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In this work we use Lagrangian perturbation theory to analyze the harmonic space galaxy clustering
signal of the Bright Galaxy Survey (BGS) and luminous red galaxies (LRGs) targeted by the dark energy
spectroscopic instrument (DESI), combined with the galaxy-galaxy lensing signal measured around these
galaxies using Dark Energy Survey Year 3 source galaxies. The BGS and LRG galaxies are extremely well
characterized by DESI spectroscopy and, as a result, lens galaxy redshift uncertainty and photometric
systematics contribute negligibly to the error budget of our “2 x 2-point” analysis. On the modeling side,
this work represents the first application of the SPINOSAURUS code, implementing an effective field theory
model for galaxy intrinsic alignments, and we additionally introduce a new scheme (MAIAR) for
marginalizing over the large uncertainties in the redshift evolution of the intrinsic alignment signal.
Furthermore, this is the first application of a hybrid effective field theory model for galaxy bias based on the
Aemulus v simulations. Our main result is a measurement of the amplitude of the lensing signal,
Sg = 03(9,,/0.3)%° = 0.850f8;8§§, consistent with values of this parameter derived from the primary
cosmic microwave background. This constraint is artificially improved by a factor of 51% if we assume a
more standard, but restrictive parametrization for the redshift evolution and sample dependence of the
intrinsic alignment signal, and 63% if we additionally assume the nonlinear alignment model. We show that
when fixing the cosmological model to the best-fit values from Planck PR4 there is > 5o evidence for a
deviation of the evolution of the intrinsic alignment signal from the functional form that is usually assumed
in cosmic shear and galaxy-galaxy lensing studies.
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I. INTRODUCTION

The weak lensing of photons by the gravity of interven-
ing matter is one of the premier probes of the large
scale structure of the Universe. Since the lensing deflection
is a consequence of general relativity given the cosmo-
logical distribution of matter, weak lensing in principle
provides one of the few direct measurements of matter
clustering on these scales. The amplitude of the lensing
signal, frequently expressed in terms of the compressed
parameter Sy = 0g(€2,,/0.3)%, allows us to test the stan-
dard ACDM model of cosmology—and its extensions—
which tie the large-scale structure of the Universe to the
primordial fluctuations measured in the CMB as well as the
expansion history of the Universe.

Perhaps the most well-established method of measuring
the weak lensing signal is through the distortion of galaxy
shapes due to the deflection of photons by foreground

fContact author: sfschen@ias.edu
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matter. These deflections lead to changes in the ellipticities
of the source galaxies correlated on large scales known as
galaxy weak lensing. The galaxy lensing signal is in
addition correlated with the clustering of foreground, or
lens, galaxies which serve as biased tracers of the lensing
matter. Combining the auto- and cross-correlations of
lensing and galaxy clustering substantially increases the
total signal to noise and, as a result, so-called “3 x 2-point”
analyses utilizing this full set of correlations have become a
standard in the literature [1-5].

The current generation of galaxy lensing surveys like the
Dark Energy Survey (DES) [3], the Kilo Degree Survey [4]
and Hyper Suprime Cam (HSC) [6] are able to constrain the
lensing amplitude down to the few-percent level.
Intriguingly, these constraints have tended to be not only
comparable in precision to the value of Sg inferred from
Planck satellite measurements of the cosmic microwave
background [7] but also lower at the roughly 2¢ level. This
“Sg tension” has also been observed in the cross-correlation
of galaxy clustering and the weak lensing of the CMB [8,9],
though higher values more consistent with the CMB,
especially through using the autospectrum of CMB lensing,
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have also been measured [10-12]. This tension also
manifests itself on smaller scales, where it is often referred
to as the “lensing is low” problem, and where interpreta-
tions are more degenerate with complex galaxy formation
physics [13—17]. As a robust detection of this tension
would signal a deviation of the growth of structure away
from the predictions of ACDM and the need for physics
beyond the standard model, it is critical to examine all steps
of the modeling from first principles.

In this paper we focus on refining one particular aspect—
the dynamical modeling—of standard galaxy—galaxy
lensing (GGL) analyses. While recent years have seen
significant advances in the perturbative modeling of galaxy
clustering [18-20], particularly in reformulating perturbation
theory and galaxy biasing as effective theories, these tech-
niques have not yet become the norm in galaxy lensing
analyses. In this work we will in particular explore the
application of Lagrangian perturbation theory (LPT) and
Hybrid Effective Field Theory (HEFT), and its extension
using dark matter dynamics from simulations, to model
galaxy galaxy-lensing measurements [21-29]. In parallel,
significant advances have also been made in emulating the
predictions of N-body simulations of dark matter, removing
the need for approximate schemes based for example on the
halo model when constraining matter clustering through
lensing. This work is the first application, along with [9],
of state-of-the-art emulators based on the Aemulus v simu-
lations, which accurately interpolate between a broad set of
wCDM and massive neutrino cosmologies, both to predict
matter clustering directly and galaxy clustering through
HEFT [28]. In future work we may extend this emulator to
wow,CDM models given the potential preference for this
model by recent dark energy spectroscopic instrument (DESI)
baryon acoustic oscillations (BAO) data [30], although see
also [31] which shows a significantly decreased preference for
noncosmological constant dark energy when analyzing these
data alongside BOSS two- and three-point functions, CMB
lensing, and Type la supernovae.

In addition to matter and galaxy densities, a particularly
relevant aspect of our dynamical model will be the
perturbative treatment of the shapes of galaxies from which
galaxy lensing is measured. Like their densities, the shapes
of galaxies are biased tracers of the underlying matter
distribution and exhibit large-scale correlations that can
be confused with weak lensing [32-35]. The effective-
theory formalism for describing this phenomenon, with
galaxy shapes acting as a spin-2 biased tracer, was
developed in Ref. [36], and the equivalent effective theory
within the Lagrangian formalism, which we use in this
work, was developed in Ref. [37] following earlier work in
Refs. [38—40]. At leading order, this intrinsic alignment
(IA) signal is proportional to the local tidal field; when
projected along the line of sight, this is exactly proportional
to the leading local contribution to weak lensing, making
the careful treatment of [As particularly important for
correctly extracting the lensing amplitude [41]. While

IAs are thus a significant contaminant in galaxy lensing
surveys, their effect is not catastrophic for two reasons:
firstly, simulations and direct measurements have found
their amplitude to be small, with linear and higher-order
dimensionless bias parameters at the level of a few percent
[42—49], compared to the order-one bias parameters typ-
ically observed in galaxy densities in cosmological surveys.
Secondly, they are sensitive to the local matter distribution
at the position of the lenses, as opposed to projected along
the line of sight as is the lensing signal. Thus, for example,
the cross-correlation with a lens galaxy sample totally
separated from the source sample is sensitive to the lensing
signal but not the TA one. This makes a sufficiently flexible
prescription for the redshift evolution of IAs particularly
important, lest the lensing signal be confused with that
of IAs. Other works have pointed out the importance of
correctly modeling the complex redshift dependence of the
IA signal for galaxy lensing studies [50], and some of the
strengths of galaxy-galaxy lensing in mitigating the sensi-
tivity to this dependence [51]. In this work we propose a
maximally flexible parametrization for these degrees of
freedom, which we call MAIAR, putting the perturbative
modeling of TAs on the same footing as that of galaxy
densities and fully immunizing our analysis to biases due to
their redshift dependence in a model agnostic manner.

The aim of this work is to consistently apply the
theoretical models described above to analyze galaxy
galaxy-lensing measurements using the photometrically
selected DESI target samples for the Bright Galaxy
Survey (BGS) [52] and Luminous Red Galaxies (LRG)
[53,54] as lenses and the year-three release of the
Metacalibration catalog from the DES Y3 as sources
to measure lensing [55]. Although the BGS and LRG
samples are photmetrically selected, we can calibrate the
redshift distributions of these samples nearly perfectly, as
they are DESI target samples with greater than 99%
spectroscopic completeness. We use the harmonic-space
two-point autopower spectrum of the DESI galaxies, and
cross-power spectrum of the galaxies and lensing (2 x 2-
point”), which, as we explain below, are particularly
amenable to these techniques. The DESI imaging data have
the largest overlap with the DES Y3 catalog of all Stage III
lensing catalogs, and so we use the DES data rather than
KiDS or HSC for this analysis. DESI is a Stage IV ground-
based spectroscopic survey operated through the 4m Mayall
Telescope at Kitt Peak National Observatory [56-63]. As of
this writing DESI has completed its survey validation and
an early data release [64,65], and the analysis of the Y1 data
is well underway, including already-published results on
the highest signal-to-noise measurements of the baryon
acoustic oscillations feature to date and their cosmological
implications [30,66,67].

The combination of DESI galaxy and DES lensing
data provides us competitive signal-to-noise measurements
of the GGL signal compared to other state-of-the-art surveys
[5,68-71], and, more importantly, the spectroscopic
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TABLE I.

Summary of quantities pertaining to the lens samples used in this analysis. z. is the effective redshift of the sample [see

Eq. (29)], 6(z) is the width of the lens redshift distributions, f,, is the stellar contamination fraction, b, . is the Eulerian linear bias, , is
the lens magnification coefficient given by Eq. (26), SN, is the Poisson angular shot noise, SN3, is the best-fit three-dimensional shot
noise, allowing for deviations from the Poissonian expectation, 7 is the angular number density, and £, fq is the maximum ¢ value that

we fit to for our fiducial analysis.

Sample Zeff G(Z) fstar blE ay 106Sl\12D SN3D [h_3 MPC3] n [deg_z] I’pmax.ﬁd
BGS0 0.229 0.0597 0.00278 0.99 1.62 0.463 90 627 134
BGS1 0.363 0.0621 0.00216 1.34 1.60 0.918 430 317 267
LRGO 0.469 0.0636 0.000634 1.72 1.916 3.89 2835 74.9 400
LRG1 0.626 0.0715 0.000602 1.96 2.078 2.16 2600 135 533
LRG2 0.794 0.0766 0.00146 2.73 1.956 2.03 3350 148 667
LRG3 0.932 0.0913 0.00218 2.54 1.952 2.24 5295 136 767

calibration of the DESI target samples allows us to avoid lens
photometric-redshift uncertainties and cleanly localize the
distance scales associated with clustering measurements,
making a direct application of perturbative techniques to a
“2 x 2-point” analysis particularly straightforward. While
photometrically selected lens samples may provide greater
raw signal to noise, a careful treatment of theoretical
uncertainties renders this less important, motivating the
use of less dense, but better calibrated spectroscopically
characterized galaxy samples. We envision this will con-
tinue into the next generation of surveys with DESI2 [72],
providing ideal lens samples for analogous analyses joint
with Stage IV galaxy lensing data (e.g., Rubin and Euclid
[73,74]). We leave a full “3 x 2-point” analysis to future
work, as the modeling of the shape-shape autospectrum, i.e.,
cosmic shear, requires additional model complexity beyond
that presented in this work. Furthermore, these analyses can
straightforwardly be combined with the redshift-space
distortion and CMB lensing signals measured with the same
lens samples, providing a powerful combined probe of the
growth of cosmic structure.

The rest of the paper is structured as follows. The data
and modeling, including an extensive discussion of the
degrees of freedom in GGL analyses, are described in
Secs. II and III. We describe the likelihood and analysis
pipeline briefly in Sec. IV before validating them against
mocks based on the Buzzard simulations [75,76] in Sec. V.
Finally, we apply our pipeline to the actual data in Sec. VI
before concluding in Sec. VIIL.

II. DATA

Here, we summarize the data used in this analysis, as
well as our angular power spectrum measurements and our
covariance estimation methodology. Table I contains a
summary of a few quantities relevant to the lens samples
used in this analysis.

A. Lens galaxies

1. DESI LRGs

We make use of the DESI LRG target sample [53,54]
defined over the full footprint of DR9 of the DESI Legacy

Imaging Survey [77], which constitutes the parent imaging
survey for this work. We briefly describe the LRG sample
here, and refer the reader to [54] for more details. This
sample is selected from the parent imaging catalogs by
applying cuts in extinction-corrected g, 7, z and WISE [78]
W1 bands. In particular, although the DESI footprint does
not cover the entire DES footprint, the LRG sample that we
use in this work does. Furthermore, the photometry used to
select the LRG sample makes use of the full six years of
DES imaging data. One major advantage of this sample is
that it is one of the primary DESI target classes. With a
spectroscopic success rate of greater than 99%, we are able
to train accurate photometric redshifts, which can be used
to bin the sample into four well-localized redshift bins, as
shown in Fig. 1. This training procedure is described in
detail in [54], but in essence it trains a random forest
regression model to produce redshift estimates given
Legacy Survey photometry using the DESI Y1 redshift
catalogs and the DR9 Legacy Survey imaging data.
Redshift distributions and stellar contamination fractions
for each of the four LRG redshift bins are estimated using
the redshifts obtained for the LRG sample over the first year
of DESI main survey observations. For our fiducial
analysis, we specifically use the redshift distribution of
these galaxies inferred from DESI spectroscopy in the
overlapping DES region; we comment on the negligible
effect of using the full Y1 area instead in Appendix A.

We apply masking following [54] to remove regions of the
sky near bright stars and large galaxies included in the Sienna
Galaxy Atlas (SGA) [79], and to avoid the galactic plane and
areas of high extinction. In addition, we apply the masking
used for the DES Y3 Metacalibration sample [55], as
described below, in order to measure our galaxy clustering
and galaxy-galaxy lensing statistics over the same area. We
do not apodize our masks as they contain a large number of
small holes and doing so would significantly decrease the
effective area of our measurements.

Random points are sampled uniformly over the
footprint, and the same masking is applied to them as
for the LRG catalogs. Weights are assigned to the randoms
independently for each LRG redshift bin, such that the
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FIG. 1. Redshift distributions of the DESI lens (solid) and DES Y3 source (dashed) galaxies. The two lowest redshift lens bins are

comprised of the DESI Bright Galaxy Sample, and the four higher redshift bins are made up of DESI Luminous Red Galaxies.

weighted random densities are correlated with imaging and
foreground systematics with the same trends as measured in
the galaxy catalogs in that redshift bin. These weights are
constructed by performing linear regression on the corre-
lations between LRG density and the g, r, and z band,
extinction corrected imaging depths, point spread function
(PSF) sizes, as well as E(B — V) as estimated by [80]. We
find negligible differences when removing the weights that
correct for E(B — V) correlations. We use the weights
computed by performing a linear regression over the full
DECaLS region, but we have verified that our C(?)
measurements are stable to performing this regression over
just the DES footprint where we measure our power
spectra. The weighting methodology and null tests are
presented in [54], and we note that these weights are
necessarily different from the LRG weights used for the key
DESI BAO and RSD analyses, given the differences in
binning used in this analysis and the LRG BAO and
redshift-space distortions (RSD) analyses.

2. DESI BGS

In addition to the DESI LRG sample described above,
we make use of the DESI Bright Galaxy Sample [52] as an
additional lens galaxy sample designed to trace z < 0.4
structure. This sample is particularly useful for galaxy-
galaxy lensing science as it has minimal redshift overlap
with two of the four DES Y3 source galaxy redshift bins.
The BGS sample has many of the same advantages as the
DESI LRG sample, with comparably high spectroscopic

completeness, allowing us to bin galaxies into two narrow
redshift bins using photometric redshifts, robustly calibrate
the redshift distributions of these bins, and estimate
systematics such as stellar contamination. The photometric
redshifts that we use to bin the BGS sample are trained in a
manner identical to that described for LRGs in [54]. We
briefly describe our treatment of this sample here, and refer
the reader to additional systematics tests, mirroring those
done in [54] for the LRG sample, in Appendix A.

Similarly to the LRGs, redshift distributions for each of
the two BGS redshift bins are estimated using the redshifts
obtained for the BGS sample over the first year of DESI
main survey observations in the overlap region with the
DES Y3 footprint. These are shown in Fig. 1. Unlike the
LRG sample, we do not apply weights to the redshift
distributions to correct for spectroscopic incompleteness,
given the > 99% spectroscopic completeness of this
sample. While we do include these weights in the LRG
sample, they have a negligible impact on the LRG redshift
distributions, and so for simplicity we have omitted them
for the BGS sample.

