matches.

Please respond with a list of each concept and either

the item it matches or NONE

if no item matches in this format:

{{

"concept_matches ": [

{{

"concept_id ": "<concept_id_number >"

"item_id ": "<item_id_number or NONE >"

"rationale ": "<rationale for match >"

}}

]

}}

B ADDITIONAL METHODS
B.1 Expert Case Study: Study Design
The Expert Case Study required participants who have expertise in
data analysis: specifically, those who have conducted an analysis of
unstructured text documents. It was important that they had already
conducted this analysis (so that they had enough prior knowledge of
the data to distinguish helpful and unhelpful concepts) and that the
dataset could be shared publicly (since the analysis scenarios and
expert case studies would be published). Thus, our eligibility criteria
were (1) that the analyst had previously authored an academic
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Figure 14: NeurIPS Broader Impact Statements, Topic Prevalence. BERTopic struggles with only two categories, one of which
appears to be a vague catch-all topic with 93.3% of examples. LLooM surfaces concepts that range from characterizing the
majority of data to small subsets, and only fails to categorize 9.3% of examples.

publication based on a dataset and (2) that the data consisted of
unstructured text documents. For our exploratory analysis goals,
we recruited 𝑁 = 2 participants through contacts in the university
setting. Expert 1 was a postdoctoral scholar in Communication and
Human-Computer Interaction with research interests in emerging
media technologies and human-centered AI. Expert 2 was a Ph.D.
student in Human-Computer Interaction and Natural Language
Processing with research interests in computational social science
and large-scale data mining. The participants had no knowledge
of the LLooM Workbench and its functionality prior to the study
session.

For the BERTopic analysis task, the participant was given a
spreadsheet view populatedwith BERTopic outputs for their dataset.
A summary tab displayed the keywords and size of each topic; a
detail tab displayed a filterable view with all documents and their
assigned topic. To understand how the expert interpreted the topics,
we first had them complete a naming task of providing a mean-
ingful name for each topic. Then, the participant was asked to
freely explore the data and topics. Finally, we had them complete
an annotation task on whether each topic was helpful (aids their
understanding of the dataset), interpretable (has a discernible mean-
ing), and unique (does not share the samemeaning as another topic).
For the LLooM analysis task, the participant accessed the LLooM
Workbench via a computational notebook already populated with
the LLooM-generated concepts for their dataset. The participant
was asked to review the generated concepts, and then to freely
explore the data based on their interests. Towards the end of this
section, we asked the participant to complete a concept modification
task to either edit or add one new concept. To conclude, we had
them complete the same annotation task on LLooM concepts.

The session was roughly split into 5 minutes for consent and
setup, 15 minutes for analysis using BERTopic, 5 minutes for a post-
interview on BERTopic, 5 minutes for a LLooMWorkbench tutorial,

15 minutes for analysis using LLooM Workbench, and 10 minutes
for a final interview on LLooM and their overall experience with
both tools. Each session was conducted remotely over a video call,
and participants were compensated with a $45 Amazon gift card.

C ADDITIONAL RESULTS
C.1 Scenario 4: Investigating Anticipated

Consequences of AI Research
In 2020, NeurIPS, a premier machine learning research conference,
required authors to include a broader impact statement in their sub-
mission in an effort to encourage researchers to consider negative
consequences of their work. These statements provide a window
into the ethical thought processes of a broad swath of AI researchers,
and prior work has performed a qualitative thematic analysis on a
sample of 300 statements [45]. Using this dataset, we explore how
LLooM might help us to understand how AI researchers discuss
downstream consequences, ethical issues, and potential mitigations.

C.1.1 Results. LLooM generated 14 unique concepts, including
examples like “Adversarial Attacks and Defenses,” “Privacy Con-
cerns,” and “Energy Conservation,” as shown in Figure 14. In con-
trast, BERTopic generated only 2 topics with keywords such as
“societal, consequences, foreseeable” and “learning, work, data.” The
BERTopic topics were all quite generic (ourmanual analysis mapped
the topics to labels of “Machine Learning Techniques” and “Ethics
and Societal Impacts”). Since these topics could likely apply as a
category label for all impact statements, they do not help analysts
to break down the data into emergent trends. The LLooM results
also included some more generic concepts (e.g., “’Societal Impact’),
but it also identified specific kinds of impact mentioned in state-
ments, including both positive impacts (e.g., “Energy Conservation,”
“Generalization Improvement,” “Improved Training Techniques,”
and “Efficient ML Algorithms”) and negative impacts (e.g., “Privacy
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Concerns,” “Adversarial Attacks”). Furthermore, the concepts en-
capsulated proposed solutions to downstream impacts of AI research
(e.g., “Adversarial Defenses,” “Importance of Verification”).

While 100% of BERTopic results overlapped with LLooM, only
14.3% of LLooM results overlapped with BERTopic, so there was
a substantial portion of LLooM concepts that were novel contri-
butions. Here, none of examples were uncategorized by BERTopic
while 9.3% were uncategorized by LLooM. However, one of the two
BERTopic results (“learning, work, data”) appears to be a vague
catch-all topic; BERTopic assigned 93.3% of examples to this group.

