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ABSTRACT: In anticipation of forthcoming data releases of current and future spectroscopic sur-
veys, we present the validation tests and analysis of systematic effects within velocileptors
modeling pipeline when fitting mock data from the AbacusSummit N-body simulations. We
compare the constraints obtained from parameter compression methods to the direct fitting
(Full-Modeling) approaches of modeling the galaxy power spectra, and show that the ShapeF'it
extension to the traditional template method is consistent with the Full-Modeling method
within the standard ACDM parameter space. We show the dependence on scale cuts when
fitting the different redshift bins using the ShapeFit and Full-Modeling methods. We test
the ability to jointly fit data from multiple redshift bins as well as joint analysis of the
pre-reconstruction power spectrum with the post-reconstruction BAO correlation function
signal. We further demonstrate the behavior of the model when opening up the parameter
space beyond ACDM and also when combining likelihoods with external datasets, namely the
Planck CMB priors. Finally, we describe different parametrization options for the galaxy bias,
counterterm, and stochastic parameters, and employ the halo model in order to physically
motivate suitable priors that are necessary to ensure the stability of the perturbation theory.
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1 Introduction

The large-scale structure (LSS) of the Universe is the observed, coherent spatial distribution
of material on scales larger than the typical galaxy or halo scale, and provides a powerful
observational tool for probing cosmic evolution. LSS observations allow us to study 3D
volumes of the sky that span a long range of cosmic times, enabling us to study the initial
conditions of the primordial universe as well as its evolution at later times. [1-4].

One of the primary methods of measuring the evolution of LSS is through galaxy redshift
surveys that aim to probe the clustering of matter on a wide range of scales using galaxies as
tracers. Spectroscopic galaxy surveys have had significant success over the years in scanning
large regions of the sky. These include the 2dF [5], 6dF [6], GAMA [7], WiggleZ [8], and
most recently the completed Sloan Digital Sky Survey (SDSS), composed of data from SDSS,
SDSS-II [9], BOSS [10-12], and eBOSS [13-15]. The next telescope surveys to further push
the boundaries of LSS observations that have recently begun operations are the Euclid
Satellite [16, 17] and the ground-based Dark Energy Spectroscopic Instrument (DESI) [18-20].
DESI aims to cover over 14,000 deg? by the end of 5 years of observations, with target samples
of stars from the Milky Way Survey (MWS), bright galaxies from the Bright Galaxy Survey
(BGS, 0.0 < z < 0.4), Luminous Red Galaxies (LRG, 0.4 < z < 1.1), Emission Line Galaxies
(ELG, 1.1 < z < 1.6), and Quasars (QSO, 1.6 < z < 2.1). Altogether the DESI survey will
span an effective volume of about 20 (h~!Gpc)? by the end of its 5 years of observation [21].

In anticipation of the upcoming Year-1 data release of DESI [22-30] (as well as later
releases along with Euclid), it is important to characterize the performance of the current
state-of-the-art models for analyzing the observed galaxy clustering 2-point statistics and
the resultant cosmological constraints. The growth of large-scale structure is a competition
between gravity, the dominant force on large scales, and the expansion of the universe.
Models must also include several other effects: first, galaxies are not perfect tracers of the
underlying matter overdensity field, and thus a ‘biasing’ scheme is needed in order to relate
the matter power spectrum to the observed galaxy spectrum (see ref. [31] for a recent review).
Second, since distances along the line-of-sight (LOS) are inferred from redshifts, components
of galaxy peculiar velocities in the LOS direction influence the inferred distances and are a
source of anisotropy in the observed clustering signal [32, 33]. This latter effect is known
as redshift space distortions (RSD) and provides both a challenge to modeling while also
giving direct access to information about the growth rate of LSS. Finally, nonlinear effects
on small scales must be included. We use perturbation theory to model the mildly non-linear
regime, with additional parameters to account for the small-scale physics such that the
models are not sensitive to the complicated processes e.g. involved with galaxy formation
(sometimes known as Effective Field Theory or EFT terms [34-36]). The model considered
in this work, velocileptors! [37, 38], is one of the models that will be used for analyzing
the full-shape power spectra from the upcoming DESI survey data releases, the others being
the Fourier space Eulerian PT codes PyBird [39-41] and FOLPSv [42] and the configuration
space code EFT-GSM [43]. The purpose of this work is to characterize the performance of
velocileptors and understand any systematic issues by comparing to a suite of simulated,

"https://github.com /sfschen /velocileptors/tree/2.0.
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or ‘mock’, data. Similar tests are being performed with the other three models in addition to
a comparison between models, and will be reported in companion publications [44-47]. While
velocileptors has been tested previously on simulations [38, 48, 49], here we focus on DESI-
like galaxies and redshift ranges, and also use the new AbacusSummit [50] suite of simulations
produced for the DESI collaboration that is also used to test the other theory models.

Within the framework of the model, there are still various approaches to fitting data. One
method, previously used by the BOSS and eBOSS collaborations, involved choosing a fiducial
template for the linear power spectrum while compressing the observed power spectrum
multipoles into three parameters: the amplitude of the redshift-space anisotropy fog, and the
two scaling parameters parallel and perpendicular to the line of sight, i.e. o and «;. This
technique was meant to encode the intuition that, for currently popular cosmological models,
primary CMB anisotropies fix the parameters determining the shape of the power spectrum
but late-time effects such as non-trivial dark energy evolution or spatial curvature can affect
the total growth and the distance-redshift relation. These impacts are accounted for by the
three parameters above and redshift surveys can constrain them well. An extension to this
standard “template” fit is to include another compressed “ShapeFit” parameter to allow a set
of modifications to the shape of the linear power spectrum [51]. The extra shape information
of this method allows for tighter constraints on cosmological parameters when interpreting
the compressed statistics in light of a given cosmological model without including CMB priors.
This partially bridges the gap in constraining power between the traditional template fit
and the direct fitting or “Full-Modeling” approach of directly varying the parameters of a
specific cosmological model. In this paper we compare these three methods under a variety
of conditions in order to better understand the advantages and disadvantages of the methods.
A comparison of the template and Full-Modeling approaches was investigated in ref. [52] on
the BOSS DR12 dataset, specifically focusing on shifts in fog constraints between the two
methods. Here we extend that analysis to include the ShapeFit method and compare the
three methods for the range of different settings, parameterizations, and modeling choices.