We apply the same masking as for the LRG sample, and
we have checked that the SGA masking done for LRGs does
not significantly impact our measured statistics, despite the
fact that the redshift distribution of SGA galaxies slightly
overlaps our BGS samples. The BGS samples, which are
generally brighter galaxies detected at higher signal to noise,
exhibit even less significant trends with potential contam-
inants than the LRG samples. Correcting for these trends
in our angular power spectrum measurements has a
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significantly smaller impact than our statistical uncertainty,
and thus we do not apply weights correcting for these trends
for our fiducial BGS measurements.

3. Galaxy overdensity maps

To construct galaxy overdensity maps, J, ,, we first bin
galaxies into HEALPix [81,82] maps (NSIDE = 2048),
N, =) ,e, Vg Where v, is an “effective redshift weight”
assigned to galaxy ¢ that will be described in Sec. III B,
and the sum runs over all galaxies in pixel p. We then
compute weighted random counts, Rp = Z,e » Urs and
pixel averaged random weights using our random catalog:
w, =R,/>,c,1, where v, are weights assigned to the
randoms to correct for angular systematics, and the
denominator in the second equation is simply counting
the total number of randoms in each pixel. For each
lens bin, we construct five different galaxy count maps:
one with no weights applied to the galaxies, and four with
galaxy weights constructed to bring the effective redshift
of our clustering measurements into agreement with our
lensing measurements for each of the four DES Y3
Metacalibration source bins. Random weights are
always applied to correct for angular systematics for the
LRG samples.

In terms of the above quantities, the projected galaxy
density is

Pp
) 5 :___17 (1)
» g9.r p

Pgp =

> |E2

where p, is the mean of p, taken over all unmasked pixels.

We then define the mask W2 = O(R »—02R,), where R,
is the average of R, over all pixels with R, > 0, and © is
the Heaviside step function, i.e., the mask is one where the
average random density is greater than 20% of the mean,
and zero otherwise following, e.g. [8,27]. We also compute
the Poisson shot noise for each redshift bin as 1/7 using

w 2
L SN .

_ 2 . .
where wN, =3 ,v; and Q; is the survey area in
steradians.

B. DES Y3 Metacalibration

We make use of the Metacalibration shape catalog
constructed from the first three years of DES data [55] to
measure gravitational lensing through the cross correlation
between Galaxy ellipticities, e,;, in DES and galaxy
overdensities measured from our DESI samples. The
catalog contains 100 million galaxies over an area of
4142 square degrees, with an effective number density
of 7 = 5.59 arcmin~2. The shape measurement process is

known to be biased by a number of observational factors,
and so the raw galaxy ellipticities, e, ;, with i indexing the
two galaxy ellipticity components, must be corrected in
order to obtain an unbiased measurement of the gravita-
tional lensing signal.

To account for this, the Metacalibration algorithm
computes the response, R, of observed galaxy shapes to
an artificial shear. By appropriately weighting e ; by R,
the biases to e, can be removed in estimators using these
ellipticities [83,84]. Residual biases to e ; at the ~2-4%
level, mostly sourced by blending of galaxy shapes, must
be calibrated using image simulations [85]; uncertainties in
this calibration are marginalized over in our cosmological
analysis.

We make use of the fiducial DES Y3 redshift calibration,
binning the Metacalibration sample into four coarse
redshift bins, and using the ensemble n(z) s provided for
these bins. The n(z) estimates for the four bins are obtained
using a combination of SOMPZ photometric redshifts
[86,87] and clustering cross-correlations [88], additionally
corrected for the effects of redshift dependent blending
[85]. Furthermore, the SOMPZ algorithm relies on a
combination of wide and deep field photometry [89] which
are related to each other through the synthetic source
injection software Balrog [90,91], as well as catalogs of
spectroscopic and high-quality photometric redshifts.
These redshift distributions are shown alongside those of
the DESI lens galaxies in Fig. 1.

In each tomographic bin, we divide each ellipticity
component by the mean Metacalibration response
measured in that bin as in [55,92,93], and subsequently
subtract the mean ellipticity in each component. Once we
have calibrated the ellipticities in this manner, we construct
galaxy ellipticity maps as

o = 2 gepPi (3)

" > geply ’

where v, are the inverse variance weights provided
with the Metacalibration catalog, and i indexes over
the two galaxy ellipticity components. Because our signal
is weighted by the number of source galaxies per pixel
divided by the ellipticity dispersion, ¢,, which can vary
quite significantly over the footprint, we compute the mask
for our ellipticity maps as

We = "v, (4)

gEP

where o6, enters through v, since v, are inverse variance
weights. We also compute the mode-coupled noise bias,
sometimes known as the noise power spectrum, which

enters into our covariance calculations as
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FIG. 2. Galaxy density-shear E-mode cross spectra (top) and galaxy-density auto-spectra (bottom) compared with the best-fit model
from our fiducial analysis (lines). Note that we do not use all source-lens bin combinations in this fit, as detailed in Sec. V A. A fit to the
full data vector is shown in Fig. 25. Smaller subpanels show the residuals in units of the estimated uncertainty on each data point. We do
not fit to the points in the gray regions to avoid unmodeled RSD contributions on large scales, and higher order bias and baryonic
contributions on smaller scales as described in Sec. III. The blue and orange points in the top row are measurements using the third and
fourth highest redshift DES Y3 source bins. We find 4> = 27.5 for 54 data points using 21 free parameters, not counting the IA,
magnification or source sample uncertainties since these are prior dominated, equivalent to y2,; = 0.86.

102

—2.5

C. Angular power spectra

Nf>2 :AP<ZU§6§,Q> 5 (5)

In order to extract cosmological information from our

geP pix

where o7, = 0.5(e} | + ¢} ,) and A, is the area of a pixel in
steradians, and the average is taken over all pixels in the
map. As shown by [94], this is equivalent to what would be
measured from repeatedly rotating all galaxy ellipticities
randomly and measuring power spectra, i.e., it is the
contribution from uncorrelated shape noise.

data, we measure auto and cross angular power spectra of

the galaxy overdensity fields, 5;.0bs, and E-mode galaxy

ellipticity fields, }rg where i and j index the lens and source
galaxy redshift bins. As we explain in Sec. III, our fiducial
analysis setup uses data from only the first three lens bins,
whose auto and cross correlations we show in Fig. 2 along
with the error bars computed as in Sec. II D and the best-fit
model. In order to compute these harmonic-space two-point
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functions we use the pseudo-C, estimator implemented in
the NaMaster code. We briefly review this methodology here,
and refer the reader to [95] for further details.

A map a(n) on the unit sphere, where fi denotes an
angular position on the sky, can be decomposed into
spherical harmonics via

o = / 49 a(R)W(R)Y 1, (). (6)

or in the case of a spin-2 field, like the galaxy ellipticity
field, we have

YEem £ i¥Bem = /dQ (y1(R) £ iy, (R))W7 (R) 1, Y (),
(7)

where W9(fi) is the mask, and Y,,,(A) and =2Y,,, (i) are
spherical harmonics and spin-weighted spherical harmon-
ics [96], respectively. Without loss of generality, we
consider only the scalar field case for the rest of this
section. We also use the shorthand

a(h) = a(i)We(h). (8)

Given two sets of spherical harmonic coefficients, a,,, and
bs,,, we can compute the angular power spectrum of these
two fields as

. J -
ab __ 2 ~ *
Cf - Zf + 1 =, afmbfm’ (9)

which is then related to the true unmasked angular power
spectrum, C% as

(Chy =Y mab.cob, (10)
f/

where M%, is the mode-coupling matrix (MCM), which
can be computed analytically from the masks of the two
fields, a and b [97]. See [95] for the expressions of ML“J;,
given masks for spin-0 and spin-2 fields that we use in
this work.

In order to obtain unbiased angular power spectrum
estimates, we must invert M %Z,, but in the case of masks that
remove large fractions of the sky this matrix is singular. To
circumvent this issue, it is necessary to bin C¢ into
bandpowers, with each bandpower L containing (poten-
tially weighted) sums over many ¢ values. The binned

MCM, M4, is then invertible, and we have

(Cf) =D cpmy, (11)
L/

- Z Z By C;{?ZBL"LBK’L’M;?/, (12)

L ¢ 4

ab

where By, is the weight given to ¢ in bandpower L. M{],

can then be inverted to give an estimate of C’Zb:

Cip = (M)71, T, (13)
L/

4" is an unbiased estimate of C§” in the limit that C¢ is a
piecewise constant over each bandpower, L. In general, this
is not the case, and so we must account for binning into
bandpowers using a bandpower convolution matrix, F4¢5
which connects a theory prediction for C% to the band-
powers C$?,

Cir =) Fihcy (14)
13

=SSy S B mebc, (15)
14 L 7

where F4% combines the mode coupling, binning, and
decoupling procedures. Note that we could just as well
have avoided deconvolving our measurements, and evalu-
ated our model prediction by removing the inverse mode
coupling matrix in Eq. (15), but following convention we
have chosen to deconvolve our measurements.

We compute our bandpowers and bandpower convolu-
tion matrices using the NaMastr compute full
master function. Figure 2 shows these angular power
spectrum measurements for the first three lens (BGSO,
BGS1 and LRGO) bins and two highest redshift source
bins, which are the spectra used in our fiducial analysis as
described in Sec. VA, as well as our best-fit model. This fit
will be further described in Sec. VI. Unlike some other
works making use of pseudo-C, estimators, we do not
correct for the pixel window function, as the form of this
correction depends on the number of source galaxies per
pixel [94], and because even in the limit of infinite
sampling the pixel window depends on azimuthal angle
due to the variation in HEALPix pixel shape with azimuth.
Although algorithms exist to circumvent these issues,
for example [98], we opt to simply take the pixel size
to be small (NSIDE = 2048) compared to the scales of
interest in this work, such that the impact of the azimu-
thally averaged pixel window function on our measure-
ments is significantly below 1% even for Z = 1200,
which is the largest # that we use in this work for the
simulated tests extending beyond our fiducial scale cuts to
kuax = 0.6 hMpc~!. We note that the largest # used in our
fiducial analysis is much smaller than this, at £,,,, = 400
for the first LRG bin.

Finally, as a systematics test, we also measure the
galaxy-overdensity—B-mode angular power spectra for
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FIG. 3. Measurements of galaxy density—B mode galaxy ellipticity power spectra for all lens and source bin combinations. The
different colors represent the four different source bins, going from low to high redshift from blue, orange, and green to red. The
covariance for all of these measurements is estimated from the Gaussian simulations described in Sec II D. The probability that the chi-
squared value measured in our Gaussian simulations with no B modes exceeds the chi-squared for each spectrum in the data measured
over the scales used in this analysis (non-grayed regions) is displayed on each panel as “PTE.”

each source-lens bin configuration, shown in Fig. 3. The
different panels show each of the six lens bins considered in
this work, and the different colored points show measure-
ments for each source bin. Error bars are derived from the
Gaussian simulations described in Sec. IID. Inset in the
figure, we quote the probability that the y> value measured
for each spectrum in our Gaussian simulations over the
scales used in our analysis exceeds that measured in our
data (PTE). No spectrum has a PTE of less than 3%, and of
the spectra used in our fiducial analysis the lowest PTE
value is 16%. As such, we conclude that B-mode con-
tamination contributes negligibly to our analysis.

D. Covariance

We make use of a Gaussian covariance matrix computed
analytically with the NaMaster function Gaussian
covariance, where we use as input the best-fit theory
spectra shown in Fig. 2. In order to avoid complications in
implementing an accurate model for C'*7%, we instead use
a third order B-spline fit to the measured, noise bias
subtracted C%*"* s as input to our covariance calculations.
A number of works [99,100] have shown that Gaussian
covariance matrices are sufficient for ACDM analyses of
very similar statistics for a comparable sky area and level of
constraining power, and so we focus on validating the

computation of the disconnected (Gaussian) contribution to
the covariance in this section.

It has been shown that the narrow kernel approximation
(NKA) that is used to accelerate the computation of the
effect of survey geometry on the Gaussian part of the
covariance from an O(£%,.) operation to a tractable
O(£3 ) is inaccurate at the 10-30% level for galaxy
lensing surveys, which have very complicated masks.
These masks break the main assumption of the NKA,
which is that the MCM is close to diagonal. Reference [94]
showed that replacing the input theory spectra with their
mode-coupled counterparts scaled by the mean of the
product of their masks as

S M, Cab

cab
CT W)

(16)
p/pix

significantly improved the agreement of the NKA and their
Gaussian simulations with realistic galaxy lensing survey
geometries. Note that we include the noise terms in Eq. (16)
as fay/7, where 7 is given by Eq. (2) for galaxy densities
and as Eq. (5) for yg.

The additional subtlety that we incur due to our choice to
use different galaxy weights in our auto- and cross-
spectrum measurements, is that the shot noise of the galaxy
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FIG. 4. Comparison of three representative sub-blocks of our fiducial covariance to the covariance estimated from Gaussian
simulations as described in Sec. I D. The three different rows show the covariance between C% 7t and itself (left), C%7t and C%%
(middle), and C%?% and C%*® (right). The solid lines show the first diagonal, while the dashed lines show the first off diagonal, while
orange shows the estimate from Gaussian sims, while blue is our fiducial analytic covariance assuming the iNKA. The bottom panels
show the fractional deviation of our fiducial covariance from our simulated covariance.

maps that enter these measurements is different. To account
for this we simply use the geometric mean of the shot-noise
values obtained for the maps that enter into the auto- and
cross-spectrum measurements when computing the shot-
noise contribution for C%’ of galaxy samples that differ only
by different effective redshift weights.

We validate these approximations using Gaussian ran-
dom field simulations, generating correlated realizations of
the fields {59, ...,55.&Y,.... 3} with NaMaster’s synfast
function. Instead of Poisson sampling a Gaussian density
field to obtain the correct shot-noise values for the galaxy
overdensity fields, we include the Poisson shot noise in
our input, noiseless autospectra. In principle, we should
generate five overdensity maps per lens bin, one with the
shot noise appropriate for the unweighted lens catalog,
and four with shot-noise values appropriate for the lens
catalogs with effective redshift weights applied for each
source bin. In order to reduce the computational cost of
these simulations, we have opted to generate only the field
with shot noise appropriate for the unweighted catalogs.
As such, we compare to a slightly modified version of our
covariance, where we have used the unweighted lens
catalog shot noise for all relevant spectra, and so we do not
explicitly validate our treatment of the impact of effective
redshift weighting on our covariance. Nevertheless, the
difference between our fiducial analytic covariance and
the analytic covariance we use for this comparison is at the

level of ~2—-5%, and so it is not important for interpreting
the results presented here.

In order to simulate sheared galaxy shape fields, for each
source bin we generate a noiseless convergence field, «,,
correlated with the other source galaxy convergence and
lens galaxy overdensity fields. We then transform con-
vergence to shear, y,;, using the inverse Kaiser-Squires
algorithm [101]. Using the actual positions and ellipticities
of the DES Metacalibration catalog for the source
bin in question, we apply a random rotation to all ¢, ;, and
then shear these ellipticities:

g.i>

0
o — e™e, 7,
T+ (e™eyy)’

(17)

where &, and 7, are the complex galaxy ellipticity and shear
at the position of the galaxy, and 6, is the random rotation
generated for galaxy g. We then apply the relevant masks
for the galaxy overdensity fields, and use the map-making
procedure outlined in Sec. II B for our source galaxy maps.
We then measure the auto- and cross-spectra of all the
generated fields, including both E- and B-mode compo-
nents for relevant spectra. We compare the covariance
computed with these simulations to our analytic Gaussian
covariance in Fig. 4.
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E. Analysis blinding

In order to mitigate observer bias, we blinded the results
of our constraints until we had finalized all aspects of our
analysis that we believed could shift our constraints. In
order to do so, after measuring the angular power spectra
used in this analysis, we produced a blinded measurement
given by

Cur =T 4 (CO) - PO, (18)

where C%’ are the unblinded measurements, while C%* ()
and Cgb (6"9) are model predictions at a randomly chosen
and a fiducial set of parameters. The fiducial parameters,
04 are chosen to be the best fit from [7], while the
randomly chosen cosmology, &', is generated by applying a
hashing algorithm to a known string, and using this to seed
a random sample, @', from the initial proposal distribution
used in our Markov chain Monte Carlo (MCMC) analyses.
The standard deviation of shifts in og that we expected by
performing this procedure was ~0.1, i.e., about 2 times
larger than our expected constraining power.

