

1 **The circadian clock regulates receptor-mediated immune responses to an
2 herbivore-associated molecular pattern**

3 Guayazán Palacios, Natalia¹, Imaizumi, Takato¹, Steinbrenner, Adam, D.¹

4 ¹Department of Biology, University of Washington, Seattle, WA, USA.

5 **Summary**

6 Plants activate induced defenses through the recognition of molecular patterns. Like
7 pathogen-associated molecular patterns (PAMPs), herbivore-associated molecular
8 patterns (HAMPs) can be recognized by cell surface pattern recognition receptors
9 leading to defensive transcriptional changes in host plants. Herbivore-induced defensive
10 outputs are regulated by the circadian clock, but the underlying molecular mechanisms
11 remain unknown. To investigate how the plant circadian clock regulates transcriptional
12 reprogramming of a specific HAMP-induced pathway, we characterized the daytime and
13 nighttime transcriptional response to caterpillar-derived In11 peptide, in the legume crop
14 cowpea (*Vigna unguiculata*). Using diurnal and free-running conditions, we found that
15 daytime In11 elicitation resulted in stronger late-induced gene expression than
16 nighttime. Plants with a conditional arrhythmic phenotype in constant light (LL)
17 conditions lost time-of-day dependent responses to In11 treatment, and this was
18 associated with arrhythmic expression of circadian clock core transcription factor *Late*
19 *Elongated Hypocotyl VuLHY1* and *VuLHY2*. Reporter assays with VuLHY homologs
20 indicated that they interact with the promoter of daytime In11-induced *Kunitz Trypsin*
21 *Inhibitor (VuKTI)* via a canonical and a polymorphic CCA1/LHY Binding Site (CBS),
22 consistent with a mechanism of direct regulation by circadian clock transcription factors.
23 This study improves our understanding of the time-dependent mechanisms that regulate
24 herbivore-induced gene expression.

25

26 **Key words**

27 HAMP, Inceptin, In11, immunity, legumes, time-of-day, circadian clock, circadian gating

28 **Introduction**

29 Plant survival is dictated by the plant's ability to accurately perceive biotic threats
30 and to activate effective defenses in a timely manner. Plants sense pests and
31 pathogens through recognition of molecular patterns via cell-surface pattern recognition
32 receptors (Ngou *et al.*, 2022; Zhang *et al.*, 2024). The specific interaction between a
33 molecular pattern and a cognate receptor results in the activation of Pattern Triggered
34 Immunity (PTI) to provide a first line of protection, a hallmark of which is the
35 transcriptional reprogramming that accompanies metabolic and physiological changes
36 associated with immunity (DeFalco & Zipfel, 2021). While gene expression changes and
37 the mechanisms regulating them in response to Pathogen Associated Molecular
38 Patterns (PAMPs) are well documented (Li *et al.*, 2016; Bjornson *et al.*, 2021), our
39 understanding of these processes in response to Herbivore Associated Molecular
40 Patterns (HAMPs) is nascent. Although many HAMPs have been identified (Snoeck *et*
41 *al.*, 2022b), detailed transcriptional responses to specific elicitor molecules have only
42 been described for two HAMPs present in lepidopteran oral secretions: the fatty acid-
43 amino acid conjugate (FAC) C18:3-Glu in *Nicotiana* species (Zhou *et al.*, 2016), and the
44 peptide Inceptin 11 (In11) active on cowpea, *Vigna unguiculata* (Steinbrenner *et al.*,
45 2022). While FAC receptors are not yet fully elucidated (Poretsky *et al.*, 2020), In11 is
46 recognized only in select legume species due to a legume-specific Inceptin Receptor
47 (INR), a leucine-rich repeat receptor in the Receptor Like Protein (RLP) family
48 (Steinbrenner *et al.*, 2020; Snoeck *et al.*, 2022a). Since In11-INR is the only HAMP-
49 receptor pair characterized in molecular detail it serves as a model for studying
50 herbivore-specific immune pathways (Steinbrenner *et al.*, 2022)

51
52 In11 elicitation results in a well-characterized set of defensive outputs driven by
53 amplified and accelerated expression of wound-induced genes, as well as In11-specific
54 gene expression (Steinbrenner *et al.*, 2022). As a result of rapid transcriptional
55 reprogramming in response to In11, both direct and indirect induced defenses are
56 accumulated to increase resistance to herbivores (Schmelz *et al.*, 2006). Induced
57 defense responses include production of defense-related phytohormones, specialized
58 anti-nutritive proteins and metabolites, and volatile-mediated attraction of beneficial

59 insects (Erb & Reymond, 2019). HAMP-induced regulation of these responses is
60 thought to be a mechanism to reduce costs by effectively allocating defenses to times
61 and tissues when and where they are needed (Karban, 2011).

62

63 Like many other biological processes, plant immunity is regulated by the circadian clock
64 (Lu *et al.*, 2017). The core circadian clock components CIRCADIAN CLOCK
65 ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and LUX
66 ARRHYTHMO (LUX) are Myb-like transcription factors that participate in the rhythmic
67 accumulation of defensive hormones jasmonic (JA) and salicylic acid (SA) (Goodspeed
68 *et al.*, 2012), and resistance genes such as *RECOGNITION OF PERONOSPORA*
69 *PARASITICA 4 (RPP4)* (Wang *et al.*, 2011) in anticipation to herbivore and pathogen
70 attack, respectively. LUX is also involved in modulating PTI responses in a time-of-day-
71 dependent manner through gated accumulation of ROS and expression of the bacterial
72 marker gene *FLG22-INDUCED RECEPTOR-LIKE KINASE 1 (FRK1)* in response to
73 flagellin 22 (flg22), a bacterial PAMP, in the early morning (Korneli *et al.*, 2014).

74 Whether HAMP-induced transcriptional changes are also time-of-day dependent and if
75 they are modulated by the plant circadian clock remains unknown.

76

77 Modulation of gene expression is directly regulated by clock transcription factors. For
78 example, CCA1 and LHY bind the cis-regulatory elements CCA1 Binding Site (CBS)
79 (Wang *et al.*, 1997) and Evening Element (EE) (Harmer *et al.*, 2000) to regulate target
80 gene expression via repression and/or activation (Wang *et al.*, 2011; Nagel *et al.*, 2015).
81 CBS and EE cis-elements have been found in the promoter of rhythmically expressed
82 bacterial resistance genes (Wang *et al.*, 2011), and the herbivore-induced *Ocimene*
83 *Synthase (PIOS)* in lima bean (*Phaseolus lunatus*), a transcript rhythmically
84 accumulated in response to herbivore feeding and regulated by light and JA (Arimura *et*
85 *al.*, 2008). However, studies of herbivory and HAMPs have not yet measured whether
86 direct regulation by clock transcription factors extends to genome-wide changes in
87 herbivore-induced gene expression.

88

89 Here we present a detailed exploration of the temporal induced response to HAMP In11
90 and provide a molecular link between the In11-induced immune responses and the
91 plant circadian clock. We characterized the global early and late transcriptional changes
92 induced by daytime and nighttime In11 treatment and identified a daytime-induced
93 antiherbivore-related *Kunitz Trypsin Inhibitor (KTI)* gene with CBS elements in the
94 promoter region. Using plants with a conditional arrhythmic phenotype under constant
95 light we tested if the daytime *KTI* induction in response to In11 required a functioning
96 clock and found that the misexpression of *VuLHY* homologs under constant light (LL)
97 correlated with lack of repression of *KTI* during nighttime. Furthermore, we show that
98 transient overexpression of cowpea LHY proteins in *Nicotiana benthamiana* modulates
99 the activity of the *VuKTI* promoter in a CBS-dependent manner. We propose that
100 *VuLHY* transcriptionally gates In11-induced gene expression at night to ensure that
101 specific defenses are most strongly produced in response to herbivorous threats in
102 daytime.

103 **Materials and Methods**

104 Plant materials and growth conditions

105 Cowpea (*Vigna unguiculata*) accession IT97K-499-35 was used in all the experiments.
106 For planting, seeds were surface sterilized with 70% ethanol for 2 minutes, followed by
107 two washes with sterilized water. Seeds were sown on sunshine potting mix No.5 and
108 placed in a growth chamber (Conviron PGW-40) at 26 C, 70% relative humidity (RH),
109 500 $\mu\text{mol}/\text{m}^2\text{sec}$ light intensity, and 12 h light/dark (LD) cycle for 14 days. Details
110 specific to diurnal and LL experiments are provided in the following sections.

111

112 In11 treatment under diurnal and constant light conditions

113 Inceptin 11 (In11) peptide (ICDINGVCVDA) was synthesized (Genscript Inc.) and
114 dissolved in water. We lightly wounded the middle leaflet of the first fully extended
115 trifoliate on 14-day-old cowpea plants using a new razor blade to remove the cuticle (1
116 cm^2 per wound). We made four wounds, two on each side of the main vein of the
117 adaxial side of the leaflet, and equally distributed 20 μL of either water or 1 μM In11 with
118 a pipette tip.

119

120 For the diurnal experiment, we applied the ln11 and water treatments 4 h after the lights
121 came on (daytime, Zeitgeber time 4: ZT4) or 4 h after the lights went off (nighttime,
122 Zeitgeber time 16: ZT16) in the growth chamber. We collected samples 1 h (ZT5 and
123 ZT17) and 6 h (ZT10 and ZT22) after treatment, along with untreated controls.

124 For the constant light (LL) experiment, we transferred LD-grown cowpea plants (see
125 above) 10, 11, 12 or 13 days after germination to a separate growth chamber under LL.
126 On day 14, we treated all plants with ln11 or water at subjective daytime (time in LL: 4,
127 28, 52 and 76 h) or subjective nighttime (time in LL: 16, 40, 64 and 88 h). We then
128 collected samples from independent plants 6 h after treatment (time in LL daytime 10,
129 34, 58, 82 h and nighttime 22, 46, 70, 94 h), along with untreated controls.

130

131 RNA extraction, qRT-PCR and transcriptomics

132 In all experiments we collected samples as follows: two leaf discs were taken from the
133 treated leaflet (one proximal and one distal) using a 0.6 cm² leaf punch, placed in a 1.5
134 mL tube containing a metal bead, frozen in liquid nitrogen, and stored at -80 C. Prior to
135 RNA extraction, the samples were ground using a mixer mill (Retsch MM400).