C.2 Concept Classification Evaluation
We perform an additional evaluation on the reliability of LLooM’s
automated concept classification with the Score operator. To assess
how well LLooM aligns with human judgment, we sample LLooM-
generated concepts, gather human annotations on documents for
each concept, and compare the results with LLooM scores.

C.2.1 Method. For this evaluation, we sample concepts from the
four LLooM scenario datasets. To capture the system’s performance
on both rare and common concepts, we perform a stratified random
sample based on concept prevalence, the proportion of documents
that LLooM classified as matching a concept.8 For each dataset,
we sampled one concept from each quartile of concept prevalence
for a total of four concepts. Then, for each selected concept, we
constructed balanced datasets with 𝑛 = 100 documents by taking a
stratified random sample of 50 positive documents (those that were
classified as matching the concept) and 50 negative documents. For
rare concepts with fewer than 50 positive documents, the remainder
was drawn from a random sample of negative documents.

Included below are the sampled concepts for each dataset:
• Partisan Animosity dataset:

– Advocacy: Does the text example advocate for a cause or issue?
– Event: Is this text example related to an event?
– Political Party Positions: Does the text example mention the posi-

tions or actions of political parties?
– Social Justice Focus: Does the text example emphasize working

towards a just future?
• Toxic Content dataset:

– Expressing Frustration: Does the text example involve expressing
frustration or disbelief?

– Men’s Perception of Unfair Treatment: Does the text example
discuss men feeling treated unfairly in society?

– Seeking Explanation: Does the text example seek an explanation
for a certain behavior?

– StereotypingWomen: Does the text example involve stereotyping
women?

• UIST Abstracts dataset:
– Application of Prototype System: Does the text example discuss

the application of a prototype system to various interfaces?
– Pen-like Input and Interaction: Does the text example involve

precise pen-like input and handle interaction?
– User Experience Enhancement: Does the example describe a prod-

uct or technology that enriches the user’s experience?
– VR Evaluation: Does the text example involve evaluating and

improving immersion in VR?

8We only conservatively classify examples as positive only if they receive an annota-
tion of “strongly agree,” the most confident label option. All other label options are
considered negative.

Table 1: Per-Dataset Classification Metrics. We report means
and standard deviations for classification metrics on each
LLooM scenario dataset. We observe considerable variance
in classification performance across concepts and datasets.

Dataset Accuracy Precision F1 Score

NeurIPS Statements 0.90 (0.02) 0.61 (0.05) 0.55 (0.14)
Partisan Animosity 0.90 (0.02) 0.95 (0.01) 0.68 (0.10)
Toxic Content 0.91 (0.02) 0.65 (0.27) 0.61 (0.18)
UIST Abstracts 0.92 (0.04) 0.59 (0.25) 0.53 (0.12)

• NeurIPS Statements dataset:
– Importance of Verification: Does the text example emphasize the

importance of verifying data or systems?
– New Framework Proposal: Does the text example propose a new

framework?
– Potential Benefits and Risks: Does the example discuss potential

benefits and risks?
– Wide Application Space: Does the example mention wide appli-

cation space for generic objects?

To assess inter-rater reliability, two members of the research
team independently annotated the four sampled concepts for one
dataset (the Partisan Animosity dataset), each annotating 400 docu-
ments in total. One rater annotated the documents for the remaining
three datasets. For each document, based on the concept name and
inclusion criteria, each annotator selected from the same multiple-
choice options provided to GPT-4 in the LLooM Synthesize opera-
tor prompt, ranging fromwhether they “strongly agree” to “strongly
disagree” that the document matches the concept. Then, we com-
pare these manual scores with those generated by LLooM in the
concept scoring step. For inter-rater reliability, we use Cohen’s 𝜅
because we only consider pairs of raters, our scale is categorical
(binary labels), and our data is approximately balanced.

C.2.2 Results. For classification metrics across datasets, we ob-
serve a mean accuracy of 0.91, precision of 0.70, recall of 0.59, and
F1 score of 0.59; per-dataset metric results are shown in Figure 15
and Table 1. Given that the concepts in this set are quite complex,
and given that the documents are relatively long text examples, the
scoring procedure achieves relatively strong performance results.
However, this performance varies quite widely both across datasets
and across concepts within a dataset.

To provide a point of comparison on this variability, we cal-
culated inter-rater reliability between LLooM and each human
annotator as well as between the two human annotators (A1 and
A2). Across the four concepts, Cohen’s 𝜅 between the two human
annotators was 0.64; meanwhile, the IRR between LLooM and A1
was 0.63, and the IRR between LLooM and A2 was 0.645. Thus,
LLooM’s annotations perform quite comparably to that of other
human annotators. Per-concept IRR values are reported in Table 2.