We chose to perform this blinding operation in a reduced
parameter space from that of our fiducial model described
in Sec. I in order to limit the size of the change in our data
vector that was allowed to be <20%. In particular, we
applied the blinding shift using a linear galaxy bias model,
as well as a NLA TA model [102] with linear redshift
evolution (Sec. III). We also did not allow the shot noise,
source redshift or shear multiplicative bias parameters to
vary, as these were well known from previous analyses. All
other parameters in our fiducial analysis set up were
allowed to vary.

Before unblinding we performed a series of tests in order
to ensure the robustness of our results. The tests that were
passed before unblinding were

(1) Recovered the input cosmology within noise

(~0.250) on the Buzzard simulations with the fiducial
modeling pipeline.

(2) Posterior projection effects were well understood on

noiseless simulations.

(3) No significant detection of B modes for measure-

ments used in fiducial analysis (p > 0.05).

(4) No significant detection of cross-correlation be-

tween systematics maps and galaxy density maps.

(5) Galaxy density cross-power spectra consistent

with predictions given by p%(z) overlap and
magnification.
(6) Acceptable goodness of fit to blinded data
(x> = 27.7 for 54 data points).

(7) Insensitivity of blinded results to changing footprint
used for p%(z) estimation from overlap region with
DES Y3 footprint to full DESI Y1 footprint.

(8) Insensitivity of results to inclusion of # <50

for CouonTe,

TABLE 1II. Summary of quantities pertaining to the source
samples used in this analysis. The first column indexes the source
bin, 6(Az) is the uncertainty marginalized over in the mean
redshift of each source bin, (m) and o(m) are the mean and
standard deviation of the prior on the multiplicative bias
correction applied to each source sample, and 62 /7 is the shape
noise divided by the average angular number density.

Source bin o(Az,) (m) o(m) o/
0 0.018 —0.006 0.009 0.040
1 0.015 —0.020 0.008 0.046
2 0.011 —0.024 0.008 0.045
3 0.017 —0.037 0.008 0.062

(9) No preference for nuisance parameters at edges of
priors.
After unblinding, we updated our covariance to use the
best-fit model predictions from an analysis of all lens and
source bins with our fiducial model.

III. MODEL

Having validated our measurement and covariance
methodologies, we now discuss our forward model. The
following sections aim to provide a high-level overview of
all of the components entering into our model predictions.
See Table III for a list of all free parameters and their priors.

A. Field level description

We make use of two types of fields in this analysis: the
projected galaxy density field, 5, qs(11), and the projected
E-mode galaxy ellipticity field, yz(fi). We do not treat B
modes in our model, as a cross correlation between a scalar
field and B modes can only be generated by a parity
violating process. We can express yg(fi) as [103]

ve(R) =7, (B) + «(R), (19)

where i indexes the source galaxy bin in question. The first
term on the right-hand side is the intrinsic alignment
contribution to galaxy ellipticity while the second term
is the contribution due to gravitational lensing. We neglect
higher-order terms related to source magnification and
reduced shear, as these are insignificant at the scales used
in this analysis [104,105]. We verify this assumption on
N-body simulations that include these effects in Sec. V. The
intrinsic alignment contribution can be expressed as

i () = / Wi ()7 i), (20)

where w/e1(y) = p’e(z(y))E(z(x)) and p’s is the source
galaxy selection function, i.e., the galaxy redshift distri-
bution for the ith source bin normalized to integrate to 1,
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TABLE III. Parameters and priors.
Parameter Prior Reference
Cosmology
@, U(0.08,0.16)
A U1.1x107,3.1 x 107)
ng 4(0.93,1.01) Sec. IV
@y, 4(0.0173,0.0272)
h U(0.52,0.82)
logio > . m, U(-2.0,-0.301)
Lens galaxy bias
“8(2>( 1+00) U (0.5, 3.5) Egs. (35)-(37)
08 fid
(@) ())zbz N (O, 1) Egs. (35)-(37)
038 fid
(”8_@)2172 N, 1) Egs. (35)-(37)
08 fid
?kn;;x blva N (0, 0.2) Egs. (35), (36), and (49)
+b| a
2hiax pyi N (0, 0.2) Egs. (35), (37), and (49)
T+b V2
by2,, N (0, 0.5) Egs. (35) and (38)
SN/ N (Tablel,30%) Egs. (35) and (36)
Intrinsic alignment
(c2l)y i N (-1,5) Eq. (40)
03 fid
(”s(l))zclj N (0, 5) Eq. (40)
03 fid
og(2)\2 .ij 0,5 Eq. (40
(@B N (0, 5) q. (40)
(@2 N (0, 5) Eq. (40)
03 fid !
(sl2)y2 o N (0, 45) Eq. (40)
03 fid ;
Magnification
aL U(TableI +0.1) Eq. (26)
Cuuv N(O, 04) Eq (55)
Source photo-z
Azl N (0.000, Table II) Eq. (56)
Shear calibration
m' N (Table 1) Eq. (57)

and E(z) is the Hubble parameter at z. The gravitational
lensing term is given by

K@) = / A (on(br.2(). (1)

where
W0 =3 @31+ 200) | " g0, )
gi(z, ZI) :Z(Z)(Z(Z/) _Z(Z)) Pyg—(z/>_ (22)

x(2')

Similarly, the observed galaxy density field for the ith
lens bin can be expressed as

61 (1) = 3)() + 81, (h). 23

where &/(fi) is the projected intrinsic real-space galaxy
density field, and the second term on the right-hand-side is
the lens magnification contribution. In order to neglect the
impact of redshift-space distortions, we fit only to Z > 50,
where the beyond-Limber and redshift-space-distortion
effects impact our observables at the < 1% level [9].

We can express the projected intrinsic real-space galaxy
density field as

5(h) = / AW ()8, o). (24)

and W (y) = p%(y)E(y(z)), and p%(y) is the lens galaxy
selection function. The magnification contribution is

8, () = 2(ai, — 1) / dy whe ()8, (. 2(7)).  (25)

0,

where wP» = wX, and «, is the response of the galaxy

angular number density, n’, to a change in convergence:

ldn

—o = 2(a, - 1). (26)

B. Angular power spectra and effective redshifts

In order to predict the angular power spectra of the
projected field discussed above, we use the Limber
approximation [106,107]:

op = [ ) (1)

Z+3

XPab <kL :7 kH 0,Z(){)> +O(f_2), (27)
where w?(y) and w’(y) are the projection kernels appro-
priate for fields a and b, and P,, is the cross-power
spectrum between these fields evaluated at wave vectors
k = (ky, k) perpendicular to the line of sight. This is an
excellent approximation for angular scales ¢ that we fit in
this work. Given the field level description presented
above, we can express the two main spectra of interest:

S +C§W 9.1

c;w" ) (28)

S ’5./'
C g.obs’”gobs
‘

C«q+c W—I—C

Cé‘:‘wbs,y’E _ + C’sj TEi

The spectra in Eq. (28) with at least one power of 8, have
Limber integrals that are highly localized due to the
narrowness of the lens galaxy redshift distributions p‘s-ff(z).
This implies that we can make an additional approximation
and subsitute z(y) — z% in Eq. (27), where the effective
redshift is given by
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we(y)w?
%=/wm‘”m» (29)

)(2

This choice cancels corrections to the evolution of cluster-
ing at linear order, with corrections coming in at quadratic
order in the width of p%, Az? [27], removing the need to
marginalize over the redshift evolution of galaxy clustering
within each lens sample. While the precise size of correc-
tions to the effective redshift approximation depends on the
steepness of this evolution, theoretical calculations show
that they should be subpercent for the widths of our lens
distributions [22], which we further validate against sim-
ulations with realistic redshift evolution in Sec. V.

An immediate consequence of Eq. (29) is that C/* is

sensitive to a different effective redshift than C?’ylE, and the
latter is sensitive to a different effective redshift for
each j. Similar to [27], we remedy this by applying
additional weights to our ith lens galaxy sample when
constructing galaxy overdensity maps for the purpose of

- ST
measuring C/'*:

W), 0

W (1(z,))

where z, is the photo-z estimate of each lens galaxy. In

. . . 5 Sl
doing so we make the effective redshifts of C(;” ¢ and C;’K ,
which are the most significant terms in the spectra that
dominate our cosmological constraining power, equal to
each other. In addition to constructing four additional

galaxy overdensity maps, we must also compute four

. . 5 .
new lens galaxy selection functions, p;’(z) taking into

account the weights defined above for each source galaxy
sample. These are then used to compute the model

predictions for C(;m. Adopting this additional weight in
the cross-correlation insulates our measurements against
the redshift evolution of P%% and P%*, so that the galaxy
auto and lensing cross-correlations are probed at precisely
the same epoch. Since the effective redshift is fixed to that
of the lens auto correlation, there is no additional depend-
ence on which source bin the lensing is measured from in
these contributions. This implies that the two cosmological
correlations from which we derive our constraining power
can be modeled at equal times using a consistent set of
parameters.

However, because we have chosen to construct weights

to make the effective redshifts of C?ﬁf’ and C{;W equal, we
must resign ourselves to the fact that the cross-correlation
of galaxy densities with intrinsic alignments, whose red-
shift distribution follows that of the source samples, are
sensitive to clustering at effective redshifts distinct from the
effective redshift of the autocorrelation of galaxy densities
62 and will in addition also be dependent upon the source

bin. However, we can use the fact that the lens distributions

p%(z) are rather narrow to approximate the galaxy cluster-
ing sampled by these cross-correlations to be the same as
that for their auto-correlation. Since, however, p’(z) is
quite broad for all of our source galaxy bins due to
photometric redshift uncertainties inherent to the much
fainter source galaxy samples, the parameters describing
the intrinsic alignments of the source galaxies cannot be
treated as constant over the source bins. Rather, we must
describe the intrinsic alignments of each source sample
narrowly localized at each lens bin—this naturally leads to
a proliferation of the possible degrees of freedom in our
model, since each intrinsic alignment parameter must be
described per source and per lens redshifts, i.e., Nyyree X
Niens times. We describe various ways to describe this
)
freedom in Sec. I D. While the effective redshifts of C;ﬂ“
are slightly different than those of the lens autocorrelations
and are different for each source bin, since we are interested
in IA primarily as a contamination to the main signal and
analyze only cross-correlations where IA constitute a few
percent of the lensing signal, we expect the impact on our
model predictions to be quite small, with most of the
differences further soaked up by the definition of the IA
bias parameters.

Similarly, in the case of magnification, we expect that
model predictions due to variations of a over our
lens redshift bins are relatively small, and thus we only
leave one magnification coefficient, «a;, free per lens bin.
Reference [108] investigated the effect of redshift evolution
of the magnification coefficient in the BOSS survey and
found that ignoring it incurred systematic errors in the
predicted clustering roughly comparable with £0.1 errors in
the magnification coefficient, though this error is again tied
to the width of the redshift distribution and could be removed
by accurately measuring this evolution for spectroscopically
calibrated samples. Rather than include this effect in our
modeling, since the measurements in our fiducial setup
(Sec. VA 1) are relatively insensitive to magnification, we
simply include this error in the width of our priors on a;.

Finally, we note that we have omitted the cross term

between lens magnification and intrinsic alignments,

Syl .. . . . .
C/""". This is because our fiducial modeling choices

allow for one set of IA parameters per lens-source bin
combination, as discussed in Sec. IIID. Under this
assumption, there is no unique way to interpolate and
extrapolate the TA parameters as a function of redshift in

Sl .
order to model C,” "E over the very broad redshift range

required, due to the width of the source bin redshift
distributions. Evaluating the impact of this term using
our fiducial cosmology and nuisance parameters, and a
constant value of ¢; = —1, we find its impact to be very
small, contributing a Ay* < 0.7. As such, we neglect this
cross term in the analysis presented here.
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C. Lagrangian perturbation theory and hybrid
effective field theory

The only remaining ingredients required to specify
our models for the angular power spectra above are
the power spectra, P,;,(k), to be used in Eq. (27). In this
work, we adopt the formalism of LPT and HEFT, which
model the formation of large-scale structures by predicting
the displacements, W(q,7) of fluid elements originating
at Lagrangian positions ¢, mapping to final positions
x =q+ ¥(q,7). These fluid elements follow Newtonian
gravity in an expanding space-time such that ¥ + H¥ =
-V, @, where the dots denote derivatives with respect to
conformal time. The potential, ®(x, 7) is sourced by the
matter density §,,(x,7), which is given by number con-
servation as

1 +6,(x,7) :/d3q6D(x—q—‘{‘(q,r)). (31)

Within LPT these displacements are computed perturba-
tively order by order, and the first order solution is often
referred to as the Zeldovich approximation. In HEFT, these
displacements are computed nonperturbatively using
N-body simulations.

LPT makes predictions for the large-scale statistics
of galaxy properties, such as the galaxy overdensity
field &6, or density-weighted galaxy ellipticity field
M;;(x) = (14 8,(x))I;;(x), where I;; is the galaxy shape,
by enumerating their responses to their local initial con-
ditions order by order in a bias functional,

F(g) =) b0,0.(9), (32)

and advecting this field to the late-time coordinates
following

1+6(c.7) = / P14 F(@)op(x—g—¥(g.1).  (33)

The operators O, can either be scalars or tensors for
densities and ellipticities, respectively. For convenience we
can also define the advected operators:

0,(x.7) = / P40, (9)5p(x — g — ¥(q.7))
0, (k.7) = / PeFarD0,(g). (34)

Both the perturbative dynamics and bias expansion
described above are properly thought of as effective
theories, and the inclusion of additional operators, or
counterterms, to tame the dependence on small-scale
physics will require additional free parameters in the
model. On the other hand, we emphasize that the bias

expansion is a systematic one, by which we mean that any
physical effect on perturbative scales can necessarily be
expressed as a bias contribution at some order in the theory,
without needing to individually account for such effects
(see e.g. Ref. [26] for the case of assembly bias). We now
describe LPT as applied to densities and ellipticities in turn.

1. Matter and galaxy density

In the case of galaxy densities, we have up to one-loop
order [109,110]:

8,[6(q)] & 1 + b8y + b2 (85 — (85)) + by (55 — (55))
+0305(q) + by2V?5(q) + e(q). (35)

where the subscript “0” denotes that all quantities are
computed according to the linear initial field, s3 is the
square of the traceless tidal tensor, and we have suppressed
the g dependencies on the rhs of this equation. The
contribution from by: is an effective theory term that
captures both short-range nonlocalities in galaxy formation
and other small-scale effects in the dynamics of galaxies,
while e stands for uncorrelated stochastic modes that have a
white spectrum. The operator O3 = %st is a stand-in cubic
operator, since all cubic operators contribute identically to
the power spectrum at one-loop order. Since the contribu-
tions to our galaxy samples are expected to be small, and b5
is rather degenerate with by2, we do not vary it here.
Finally, we make the ansatz that all of these quantities are
computed from the CDM + baryon field, rather than the
total matter field. This is motivated by the fact that
neutrinos do not cluster on the typical scale of dark matter
halos, and thus we expect galaxies to trace the CDM +
baryon field rather than the total matter field. This ansatz
was shown to be in excellent agreement with CDM +
neutrino simulation predictions of dark matter halo cluster-
ing by [111,112].

In addition to the analytic one-loop effective Lagrangian
perturbation theory, also known as convolutional
Lagrangian effective field theory (CLEFT), in this work
we also use a simulation-enhanced extension called HEFT.
HEFT assumes the Lagrangian bias expansion in Eq. (35),
but uses nonlinear displacements computed exactly from
N-body simulations in Eq. (33), rather than perturbatively
computing ¥, as is done in CLEFT. In doing so, it has
been shown that real-space galaxy-galaxy and galaxy-
matter power spectra can be jointly fit to k = 0.6 2 Mpc~!,
well beyond the scales where perturbation theory models
are traditionally used [23,26,113,114]. This is because
for sufficiently low mass and low bias tracers, the
dynamical nonlinear scale ¥ is larger than the halo scale
controlling the convergence of the bias expansion. For
highly biased tracers, it is possible that this no longer
holds, but in Sec. V we show that for simulations that
match the bias and number densities of the samples used
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here, we can obtain unbiased cosmological constraints
fitting to k = 0.6 A Mpc~!. Thus, here we adopt HEFT as
our fiducial model.