136

137 For qPCR, we extracted total RNA using the Trizol (Invitrogen) method. We performed
138 quality control of the RNA by NanoDrop1000 and gel electrophoresis and 1 µg of RNA
139 was used to synthesize cDNA using the SuperScript IV RT Kit (Thermo). We used the
140 Power SYBR™ Green PCR Master Mix for amplification and quantification in a CFX
141 Connect Real-Time System (Bio-Rad). We calculated relative gene expression by using
142 the $2^{-\Delta\Delta Ct}$ method and *Ubiquitin* (UBQ) (Vigun07g244400) as an expression control
143 (Table S1).

144

145 For RNAseq, we extracted total RNA using the NucleoSpin Plant RNA kit (Macherey-
146 Nagel Inc.) and performed quality control as explained above. We further treated the
147 RNA using the TURBO DNA-free kit (Invitrogen) as DNA was still present in the
148 samples. The extracted RNA was used to generate paired-end Illumina 2x150 bp
149 strand-specific libraries with polyA selection that were sequenced in a HiSeq2500

150 (Azenta). For gene expression analyses, we mapped the reads to the cowpea genome
151 (Liang *et al.*, 2024a) *Vigna unguiculata* v1.2 available in Phytozome13 (Goodstein *et al.*,
152 2012) and used the –quantMode in STAR to quantify them (Dobin *et al.*, 2013), and
153 then performed differential gene expression analyses using DESeq2 (Love *et al.*, 2014)
154 implemented in R.

155

156 **Motif search**

157 We searched known CCA1 and LHY binding sites in the promoters from all genes in the
158 cowpea genome (*Vigna unguiculata* v1.2). We retrieved the 1.5 kb region upstream of
159 the start codon from all genes using a custom Python script and the annotation file, and
160 then used the Find Individual Motif Occurrences (FIMO) (Grant *et al.*, 2011) online tool
161 to find the 8-mer “AAMWATCT”, where M was Adenine (A)/Cytosine (C) and W was
162 Adenine (A)/Thymine (T). We selected this motif because it represented all possible
163 CCA1 binding sites (CBS, CBS-A: AAAAATCT and CBS-B: AACAAATCT) and evening
164 element (EE, AAATATCT) sequences (Table S2).

165

166 **Phylogenetic analysis**

167 We used Arabidopsis (*Arabidopsis thaliana*) CCA1 (AT2G46830.1) and LHY
168 (AT1G01060.1) as queries to retrieve sequences from cowpea, common bean
169 (*Phaseolus vulgaris*), lima bean (*Phaseolus lunatus*), soybean (*Glycine max*), and
170 Medicago (*Medicago truncatula*) genomes available in Phytozome13 using tblastn. We
171 retained the top 30 similar sequences and aligned them using MAFFT v7.48 (Katoh *et*
172 *al.*, 2002) with default parameters. We constructed a phylogenetic tree using RAxML v8
173 (Stamatakis, 2014), used FigTree (<http://tree.bio.ed.ac.uk/software/figtree/>) to root and
174 visualize the tree, and manipulated the image in Adobe Illustrator 2024.

175

176 **Molecular Cloning of *VuLHY* homologs and *pKTI* promoter**

177 For plant protein expression, the full length coding sequences of cowpea *VuLHY1*
178 (*Vigun10g1533300*) and *VuLHY2* (*Vigun09g004100*) were amplified from a 5' RACE
179 cDNA library using the Q5 High-Fidelity DNA polymerase (NEB) and specific primers
180 (Table S1). The PCR products were cloned into pENTR D-TOPO (Thermo Fisher) and

181 recombined into pB7WG2 for plant expression using the Gateway LR Clonase II
182 (Invitrogen) (Karimi *et al.*, 2002).
183
184 For the luciferase reporter assays, the promoter sequence of Kunitz Trypsin Inhibitor
185 (*pKTI*) *Vigun05g143300* (region from the start codon up to 1 kb upstream) was amplified
186 from genomic DNA using DreamTaq DNA polymerase (Thermo Fisher) and specific
187 primers (Table S1) designed against the *V. unguiculata* v1.2 genome. The resulting
188 fragment was cloned into pENTR 5'-TOPO (Thermo Fisher). Mutant versions of the
189 promoter were generated from the wild type (WT) clone using the Q5 Site-Directed
190 Mutagenesis Kit (NEB) and mutagenic primers (Table S1). WT and mutant promoters
191 were re-amplified from the pENTR 5'-TOPO clones using primers with added BpI
192 restriction enzyme recognition sites and overhangs compatible with Mo-Clo and cloned
193 into a level 0 cloning vector (pICH41295, Addgene plasmid # 47997). The reporter
194 construct was assembled into a customized pGreenII (Hellens *et al.*, 2000) with BsaI
195 insertion site by combining appropriate ratios of the promoter, luciferase CDS
196 (pICSL80001, Addgene plasmid # 50326) and *ocs* terminator (pICH41432, Addgene
197 plasmid # 50343) following the recommended XL ligation protocol (Weber *et al.*, 2011;
198 Engler *et al.*, 2014)

199
200 Transient luciferase assay in *Nicotiana benthamiana*
201 To test the *in-planta* interaction between *pKTI* and the VuLHY proteins, we individually
202 transformed pGII reporter and pB7WG2 effector constructs into Agrobacterium
203 (*Agrobacterium tumefaciens* GV3101). Cultures were resuspended in infiltration media
204 (10 mM MES pH 5.6, 150 µM Acetosyringone, 10mM MgCl₂) and incubated for 3 h. For
205 co-infiltrations, we prepared the appropriate combinations of the reporter and effector.
206 To account for transformation efficiency and to enhance protein expression, we included
207 35S:*Renilla* (final OD₆₀₀=0.1) and the tomato stunt bushy virus silencing-suppressor p19
208 (final OD₆₀₀=0.1) plasmid in all our assays. The youngest fully expanded leaf on a 6-
209 week-old *Nicotiana benthamiana* plant was infiltrated with the mixture using a
210 needless syringe at Zeitgeber time 6 (ZT6). All plants were entrained to 12 h light/12 h
211 dark cycles and, after 74 h of incubation at ZT8, we collected leaf punches and

212 immediately froze them in liquid nitrogen. We prepared and analyzed the samples with
213 the Dual-Luciferase Assay System (Promega) according to manufacturer instructions.
214 We measured the activities of firefly (LUC) and Renilla (REN) luciferases using a multi-
215 mode plate reader (Tecan Spark) and calculated the LUC/REN ratio for each reporter -
216 effector combination.

217

218 Statistical analysis

219 All statistical analyses were conducted using R version 4.3.2, and the significance level
220 was set to $\alpha=0.05$. Extreme outliers were identified using the *identify_outliers* function
221 from the rstatix (<https://CRAN.R-project.org/package=rstatix>) package and removed
222 from the qPCR data. A normal distribution of the residuals was confirmed for all data
223 using the *Shapiro.test* function, and transformations were applied when appropriate to
224 fulfill the assumption of normality for ANOVA and t-test. ANOVA and Tukey post hoc
225 test were used to identify significantly different means of gene expression across
226 treatments, and a two-sided t-test was used to determine significantly different means of
227 promoter activity in the presence of a VuLHY homolog vs an empty vector (EV).

228 **Results**

229 In11-induced transcriptional responses are dependent on the time-of-the-day

230 To examine the contribution of time-of-day on the transcriptional response to a specific
231 HAMP (In11) via a known receptor (INR), we treated cowpea plants by scratch-
232 wounding and adding water (w + H₂O) or In11 (w + In11) at different times of the day
233 (Fig. 1a). We identified differentially expressed genes (DEGs) by comparing
234 transcriptomes of w + H₂O vs undamaged (i.e. the effect of wounding), and w + In11 vs.
235 w + H₂O treatment (i.e. the additional effect of In11-induced responses) at the
236 corresponding time of the day ($|\log_2$ fold change (FC)| ≥ 1 and $P_{adj} < 0.05$) (Table S3). A
237 Principal component (PC) analysis across all samples confirmed consistent biological
238 replicates and the effect of the treatments. The largest changes are attributed to
239 damage and time, with clear separation of the early 1 h wound responses, late 6 h
240 wound responses, and undamaged plants. Within those groups, there are also

241 differences in the response to In11 depending on the time-of-day at which the treatment
242 was applied (Fig. **S1a**).

243

244 We found a time-of-day dependent response to In11 where daytime treatment resulted
245 in a larger number of transcriptional changes than nighttime treatment (Fig. **1b,c**). While
246 this was true for both 1 h and 6 h responses, time-of-day dependence of the In11
247 response was particularly striking 6 h after treatment as there were 707 DEGs at ZT10
248 (light blue, 510 down and 197 up) but only 59 at the corresponding nighttime timepoint
249 ZT22 (dark blue, 16 down and 43 up). Furthermore, most DEGs were unique to ZT10
250 with only 44 shared with ZT22. A hierarchical clustering analysis of all In11 DEGs
251 further supported the unique In11-induced transcriptional program at ZT10, and
252 revealed that In11-induced nighttime responses were more similar to wounding alone
253 because w+In11 ZT22 samples clustered most closely with day- and nighttime w+H₂O
254 plants, rather than with w+In11 at ZT10 (Fig. **S1b**). Interestingly, these patterns for In11-
255 regulated genes did not hold for the broader set of 15,842 genes affected by wounding
256 (Fig. **S2a**). In contrast to nearly complete time-of-day dependence of In11-induced
257 downregulation at the 6 h timepoint, wound-induced downregulation of genes was intact
258 at night (ZT22), and affected an even larger number of genes than in daytime (ZT10);
259 nevertheless, nearly 50% of the up and downregulated genes were shared between
260 daytime and nighttime (Fig. **S2b**). Together these results indicate that In11 modulates
261 the wound response in a time-of-day dependent manner.

262

263 We compared the types of genes in the daytime and nighttime DEGs to identify shared
264 and unique processes modulated by the recognition of In11 at different times of the day.
265 Gene Ontology (GO) analysis revealed that daytime upregulated genes were
266 significantly enriched for molecular functions related to antiherbivore defense such as
267 lipid biosynthesis and metabolism, acyltransferase activity, protease binding and
268 terpene synthase activity, while the downregulated DEGs were enriched for
269 photosynthesis (Table S4).