Qualitatively analyzing error cases where LLooM disagreed with
human annotators, we find that the LLooM annotations generally
appeared reasonable; they tended to be plausible, but differing, in-
terpretations of the text. For false positives where LLooM marked
documents as matching a concept while the human annotator (A1)
did not, differences seemed to stem from differing thresholds of
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LLooM when paired with each human annotator.

concept matching. In general, LLooM was more likely to label ex-
amples as positive for a concept, especially for borderline cases.
However, its decisions seem to fall within a a grey area of reason-
ability given the subjective nature of many of these concepts. For
example, the following example was labeled by LLooM as positive
for the Advocacy concept while the human annotator marked the
example as negative: “Today was made possible because of the
Pennsylvania Democrats who organized, knocked doors, donated,
and voted.” In this case, the text implicitly references causes or
issues that are supported, but does not explicitly advocate for a
cause. This subjectivity could reasonably lead to differing labels.

Meanwhile, for false negativeswhere the human annotatormarked
documents as matching a concept while LLooM did not, a common
trend was that the examples required a deeper level of expertise
or appreciation of nuance. This may be a failure mode for LLMs
like GPT-3.5, which underlies the LLooM Score operator. For exam-
ple, with the same Advocacy concept above, the following example
(excerpted) was labeled by the human annotator as positive while

Table 2: We observe that LLooM achieves inter-rater reliabil-
ity levels (Cohen’s𝜅) comparable to that of human annotators
(A1 and A2). Agreement is moderate to high.

Concept A1-A2 LLooM-
A1

LLooM-
A2

Advocacy: Does the text example
advocate for a cause or issue?

0.60 0.74 0.78

Event: Is this text example re-
lated to an event?

0.57 0.69 0.57

Political Party Positions: Does
the text example mention the po-
sitions or actions of political par-
ties?

0.67 0.63 0.70

Social Justice Focus: Does the
text example emphasize working
towards a just future?

0.64 0.46 0.53

LLooM labeled the example as negative: “[...] I will be working
to make sure Head Start & Early Head Start has the resources it
needs to serve thousands of children in Middle GA.” The text did
not explicitly advocate for a cause or ask others to join with the
typical language of advocacy, but it mentioned a particular gov-
ernment program (Head Start) that promotes school readiness for
pre-school-age children from low-income families. The annotator
had this knowledge and interpreted the text as advocating for this
cause, while the LLM may not have had this context.

Overall, this evaluation and error analysis supports earlier evi-
dence that LLooM performs annotation at a level comparable to that
of another human annotator, but that it cannot avoid the inherent
disagreement that will arise from subjective annotation tasks [23].
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Figure 17: Sample of Wiki Dataset results for LLooM and baseline methods.

C.3 Technical Evaluation: Concept Generation
Outputs

We include sample outputs for LLooM, BERTopic, GPT-4, andGPT-4-
Turbo on the benchmark datasets (Wiki and Bills) and the synthetic
dataset from the technical evaluation in Section 5. For each dataset,
we sampled three ground truth topics. Then, for each of the four
methods, we sampled up to three generated concepts that matched
the ground truth topic from across all trials. We display the results
for the Wiki dataset in Figure 17 for the “Video games,” “Engineer-
ing and technology,” and “Music” concepts. We display the results
for the Bills dataset in Figure 18 for the “Transportation,” “Envi-
ronment,” and “Education” concepts. We display the results for the
synthetic dataset in Figure 19 for the “Healthcare,” “Immigration,”
and “Economy” concepts.

C.4 Technical Evaluation: Synthetic Dataset
Concepts

To generate the synthetic data, we used the following set of 10
Generic concepts and 40 Specific concepts:

(1) Generic: Election Campaigns, Specific: Fundraising, Candidate
Profiles, Political Rallies, Campaign Promises

(2) Generic: Government Policies, Specific: Healthcare Policies, Edu-
cation Policies, International Relations Policies, Economic Policies

(3) Generic: Political Parties, Specific: Party Platforms, Party Leader-
ship, Party History, Party Factionalism

(4) Generic: Human Rights, Specific: LGBTQ+ Rights,Women’s Rights,
Racial Equality, Children’s Rights

(5) Generic: Immigration, Specific: Border Control Policies, Refugee
Policies, Immigration Reform, Illegal Immigration

(6) Generic: Economy, Specific: Taxes, Unemployment, Fiscal Policy,
Government Spending

(7) Generic: Healthcare, Specific: Universal Healthcare, Mental Health,
Drug Policy, Health Insurance

(8) Generic: Environment, Specific: Climate Change, Renewable En-
ergy, Nature Conservation, Air Pollution

(9) Generic: Foreign Policy, Specific: Trade Agreements, War and
Peace, Diplomatic Relations, International Aid

(10) Generic: GunControl, Specific: BackgroundChecks, AssaultWeapons
Ban, Gun Control Legislation, Second Amendment Rights
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Figure 18: Sample of Bills Dataset results for LLooM and baseline methods.
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Figure 19: Sample of Synthetic Dataset results for LLooM and baseline methods.
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