Our angular power spectra require as inputs the real-
space galaxy-galaxy, galaxy-matter and matter-matter
power spectra. The former two can be expressed in both
CLEFT and HEFT as quadratic and linear polynomials in
the bias parameters:

Pﬁgﬁg(k) = Z bO,-bOjPOin(k) + P, (36)

Oi,OjE(Sg
Ps 5, (k) = Y bo,Pio,(k), (37)
0; €9,

where again, by, are free bias coefficients that we mar-
ginalize over. These are shared between Ps s and Pss,
except for the counterterms, by2, and by, that contribute
to Pjs,(k), Pss, (k) and Pj s (k) respectively. The sto-
chastic spectrum P, is given at leading order by a single
constant “SN” that varies for each tracer—we ignore any
additional scale dependence in this work. Finally, we model
the matter power spectrum as

b k2
Py s (k) = PED(K) (1 - V—) RES

1+ (kR)?

where P is the matter power spectrum in the absence of
baryonic feedback, equal to P;; in HEFT. Here by, is a
counterterm that accounts for the leading-order effect of
feedback, and we have included a Padé factor R =
2 h™'Mpc to tame the large-k behavior similar to that
used in [115]. We discuss the efficacy of this parametriza-
tion further in Sec. IIIE, but we emphasize that it only
contributes to the magnification terms in our model, and as
such we are quite insensitive to the impact of baryonic
feedback. As an extreme example of this insensitivity, we
can replace the nonlinear matter power spectrum in Eq. (38)
with the one-loop matter power spectrum, and our results
are unchanged.

2. Intrinsic galaxy ellipticity
We can similarly expand the galaxy shape field M;;(q)
perturbatively using a bias expansion. Following
Ref. [37], this bias expansion can be expressed in terms
of the Lagrangian shear tensor L;; = 9;¥; (see also
Refs. [36,38]). It will be useful to decompose M;; into
its scalar trace and trace-free components:

1

TI‘{M”} :M, 3 ij

M, (39)

such that we can write M;; = M((1 + 8y)8;;/3 + gij1)-
where §;; is the Kronecker delta and M is the mean galaxy

density weighted by size. The trace-free component with M
normalized out g;; is the three-dimensional intrinsic shape
overdensity field, which is what we require in order to make
contact with the quantities reported in the DES Y3
Metacalibration catalog.

To one-loop order in perturbation theory, we can write

9ii[Lij(q)] R Aysij+As8s; + Aty +A2TF{s2}ij + A0t

+ASTR{LO} 4+ a,V2s;;+ € (40)

ij>
where A; are free galaxy shape bias coefficients and we have
kept only two cubic operators as the rest are degenerate at
one-loop order. Where it is possible in the above, we have
rewritten contributions from the Lagrangian shear tensor in
terms of quantities more familiar to the TA literature. For
example, the linear Lagrangian shear has the density and
tidal field as its trace and trace-free components:

1
Ly = =35@)5; ~ s;(a). (41)

and the Lagrangian

4
ti; = gTF{L@)}Zj (42)

is equal at leading order to the difference between the
second-order matter overdensity and velocity divergence in
Eulerian perturbation theory.

The Lagrangian IA model, as defined by the above bias
expansion, reflects a full accounting of all possible con-
tributions to the galaxy shape at one-loop order. Previous
analyses of cosmic shear and GGL have also employed
perturbative models such as the NLA [102] or the tidal
alignment and tidal torquing models (TATT) [35]. These
models represent subsets of the space spanned by the six
bias parameters above with 1 and 3 degrees of freedom,
respectively: roughly, the NLA corresponds to a model
with only A;, while the TATT model also frees the
equivalent of As; and A, in Eulerian space. However,
we note that since the Lagrangian bias model includes
nonlinear contributions from dynamical nonlinearities
through the displacements W the predictions cannot be
matched simply by setting the bias coefficients equal in
both models [34] and that, at least for halos, the leading
nonlinearities are qualitatively close to low-order
Lagrangian bias coupled with the nonlinear dynamics of
the displacements, including when compared to the subset
of nonlinearities included in the NLA model [37,48,116].
In addition, the effective theory model includes corrections
a, and €;; which, while not included in previous models, is
essential to account for the dependence on small scales
beyond the reach of perturbation theory including baryonic
effects and galaxy formation.
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We can express the galaxy shape fields in Fourier space
through the helicity basis [36],

2 4
Z Z meftj (43)
=0 m—

where the basis tensors satisfy Z;Z;Y Eﬂml; = Y7(). The
trace-free and symmetric component of the shape field, in
particular, is described by the five components with spin
¢ = 2, while the galaxy density can be equivalently thought
of as a one-component spin £ = 0 field with Y}';; = §;;. In
this basis, the angular structure of tensor correlators can be
greatly simplified by symmetry arguments. In particular,
rotational symmetry about k means that nonzero correla-
tions can only exist between components of the same
helicity independently of spin, e.g. only the m = 0 com-
ponent of the shape field correlates with the galaxy density
[36]. There is thus only one nonzero component of the
density-shape cross-power spectrum:

(W 1) = (s =2 ) Putyoolk ). (44

J 3

where Pg; is a scalar power spectrum. We can then write

Ps (k)= > boAo,Poo,(k)
0;€6,,0;€q
k) = Z Ao, Pio,(k), (45)
O/'Gg()

where Poi@j(k) are cross spectra between advected oper-
ators O;(k) and O;(k) contributing to §,(k) and g (k)
respectively. The galaxy density-shape power spectrum can
in addition receive a stochastic contribution proportional to
k* due to the cross-correlation of (ee;;), but it is expected to
be small for low-mass halos, so we neglect it in this paper
[37]. The shape-shape autospectra are similarly described
by the three helicity autospectra for m =0, 1, 2, with
helicities of different sign described by the same spectra
due to parity symmetry [36].

Reference [37] showed that this model can fit three-
dimensional shape-shape autospectra to k ~ 0.3 7 Mpc~! at
a volume and statistical precision well beyond what is
required in this work, while [47] showed that a similar
model [36] is able to fit projected density-shape cross
spectra to the same scale similarly well. We fit slightly
beyond this scale for our fiducial analysis, but because the
spectra where we obtain most of our constraining power
have relatively small TA contributions, and taking into
account the stringent nature of the tests in the aforemen-
tioned works, we believe that this is not an issue.

Galaxy lensing surveys measure the projected, rather
than three-dimensional, shapes of galaxies. These two-

dimensional shape fields are conventionally decomposed
into E and B modes, with the weak lensing signal captured
by the former. The angular power spectra of the shape fields
and their cross-correlations with galaxy densities can be
expressed in terms of the three-dimensional helicity spectra
above. For the density E-mode cross spectrum with the
density we are interested in in this work we have [47,103]

e (k) = (1= 42) Py (K), (46)

-lklw

where yu = kj /k, which we can then plug into Eq. (27). The
same logic dictates that the E- and B-mode autospectra are
given by linear combinations of the helicity spectra, with
the former given by the m = 0, 2 spectra and the latter by
m = 1 in the plane of the sky (k| = 0), while parity dictates
that the cross-correlations of B modes with the density and
E modes must be zero.'

D. Bias priors and redshift evolution

Given Secs. IIIB and IIIC, the available dynamical
degrees of freedom in our model are therefore the bias and
effective-theory parameters describing matter, galaxy, and
intrinsic alignments clustering at each lens redshift and for
each independent (source or lens) galaxy sample. Our
fiducial choice will be to sample combinations of bias
parameters and the matter clustering amplitude oy that
roughly correspond to the same physical galaxy clustering.
For example, for the linear bias, we sample the combination

bf = (1+ by)(05(2)/ 08 5a)- (47)

which denotes the linear clustering of galaxies on
8 h™!Mpc scales. Similarly for each higher-order bias
parameter our fiducial choice will be to sample them in
the combination

I;O(wl) = bo(n>])(o-8(z)/o-8’ﬁd)n, (48)

where n is the order of the bias operator, such that the
clustering due to each operator O is roughly constant
when the sampling parameter is fixed. We explore the
consequence of this choice, particularly in the case of
intrinsic alignments, in Sec. VA. Similar bias parameter
scalings when setting priors have been used in a number of

'Reference [47] pointed out that the definition of galaxy shape
used in conventional weak lensing surveys is normalized by the
projected shape of galaxies, itself a line-of-sight dependent
quantity, and therefore it breaks many of the symmetry properties
discussed above. However, these symmetry-breaking effects
seem to be tolerable for the purpose of galaxy-galaxy lensing
analyses and suppressed at leading order in perturbation theory,
so we leave the proper definition of galaxy shapes for future
work.
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previous works (e.g. [27,117,118]), but this is the first such
application in the case of intrinsic alignments.

For the bias counterterms we choose to sample over their
contribution quoted as a fraction of the linear contribution
at kg, 1.6,

l;vz.a/x = (Zkrznax,ﬁd/(l + bl))bvz.a/x’ (49)

where kpay g = 0.4 hMpc~!. Should the data push BVZ,a Jx
to the edge of its prior, it would directly indicate that this
correction is not perturbative at k,,,, requiring us to relax
the analysis scale cut. Note also that had we used a prior
independent of b;, we would need to use significantly
different counterterm priors for each lens bin in order to
obtain reasonable priors on these terms’ contributions as a
fraction of linear theory for all bins given the very different
biases of the BGS and LRG samples. For our HEFT
analyses, we set priors centered at zero such that our
counterterms contribute 20% of the linear bias contribution
at kyax fig at 1o, while for CLEFT analyses we relax this to
50% to account for additional dynamical uncertainty.

In the case of the intrinsic alignment parameters we
additionally use the normalization convention

Ao = comCipeQp i (50)

in order to make contact with constraints from existing
surveys. Here p,. is the comoving critical density, €, g =
0.31 and C, is a constant conventionally fixed to C; =
5x 107'* B2My Mpc? [119]. We use a fiducial value of
Q,,5ia = 0.31 in the prefactor to avoid unmotivated cos-
mological dependence in our prior, which can additionally
lead to projection effects in our marginalized posteriors. In
the literature, this normalization often also includes a factor
of D(z)™", where D(z) is the growth factor; in our case this
additional factor is implicitly included by sampling A
instead. It is useful to note that the constant normalization
factors in front of each IA coefficient are equal to 0.0043.

Let us turn to the redshift evolution of the bias param-
eters. For the galaxy density, the effective redshift approxi-
mation implies that we only need to sample the bias
parameters at the effective redshift for each lens bin without
worrying about the redshift evolution in each sample. This
is the choice adopted by most galaxy clustering analyses,
including this one, and also spans the full physical degrees
of freedom allowed.

For galaxy-IA cross-correlations, the same logic implies
that we need to sample the value of each IA parameter at
each of the Nyyyee X Nieps effective redshifts in our prob-
lem. This product accounts for the fact that (a) each source
bin is an independent sample that (b) is spread over a
significant redshift range p7(z) such that significant red-
shift evolution can occur between each lens bin. This
maximally agnostic intrinsic alignment redshift depend-
ence (MAIAR) will be our fiducial choice, and results in a

large multiplication in the number of A parameters. These
parameters enter linearly into our model predictions for

C(;qy]ﬁ', and so can be analytically marginalized over making
our analyses computationally tractable. The number of
parameters that are included in the MAIAR model, particu-
larly nonlinear combinations of IA and other nuisance
parameters, lead to significant projection effects if care is
not taken to mitigate them through careful choices of
priors and removal of unconstraining data as discussed in
Sec. VA. Note that similar effects have been observed in
previous work [92,104,120].

For the purposes of comparison with the IA parametri-
zations made in past works, we also investigate models
where each IA parameter has a straightforward redshift
dependence c((z), independent of the source sample. A
common choice (e.g. [3]) is to assume a power-law redshift
dependence,

14+2z \"
co(z) = co(zsa) (Tm) ) (51)

where zgq = 0.62 is the pivot redshift, and the free
parameters are then the normalization ¢, and slope 7.
As an alternative choice we can use a spline basis [121],

N
<~ Zmin
co(z) = ZCO.mW<T_m)’ (52)
m=0

where A is a preset redshift spacing defining the
smoothness of the redshift dependence and the spline
cover points between Zz.;, and Zp.x = Zmin + NA. For
simplicity we choose a linear spline basis such that
W(x) =max(0,1 — |x[). In the limit of two points
m =0, 1 this is equivalent to a linear c(z) with the
two coefficients being the value of the bias parameters at
the bracketing redshifts. The advantage of this basis, in
addition to being more flexible, is that the free parameters
co.m enter linearly into C*Y and so can be analytically
marginalized. For both of the above parametrizations we
scale the amplitudes as above.

Finally, let us briefly describe our specific choices of
priors for the (og-normalized) density and shape bias
parameters, as listed in Table III. For the density biases,
in addition to the counterterm priors discussed above, we
sample the linear term with an uninformative, uniform prior
and the rest with normal distributions (0, 1). The latter
choice is substantially wider than those found in simu-
lations for galaxy samples like our own [122-126]. The
stochastic contribution to the density is rather degenerate
with the counterterm contribution for galaxy densities, and
as such we choose a (informative) Gaussian prior allowing
for up to 30% deviations from Poissonian shot noise based
on results in simulations [123].
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FIG. 5. Fractional contributions to Cj;”ﬁ” (solid) and C(;"’K (dashed) as a function of k in the Limber approximation. We make scale cuts
to remove any Z bins that receive more than a 10% contribution from k > k., taking k.« = 0.4 A#Mpc~! in our fiducial analysis.

For the intrinsic alignment priors, we choose ¢, such
that our priors on A, cover the values that we expect of the
halos hosting the DES Y3 source galaxies [47,48], with the
assumption that the shapes of halos carry higher degrees of
IAs than do those of galaxies. We further assume that the
priors on the linear alignment contribution are centered at
negative values. Our priors further generously cover the
values of IAs found in direct measurements of LRGs from
spectroscopic sample, which are expected to be less
stochastic and more aligned than the DES source galaxies
[42,46,127,128]. Our normalization convention further
allows the priors to widen with redshift beyond z =0
roughly as has been observed in simulated halos [48]. We
note that our priors are somewhat wider than the constraints
obtained from analyses of cosmic shear data. This is
because, as we will discuss in Sec. VA 2, the IA constraints
from these analyses rely on more rigid parametrizations of
the redshift evolution of IAs, such that they mainly probe
IAs close the peak of source galaxy distributions which
contribute negligibly to our cosmological constraints.

E. Scale cuts

Now that we have specified our models for the angular
power spectra of interest, we describe how we determined
which scales to use in our likelihood analysis. In order to
mitigate any theoretical systematics, we wish to remove
data points from our analysis that receive contributions
from scales where we believe our model is inapplicable. In
order to determine this, we compute the response

1  élnCc¥ 1 k k
i - F = W P W’ i | P (k)
¢+ 1smpe() e \r+1)" \r vl

(53)

of our projected observables to the three-dimensional
power spectrum in order to determine the fractional
contribution of each k to a given angular scale #. The

results are shown in Fig. 5. Importantly, both C‘;”aﬁ and C(;‘]K
have rather narrow support in k-space, allowing us to cleanly
separate perturbative and very nonlinear scales in our
analysis. We note the same would not be true for the lensing
autocorrelation due to the width of the lensing kernel. We
can thus make scale cuts such that the total contribution from
k > kpa is less than 10% in both C%% and C%*. For our
fiducial analysis, we use k., = 0.4 hMpc~!, and the scales
used with this scale cut are shown in the non-grayed-out
regions of Fig. 2. The impact of intrinsic alignment con-
tributions in this context is negligible, as for a given ¢ the IA
contribution almost always comes from equal or lower
values of k than the C%* contribution to CPo7E,

On the other hand, the lens magnification contribution to
Coom?E is sensitive to significantly more nonlinear scales
than the C°*, due to the significant support of the lensing
kernels at low redshift. This issue is partially mitigated by
the fact that this term only requires knowledge of the matter
power spectrum, and does not rely on a perturbation theory,
and so our modeling of it is limited mainly by our ability to
model the effects of baryonic feedback on P,,, (k). As
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FIG. 6. Comparison of our counterterm model for the impact of
baryons on the matter power spectrum with SP(k), a model fit to a
broad range of hydrodynamic simulations [129]. The top panel
shows a comparison of the two models, where we have fit our
counterterm model (dashed) to each of a number of different
points in the SP(k) parameter space (solid). The bottom panel
shows the fractional error of our model (solid) as well as the error
one would make by neglecting the impact of baryons entirely and
just using our dark-matter-only P,,, (k) model (dot-dashed).

shown in Fig. 6, the counterterm that we include in our
model for P,,, (k) is capable of fitting a broad range of
baryonic feedback scenarios as modeled by SP(k) [129] at
the ~1-3% level to k = 2 h Mpc~!. Here we evaluate SP(k)
at our fiducial cosmology, varying the power-law para-
metrization of the baryon fraction as a function of halo
mass at z = 0.125, the minimum redshift that SP(k) is
reliable to, although we do not find that the performance of
our counterterm model is significantly sensitive to the
redshift that we perform this test at.