270

271 Direct and indirect antiherbivore defenses may be directly regulated by the circadian
272 clock
273 Given the time-of-day dependent response to In11 we hypothesized that the circadian
274 clock could be directly modulating gene expression; specifically, that cowpea homologs
275 of the transcription factors CCA1 or LHY were directly repressing gene expression at
276 nighttime via canonical cis elements CCA1 binding site CBS (Wang et al., 1997) and
277 evening element (EE) (Harmer et al., 2000). To find evidence for direct CCA1/LHY
278 regulation in specific promoter sequences, we calculated the LFC difference (LFC_{diff})
279 between daytime and nighttime treatments for all In11-induced DEGs, calculated by
280 comparing ZT5 vs ZT17 for 1 hr differences, and ZT10 vs ZT22 for 6 hr differences (Fig.
281 2a). We then annotated 21,768 total CBS and EE sequences in their promoters using
282 FIMO (Fig. S3a). We focused on the 6 h comparison because of the strong effect of
283 time-of-day, and found that 326 out of 722 unique DEGs (45.1%) across ZT10 and
284 ZT22 had at least one of the cis elements (purple dots, Fig. 2a), and of those 104 had
285 $LFC_{diff} \geq 1$ (Table S5). This was a similar proportion of CBS and EE to the entire
286 genome 14,861 out of 31,948 genes with at least one element (46.5%). We focused on
287 candidate targets with defense-related functions for further analysis (Fig. 2a), and found
288 that genes with functions in indirect and direct defenses, such as terpene synthases
289 (TPS) and Kunitz Trypsin Inhibitors (KTI), respectively, contain CBS and/or EE sites in
290 promoters, suggesting they are a target of CCA1/LHY (Fig. 2b). Given that the
291 accumulation of certain induced indirect defenses in response to herbivory is known to
292 be time-of-day dependent (Arimura et al., 2008), we selected *VuKTI* (*Vigun05g143300*),
293 encoding a direct defense, as a marker gene. We confirmed by qPCR that *VuKTI* was
294 significantly more induced 6 h after daytime application of In11 (ZT10), but not 6 h after
295 nighttime treatment (ZT22) compared to wounding alone (Fig. 2c).

296
297 Expression of *VuLHY* homologs is disrupted by wounding and constant light in cowpea
298 To further investigate circadian clock modulation of In11 induced defenses, we first
299 identified LHY in cowpea and profiled its expression pattern under various conditions.
300 We identified two homologs *VuLHY1* (*Vigun10g153300*) and *VuLHY2*
301 (*Vigun09g004100*) (Fig. 3a) and determined that their transcripts have rhythmic

302 expression that peaks at dawn (ZT4) in LD in undamaged samples (gray lines)
303 according to our transcriptomics (Fig. 3b) and independent qPCR data (Fig. 3c);
304 although *VuLHY1* expression was stronger than *VuLHY2*. Furthermore, both genes
305 were significantly downregulated (Table S1) in response to wounding at nighttime (ZT22), without further effect of In11. Together, these results suggest a reciprocal
306 regulation of the circadian clock by wounding in cowpea.
307

308
309 We also determined the expression pattern of *VuLHY* genes under constant light (LL) to
310 confirm the presence of a free-running clock in cowpea. Both *VuLHY* genes sustained
311 rhythmic expression for up to 48 h in LL with a peak at dusk (Fig. 4a), although the
312 expression level was greatly reduced after 24 h and almost abolished after 48 h. This
313 conditional arrhythmic phenotype was also supported by the expression pattern of
314 cowpea *GIGANTEA* (*VuG*) homolog (Fig. 4b) whose expression is directly regulated by
315 CCA1/LHY1 (Lu et al., 2012), because it was continuously expressed at high levels
316 throughout the day after 24 h in LL, which is consistent with lack of repression by LHY in
317 free-running conditions. We conclude that a free-running circadian clock is dampened
318 after 24 h in LL conditions in cowpea.

319
320 The cowpea circadian clock restricts nighttime expression of In11-induced direct
321 defenses

322 We used the conditional arrhythmic phenotype of cowpea plants under free-running
323 conditions to test if nighttime repression of an In11-induced *VuKTI* was dependent on
324 the circadian clock. We expected the time-of-day differences in In11-induced expression
325 to be lost after 48 h in LL conditions due to reduced expression of the *VuLHY* homologs,
326 and therefore lack of repression at nighttime. Briefly, we measured In11-induced *VuKTI*
327 expression 6 h after treatment in plants with 4 to 88 h of LL exposure (Fig. 5a).
328 Consistent with our previous observations, *VuKTI* was significantly induced by In11 in
329 subjective daytime, but not in subjective nighttime after 24 h day in LL conditions.
330 However after 48 h in LL conditions, *VuKTI* induction by In11 was not significantly
331 different in subjective daytime or nighttime conditions (Fig. 5b). These results suggest
332 that circadian oscillation of *VuLHY* is required for gated expression of In11-induced

333 defenses to suppress *VuKTI* expression at relative nighttime when herbivore attack is
334 less likely to happen.

335

336 VuLHY homologs regulate *pKTI* promoter activity in a CBS-dependent manner
337 To test if regulation of *VuKTI* depends on canonical LHY-bound cis elements, we
338 performed a transient luciferase reporter assay in *N. benthamiana* leaves. We tested
339 both WT promoter and promoters with mutant sequences of a CBS located at position -
340 334 (mutant sequence M1), as well as a CBS-like (CBS-L, CAAATCT) sequence
341 identified at position -80 (mutant sequence M2), upstream of the TATA box (Fig. 6a,b).
342 Compared to the empty vector (EV) control, over-expression of VuLHY1 and VuLHY2
343 proteins significantly increased the activity of the *pKTI* reporter, but not when M2 was
344 mutated. Mutations to the ATCT sequence in CBS (M1) or CBS-L (M2) resulted in less
345 activation of the reporter by either transcription factor (Fig. 6c). A similar transcriptional
346 activation was also observed when *AtLHY* was overexpressed (Fig. S4). This data
347 indicates that VuLHY1 and VuLHY2 interact with the In11-induced *KTI* promoter in
348 planta via canonical and polymorphic CBSs, and that cowpea and *Arabidopsis* LHY
349 homologs behave as activators when transiently overexpressed in tobacco in this
350 context.

351 **Discussion**

352 The time-of-day dependent modulation of transcriptional responses to specific elicitors
353 such as HAMPs underscores the relevance of temporal cues to optimize defensive
354 responses against herbivores. Our study of the transcriptional response of cowpea
355 plants to HAMP In11 revealed a clear time-of-day dependence of induced gene
356 expression associated with direct and indirect herbivore defenses and provided a
357 mechanistic role for the plant circadian clock in directly modulating such dependence.

358

359 We found that 6 h induced gene expression was specific and significantly stronger after
360 daytime than after nighttime elicitation with HAMP In11. The number of DEGs at ZT10
361 was ~40 times larger than at night, and 50% of the GO term categories were uniquely
362 enriched at ZT10, most of which included genes involved in antiherbivore defense like

363 enzymes involved in volatile biosynthesis and protease inhibitors. This pattern of gene
364 expression was not observed by wounding alone, and thus we propose that timely
365 HAMP-specific expression of antiherbivore-related genes is tightly controlled. These
366 findings expand our knowledge of plant defense against herbivores beyond the
367 anticipation of attack via rhythmic accumulation of defensive hormones (Goodspeed *et*
368 *al.*, 2012), rhythmic accumulation of green leaf volatile (GLV) biosynthetic enzymes
369 transcripts (Joo *et al.*, 2019b), the time-of-day dependent accumulation of GLVs in
370 response to the mix of HAMPs and effectors in caterpillar regurgitant (Joo *et al.*, 2019a),
371 and accumulation of plant volatiles in response to nocturnal and diurnal continuous
372 mechanical damage (Arimura *et al.*, 2008).

373
374 Owing to the central role of the circadian clock in regulating plant metabolism, we
375 hypothesized that the time-of-day differences in response to In11 were in part due to
376 direct regulation of gene expression by LHY. In support of this hypothesis, our genome-
377 wide promoter analysis in cowpea found canonical CBS and EE located between -250
378 and -1000 bp upstream the coding region of any given gene (Fig. **S3b**), among which
379 was a previously characterized VuGI homolog (Weiss *et al.*, 2018), as well as a subset
380 of In11-responsive genes with strong daytime vs nighttime differences (Fig. **2a**, Table
381 S5). By leveraging the presence of the cis elements and a strong daytime vs nighttime
382 difference in expression we identified multiple *Terpene synthases* (*TPS*), *chalcone*
383 *synthases* (*CHS*), *chitinases*, β -*glucosidases* and *Kunitz Trypsin Inhibitors* (*KTIs*) as
384 strong candidate targets of direct regulation by VuLHY. Furthermore, we identified
385 VuLHY1 and VuLHY2, two homologs with a conserved Myb-like DNA binding domain
386 (Fig. **S4**) and a diurnal expression pattern that peaked at dawn under LD and LL
387 consistent with other homologs, and thus we propose that this regulatory module is
388 conserved in cowpea. Our RNAseq and independent qPCR data also demonstrated that
389 wounding alone was sufficient to cause misexpression of VuLHY1 and VuLHY2, and
390 that the HAMP In11 had no further effect (Fig. 3). This indicated that abiotic stress
391 rather than herbivory might attenuate circadian clock function, similar to damping of the
392 circadian oscillation induced by the feedback regulation by hormones, bacterial
393 infection, bacterial PAMPs and toxins, and unidentified molecules found in herbivore

394 regurgitant (Zhang *et al.*, 2013; Li *et al.*, 2018; Joo *et al.*, 2019b; de Leone *et al.*, 2020;
395 Gao *et al.*, 2020; Liang *et al.*, 2024b; Fraser *et al.*, 2024).

396

397 Upstream factors such as the inducibility of defense hormones could explain time-of-day
398 dependent responses, which should be apparent from transcriptional signatures of
399 hormone biosynthesis. If hormones control strong daytime responses compared to
400 nighttime we would expect In11-induced (Steinbrenner *et al.*, 2022) biosynthetic genes
401 such as *Allene oxide synthase* (AOS), *Allene oxide cyclase* (AOC), *Lipoxygenase* (LOX)
402 for JA, and *1-aminocyclopropane-1-carboxylic* (ACC) *synthase* (ACS) and *ACC oxidase*
403 (ACO) for ethylene, to show strong time of day dependent expression. Surprisingly,
404 although one ACS and three LOXs are induced by In11, only VuLOX2
405 (Vigun11g163500) had at least one CBS element and weak daytime vs nighttime
406 differences (ZT10-ZT22 LFC_{diff} = 0.74), indicating that In11-induced accumulation of JA
407 in the morning might only be a small factor contributing to the enhanced daytime
408 response to In11. Further studies of JA dynamics in time-of-day dependent In11
409 responses will clarify this pattern.