Since we believe we can sufficiently model the matter
power spectrum to k = 2 hMpc~!, we just need a method
for marginalizing over the residual magnification contri-
butions from scales smaller than kyy =2 hMpcl.
Making the observation that w* ~y ~ ¢£/k for small y,
we can approximate this contribution to C%«* and CPux
noting that

KoK 3 2 Xmin
Cf:UV - (5 Qm,OH%> A dy Pmm(f/)(>

2 o
= <§Qm,0Hg) ¢ / dkk2P,,, (k)

2 ko
3 ) 2
= (5 Q,, 0H, o) Za,uv, (54)

i.e., the unknown effect of short-wavelength modes on
magnification, and lensing in general, can be approximated
through a counterterm proportional to #. Note that the
integrand is highly suppressed at small scales due to the k>

factor, with the largest contributions coming from modes
with k 2 k,,x~—an estimate in a Planck ACDM cosmology
using HALOFIT [130,131] gives a, yy ~ 30 A~* Mpc*. This
counterterm is a universal counterterm having to do with the
small-scale matter density at z ~ 0 and not tracer dependent;

its contribution to e.g. CZZ“‘K simply comes with an additional
factor of the magnification bias (2a/, — 1).

Higher £ corrections to the magnification contribution
will be tracer dependent2 but also significantly smaller
on the scales we are interested in, and are in addition less
UV sensitive. Roughly speaking the UV contributions
as a function of angular scale can be written as a series
(Ho?/kyy)". Note that this is also the small parameter
that controls the size of the correction due to the
redshift evolution of P,,, neglected in Eq. (54), since
they come about from Taylor expanding at low redshifts
where z ~ Hyy ~ Hyl [ kyy.

In our analysis we keep the leading term with a prior
width set by 40% of the N-body only contribution.
Specifically, since the emulator we use extends only to
kemu = 4h Mpc™!, we perform our integrals up to kg and
compute the expected size of the correction from N-body
modes up to k.. A rough estimate using HALOFIT shows
that this correction alone captures more than 80% of the UV
contribution in a dark-matter only universe, so we define

kemu
auov = (14 couy) / k2P () (55)

kmax

and set a 40% prior on ¢, such that it captures both the
effect of modes missed by the emulator while also
marginalizing up to a 20% effect of baryons close to kyy.

F. Source redshift and shear calibration uncertainty

Extensive work calibrating all sources of bias in the
estimation of the source galaxy redshift distributions [87]
and multiplicative shear biases [55,85] was performed by
the DES Collaboration. Nevertheless there is still residual
uncertainty in each of these that we must marginalize over.
Following [3], we marginalize over a shift in the mean
redshift, Az;, and a constant multiplicative bias, m;, per
source galaxy bin.

To marginalize over Az, we perform the following
operation on the source galaxy selection functions:

p'E(z) = p'e(z + Azy), (56)

and to marginalize over shear multiplicative biases, we
simply perform

2They still depend upon universal integrals of the matter power
spectrum, but with coefficients dependent on the galaxy redshift
distribution.
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5t J . 5 J
qu.obsyE, — (1 + m])qu.obsyE , (57)

where we use the same priors on these parameters as used
in [3]. Because we have spectroscopically determined the
redshift distributions of the lens galaxies, we do not
marginalize over any nuisance parameters related to their
calibration. Nevertheless we do perform a test of the
robustness of this assumption in Sec. VI.

G. Aemulus ¥ and perturbation theory codes

As described in the previous subsections, in this work we
adopt HEFT for galaxy and matter densities and LPT, also
known as CLEFT, for intrinsic alignments as our fiducial
dynamical models. For the latter we use the publicly
available code VELOCILEPTORS® [24,25]. For the former,
we use the Aemulus v emulator’ [28] to generate HEFT
predictions of Po ¢, (k). This emulator is trained on a suite of

150N-body simulations run over a seven parameter wCDM
parameter space, including massive neutrinos. These sim-
ulations were run with GADGET-3 [132], initialized at z = 12
using third-order LPT. The initial conditions (ICs) were
computed using an extended version of MONOFONIC [133]
in order to include the effect of massive neutrinos on the
initial CDM + baryon distribution [134] and FASTDF for the
neutrino distribution [135]. These ICs properly account for
the Newtonian nature of our simulations, i.e., lacking
radiation and general relativity (GR) effects [136] and are
intentionally initialized at as low of a redshift as possible in
order to mitigate discreteness effects [133,137,138].

The emulator, which uses a combination of principle
component analysis and polynomial chaos expansions, is
trained on measurements from these simulations that have
their statistical errors drastically reduced by means of
Zeldovich control variates [139,140]. Reference [28]
showed that the error on Poio,(k) is significantly below
the 1% level at k < 1 hMpc~! and z < 3 for the dominant
basis spectra, and we further validate this model’s accuracy
in Sec. V.

The intrinsic alignment power spectra in Lagrangian
perturbation theory were derived in Ref. [37] who also
released the public Python-based SPINOSAURUS® code.
SPINOSAURUS computes these intrinsic alignment spectra
using FFTs and includes a full resummation of long-
wavelenght linear modes (CLEFT), as well as options to
compute the unresummed and resummed Eulerian per-
turbation theory spectra. We use SPINOSAURUS for all of
our intrinsic alignment calculations in this work. Both
VELOCILEPTORS and SPINOSAURUS use the same conven-
tions for bias parameters, and we run both using the
infrared resummation cutoff kg = 0.1 ~#Mpc~! and using

3https:// github.com/sfschen/velocileptors/tree/master.
4https ://github.com/AemulusProject/aemulus_heft.
>https://github.com/sfschen/spinosaurus.

the linear CDM + baryon power spectrum predictions
from CAMB as input.

IV. LIKELIHOOD, SAMPLING AND ANALYTIC
MARGINALIZATION

The main results of this paper take the form of posterior
probability distributions of parameters of interest, margin-
alized over a large number of nuisance parameters. In order
to compute posteriors, we assume that the likelihood of our
data given a set of parameters is Gaussian with a covariance
given as described in Sec. I D, and priors on the parameters
of our model given in Table III. We analytically marginalize
over all parameters that enter into our model linearly, i.e.,
all intrinsic alignment parameters, as well as the stochastic
terms and counterterms in the bias expansion, SN, bina’
by, ., and by2,,. In our fiducial constraints we vary all
ACDM parameters over the range of values spanned by the
Aemulus v simulations. We also investigate combining our
likelihood with galaxy BAO data in Sec. VI A.

In order to speed up the likelihood evaluation we train
fully connected neural network emulators to predict the
cosmology-dependent ingredients that enter into the bias
and IA expansions, i.e., the basis spectra described in
Egs. (36) and (45). We largely follow the methodology
presented in [141], using a combination of principle
component analysis and neural networks to reduce the
number of required parameters in our neural networks. The
main difference between the emulators used in this work
and those presented in [141] is that we build emulators for
individual basis spectra rather than the galaxy and [A power
spectra that enter directly into the projection integrals, e.g.
P, (k). We also build an emulator for 65(z) as a function of
cosmological parameters so that we can bypass using a
Boltzmann code to compute relevant transfer functions.

For both bias and IA emulators, we use four fully
connected layers with 150 neurons each making use of
the specialized activation function presented in [142] and
taking the arcsinh of the inputs to reduce the dynamic
range, keeping the first 104 and 93 principle components
for the bias and IA models respectively. For og(z) we use
two 150 neuron fully connected layers and 104 principle
components, and do not use an arcsinh scaling, since the
dynamic range of og(z) over the range of redshifts that we
consider in this work is small. We train these emulators
over the range of cosmologies spanned by the Aemulus v
simulations, and achieve a 1o error of approximately 0.1%
between redshifts z = 0 and z = 3 and wave numbers k =
102 hMpc~! and k=1 hMpc™' for all basis spectra
other than the matter power spectrum, where we build
emulators to k = 4 hMpc~!.

Finally, we use the Metropolis—Hastings sampler
[143,144] implemented in Cobaya [ 145] to compute posterior
distributions, running 16 independent chains simultane-
ously, and halting our sampling when R — 1 = 0.02, where
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R is the Gelman—Rubin statistic [146]. We plot all posterior
distributions using GetDist [147].

V. SIMULATIONS AND MODEL VALIDATION

In order to demonstrate the robustness of our results to
various choices and approximations we have made in our
modeling, we have run a series of validation tests against
two different types of simulations. First, we analyze data
vectors produced using our model in order to test the
robustness of our model to our choice of priors and IA
redshift evolution prescription. We then turn to fitting the
Buzzard v2.0 simulations [75,76], a suite of full N-body light
cones that contain realism beyond that implemented in our
model, in order to test the scales on which our model based
on the Limber approximation and LPT and HEFT, neglect-
ing higher-order lensing contributions, can reliably con-
strain the true cosmology.

A. Noiseless simulations

1. IAs, priors and projection effects

We begin by generating a noiseless data vector using the
maximum likelihood nuisance parameter values without IA
contamination obtained from fitting the Buzzard simulations
described in the next section, and the values of the
cosmological parameters used to generate the Buzzard
simulations. We convolve these predictions with the win-
dow functions measured from the data, and proceed to fit
them assuming the window functions and covariance
matrix estimated from the data.

Let us first consider the theoretical error on Sg due to the
unknown amplitude of intrinsic alignments. We can under-
stand this dilution of Sg information from the GGL signal
by computing the relative contributions from lensing and

IAs to CiﬂE in Eq. (27). Since the lens galaxy densities

p%(z) are very narrow we can approximate them as &
functions centered at zéff, in which case the ratio of the
lensing and IA contributions is simply given by

i) j .
ij’y“ N WIE (Zoq7) P 5 (/X) N Al(zeff)wyjf-f(zeff)
C‘;JK! WS (et ) P (€ /2) 2w (Zerr)

where we have used linear theory to arrive at the final
expression.

The above calculation shows that the lensing amplitude
and TA contribution are fully degenerate at leading order,
such that neither can be independently determined without
an informative prior on the other. However, it is important
to observe that the size of the IA contribution is bounded by
the size of w’z/ or, more generally, the size of the overlap
integral between the source and lens distribution, and by the
conservative bounds on the linear IA amplitude from
simulations. The ratio of their product—which controls

. (58)
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FIG. 7. Fractional contribution of IAs to the galaxy-galaxy
lensing signal for a lens at redshift z for each source galaxy bin.
For simplicity we assume only a linear IA contribution, i.e., the
NLA model, and A; = 1. The black vertical lines represent the
effective redshifts of each of our lens bins. It is apparent that
the IA is unacceptably high, greatly exceeding the statistical error
on the measurements, for all but the first three lens bins, cross-
correlated with the two highest redshift source bins. See further
discussion around the balance between statistical and IA related
theory error in Fig. 18.

the size of the associated theoretical covariance induced by
IA—with the lensing kernel itself for each of the DES
source samples is shown in Fig. 7. Evidently, the lower
redshift sources overlap sufficiently with the DESI lens
samples that the TA contribution is always unacceptably
high, but the last two source bins (S23) and the first three
lens bins (L.012) are sufficiently separated in redshift that
the TA contributions are limited to a few percent and
subdominant to the lensing contribution. We thus expect
these cross-correlations (L012xS23) to supply essentially
all of the Sg signal when the theoretical error is accounted
for, such that we can limit ourselves to this subset of our full
data for our fiducial analysis.

The above intuition can be tested using the noiseless
data vectors generated by our model. Figure 8 shows fits to
these data varying which source-lens bin combinations
are included in the fits, investigating two different choices
for priors on our bias and IA parameters. We adopt our
fiducial MAIAR redshift parametrization of IA evolution in
these constraints, though we revisit this choice in the next
section. The different colored contours represent fits that
make use of data combinations with varying amounts of IA
contamination, with the black contours showing fits to the
L012xS23 combination above that minimizes intrinsic
alignment contamination. The blue contours show fits to all
source-lens bin combinations. The constraints on Q,, are
significantly improved by including all redshift bins, since
the full set of galaxy autocorrelations is sensitive to this
parameter through the shape of the power spectrum. On the

103518-21



S. CHEN et al.

PHYS. REV. D 110, 103518 (2024)

I 1.012%S23, os(z) prior
I All bins, og(z) prior
""" L012xS23

***** All bins

FIG. 8. Sensitivity of our results to which data are included in
our fits, as well as the form of the priors on the galaxy bias and [A
parameters, when fitting to a noiseless data vector without
intrinsic alignments but using the pairwise IA redshift evolution
model (MAIAR). The different colored contours show how our
results change as we include bins that have more IA contami-
nation. The black contours use only the cross-correlations of the
first three lens bins (1.012) and last two source bins (S23), as
these result in less than 10% contamination assuming a fiducial
value of ¢, = —1. The blue contours relax this to include all bin
combinations. The solid contours use our fiducial priors on the
product of bias and IA parameters and og(z). The dashed
contours set priors on the bias and IA parameters without the
extra og(z) dependence. With our fiducial priors, our results are
stable to the inclusion of unconstraining data with large IA
contamination, whereas the dashed contours show large projec-
tion effects when this additional data is included. We note that the
improvement in constraining power on Q,, when including extra
lens and source bins is largely due to extra information in the
galaxy density autopower spectra.

other hand, the restricted dataset gives essentially identical
Sg constraints as the full dataset, validating our heuristic
argument that the theoretical covariance from unknown
intrinsic alignment contamination dominates the cross-
correlation pairs not included in L012xS23, diluting away
their constraining power. Since our aim is mainly to
measure Sy from these data, and we expect more stringent
and robust constraints on Q,, from external datasets, we use
1.012xS23 as our fiducial dataset, which in addition has
the advantage of involving significantly fewer nuisance
parameters and integrals required during sampling.

One frequently encountered problem when marginal-
izing over large numbers of nonlinear bias parameters, as
we do in this work to consistently model galaxy densities,
IA and nonlinear matter at one-loop order, is that the
proliferation of degrees of freedom results in large

projection effects in the posteriors of cosmological param-
eters [92,104,120]. As discussed in Sec. III D, we can
understand these projection effects by noting that the
nonlinear galaxy bias and IA parameters are better con-
strained at high values of oy, where the effect of non-
linearities is more pronounced, leaving significantly more
posterior volume at low og. When marginalizing over our
nuisance parameters, this large amount of posterior volume
dominates over the likelihood term, thus shifting the
marginalized posteriors away from the maximum like-
lihood value. Our strategy in this paper is to marginalize
over the combination of bias and IA parameters scaled by
(03(z)/0g54)" described in Sec. I D [Eq. (48)], thereby
removing this asymmetry in posterior volume by margin-
alizing over the parameter combination that governs the
absolute contribution of each nuisance parameter.

In order to test these og(z)-dependent prior choices, we
show results both using our fiducial priors (solid lines),
which marginalize over the combination of bias and IA
parameters multiplied by (og(z)/055q)", Where n is the
order at which the bias or IA parameter enters into the
perturbative expansion, and priors without this scaling
(dashed), in Fig. 8. Both solid and dashed results use
our MAIAR [A model, allowing for a free set of IA
parameters per source-lens bin pair. In the case of our
fiducial priors, our results are stable to including bins that
have potentially large TA contamination, neither signifi-
cantly increasing our constraining power, nor significantly
shifting our marginalized posteriors on Sg and €, away
from the values used to generate the synthetic data. On the
other hand, when marginalizing over the bare bias and 1A
parameters, we see that the constraints shift significantly
when including bins with potentially large IA contamina-
tion. Even the black contours, with minimal IA contami-
nation, are shifted away from the true parameter values, and
this becomes even more drastic as more source and lens bin
combinations are included.® This symmetrization by og
scaling thus largely removes the projection effects observed
when sampling over the bare bias and IA parameters both in
our fiducial setup and when analyzing the full set of cross-
correlations, as shown in the solid contours of Fig. 8. As
demonstrated here, our results are sensitive to our para-
metrization of the bias and IA priors, and so we report
maximum likelihood points, which are less sensitive to
these effects, along with all of our results.

2. Intrinsic alignments and bias evolution

As discussed in Sec. III D, the physical degrees of
freedom in bias evolution sampled by the cross-correlation

®We note that the improvement in constraining power on €2,
when including all bins with our fiducial priors is real, in the
sense that it is not due solely to projection effects, but rather
almost entirely by extra information in the galaxy-density auto
power spectra.
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FIG. 9. Sensitivity of our results to nontrivial IA redshift evolution as defined in Eq. (59), with different colors representing different
assumptions for ¢, as indicated in the legend. Left: a linear model for the redshift evolution of the IA parameters fixed with respect to
different source bins, fitted to all source-lens bin combinations. This is comparable to the assumptions typically made when analyzing
galaxy lensing data. Right: our pairwise A redshift evolution model (MAIAR), that allows for an independent set of IA parameters for
each source-lens bin combination. Here we only include the first three lens bins and last two source bins, i.e., our fiducial analysis
choice. We observe that our fiducial model is significantly less biased than the linear model, with the observed shifts due to the fact that
we have chosen to use Gaussian priors on the pairwise IA amplitudes.

of lensing with galaxies are, to leading order, the values of
the bias parameters for each source sample at each effective
redshift, with additional contributions suppressed as long as
the lens samples are narrowly distributed in redshift.
Setting these as the free parameters of our MAIAR model
is therefore the most general and agnostic choice for both
galaxy densities and intrinsic alignments. However, par-
ticularly in the case of the latter, previous surveys have
typically selected more informative models of intrinsic
alignment evolution wherein the intrinsic alignment param-
eters are either constant over the whole survey, or source-
sample independent functions of redshift. In the case of the
latter the redshift dependence is usually fit as a simple
functional form like a power law with a free amplitude and
slope. Our goal in this subsection is to test the robustness of
both of these choices.

We would like to investigate a scenario in which the A
parameters have nontrivial redshift dependence. As a
simple example, we consider a scenario in which the “true”
IA redshift evolution is given by

¢i(z) = s (1 __ P (59)

where ci(z) is the linear IA amplitude for the i-th source
bin as defined in Eq. (50), and ¢, is an overall normali-
zation constant that we vary in order to modulate the
significance of the IA contamination, with other nonlinear

parameters set to zero. This foy model allows the 1A
amplitude to be different between the peak of the
source-galaxy selection function and its tails, as we expect
from realistic galaxy samples, in this case increasing from
zero at the peak to c; o far away from it. We substitute these
values into our pipeline in order to generate noise-free
simulated data vectors with this TA redshift dependence.

The left and right panels of Fig. 9 show the simulated
constraints using a source-independent linear function in
redshift for the IA parameters and using our MAIAR
prescription, respectively. The solid black contours show
the results in both cases when ¢,y = 0, i.e., there is no IA
contamination. In this case both models of IA evolution
are unbiased, with the source-independent linear model
yielding significantly tighter Sg constraints. This is
expected: since all of the galaxy-lensing cross-correla-
tions have TA contributions described by two parameters
in the former model, these parameters can be constrained
by the cross spectra where there the source and lens
galaxies are not well separated and are thus IA dominated.
When they are well constrained, the IA simply present a
well-measured offset to the lensing amplitude, and indeed
the Sg constraints in this case are very similar to those in
tests where IA are not marginalized over. On the other
hand, the Sg constraints in the MAIAR case are noticeably
wider. Indeed, this would be the case even if more cross-
correlation pairs were included, since in this model the
measurement of IAs in one bin does not inform IA
constraints in other bins.
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However, it is important to note that the intrinsic align-
ment amplitudes measured in the linear model are those in
the most intrinsic-alignment dominated source-lens bin
pairs rather than those in which the lensing dominates,
i.e., where our constraining power derives from. The
colored contours in Fig. 9 show the constraints from each
model in cases where ¢ o # 0. In the linear case we see that
this results in systematic shifts in the contours proportional
to ¢, ¢, leading to 0.435, 0.840 and 2.0c biases in Sg for
cs0 =1, 2, 5 respectively, well within the realm of
measured IAs in simulations. On the other hand, the
corresponding colored contours in the right panel show
significantly less variation in the Sg constraints when
varying the strength of the IA contamination. This is as
expected since the IA amplitude in each cross spectrum is
independent and not well constrained. The residual shifts
shown are due to the fact that the IA bias priors in these
tests are centered at zero, while the cross spectra have 1A
amplitudes that are small (and negative) but nonzero, such
that ¢,y = 5 pushes against the Gaussian prior.

In order to illustrate the cause of the biases in Sg caused
by insufficiently flexible models of IA sample and espe-
cially redshift dependence, Fig. 10 shows constraints on the
intrinsic alignment amplitude ¢ (z) for a single source bin
(i =2) at fixed cosmology when the “truth” is given by
Eq. (59). This is a useful test since the lensing amplitude
and c(z) are exactly degenerate at linear order in any given
cross-correlation pair, such that we can infer the errors in Sg
due to each pair from the error in ¢ (z). In the MAIAR
scheme, c¢,(z) is most tightly constrained at the lens
redshifts that overlap most with the source distribution
p’e(z), with relatively weak constraints in the lowest
redshift lens bins. This latter observation explains why
these source-lens combinations are able to constrain Sg,
since they imply that the impact of IAs is small in these
pairs. Nonetheless, the constraints on c,(z) are centered
around its “true” redshift evolution, as expected.

On the other hand, the black line and shaded region in
Fig. 10 show the constraints on IA evolution assuming a
linear c,(z). While the constraints are again tightest around
the support of p’:(z), the rigidity of the linear functional
form means that the extrapolated constraints on c,(z) at low
redshifts is still substantially tighter than in the MAIAR case.
In particular, the two parameters of the linear fit can be
extremely well determined from the IA-dominated source-
lens pairs, roughly by the value and slope of ¢(z) about the
central redshift. However, as this example shows, it can be
quite dangerous to extrapolate the IA amplitude in this way,
leading to inferred IA amplitudes several ¢ away from
truth, especially since we have no a priori knowledge of the
redshift evolution of intrinsic alignments in (complicated,
photo-z selected) source galaxies.

The above examples underscore the importance of setting
sufficiently wide priors, with sufficient redshift flexibility,
for galaxy-galaxy lensing analyses: IA contamination can be

T 1.0
4 —== true ¢3(2)
constraint (MAIAR)

constraint (linear)

FIG. 10. Constraints on the IA amplitude ci(z) (blue dashed) of
the i =2 source sample at fixed cosmology when there is
nontrivial redshift evolution of intrinsic alignments away from
the peak of the source redshift distribution p’z(z) (red). The
MAIAR scheme successfully recovers the correct redshift evolu-
tion (blue points), with tighter constraints when there is more
lens-source overlap, implying stronger Sg constraints when there
is less overlap. Gray bands show the (1 and 20) constraints on [A
evolution assuming a two-parameter (linear) model—in this case,
the rigid functional form strictly limits the explored values of
¢,(z) even when the source-lens overlap is small, effectively
extrapolating constraints from the peak of p’#(z) (i.e. constraints
from cross-correlating with LRG1 and LRG2) to other redshifts
to erroneous values several ¢ away from the true (blue-dashed)
value. This discrepancy leads to biased Sg constraints when the
cosmology is allowed to vary.

marginalized over as a “theoretical error,” and these errors
are directly proportional to the size of intrinsic alignments
allowed by the priors. Since we (so far) can only bound the
expected magnitude of IAs through measurements of halos
in N-body simulations, the only direct method to reduce the
size of these theoretical errors—themselves quite compa-
rable to the size of the statistical errors of our data—is to
reduce the overlap between lens and source samples. On the
other hand, if trends with between IA parameters and galaxy
luminosity or color can be measured in the future, e.g. with
deep spectroscopy, then it may be possible to use these to set
informative priors on a galaxy-formation informed model
for the redshift evolution of IA, and recover some of the lost
constraining power [50].

B. Buzzard N-body simulations

In order to test our measurement and modeling codes in a
realistic setting, we use the Buzzard v2.0 suite of simulations
[75,76]. These are a set of synthetic galaxy catalogs
populated in light cone outputs of N-body simulations
run using GADGET-2, and initialized using 2LPTIC, with a
linear power spectrum produced using CAMB [143]. Halos
were identified using the ROCKSTAR halo finder [148], and
galaxies were assigned using the ADDGALS method [149]
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fit to the subhalo abundance matching models presented
in [150].

DESI BGS and LRGs are selected out of the simulations
using color-magnitude cuts based on those used in the
DESI data, but modified slightly to match the simulated
angular number densities with those measured during DESI
science verification as described in [151]. DES-like source
galaxy samples are selected to reproduce the redshift
distributions and number densities of the DES Y3
Metacalibration catalog. We make measurements
without shape noise in order to reduce the statistical errors
on our simulated measurements. We must exclude the
second BGS bin from our simulated analysis due to the fact
that its redshift distribution significantly overlaps with the
transition between two different simulations in our light
cones, and thus has a resulting cross-correlation coefficient
between galaxies and matter of r ~ 0.95 on linear scales
(see [151]), which would result in a bias to og of about 5%
in this bin.

We run the same measurement pipeline that is applied to
the data on these simulated galaxies, with the only differ-
ence being that systematic weights for the lens sample and
Metacalibration responses for the source sample are
set to one. Averaging over seven quarter-sky simulations,
our measurements have a resulting statistical error that is
approximately 4 times smaller than that of our measure-
ments in the data, not accounting for the lack of shape noise
in our simulations. Thus we should be able to detect
systematic errors at the < 0.25¢ level of our constraining
power in the data at 1o confidence with these simulations.

We fit all source and lens bin combinations, excluding
the second BGS bin for reasons mentioned above, with our
fiducial model and fix all IA parameters to zero in order to
further increase the precision with which we can measure
systematic biases in our model. To include BAO priors in
these mock tests we simply adjust the central values of the
BAO measurements in the BOSS and eBOSS data to match
the truth in the Buzzard cosmology. In the case of the Lya
constraints, the individual Lya autospectrum and cross-
correlations with QSOs, the posteriors are marked by a
degree of non-Gaussianity—for simplicity we simply
combine them and move the resulting likelihoods, which
are then well-described by Gaussians, to the central values
expected in Buzzard.

The resulting constraints are shown in Fig. 11. The blue
filled contours are the constraints that we obtain fitting to
the Buzzard simulations, and the black constraints are
obtained by fitting to noiseless data generated at the
best-fit parameter values taken from the blue contours.
The fact that these two contours agree nearly perfectly is a
validation that our fiducial model is unbiased when fit to
this suite of simulations.

In order to gauge the sensitivity of our constraints
to the assumed galaxy bias model and scale cuts, we
have also run analyses on these simulations allowing for
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FIG. 11. A comparison of a fit to the Buzzard data vector (blue)
using our fiducial model without marginalizing over IAs and
including a BAO prior, to a fit to a noiseless data vector generated
with our fiducial model (black). The near perfect agreement, even
in a much more constraining scenario than the setup used in the
data, demonstrates the ability of our fiducial model to describe the
Buzzard simulations at high precision. We observe a nearly
identical level of agreement without including a BAO prior.

kpax = 0.2-0.4 hMpc~! for our fiducial HEFT model, as
well as a model using CLEFT and the commonly
used combination of linear bias with a nonlinear matter
power spectrum. We also show HEFT results using
kpax = 0.5 — 0.6 hMpc~!, although we do not apply these
scale cuts when analyzing data, as our IA model likely
breaks down on these scales. The results of these variations
are summarized in Fig. 12. For these tests, we again fix the
intrinsic alignment contributions to our model to zero in
order to perform as precise a test as possible, although we
do not include BAO here as we wish to investigate the
improvement in constraining power of this data on Q,, as a
function of k,,. We do not show CLEFT or linear bias
results for k., > 0.4 hMpc™' as we found that the
acceptance rates in the MCMCs for these models were
low, making these analyses very expensive. Given our
expectation that these models are insufficient at these
scales, we do not show these results here.

For the k., = 0.2 hMpc~! case, we find excellent
agreement between HEFT and CLEFT, both in terms of
the posterior means for Sg and €, as well as the 1o errors.
At these scales, we already see that assuming a linear bias
model results in approximately 15% smaller errors on Sg
than HEFT and CLEFT. This indicates that although the
linear bias constraints are unbiased on this set of simulations
for k. = 0.2 hMpc™!, there are values of the nonlinear
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FIG. 12. A comparison of the constraints obtained from fitting the Buzzard simulations, varying the bias model and scales fit. In all
cases, we do not marginalize over IAs, but otherwise keep the same modeling choices as used in the data, modulo changing the bias
model. The smaller panels show the improvement in constraining power measured with respect to the HEFT model fitting to
kpax = 0.2 hMpc~!. We observe that both the HEFT models are unbiased up to k,, = 0.4 hMpc~', while the linear bias model
becomes biased at k,,,, > 0.2 #Mpc~!, and the error bar is significantly smaller than both HEFT and CLEFT at k,,,, = 0.2 hMpc™',
indicating that the model is incomplete even at these scales. We only plot the HEFT model constraints past k,,, = 0.4 2 Mpc™!, since

linear theory and CLEFT do not apply on such small scales. The HEFT constraints are unbiased up to k,, = 0.6 h Mpc™".

bias parameters that are within our assumed priors that
would cause detectable biases, had it so happened that our
simulations preferred those bias values.

For ky. > 0.2 hMpc~! we find detectable biases when
assuming a linear bias model, illustrating a clear breakdown
of this assumption. The HEFT and CLEFT constraints are
very similar to the maximum scale that we fit to the CLEFT
model, k,,x = 0.4 hMpc~!. We thus conclude that both
HEFT and CLEFT are unbiased at this scale, and that
differences between the two at two-loop order are sub-
dominant in our constraints at k,,, = 0.4 hMpc~'. There
is a shift to lower values of Sg for the HEFT model above
kyax = 0.2 hMpc~!, but analyzing a noiseless HEFT data
vector to the same scales shows nearly identical, small
shifts that must therefore be due to projection effects. As
such we infer that the HEFT model is unbiased in these
simulations to k., = 0.6 A Mpc~!.

We observe an additional 10% improvement in con-
straining power on Sg going from k., = 0.4 hMpc~! to
kpax = 0.6 hMpc™!, while the HEFT model remains
unbiased at high significance. Given that we are using
CLEFT to model intrinsic alignments, which has been
shown to be accurate to k ~ 0.4 hMpc~! [37], we choose

1

kmax = 0.4 hMpc~! for this analysis. Furthermore, it is
unclear that we would still see the quoted 10% gain in
constraining power had we not neglected the connected
trispectrum terms in our covariance matrix, given the
significantly nonlinear nature of these scales. We plan on
improving our covariance matrix treatment and investigat-
ing HEFT modeling for intrinsic alignments similar to [152]
in upcoming analyses.

VI. RESULTS

We now proceed to describe the main results of this
work. Figure 13 shows the results of our fiducial 2 x 2-
point analysis. In particular we find that the BGS0, BGS1
and LRGO bins yield consistent constraints, and when
combined we obtain

Sg = 0.85070040(0.834)
Q, = 0.28670:023(0.294) (Fid.)
oy = 0.8781005(0.842). (60)

The best-fit model and measurements used in this fit are
shown in Fig. 2. Our model has a y> = 27.5 for 54 data
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Cosmological constraints from our “2 x 2-point” DESIXDES analysis with and without external priors from Sloan Digital

Sky Survey (SDSS) BAO measurements. Adding the BAO data significantly tightens constraints on €2, and leads to a slight
improvement in the overall Sg constraint. Both constraints are in excellent agreement with those from the primary CMB.

points using 21 free parameters, not counting the IA,
magnification or source sample uncertainties since these
are prior dominated, equivalent to y2, = 0.86. A full
accounting of the number of degrees of freedom in our
fits requires a more sophisticated statistical framework (e.g.
[153]), that we may pursue in future work.

Of particular note is that our fiducial Sg constraint is
consistent with measurements from the primary CMB, e.g.
Planck PR4 gives Sg = 0.830 £ 0.014 [154] making this
one of the few galaxy lensing analyses that has yielded a
value of Sg that is within lo of the primary CMB
constraints. We perform comparisons with other analyses
in the literature below, but for now we investigate whether
there is part of our model or data that is driving this
preference for higher Sg than usually reported from galaxy
lensing studies. A summary of these investigations is
shown in Fig. 14.