410

411 Using a classical free-running conditions experiment under constant light; we
412 demonstrated that the time-of-day dependent In11 induced expression of an anti-
413 herbivore *VuKTI* is dependent on the circadian clock. We characterized the expression
414 of *VuLHY1*, *VuLHY2* and *VuGI* under LL and demonstrated that they oscillated only for
415 24 h, and became arrhythmic after; this timing pattern was similar to that of the clock of
416 petunia leaves under DD (Fenske *et al.*, 2015).

417 Since genetic resources and transformation methods in cowpea are lacking, the
418 characterization of free-running conditions provides a method to study circadian
419 regulation in emerging model systems, including other legumes and crop species

420

421 This unique circadian characteristic provided the conditional arrhythmic conditions in
422 cowpea that later served our experiments in two ways: 1) the first 24 h after transfer to
423 LL allowed us to address the role of light in the time-of day dependent response to In11
424 and 2) the following 24 to 96 h served as the conditional *VuLHY* knockdown (or

425 arrhythmic clock) mutant. We leveraged the conditional arrhythmic plants and
426 demonstrated that *In11*-induced *VuKTI* expression was higher after daytime treatment
427 than nighttime under constant light conditions in the first 24 h of LL conditions, but that
428 *VuKTI* was equally induced at subjective daytime and nighttime conditions once
429 *VuLHY1* and *VuLHY2* became mis expressed (Fig. 5). We conclude that light is not a
430 mechanism regulating morning *In11*-induced *VuKTI* expression, although light does
431 partially regulate herbivore-induced terpene synthesis and emission (Arimura *et al.*,
432 2008; Joo *et al.*, 2019a), and many DEGs with strong daytime and nighttime differences
433 did not have a canonical CBS or EE site in their promoter, indicating that light and
434 indirect regulation by the circadian clock contribute to the overall time-of-day dependent
435 response to *In11*. While direct mechanisms of regulation are difficult to study in cowpea
436 due to lack of genetic tools, these patterns are consistent with a model where Lack of
437 *In11*-induced expression of *VuKTI* during the night is likely due to transcriptional
438 repression by the *VuLHY* homologs.

439
440 Our transient luciferase reporter assay demonstrated that overexpression of *VuLHY1*
441 and *VuLHY2* modulated the activity of the *VuKTI* promoter in a CBS dependent manner.
442 By comparing the activity of reporters bearing wild type and mutated variants of the
443 CBS sites, we determined that changes to the ATCT sequence in the 5' end of the
444 element are sufficient to alter the interaction between the promoter and the transcription
445 factor. This is similar to the interaction of *AtLHY* with CBS and EE (Harmer *et al.*, 2000;
446 Nagel *et al.*, 2015; Kamioka *et al.*, 2016; Adams *et al.*, 2018; Kim *et al.*, 2023) via this
447 sequence (Wang *et al.*, 1997), further supporting that *VuLHY* targets genes via CBS.
448 We also found a polymorphic variant that we have named CBS-like (CBS-L:
449 CAAAATCT) that also requires a conserved 5' end to interact with both *VuLHY*
450 homologs. Based on the distribution and abundance of CBS-L (Table S6), we propose it
451 is likely a novel *VuLHY* binding site in cowpea. Consistent with our results, *Arabidopsis*
452 *LHY* binds other sequences in genome-wide analyses (Adams *et al.*, 2018). The higher
453 background level activity of CBS-L co-expressed with the EV, and the differential effect
454 on interaction with *VuLHY1* and *VuLHY2* suggests that this site might provide some
455 specificity of binding and an added layer of regulation under certain conditions, although

456 this remains to be explored in detail. In our transient system both *VuLHY1* and *VuLHY2*
457 functioned as activators, likely due to the regulatory environment in the *N. benthamiana*
458 transient expression system since *AtLHY*, typically a repressor, also functioned as a
459 weak activator under our experimental conditions (Fig. **S4a**), although a unique
460 activation function has been described for *AtLHY* in the fatty acid synthesis pathway
461 (Kim *et al.*, 2023). Nevertheless, our free running experiment using the conditional
462 arrhythmic plants clearly demonstrated that *VuGI*, a possible direct target, became
463 arrhythmic and highly expressed when *VuLHY* expression was low, thus supporting a
464 repressive function for *VuLHY* against its regulated target genes.

465

466 In summary, we describe a molecular link between the plant circadian clock and HAMP-
467 induced gene expression in cowpea. *VuLHY* gates the expression of *In11*-induced
468 genes likely fine tuning the herbivore-specific response. At night when *VuLHY* is highly
469 expressed, *VuLHY* interacts with the promoter of *In11*-responsive genes involved in
470 antiherbivore defense such as *VuKTI* to repress their expression. When *VuLHY*
471 expression decreases during daytime, the CBS-bearing *In11*-induced promoters are
472 available for recruitment of the transcriptional machinery required for antiherbivore
473 response. The relevance of this regulation to physiology and metabolism of anti-
474 herbivore defenses is a topic that should be further explored. We expect that gating of
475 HAMP-induced responses by the circadian clock is a mechanism to minimize the effect
476 of the growth-immunity trade-off by allowing robust and specific response during the day
477 without interfering with nighttime growth.

478 **Acknowledgments**

479 This research is supported by NIH 5R35GM151272 and NSF 2139986 to ADS and NIH
480 R01GM079712 to TI. We thank members of the Nemhauser and Di Stilio labs for
481 conversation and feedback. NGP and ADS were supported by start-up funding from the
482 University of Washington. NGP is supported by the USDA-AFRI predoctoral fellowship
483 Grant #2023-67011-40362 and was partially supported by the UW Royalty Research
484 Fund grant #A161929 and the Hereensperger and Walter and Margaret Sargent
485 Awards.

486 **Competing interests**

487 The authors declare no competing interests.

488 **Author Contributions**

489 N.G.P., T.I., A.D.S. conceived and designed the study. N.G.P. performed the
490 experiments, analyzed the data, and wrote the article. All the authors critically read and
491 commented on the article and approved its final version for submission.

492 **ORCID**

493 Natalia Guayazan Palacios: 0000-0003-3403-6661

494 Takato Imaizumi: 0000-0001-9396-4412

495 Adam D. Steinbrenner 0000-0002-7493-678X

496 **Data availability**

497 All transcriptomics data is available at the National Center for Biotechnology Information
498 (NCBI) under Bioproject PRJNA1168576.

499 **References**

500 **Adams S, Grundy J, Veflingstad SR, Dyer NP, Hannah MA, Ott S, Carré IA. 2018.**
501 Circadian control of abscisic acid biosynthesis and signalling pathways revealed by
502 genome-wide analysis of LHY binding targets. *The new phytologist* **220**: 893–907.

503 **Arimura G-I, Köpke S, Kunert M, Volpe V, David A, Brand P, Dabrowska P, Maffei**
504 **ME, Boland W. 2008.** Effects of feeding *Spodoptera littoralis* on lima bean leaves: IV.
505 Diurnal and nocturnal damage differentially initiate plant volatile emission. *Plant*
506 *physiology* **146**: 965–973.

507 **Bjornson M, Pimprikar P, Nürnberg T, Zipfel C. 2021.** The transcriptional
508 landscape of *Arabidopsis thaliana* pattern-triggered immunity. *Nature plants* **7**: 579–586.

509 **DeFalco TA, Zipfel C. 2021.** Molecular mechanisms of early plant pattern-triggered
510 immune signaling. *Molecular cell* **81**: 3449–3467.

511 **Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson**
512 **M, Gingeras TR. 2013.** STAR: ultrafast universal RNA-seq aligner. *Bioinformatics* **29**:
513 15–21.

514 **Engler C, Youles M, Gruetzner R, Ehnert T-M, Werner S, Jones JDG, Patron NJ, Marillonnet S. 2014.** A golden gate modular cloning toolbox for plants. *ACS synthetic biology* **3**: 839–843.

517 **Erb M, Reymond P. 2019.** Molecular interactions between plants and insect herbivores. *Annual review of plant biology* **70**: 527–557.

519 **Fenske MP, Hewett Hazelton KD, Hempton AK, Shim JS, Yamamoto BM, Riffell JA, Imaizumi T. 2015.** Circadian clock gene LATE ELONGATED HYPOCOTYL directly 520 regulates the timing of floral scent emission in Petunia. *Proceedings of the National 521 Academy of Sciences of the United States of America* **112**: 9775–9780.

523 **Fraser OJP, Cargill SJ, Spoel SH, van Ooijen G. 2024.** Crosstalk between salicylic 524 acid signalling and the circadian clock promotes an effective immune response in 525 plants. *npj Biological Timing and Sleep* **1**: 1–9.

526 **Gao M, Zhang C, Lu H. 2020.** Coronatine is more potent than jasmonates in regulating 527 Arabidopsis circadian clock. *Scientific reports* **10**: 12862.

528 **Goodspeed D, Chehab EW, Min-Venditti A, Braam J, Covington MF. 2012.** 529 Arabidopsis synchronizes jasmonate-mediated defense with insect circadian behavior. 530 *Proceedings of the National Academy of Sciences of the United States of America* **109**: 531 4674–4677.

532 **Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, et al. 2012.** Phytozome: a comparative platform for green 533 plant genomics. *Nucleic acids research* **40**: D1178–86.

535 **Grant CE, Bailey TL, Noble WS. 2011.** FIMO: scanning for occurrences of a given 536 motif. *Bioinformatics* **27**: 1017–1018.

537 **Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA. 2000.** Orchestrated transcription of key pathways in Arabidopsis by the 538 circadian clock. *Science* **290**: 2110–2113.

540 **Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM. 2000.** pGreen: a 541 versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. 542 *Plant Molecular Biology* **42**: 819–832.

543 **Joo Y, Goldberg JK, Chrétien LTS, Kim S-G, Baldwin IT, Schuman MC. 2019a.** The 544 circadian clock contributes to diurnal patterns of plant indirect defense in nature: The 545 plant clock supports timely indirect defense. *Journal of integrative plant biology* **61**: 924– 546 928.

547 **Joo Y, Schuman MC, Goldberg JK, Wissgott A, Kim S-G, Baldwin IT. 2019b.** 548 Herbivory elicits changes in green leaf volatile production via jasmonate signaling and 549 the circadian clock. *Plant, cell & environment* **42**: 972–982.

550 **Kamioka M, Takao S, Suzuki T, Taki K, Higashiyama T, Kinoshita T, Nakamichi N.**
551 **2016.** Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in
552 the *Arabidopsis* circadian clock. *The Plant cell* **28**: 696–711.