As a direct check we can consider whether our con-
straints are robust to our choice of dynamical model. Fitting

Fiducial -

DESI Y1 footprint n(z)
OO i = 0

Fnax = 0.2

CLEFT kpax = 0.2 1

Data variations

CLEFT kyax = 0.4

2 X by prior

EFT IA, linear co(z) per source bin
EFT IA, linear co(z)

Lagrangian TATT TA, linear co(z)
NLA IA, linear cy(z)

I ———

——i

TA model variations

1 I 1
0.85 0.90 0.95

S = 08/ /0.3

I I
0.70 0.75 0.80 1.00

FIG. 14. Summary of the one-dimensional Sg posteriors for all
of the analysis variations considered here. Blue points show
variations in the data systematics treatments, orange show
changes in bias modeling and scale cuts, and green points show
variations in A model assumptions. See Sec. VI for details.
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B HEFT, knax = 0.4hMpc™! (Fid.)
—— CLEFT, 0.4h Mpc™*
~—— HEFT, kmax = 0.2 Mpc™"

—— CLEFT, kmax = 0.2 Mpc ™!

FIG. 15. Comparison of constraints varying the maximum scale
included in the analysis, as well as the galaxy bias model
employed. Our fiducial constraints using HEFT with k,, =
0.4 hMpc~! are shown in black. A purely perturbative analysis,
i.e., using CLEFT rather than HEFT, but with all other settings kept
the same is shown in blue. When using CLEFT we adopt broader
counterterm priors, as described in the text. The orange and green
contours show similar analyses using k., = 0.2 hMpc~! with
HEFT and CLEFT respectively. Our fiducial analysis is 20% more
constraining than fitting to k,,,x = 0.2 7 Mpc~!, but otherwise the
differences that we observe are consistent with tests done with
noiseless simulations.

to the same scales but using CLEFT—that is, employing a
fully perturbative model for all physical quantities—we
obtain

Sg = 0.8417003%(0.831)
Q,, = 0.296100:5(0.243) (CLEFT)
og = 0.854 £ 0.082(0.924), (61)

with a best-fit chi-squared value of y? = 28.1. This con-
straint is in excellent agreement with our fiducial one, both
with respect to the posterior means and errors, as expected
from our analyses on the Buzzard simulations.

We also consider what happens to our constraints when
varying the scale cuts in both modeling approaches, e.g.
when we restrict the range of scales that we fit to
kpmax = 0.2 hMpc~'. Figure 15 shows these variations,
with the black contours again showing our fiducial
constraints using HEFT to fit to kp,, = 0.4 hMpc™!
and the blue contours showing the CLEFT version of
this analysis. The orange and green contours show the
same analyses as black and blue respectively, but

_ -+0.025
Q= 0.28670:035

I DESI x DES Y3 10-1-2
—— DESI x DES Y3 10
—— DESI x DES Y3 11
——DESI x DES Y3 12

— +0.090
o8 = 0.8771 g79

— =n+0.040
Ss = 0.85019:940

02 03 04 05 06
1978

FIG. 16. Comparison of constraints from individual lens bins
(colored contours) and the fiducial combined constraints (black
contours). It is apparent that the second BGS bin (orange, labeled
[1) is the most constraining bin on Sg, while the first LRG bin
(green, labeled [2) drives our Q,, constraining power. Both of
these findings are consistent with tests we have performed on
noiseless simulated data.

restricting the scales modeled to Kk, = 0.2 hMpc~'.

Our Sg constraints are expectedly stable to these
changes, with the main difference being that the fiducial
chains result in 17% more constraining power than
kpax = 0.2 hMpc~!. The fact that our constraints are
stable when moving to larger scales, or using the fully
perturbative model, suggests that our analysis is under
excellent perturbative control: any differences in the
modeling between CLEFT and HEFT, which must exist
beyond one-loop order, are not important at the accuracy
level of our data, or indeed for the more stringent
requirements of our mock tests.

We can also consider the Sg constraints from individual
lens bins to check the internal consistency of the data. As
shown in Fig. 16, all of our lens bins yield consistent
results, although BGS1 shows a ~1¢ preference for higher
Sg than the other two bins. The preference for lower values
of Sg in the first and third lens bin is largely driven by
projection effects that become more substantial when fitting
to individual bins. As expected, the BGS1 bin yields the
tightest Sg constraints, as it has comparably low IA
contamination compared with BGS0 but is at higher red-
shift, and thus we are able to model to higher ¢ given our
scale cuts of ky,, = 0.4 hMpc~!, while the LRG1 bin
drives our constraints on £2,,.
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A. Including BAO

The line-of-sight projection in two-dimensional data like
those used in this paper washes out much of the shape
information in the three-dimensional power spectrum that
can be used to constrain cosmological parameters beyond
the lensing amplitude Sg such as Q,, and H,." While this
does not significantly affect our ability to constrain Sg, we
can slightly tighten our constraints and avoid sampling
ruled-out cosmological parameter space by including addi-
tional large-scale structure data. To avoid including addi-
tional amplitude information we include constraints on the
expansion history from BAO as measured in the Sloan
Digital Sky Survey—specifically, we use the BAO data
measured in the LRGs from BOSS (DR12) [155] and LRGs,
QSOs and Lya in eBOSS (DR16) [156]. These data were
deemed sufficiently statistically independent to be com-
bined in Ref. [156] and together (when combined with a big
bang nucleosynthesis (BBN) prior on @) significantly
constrain the available parameter space in Q,, and H,,.

The orange contour in Fig. 13 shows the cosmological
constraints from our data when combined with these BAO
data, which yield

Sg = 0.84070:038(0.843)
Q,, = 0.30070912(0.295) (w.BAO)
o = 0.840 £ 0.044(0.850). (62)

The BAO allow us to break the o3 — Q,, degeneracy to
measure oy and, in addition, since the degeneracy is not
perfect, slightly tighten the Sg constraint by 9%. The
resulting constraints are also in excellent agreement with
the cosmological constraints from the Planck CMB data,
which is not surprising since the BAO and lensing con-
straints are independently consistent with them.

B. Dependence on IA parametrization and priors

Given the novelty of the fiducial IA model that we apply
in this analysis, we now present how our constraints change
when making IA assumptions more in line with those used
in previous galaxy lensing analyses. Figure 17 shows these
variations, where the black contours again represent our
fiducial constraints that use our effective field theory (EFT)

"While we note that there is still some information, particularly
in C¥ (see e.g. Fig. 17), in order to be conservative in our
modeling choices our fiducial analysis setup is not optimized to
extract this information since (a) we only use the autospectrum of
the lens galaxies within the DES footprint to ensure sample
homogeneity, thus reducing the area over which C% is measured
and (b) we do not include C¥ from lenses where the cross
spectrum is IA dominated to avoid sampling over an excessive
number of free parameters. We have made these choices con-
sidering that their effect on Sg is minimal and that the constraints
on other cosmological parameters from these data alone are not
competitive.

I EFT, MAIAR co(z) (Fid.)

I EFT, linear co(z) per source bin
I EFT, linear co(z)

I NLA, linear c(z)
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FIG. 17. Comparison of constraints varying the IA model
parametrization employed in our analysis. The black contours
show our fiducial analysis, allowing one set of IA parameters per
cross spectrum, and restricting the source-lens bin combinations
used to only those with relatively small potential IA contamina-
tion, as described in Sec. VA 1. The blue, orange and green
contours show analyses analyzing all source and lens bin
combinations assuming that the IA parameters evolve linearly
in redshift. The blue contours assume our fiducial second order
EFT IA model and one linear function ¢ (z) for each source bin.
The orange contours assume the same linear function cy(z) for
all source bins, while the green contours assume the same but use
the NLA model. These more restrictive IA models result in 35%,
46% and 59% more constraining power respectively, but make
strong assumptions about the redshift and scale dependence of the
IA signal beyond the evidence provided by current IA measure-
ments. Until better IA measurements from the data or IA
simulations are available, we favor the constraints provided by
our fiducial model and quote these for the duration of this work.

model for IA, keeping operators up to second order, and
allowing for one set of IA parameters per source-lens bin
pair (i.e., our MAIAR parametrization). The blue, orange and
green contours fit to all bin combinations with varying
levels of TA model complexity. The blue contours make the
same assumptions as our fiducial analysis, except there we
use a linear spline model for the redshift evolution of the TA
parameters, allowing for one linear function cb(z) per
source bin. The orange contours make the additional
assumption that the linear IA functions c/,(z) are shared
between source bins, i.e., ciy(z) = ¢%(z) for all i. Finally,
the green contours show an analysis assuming the NLA
model, although we use the one-loop prediction for
Pss, (k) rather than the fully nonlinear prediction some-
times used when applying the NLA model. These models
all yield Sy posterior means that are consistent with each
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FIG. 18. The width of our constraint on Sg as a function of the

width of the ¢, prior in each cross-correlation pair Ac;. The trend
is roughly fit assuming that the theoretical IA error adds to the
width of the constraint in quadrature, with the theoretical error
overtaking the sample variance around Ac, = 8.

other, but result in significantly different levels of con-
straining power. Indeed, adopting the two-parameter NLA
model artificially improves our constraining power by 63%
over our fiducial results. The majority of the improvement
comes from constraining the redshift evolution of the IA
parameters to be linear, even when allowing separate linear
functions per source bin. Doing so improves our Sy
constraining power by 36%. Further restricting to one
linear function, ¢p(z), for all source bins shrinks our Sg
errors by 51% from our fiducial model.

As a further comparison to IA models used in the
literature, we conducted an analysis using a Lagrangian
version of the common TATT, where we set a, and ¢, to
zero while assuming a linear redshift evolution of the other
IA parameters. Given the additional terms generated by the
advection of shapes in LPT, this is not entirely equivalent to
the standard TATT model, but it is reasonably close with the
same number of degrees of freedom. The resulting con-
straint shown in Fig. 14 is very similar to using our full IA
model while assuming linear redshift evolution.

We can also explore the dependence of our constraints on
the width of our IA priors, i.e., the extent to which the Sy
constraint is weakened by conservative assumptions about
the ranges that IA parameters can assume for weak-lensing
source samples. Figure 18 shows our Sg constraint as a
function of the prior width Ac,, where we also scale the
nonlinear TA parameter priors by an equal factor for
consistency. The theoretical error induced on our meas-
urement by unknown IA bias parameters adds to the Sg
posterior width roughly in quadrature

2
() e

source 0

source 1

source 2 o
— source 3

—— linear

FIG. 19. Tomographic constraints on the intrinsic alignment
amplitude of each source sample. The black line and shaded
bands show the mean and 1- and 2 sigma regions when fitting
¢,(z) independently of source sample in the linear model.

becoming dominant at ¢, = 8. This number is large, even

relative to (conservative) expectations from simulations,
because we have purposefully picked only those bins where
the IA contamination is small in our fiducial setup. Had we
chosen to utilize all the cross-correlation pairs in our
measurements, the IA-free error 6, would be reduced,
but 6. o would decrease, making the total constraint
relatively unchanged for reasonable choices of prior width
as we saw in Fig. 8.

C. Fixed-cosmology IA measurement

As we have seen, allowing wide [A-parameter priors
substantially degrades our ability to constrain the matter
clustering amplitude Sg. The flip side of this observation is
that our measurements allow us to tomographically con-
strain the intrinsic alignments of each source sample c,(z)
at the lens redshifts. We show these constraints, where the
cosmology is fixed to the mean Planck PR4 cosmology, and
we analyze all source and lens bin combinations, in Fig. 19.
Since our aim is now to measure c,(z) we widen the priors
on ¢y to A (0, 10) so as to not bias the resulting constraints.
Intrinsic alignments, or deviations from the Planck pre-
diction for lensing amplitudes, are detected to be nonzero at
more than 2¢ in several bins and, importantly, also deviate
by similar amounts for a given lens sample redshift. The
tightest constraints come from lens-source pairs with
substantial redshift overlap, such that the signal becomes
IA dominated and, conversely, the pairs we have opted to
include in our fiducial analysis show rather weak con-
straints, with o(c,) wider than our fiducial priors in many
cases. This indicates that the statistical error in the lensing

. . S, - .
cross-correlation amplitude C;” is not subdominant to the
theoretical error in these bins. Our A constraining power
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also degrades slightly when going to higher redshift, as
uncertainties in the magnification contributions to these
spectra become a confounding factor.

In order to illustrate the differences of these tomographic
measurements of IA with the two-parameter source-
independent IA parametrizations common in the literature
we also perform a fixed-cosmology fit to a model that
assumes a linear redshift evolution for the IA parameters
[Eq. (52)]. The results are shown in the black shaded
regions—since all IA amplitudes are forced to be the same
at a given redshift in this model the constraints are driven
by the most tightly-constrained bins, which as noted above
do not always have the same implied clustering amplitudes
as the lensing-dominated bins constraining Sg. For exam-
ple, the cross-correlations between LRGO and the first two
source bins, whose shapes we omit in our fiducial analysis,
prefer IA amplitudes closer to zero than the last two. Even
the more tightly constrained bins, such as BGS0xS0 and
BGS0xS1, differ by several o in their preferred value of c;.
Taking into account the covariance between the individual
bins, the pairwise IA posteriors in Fig. 19 deviate from the
source-independent two-parameter model in black by
x> =29.0, with nonzero linear IA amplitudes being
detected at y> = 34.8.

It is worth noting that since these differences exist at the
same redshift they cannot be due to a mismatch with the
true and assumed cosmologies. However, if we assume that
IAs can only be antialigned with the tidal field, the fact that
several bins prefer a positive IA signal, rather than the
negative radial alignment signal predicted by simulations,
may be taken as evidence that either Sy is higher than
Planck, as our cosmology fits indicate, or the presence of a
systematic or statistical fluctuation. Indeed, from Eq. (58)
we can see that an exact physical degeneracy exists
between the lensing kernel amplitude w*/(z.) and the
IA bias parameter A (z.)—if, for example, the amplitude
of the lensing kernel were altered due to uncertainties in the
DES photo z’s beyond those reported by the collaboration,
such changes in w*i(z.) would be reflected in our fixed-
cosmology fits as source-dependent shifts in the IA
amplitude. Since this exact degeneracy with photo z’s also
exists with Sg itself when we vary cosmological parame-
ters, it is a fundamental premise of galaxy-galaxing lensing
analyses like this one that photometric redshifts are well
understood from the outset.

VII. CONCLUSIONS

The cross-correlations of the projected densities and
shapes of galaxies, as measured in imaging surveys,
directly probe the clustering of matter on cosmological
scales, providing a precision test of the growth of structure
in the standard model of cosmology. In this work we
present measurements of these cross-correlations using the
target imaging samples for the DESI BGS and LRG

samples and the Metacalibration galaxy shape
catalog derived from the first three years of the Dark
Energy Survey. In addition to having comparable signal
to noise to other state-of-the-art galaxy-galaxy lensing
measurements, the spectroscopic calibration of the DESI
samples means that our measurements do not suffer from
the photometric uncertainties typical of imaging surveys.
Firstly, these samples have well measured and extremely
small contamination from stars and systematic variations
in galaxy photometry. Additionally, due to the accurate
photometric redshift estimates available for these samples
derived from the abundant spectroscopy that has been
gathered for them, each lens sample can be well localized
along the line of sight. This second property makes
our measurements particularly amenable to perturbative
models, which use the separation of spatial scales to
construct effective theories of structure formation that are
nonlocal in time: the fixed line-of-sight distance trans-
lates angular scales to fixed physical ones, enabling us to
robustly distinguish between large and small scales, and
the unknown time evolution of the effective-theory
parameters is restricted by fitting in well-localized red-
shift bins.

We present the “2 x 2-point” cosmological analysis
of these data using perturbation theory techniques, yield-
ing a constraint on the matter clustering amplitude
Sg = 0.850f8.'8§?. For the first time, we include a full
accounting of nonlinear contributions to the intrinsic
alignments of galaxies to one-loop order in the effective
theory using the Lagrangian formalism recently developed
in Ref. [37]. This enables us to consistently model the
matter density, galaxy densities, and galaxy shapes at each
lens redshift on equal footing from first principles within
the formalism of Lagrangian perturbation theory. In
addition, we augment the LPT predictions for matter
and galaxy clustering using HEFT by combining the
predictions of Lagrangian bias with nonlinear dark matter
displacements from N-body simulations using the Aemulus v
emulators [28] for the first time, along with [9]. We test our
modeling pipeline on mock data constructed from the
Buzzard simulations [75,76], finding that both allow us to
place unbiased constraints on cosmological parameters
including Sg out to angular scales corresponding to
kyax = 0.4 hMpc~!, substantially beyond the range of
validity for linear theory, and improving upon the Sg
constraint of an analysis using k. = 0.2 hMpc~™!' by
20%. This is comparable to the improvement found in the
first application of a linear Taylor series HEFT model to
data in [157], although a thorough comparison with that
analysis is beyond the scope of this work. Since the two-
dimensional data mostly constrain the lensing amplitude,
we also obtain constraints combining our measurements
with baryon-acoustic oscillation data, finding a small
improvement in Sy = 0.8387 0035,
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FIG. 20. A comparison of our Sg constraints with a number of results in the literature. Blue points denote constraints from the primary
CMB, while orange show CMB lensing autospectrum constraints. Green, red, purple and brown points show cosmic shear, 3 x 2-point,
CMB-galaxy lensing and galaxy-galaxy lensing constraints respectively. Our results with and without BAO are shown at the bottom in

black. See Sec. VII for more discussion.

Our Sy constraints in both cases are in excellent agree-
ment with those inferred from the primary cosmic micro-
wave background [7,154,158] and auto power spectrum of
CMB lensing [11], within the ACDM model. This is in
contrast to many works in the literature which have found
lower lensing amplitudes than predicted by the CMB at
1 — 20 level, as shown in Fig. 20 [4,9,159-162], though our
error bars are somewhat wider, and assumptions somewhat
more conservative, than many of these constraints.

One particularly relevant exception is the 2 x 2-point
analysis of Ref. [68], who conduct a similar analysis as we
do but using the DES Maglim sample for their lenses.
Their fiducial analysis, using only linear bias and modeling
to a minimum scale of 8 and 6 ~~! Mpc for clustering and
galaxy-galaxy lensing respectively, infers a lower value of
Sg than ours by approximately 1.5¢, but an analysis of the
same data using a nonlinear bias model [69,117], infers a
value of Sg that is ~0.5¢ higher than the DES linear bias
analysis. Furthermore, an analysis using the DES nonlinear
bias model and fitting to 4 A~! Mpc infers a very similar
value of Sy to this work, with differences in constraining
power due to our use of the more conservative I[A
scheme (Fig. 21).

The large shift observed between the DES linear and
nonlinear bias results underscores the importance of a
proper treatment of nonlinear galaxy bias. The source of the
additional shift to higher Sg when analyzing smaller scales
in the DES analysis is not readily apparent, and a full
investigation of this is beyond the scope of this work. We
note that there is also an observed ~0.5¢ shift to lower Sg
when analyzing even larger scales than the fiducial linear
bias analysis (see Fig. 12 of [68]), lending some evidence to
an explanation involving residual angular systematics on
large scales in the Maglim sample; however we have not
investigated the statistical significance of this shift. In this

I DESI x DES Y3

—— DES Y3 Maglim 2x2pt (8,6) h~* Mpc

N DES Y3 Maglim NL bias 2x2pt (4,4) h~' Mpc
—— DESI x DES Y3, linear co(z)

FIG. 21. Comparison of the constraints derived in this work to
those of [68], using the Maglim lens sample and the Meta-
calibration source sample. The black contours here show
our fiducial results, while the blue and orange contours show the
linear and nonlinear bias constraints from [68], although note that
these constraints also use different minimum scales as described
in Sec. VII. Of particular note is that our fiducial constraints agree
quite well with the nonlinear bias constraints derived using the
Maglim sample, although the latter use a very different nonlinear
bias model. These constraints should be very correlated, given
that they share the same source catalog and sky area, so this
finding is reassuring. Furthermore, when we restrict to a similar
TA treatment, assuming a single linear function of redshift for
each TA parameter (green), we obtain similar uncertainties on Sg,
although the analysis presented here is slightly more constraining
likely due to our inclusion of higher redshift lens bins.
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scenario, analyzing smaller scales with the nonlinear bias
model may downweight these residual systematics, leading
to the observed shift. It is also possible that the nonlinear
bias model used in the DES analysis and that used in our
analysis, which were validated on the same set of simu-
lations as used here [76], are insufficiently flexible to fit the
data leading to shifts to higher Sg when analyzing smaller
scales, although this possibility is less likely given the
stability of our constraints when varying our scale cuts as
shown in Fig. 15.

We also note that our Sg constraints derive fundamen-
tally from large scales, as marginalizing over nonlinear bias
and counterterms effectively dilutes the clustering and
lensing information at high k. Many references have
suggested that the low Sg measured by weak lensing
surveys can be alleviated by invoking baryonic or
beyond-ACDM physics at small scales [15,163—166]—
these scenarios cannot be easily ruled out by perturbative
analyses such as ours, where these effects are absorbed into
the counterterms (by:,, byz,), although the fact that our
weak constraints on these effective-theory parameters,
particularly in HEFT, are not in any tension with the input
priors suggests that any small scale suppression of power in
the data should be “small” at k < 0.4 hMpc~'. On the
other hand, our Sg constraints should be quite degenerate
with large-scale suppressions of power, for example due to
neutrinos or ultralight axions [167], and a bound on these
effects can be inferred from our consistency with Planck
ACDM. While our constraints are slightly weaker than
many other weak-lensing results reported in the literature,
their reliance on first-principles calculations and funda-
mental symmetries makes possible inferences about exotic
physical scenarios rather robust, making it a priority to
understand and hopefully reduce the sources of theoretical
error in a rigorous way.

Indeed, the leading source of error, both statistical and
theoretical, in our analysis setup is the uncertain contribu-
tion of galaxy intrinsic alignments to the GGL signal. At
leading order, a change in the linear shape bias, c,, and a
change in the matter clustering amplitude, Sg, contribute
equally to any given density-shape cross-correlation, with
the only difference being that Sg changes cross spectra
coherently across redshifts, while the TA amplitude of
each source sample at each lens redshift is an independent
degree of freedom [Eq. (58)]. In our fiducial analysis
we attempt to mitigate this degeneracy with a combined
strategy of (a) putting priors on the size of the IA amplitude
based conservatively on measurements of halos in simu-
lations, which are known to be enhanced relative to
galaxies and (b) deriving our constraints from pairs
of lens and source samples with maximal redshift
separation—specifically cross-correlating the three lowest
redshift lens samples with the two highest redshift source
samples—such that the A contamination is further sup-
pressed by the overlap integral between their redshift

distributions. Simultaneously, we put the shapes of galaxies
on the same, consistent footing with their densities by
allowing the equivalent degrees of freedom for each
independent sample and redshift required of a—in this
case spin 2—biased tracer at one-loop in perturbation
theory. We show that, when all these degrees of freedom
are properly accounted for in our MAIAR prescription, the
subset of data used in our fiducial setup returns essentially
identical constraints to the full set, because IA contami-
nated measurements now have their proper theory error
accounted for (Sec. VA 1).

Our modeling, as described above, is robust against the
redshift evolution of intrinsic alignments, as well as
variations between source bins, and we demonstrate this
by injecting a number-density dependent IA signal into
mock data. On the other hand, conventional modeling
choices which describe IAs through a source-sample
independent two-parameter power law in redshift yield
biased constraints with tightened error bars by deriving
their IA constraints from the most [A-dominated data
points. If we were to adopt these conventional choices in
our analysis, our constraints would artificially improve to
Sg = 0.8481“8"83238, a 51% improvement. Further restricting
to the NLA model in addition to using the more conven-
tional redshift evolution model results in Sg = 0.8367002%,
a 63% improvement over our fiducial analysis. Conversely,
by fixing the cosmological parameters in our fits to their
Planck best fits, we can place tomographic constraints on
the IA parameters of the DES source galaxies, particularly
in the IA dominated bins we drop in our fiducial analysis.
Such an analysis shows that the source-independent two-
parameter model is strongly disfavored by the data, which
show variations in the cross spectrum amplitudes across
sources at the same lens redshift that cannot be due to
deviations from the Planck predictions for growth alone.

The methods introduced in this paper have immediate
implications for future surveys and GGL analyses. On the
data side, the careful selection of galaxy lens and
source samples that can be well localized and separated
in redshift, e.g. through spectroscopic calibration of
redshift distributions as we have done here, will be
critical. Alternatively, the impact of the IA signal could
be mitigated by placing priors based on direct measure-
ments. Importantly, these measurements will have to probe
the same effective redshifts and samples from which
the lensing constraints are derived, rather than the IA
dominated cross-correlations from which past lensing
surveys have tended to constrain their more restrictive
IA models. One promising avenue is to measure the three-
dimensional clustering of galaxy shapes through spectro-
scopic surveys—these measurements have recently
attracted renewed interest as probes of fundamental physics
in their own right [42,127,128,168,169]. Without the signi-
ficant expenditure of resources, particularly in the form of
wide field spectroscopy, IAs will continue to be a dominant
source of uncertainty in galaxy lensing analyses.
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On the modeling side, our work can be directly
extended to include the clustering of the lens galaxies
in redshift space. Including these three-dimensional data
will allow us to break degeneracies in our constraints by
accessing cosmological information in the shape of the
linear power spectrum, and improve clustering constraints
through redshift-space distortions. Indeed, the Lagrangian
effective theory models used in this work have been
extensively used to analyze spectroscopic clustering
[20,118,170] and can be straightforwardly and consis-
tently combined with the analysis in this work with
minimal new free parameters. In addition, comparing
measurements of the matter clustering amplitude in
lensing and peculiar velocities will allow us to test the
predictions of general relativity and study the effect of
anisotropic selection bias, which are a major “known
unknown” in spectroscopic galaxy samples [27,171-173].

The modeling in this paper can also be extended to the
autocorrelation of galaxy shapes, utilizing the effective
theory of galaxy shapes in order to extract the matter
clustering information in cosmic shear, although modeling
connected trispectrum terms may be important for this
extension if considering smaller surveys than DES Y3.
Unlike the GGL signal modeled in this paper, the auto-
correlation is not well-localized in redshift, such that the
MAIAR prescription used in this work will not be sufficient.
However, in this case the redshift dependence can be
treated using the spline formalism described in Sec. III D,
where the number of free parameters is determined by the
correlation length of bias parameters across redshift (i.e.,
the separation scale of the spline basis functions), and the
values of the spline coefficients can be tomographically
constrained by the GGL signal as we have done here. This
analysis can also be extended to include cross-correlations
of galaxy shapes with CMB lensing, whose kernels like-
wise span a broad range of redshift. Since the constraining
power of these setups will likely be dependent on the
redshift correlations assumed, it will be critical to study the
robustness of the resulting constraints varying the spline
spacing. Conversely, such an analysis will be an important
stress test of current cosmic shear constraints. We intend to
return to this topic in the near future.

Data from the plots in this paper are available at [174] as
part of DESI’s Data Management Plan. In addition, our
likelihood code, measurement pipeline and fiducial data
vectors will be publicly available at [175] upon publication.
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APPENDIX A: BGS AND LRG SAMPLE
CALIBRATION

In this appendix we describe the systematics tests that we
performed on the BGS and LRG redshift bins used in this
work. Many of these systematics tests for the LRG samples
are detailed in Ref. [54], and we repeat them for the BGS
samples here. Firstly, we consider the trends in angular
galaxy number density as a function of various survey
properties, and potential contaminants. Figure 22 shows
this for E(B — V), the depth and PSF size in each band used
in the BGS sample selection, as well as stellar density as
measured using GAIA. The blue line shows these trends for
the first BGS bin, while the orange line shows the same for
the second. In general, we see that these correlations are
quite small in the regime where there are appreciable
numbers of galaxies, as shown by the blue histograms.
We fit a linear function to these trends, and use this to
construct weights to remove them. The correlations
between weighted galaxy number densities and these fields
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FIG. 22. Overdensity trends with relevant potential systematics
for the two BGS photometric bins used in this work. The solid
lines use maps without weights, while the dashed lines include
weights to correct for the observed trends, assuming a linear trend
between the systematic and observed galaxy density.
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FIG. 23. Difference between BGS autopower spectra with and
without applying linear systematic weights.

are shown by dashed lines. We note that there is very little
change when applying these weights.

In order to investigate the impact of the systematic
weights that we have constructed, we examine the differ-
ence in C/"’ measured with and without these systematic
weights. Figure 23 shows this difference, compared to the

statistical error on C’;‘”(s’] given by our fiducial covariance
matrix. We see that any shift that is derived from applying
weights for the BGS sample is well within these errors, and
as such we have chosen to not apply systematics weights
for this sample, since it is well known that such weights can
potentially remove cosmological power, and there is no
evidence that they are correcting for any detectable sys-
tematic trends in our data for this sample.

An additional concern that one might have about our
analysis is that the redshift distributions that we use in our

T T T T T T
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FIG. 24. Comparison of the redshift distributions measured
using the full Iron dataset (solid) and only the overlap region with
the DES Y3 footprint (dashed) for our all of our lens bins. The
differences in the mean and standard deviation of the redshift
distributions for these two footprints as well as differences in
stellar contamination are listed in Table IV.
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TABLE IV. Redshift distribution summary statistics and stellar contamination fractions for our lens samples measured over the full
DESI Y1 footprint, and over the overlap area between DESI Y1 and DES Y3 footprints.

Zefr (Full) Zef (DES) o(z) (Full) o(z) (DES) S star (Full) Sstar (DES)
BGSO 0.228 0.229 (0.33%) 0.0591 0.0597 (0.952%) 0.00495 0.00278 (—43.8%)
BGS1 0362 0363 (0.345%) 0.0603 0.0621 (2.88%) 0.0025 0.00216 (—13.8%)
LRGO 047 0.469 (—0.222%) 0.0632 0.0636 (0.677%) 0.00141 0.000634 (—55.1%)
LRGI 0.628 0.626 (~0.311%) 0.0734 0.0715 (—2.48%) 0.00156 0.000602 (~61.3%)
LRG2 0.791 0.794 (0.371%) 0.0781 0.0766 (~1.91%) 0.00194 0.00146 (—24.5%)
LRG3 0.924 0.932 (0.82%) 0.0956 0.0913 (—4.48%) 0.00376 0.00218 (—41.9%)

analysis are computed over the overlap region between
DES Y3 and DESI Y1, which comprises just the 4143
sq. degrees used in our analysis. While the area used to

measure our redshift distributions is large enough to have
negligible statistical error, it is possible that the average
n(z) over the full footprint differs from the n(z) measured
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FIG. 25. Same as Fig. 2, but using our fiducial model and the full set of source and lens bins. We find > = 201.2 for 280 data points
using 178 free parameters, 132 of which are analytically marginalized over. Assuming again that IA, magnification and source
uncertainties are prior dominated and thus do not enter into the reduced y* calculation we obtain y2,, = 0.86, though we note that this is
likely an undercounting of the free parameters in the model.
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over the overlap region due to varying survey conditions. In
order to set a reasonable upper bound on this variation, we
compare the n(z) estimated for each of the samples used in
this work measured over the overlap region between DESI
Y1 and DES Y3 to that measured over the full DESI Y1
area. The BGS and LRG selections in the Northern Galactic
Cap (NGC) of the DESI footprint use photometry from the
Bok and Mayall telescopes, rather than DeCAM, and as
such the n(z)’s could potentially differ significantly
between the NGC and the overlap region if the selections
were particularly sensitive to variations in photometry.
These two sets of n(z) s are shown in Fig. 24, and
differences in these samples are further summarized in
Table IV. In general we measure statistically significant, but
small shifts in the mean and widths of the redshift
distributions of our lenses. The largest shifts are observed
in the last LRG bin, which is unsurprising given that it is
comprised of the faintest galaxies, whose selection will be

most influenced by changes in photometry. We propagate
these differences to cosmology as shown in Fig. 14 for our
fiducial lens bins, i.e., the BGS bins and first LRG bin and
find these differences to be entirely negligible in terms of
constraining power. As such, we conclude that this sys-
tematic is negligible at the constraining power of this
analysis, although this and related concerns will need to be
revisited should we combine these measurements with
anisotropic power spectra of these samples measured with
DESI spectroscopy.

APPENDIX B: FITTING ALL SOURCE AND
LENS BIN COMBINATIONS

For the results that fit all source and lens bin combina-
tions, we use a covariance that takes as input the best fit of
our fiducial model analyzing all of these bin combinations.
This best-fit model is shown in Fig. 25.
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