553 **Karban R. 2011.** The ecology and evolution of induced resistance against herbivores:
554 Induced resistance against herbivores. *Functional ecology* **25**: 339–347.

555 **Karimi M, Inzé D, Depicker A. 2002.** GATEWAY vectors for *Agrobacterium*-mediated
556 plant transformation. *Trends in plant science* **7**: 193–195.

557 **Katoh K, Misawa K, Kuma K-I, Miyata T. 2002.** MAFFT: a novel method for rapid
558 multiple sequence alignment based on fast Fourier transform. *Nucleic acids research*
559 **30**: 3059–3066.

560 **Kim S-C, Edgeworth KN, Nusinow DA, Wang X. 2023.** Circadian clock factors
561 regulate the first condensation reaction of fatty acid synthesis in *Arabidopsis*. *Cell*
562 *reports* **42**: 113483.

563 **Korneli C, Danisman S, Staiger D. 2014.** Differential control of pre-invasive and post-
564 invasive antibacterial defense by the *Arabidopsis* circadian clock. *Plant & cell*
565 *physiology* **55**: 1613–1622.

566 **de Leone MJ, Hernando CE, Romanowski A, Careno DA, Soverna AF, Sun H,**
567 **Bologna NG, Vázquez M, Schneeberger K, Yanovsky MJ. 2020.** Bacterial Infection
568 Disrupts Clock Gene Expression to Attenuate Immune Responses. *Current biology: CB*
569 **30**: 1740–1747.e6.

570 **Liang Q, Muñoz-Amatriaín M, Shu S, Lo S, Wu X, Carlson JW, Davidson P,**
571 **Goodstein DM, Phillips J, Janis NM, et al. 2024a.** A view of the pan-genome of
572 domesticated Cowpea (*Vigna unguiculata* [L.] Walp.). *The plant genome* **17**: e20319.

573 **Liang T, Yu S, Pan Y, Wang J, Kay SA. 2024b.** The interplay between the circadian
574 clock and abiotic stress responses mediated by ABF3 and CCA1/LHY. *Proceedings of*
575 *the National Academy of Sciences of the United States of America* **121**: e2316825121.

576 **Li Z, Bonaldi K, Uribe F, Pruneda-Paz JL. 2018.** A localized *Pseudomonas syringae*
577 infection triggers systemic clock responses in *Arabidopsis*. *Current biology: CB* **28**: 630–
578 639.e4.

579 **Li B, Meng X, Shan L, He P. 2016.** Transcriptional regulation of pattern-triggered
580 immunity in plants. *Cell host & microbe* **19**: 641–650.

581 **Love MI, Huber W, Anders S. 2014.** Moderated estimation of fold change and
582 dispersion for RNA-seq data with DESeq2. *Genome biology* **15**: 550.

583 **Lu H, McClung CR, Zhang C. 2017.** Tick tock: Circadian regulation of plant innate
584 immunity. *Annual review of phytopathology* **55**: 287–311.

585 **Lu SX, Webb CJ, Knowles SM, Kim SHJ, Wang Z, Tobin EM. 2012.** CCA1 and ELF3
586 Interact in the control of hypocotyl length and flowering time in *Arabidopsis*. *Plant*
587 *physiology* **158**: 1079–1088.

588 **Nagel DH, Doherty CJ, Pruneda-Paz JL, Schmitz RJ, Ecker JR, Kay SA. 2015.**
589 Genome-wide identification of CCA1 targets uncovers an expanded clock network in
590 *Arabidopsis*. *Proceedings of the National Academy of Sciences of the United States of*
591 *America* **112**: E4802–10.

592 **Ngou BPM, Ding P, Jones JDG. 2022.** Thirty years of resistance: Zig-zag through the
593 plant immune system. *The plant cell* **34**: 1447–1478.

594 **Poretsky E, Dressano K, Weckwerth P, Ruiz M, Char SN, Shi D, Abagyan R, Yang**

595 **B, Huffaker A. 2020.** Differential activities of maize plant elicitor peptides as mediators
596 of immune signaling and herbivore resistance. *The Plant journal: for cell and molecular*
597 *biology* **104**: 1582–1602.

598 **Schmelz EA, Carroll MJ, LeClere S, Phipps SM, Meredith J, Chourey PS, Alborn**

599 **HT, Teal PEA. 2006.** Fragments of ATP synthase mediate plant perception of insect

600 attack. *Proceedings of the National Academy of Sciences of the United States of*
601 *America* **103**: 8894–8899.

602 **Snoeck S, Abramson BW, Garcia AGK, Egan AN, Michael TP, Steinbrenner AD.**
603 **2022a.** Evolutionary gain and loss of a plant pattern-recognition receptor for HAMP
604 recognition. *eLife* **11**: e81050.

605 **Snoeck S, Guayazán-Palacios N, Steinbrenner AD. 2022b.** Molecular tug-of-war:
606 Plant immune recognition of herbivory. *The Plant cell* **34**: 1497–1513.

607 **Stamatakis A. 2014.** RAxML version 8: a tool for phylogenetic analysis and post-
608 analysis of large phylogenies. *Bioinformatics* **30**: 1312–1313.

609 **Steinbrenner AD, Muñoz-Amatriaín M, Chaparro AF, Aguilar-Venegas JM, Lo S,**

610 **Okuda S, Glauser G, Dongiovanni J, Shi D, Hall M, et al. 2020.** A receptor-like

611 protein mediates plant immune responses to herbivore-associated molecular patterns.
612 *Proceedings of the National Academy of Sciences of the United States of America* **117**:
613 31510–31518.

614 **Steinbrenner AD, Saldivar E, Hodges N, Guayazán-Palacios N, Chaparro AF,**
615 **Schmelz EA. 2022.** Signatures of plant defense response specificity mediated by
616 herbivore-associated molecular patterns in legumes. *The Plant journal: for cell and*
617 *molecular biology* **110**: 1255–1270.

618 **Wang W, Barnaby JY, Tada Y, Li H, Tör M, Caldelari D, Lee D-U, Fu X-D, Dong X.**
619 **2011.** Timing of plant immune responses by a central circadian regulator. *Nature* **470**:
620 110–114.

621 **Wang ZY, Kenigsbuch D, Sun L, Harel E, Ong MS, Tobin EM. 1997.** A Myb-related

622 transcription factor is involved in the phytochrome regulation of an *Arabidopsis* Lhcb
623 gene. *The Plant cell* **9**: 491–507.

624 **Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S. 2011.** A modular cloning
625 system for standardized assembly of multigene constructs. *PLoS one* **6**: e16765.

626 **Weiss J, Terry MI, Martos-Fuentes M, Letourneux L, Ruiz-Hernández V, Fernández
627 JA, Egea-Cortines M. 2018.** Diel pattern of circadian clock and storage protein gene
628 expression in leaves and during seed filling in cowpea (*Vigna unguiculata*). *BMC plant
629 biology* **18**: 33.

630 **Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR,
631 McDowell JM, Kong D, Kwak JM, et al. 2013.** Crosstalk between the circadian clock
632 and innate immunity in *Arabidopsis*. *PLoS pathogens* **9**: e1003370.

633 **Zhang C, Xie Y, He P, Shan L. 2024.** Unlocking nature's defense: Plant pattern
634 recognition receptors as guardians against pathogenic threats. *Molecular plant-microbe
635 interactions: MPMI* **37**: 73–83.

636 **Zhou W, Brockmöller T, Ling Z, Omdahl A, Baldwin IT, Xu S. 2016.** Evolution of
637 herbivore-induced early defense signaling was shaped by genome-wide duplications in
638 *Nicotiana*. *eLife* **5**: e19531.

639

640 **Supporting information**

641 **Figure S1.** Clustering analysis of DEGs in response to w + H₂O and w + In11.

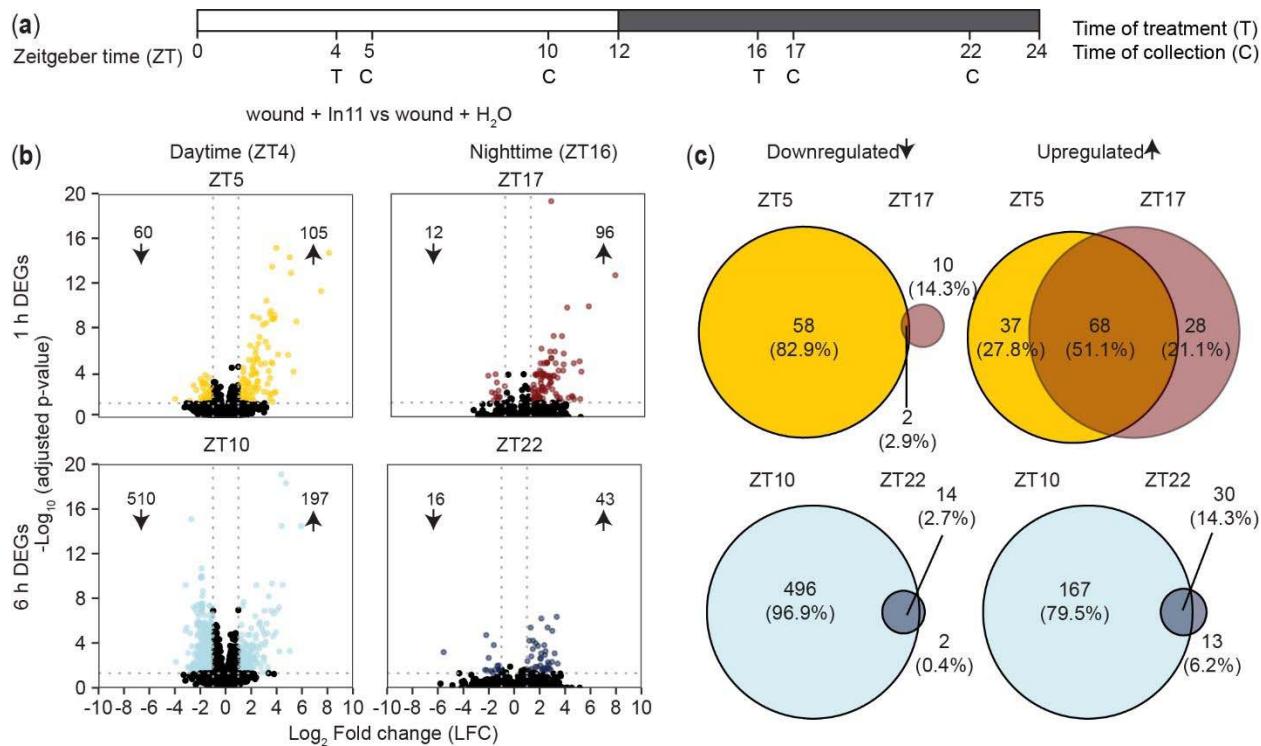
642 **Figure S2.** Venn diagrams of DEGs in response to w + H₂O applied at different times of
643 the day.

644 **Figure S3.** Genome-wide distribution and abundance of CBS and EE motifs in cowpea
645 promoters.

646 **Figure S4.** AtLHY weakly activates the *VuKTI* promoter in a CBS-dependent manner.

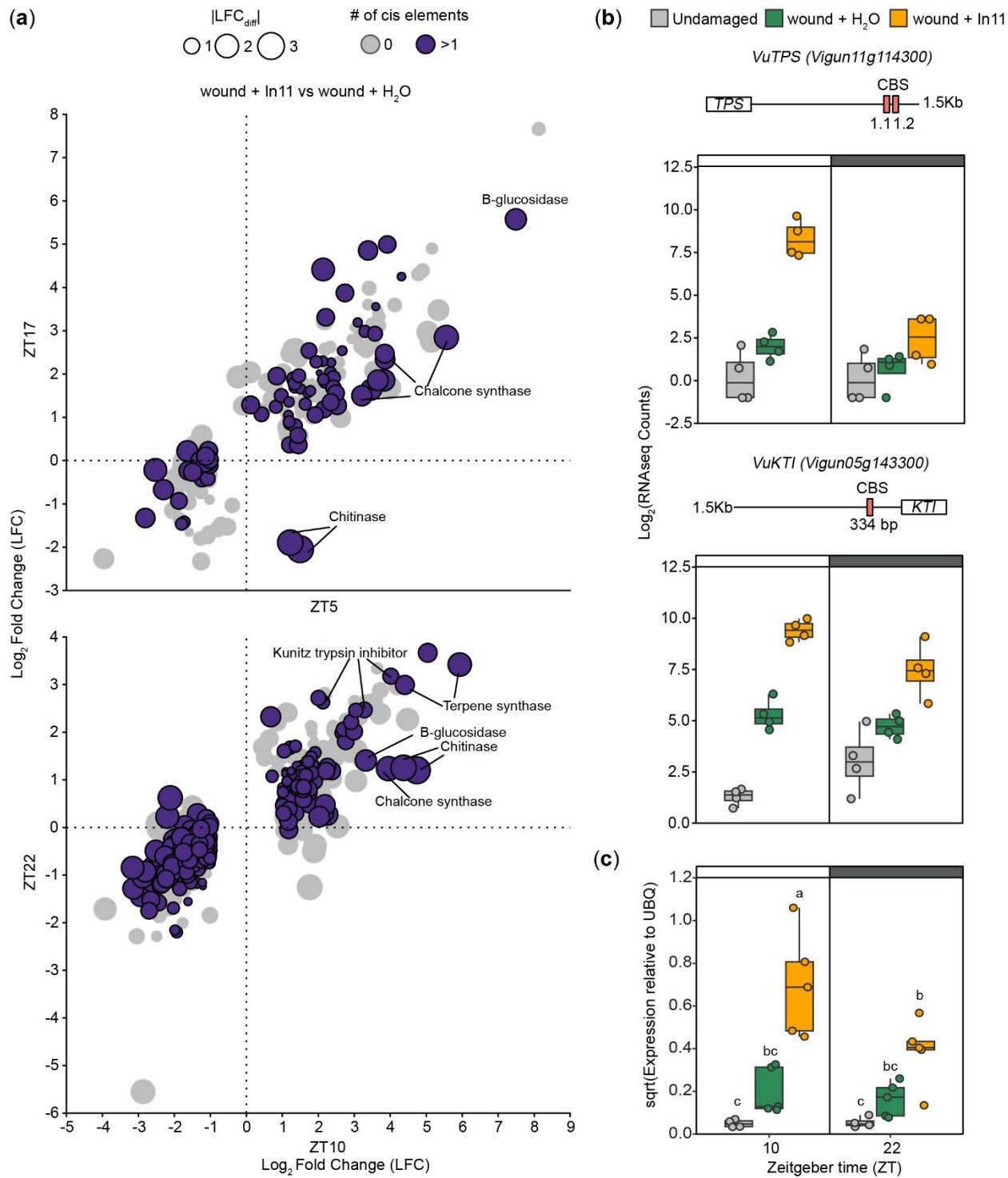
647 **Table S1.** List of primers used in this study.

648 **Table S2.** FIMO summary of the AAMWATCT motif for all promoters in the cowpea
649 genome.


650 **Table S3.** List of early (1 h) and late (6 h) DEGs after daytime and nighttime w + H₂O or
651 w + In11 treatment.

652 **Table S4.** Significantly enriched ($\text{padj} < 0.05$) Gene Ontology (GO) categories among
653 early (1 h) and late (6 h) w + In11 DEGs.

654 **Table S5.** Early (1 h) and late (6 h) w +In11 DEGs and their LFCdiff daytime-nighttime
655 and CBS/EE counts.


656 **Table S6.** FIMO summary of the CBS-L (CAAAATCT) site for all promoters in the
657 cowpea genome.

658
659
660
661
662
663
664
665
666
667
668
669
670
671

672

673 **Figure 1. In11 induced responses are time-of-day dependent.** (a) Experimental
674 design for RNA-seq. 14-day old cowpea plants grown under diurnal conditions
675 (light/dark, LD) were treated (T) with wound + H₂O or wound + In11 at daytime (ZT4) or
676 nighttime (ZT16), and samples were collected (C) 1h (ZT5 and ZT17) and 6h (ZT10 and
677 ZT22) after treatment (n = 4 individual plants as biological replicates). (b) Volcano plots
678 displaying the number of In11 down (↓) and upregulated (↑) genes (Log₂ Fold Change
679 |LFC| ≥ 1 relative to wound + H₂O and p_{adj} < 0.05) 1h and 6h after treatment. (c) Venn
680 diagram indicating the number of shared and unique differentially expressed genes
681 (DEGs) 1h (ZT5 vs ZT17) and 6h (ZT10 vs ZT22) after daytime or nighttime treatment.

682

683

684

685

686

687

688

Figure 2. Circadian clock related cis elements CBS and EE are present in the promoters of time-of-day dependent In11-induced defense genes. (a) Scatter plot showing the Log₂ Fold Change (LFC) value of In11 DEGs (wound + In11 vs wound + H_2O) at 1h (ZT5 and ZT17) and 6h (ZT10 and ZT22) after treatment, and the absence/presence (gray/purple circles) of CBS or EE in their promoter (1.5 kb upstream start codon). The absolute value of the LFC difference ($|\text{LFC}_{\text{diff}}|$) is represented by the

689 size of the circles, and selected defense-related genes are indicated. (b-c) Promoter
690 structure and expression pattern of a Terpene Synthase (*VuTPS*) and Kunitz Trypsin
691 Inhibitor (*VuKTI*) 6h (ZT10 and ZT22) after daytime and nighttime treatment. according
692 to (b) RNAseq data (b) and qPCR data (c) are shown. Different letters indicate
693 significant differences determined by two-way ANOVA followed by Tukey's Honest
694 Significant Difference test (HSD) (n= 4-5 biological replicates, p-value < 0.05).
695 Independent plants were sampled at each treatment - time combination.

696

697

698

699

700

701

702

703

704

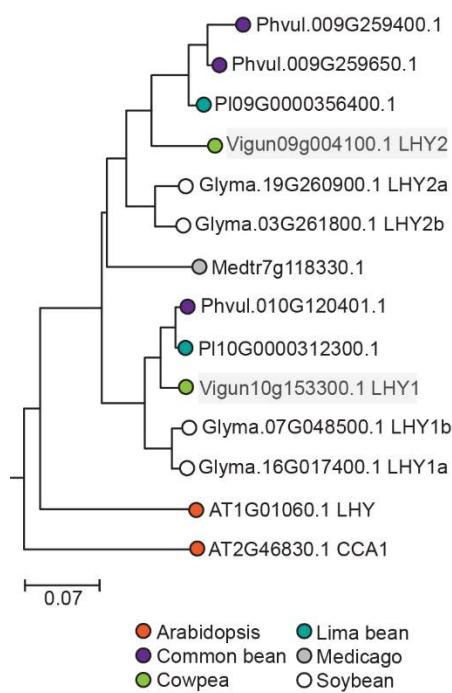
705

706

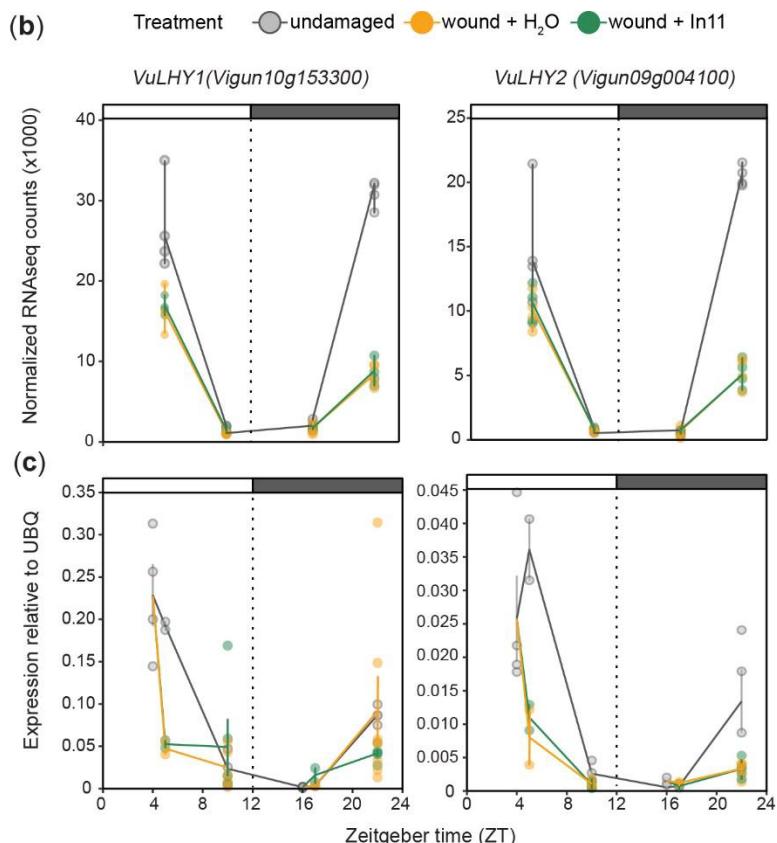
707

708

709


710

711


712

713

(a)

(b)

714

715 **Figure 3. Cowpea Late Elongated Hypocotyl (*VuLHY*) homologs show typical**
716 **cycling patterns and are downregulated by wounding.** (a) Maximum likelihood

717 phylogenetic tree showing 14 *LHY* homologs from five legume species and Arabidopsis.

718 Cowpea homologs *VuLHY1* and *VuLHY2* are highlighted in gray boxes. The scale bar

719 indicates branch length as the mean number substitutions per site. Diurnal expression

720 pattern of *VuLHY1* and *VuLHY2* according to (b) RNAseq ($n = 4$) and (c) qPCR data (n

721 = 3-4 biological replicates). Samples were collected at ZT4, ZT5, ZT16, ZT17 and ZT22

722 from undamaged plants (gray), and 1 (ZT5, ZT17) and 6 h (ZT10, ZT22) after daytime

723 (ZT4) or nighttime (ZT16) wound + H₂O (orange) and wound + In11 (green) treatment.

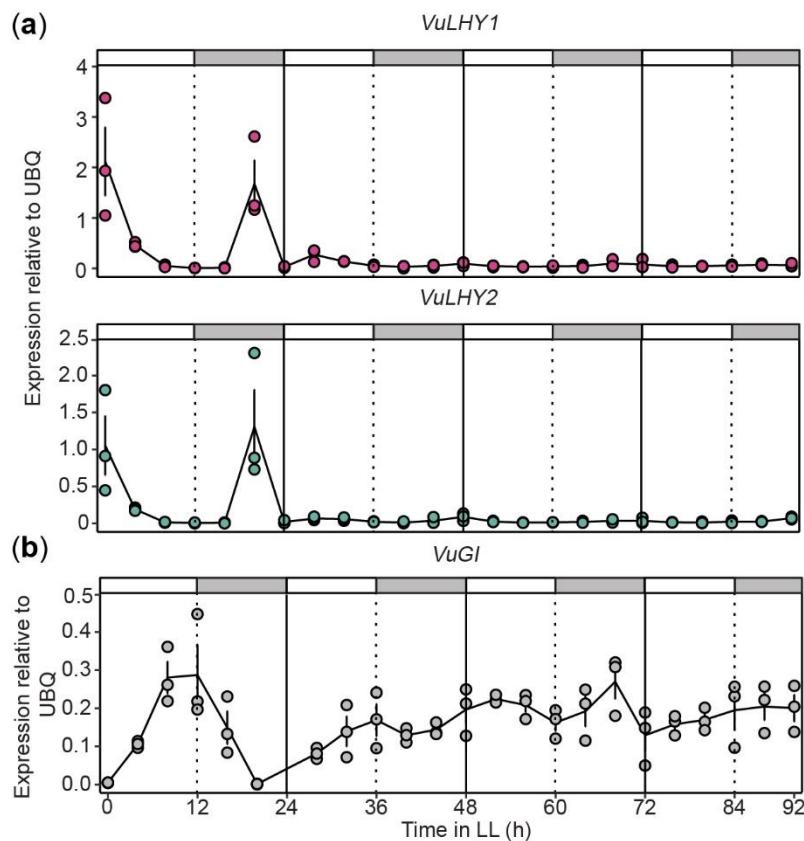
724 Independent plants were sampled at each treatment x time combination. Lines and error

725 bars represent means \pm SEM.

726

727

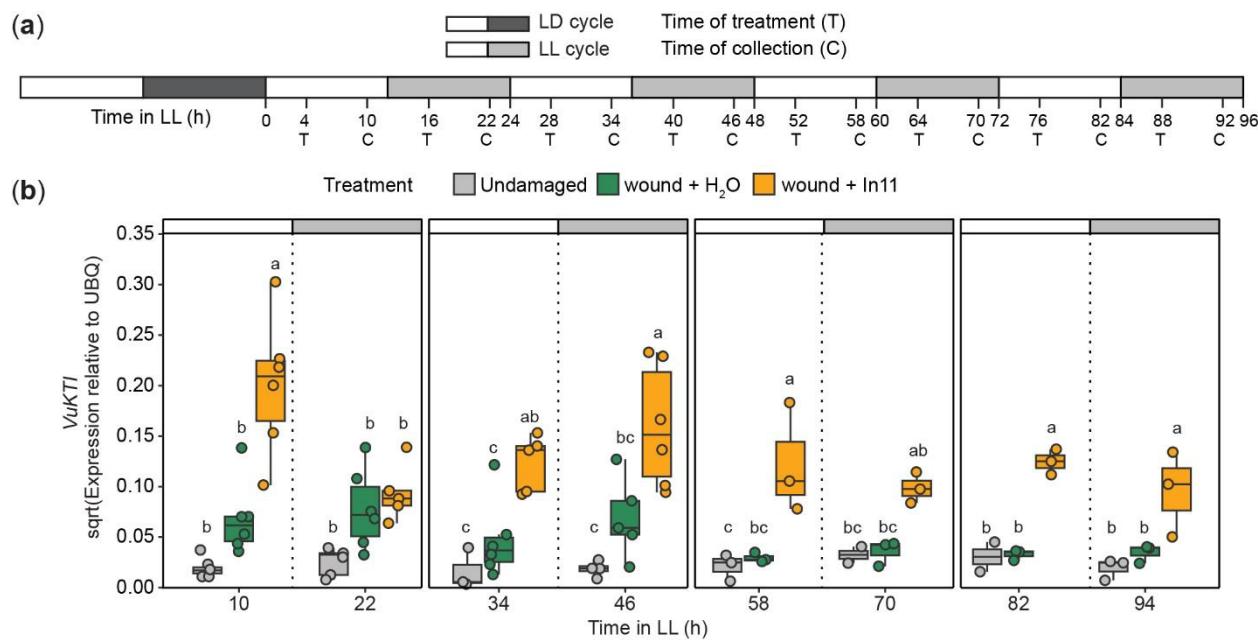
728


729

730

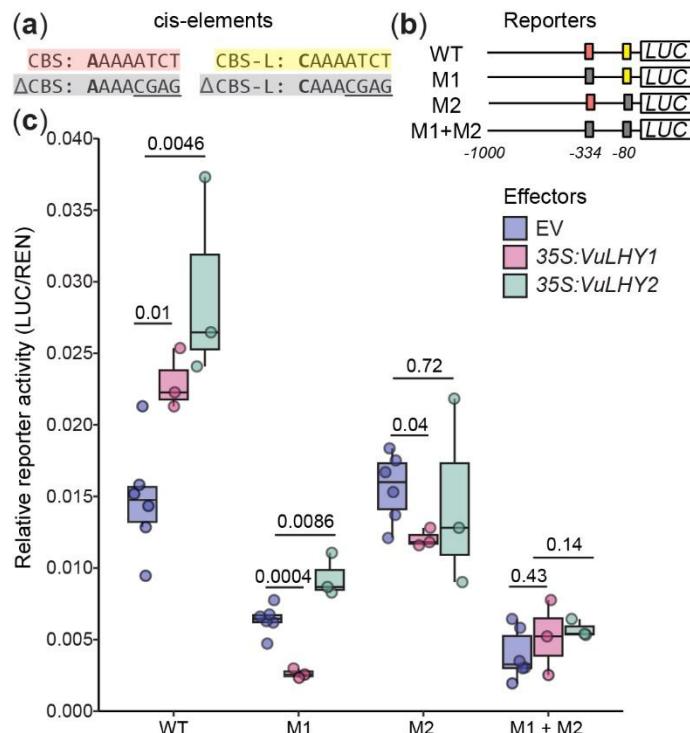
731

732


733

734
735
736
737
738
739
740
741
742
743

Figure 4. Circadian expression patterns of *VuLHY1*, *VuLHY2* and *VuGI*. Expression patterns of (a) *VuLHY1*, *VuLHY2* and (b) *VuGI* under constant light (LL) in cowpea trifoliates. Cowpea plants were grown under LD for 10 days and then transferred to LL. Leaf samples were taken every 4 hours over the course of four days for gene expression analyses. Lines and error bars represent means \pm SEM ($n = 3$ biological replicates). Independent plants were sampled at each time point.


744

745

746 **Figure 5. Nighttime repression of In11-induced *VuKTI* is abolished in conditional**
747 **arrhythmic cowpea plants.** (a) Experimental design. Cowpea plants were grown under
748 light/dark (LD) for 10-13 days, and then transferred to constant light (LL) for one to four
749 days. Plants were treated (T) by wound + H₂O (orange) or wound + In11 (green) 4 h
750 after subjective dawn or subjective dusk, and samples were collected (C) 6 h later along
751 with undamaged (gray) controls. (b) Expression pattern of *VuKTI* according to qPCR
752 data. Different letters indicate significant differences determined by two-way ANOVA
753 followed by Tukey's Honest Significant Difference test (HSD) (n= 3-6 biological
754 replicates, p-value < 0.05) each day. Independent plants were sampled at each
755 treatment - time combination.

756

757

758 **Figure 6. Cowpea LHY homologs modulate the activity of the VuKTI promoter in a**
759 **CBS-dependent manner in tobacco.** Schematic representation of the firefly luciferase
760 (LUC) reporters used in the *N. benthamiana* transient assay (a) Sequence of the CBS
761 and CBS-like (CBS-L) cis-elements found in the KTI promoter. The CCA1/LHY binding
762 site was mutated on CBS and CBS-L via site directed mutagenesis (underlined) (b) LUC
763 reporters used in the assay. WT=CBS, CBS-L, M1 = Δ CBS, CBS-L, M2 = CBS, Δ CBS-L
764 (c) The effect of the VuLHY1 and VuLHY2 proteins on the activity of the LUC reporters.
765 At 72 h LUC activity was measured with 35S:LHY proteins co-expressed in a separate
766 agrobacterium strain. Relative reporter activity was calculated by normalization against
767 35S:Renilla. Reporters final OD₆₀₀=0.3 and effectors final OD₆₀₀=0.4 Significant
768 differences in the mean (*) were determined by a two-sided t-test of each effector vs.
769 EV (n = 3-6 biological replicates, p-value < 0.05).

770

771

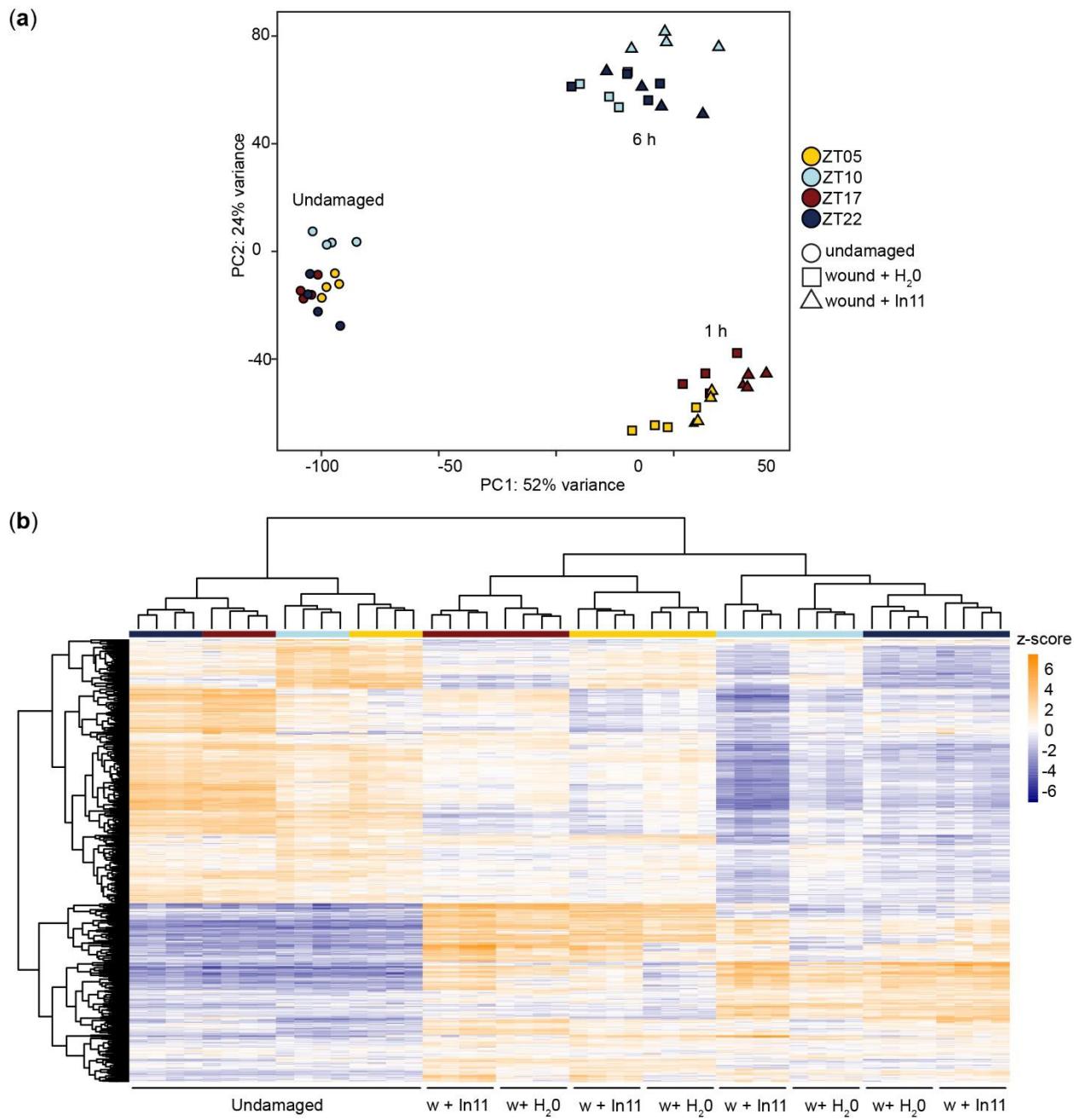
772

773

774

775

776


777

778

779


780

781
782
783

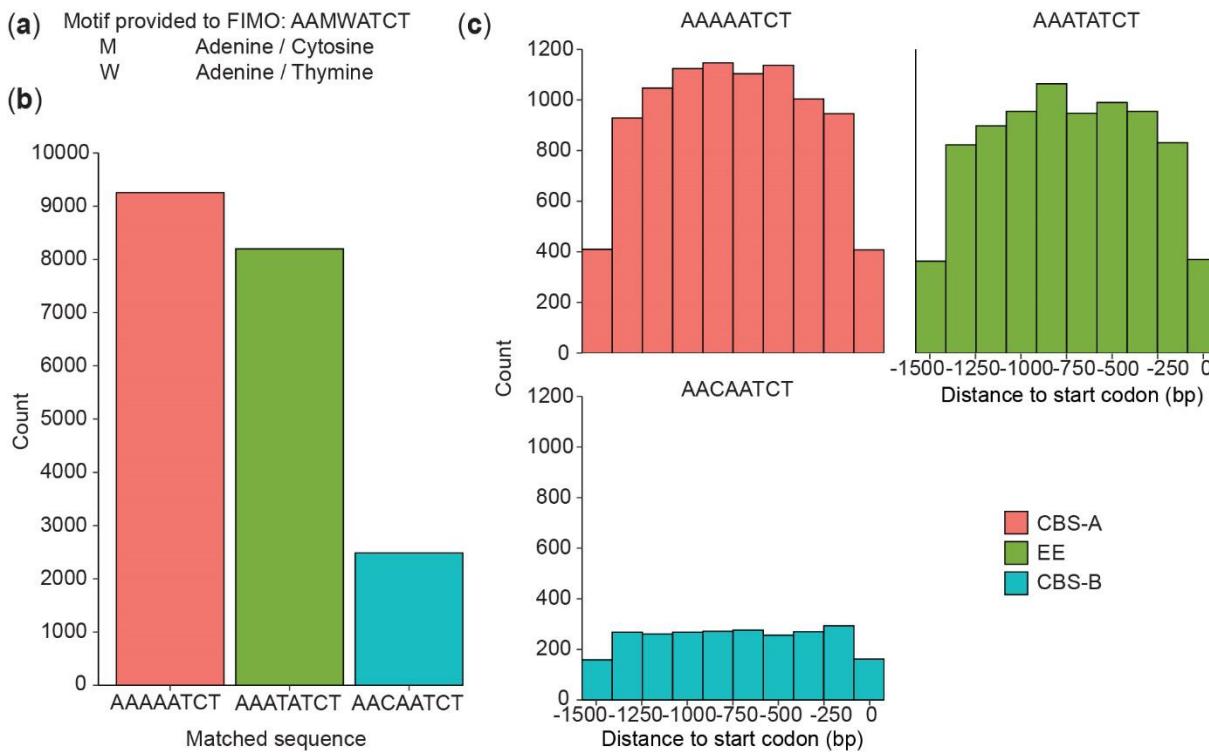

784
785
786
787
788

Figure S1. Clustering analysis of DEGs in response to w + H₂O and w + In11. (a) Principal component (PC) analysis of differentially expressed genes (DEGs) across all samples. (b) Hierarchical clustering of samples according to the expression pattern of 847 In11-responsive DEGs across all samples.

789
790
791
792
793
794
795
796
797
798

Figure S2. Time -of-day response to wound + H_2O vs undamaged. Venn diagrams indicating the number of shared and unique up and down-regulated genes (a) In11 vs wound across all time points, and (b) 1h (ZT5 vs ZT17) and 6h (ZT10 vs ZT22) after daytime or nighttime wounding (wound + H_2O vs undamaged).

Figure S3. Genome-wide distribution and abundance of CBS and EE motifs in

cowpea promoters. Predicted promoter sequences (1.5 kb upstream start codon) were retrieved from the cowpea genome for a circadian clock cis element analysis. (a) Motif provided to Find Individual Motif Occurrences (FIMO) software. (b) Sequence and count for known and novel motifs found in the promoters. CCA1 Binding site A (CBS-A), Evening element (EE), CBS-B, CBS-like. (c) Motif location distribution in the promoters in 250 base pair (bp) bins.

799

800

801

802

803

804

805

806

807

808

809

810

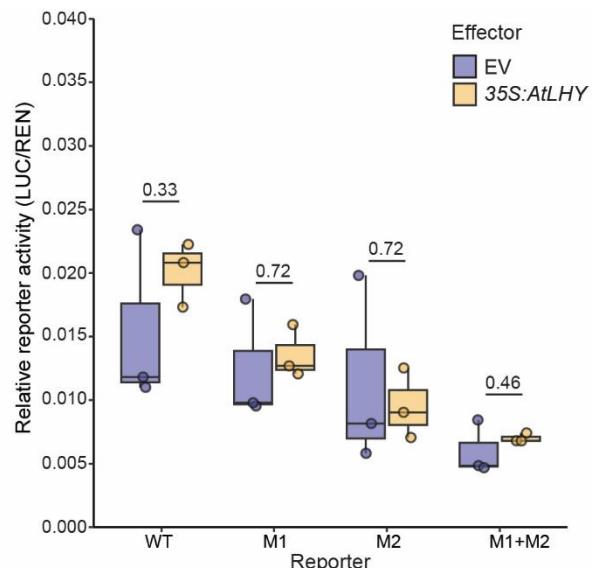
811

812

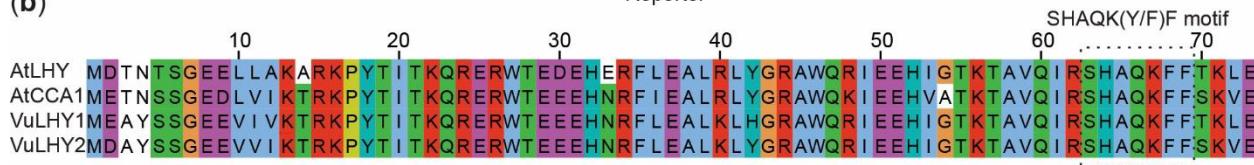
813

814

815


816

817


818

819

(a)

(b)

820

Figure S4. AtLHY weakly activates the *VuKTI* promoter in a CBS-dependent manner. The effect of the AtLHY protein on the activity of the LUC reporters. (a) At 72 h LUC activity was measured with 35S:AtLHY protein co-expressed in a separate agrobacterium strain. WT=CBS, CBS-L, M1 = Δ CBS, CBS-L, M2 = CBS, Δ CBS-L. Relative reporter activity was calculated by normalization against 35S:Renilla. Reporters final $OD_{600}=0.3$ and effectors final $OD_{600}=0.4$. Significant differences in the mean (*) were determined by a two-sided t-test of each effector vs. EV ($n = 3$, $\alpha = 0.05$). (b) Alignment of the amino acid sequence of the Myb-like DNA binding domain for AtLHY, AtCCA1, VuLHY1 and VuLHY2. Color scale according to ClustalW.

830

831

832