This paper is organized as follows. We begin by describing the Abacus simulations in
section 2 and give an overview of Lagrangian Perturbation Theory (LPT) and velocileptors
in section 3. We describe the parameter compression and Full-Modeling fitting methods in
more detail in section 4. The results of our primary tests, namely the dependence on scale
cuts, joint fitting of multiple redshift bins, post-reconstruction statistics, wCDM models,
CMB priors, varying ns, Lagrangian vs Eulerian (EPT) Perturbation Theory, and freeing
og are presented in section 5. We conclude the paper in section 6. We also provide a brief
discussion of our method for analytic marginalization over the linear parameters in our model
in appendix A along with some further tests, namely the dependence of wy prior, inclusion of
cubic bias, and inclusion of hexadecapole moment in appendix D. In appendix B we discuss
the issue of parameter projection effects and the dependence on priors within our model, a
problem that also arises in many other areas of cosmology. We follow this up with a section
dedicated to the halo model in appendix C, which allows us to estimate typical scales for
stochastic parameters in our model and provide physical motivation for our prior choices.
Appendix E explains our use of emulators based on Taylor series in order to speed up likelihood
evaluations, and we show that they perform consistently with the direct theory predictions.
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Figure 1. Power spectrum monopole (left) and quadrupole (right) mock data for the LRG, ELG,
and QSO tracers. For each tracer, the mean of the 25 N-body realizations is used. The error bars
of the data correspond to the covariance re-scaled by the number of realizations, which represents a
survey volume of 200 h~3Gpc>®. The shaded regions show the error bars for a single cubic box, of
volume V = 8 A 3Gpc3.

2 Mock data

To test our theory model we make use of the AbacusSummit [50] suite of N-body simulations
in their native, cubic geometry. These simulations were run with the Abacus [53] N-body
code on the Summit supercomputer at the Oak Ridge Leadership Computing Facility for use
by the DESI collaboration. The simulations relevant to this work use a fixed cosmology,?
with 25 boxes each with a different random number seed for the initial conditions run in a
(2 h~1Gpc)? volume for a combined volume of 200~ ~3Gpc®. The mock galaxy catalogs have
been produced for three types of tracers, each produced at a different redshift: Luminous
Red Galaxies (LRGs) at z = 0.8, Emission Line Galaxies (ELGs) at z = 1.1, and Quasars
(QSOs) at z = 1.4.3 For this study we ignore light-cone and evolution effects in order to
better study the non-linear dynamics and biasing models. The RSD power spectrum data
for each tracer is shown in figure 1.

2The Abacus fiducial cosmology has h = 0.6736, wp, = 0.02237, weam = 0.12, A, = 2.0830 x 1077, and
ns = 0.9649, with a corresponding BAO drag scale of r4 = 99.08 h~*Mpc.

3The constraining power from a single redshift bin is similar to that expected for each tracer by year-5 of
the DESI survey. While the real LRG data will actually be split into multiple redshift bins, the constraints
from the joint analyses will be similar to those obtained from the single LRG bin in this work. We do not
expect the conclusions in this paper to change significantly if the mocks had been produced in more redshift
bins for each tracer. However, projection effects are expected to be more significant in extended models in
Year-1 as the data is not as constraining yet as these mocks. This is discussed further in appendix B.1.



The covariance we use for each tracer is calculated by Monte-Carlo from 1000 “effective
Zeldovich approximation” (EZmock [54]) simulations of the same cosmology.* We compute
this covariance numerically via:

1 N
Covl PRy = = S [Palhe) — (P(R))[Palhy) — (PO (21)

n
In principle, when using as data the mean of 25 cubic boxes the error bars of the data should
also be re-scaled to reflect the increase in volume because 02 o< V1. A proper treatment
of the mean of 25 realizations would therefore involve re-scaling the covariance from the
EZmocks by a factor of 1/25. However, we must be careful in interpreting results when the
error bars of the data are so tight, as the “survey volume” of the simulations is orders of
magnitude larger than any realistic survey will ever be able to achieve. For example, if we
consider a future survey covering 18 000 deg? with tracers in a single redshift bin spanning
0.75 < z < 1.25, then the comoving volume of that data would be about 24 (h~'Gpc)?, which
is still much less than the 200 (h~!Gpc)? volume of the simulations. The 8(h~!Gpc)? volume
of a single box in our simulations is much closer to what we expect for any tracers/redshift

bin by the end of five years of DESI observations.

The motivation for the large simulation volume is to detect systematic errors in the
models relevant to the DESI Y5 data. If we define the detection of a systematic error as
being larger than twice the statistical error ogy, of the simulations and would like to keep
systematic errors below some fraction 1/n of the Y5 data errors (oy5), then this implies that
we desire simulations with ogm < (2n) loys. If o 1/\/V, then for n = 3 and a DESI Y5
volume of 5 (h~1Gpc)?, we would require a simulation volume of 180 (h~Gpc)®. The Abacus
simulations fulfill this requirement. However the above argument fails to account for the
systematic errors of the N-body simulations themselves. The fractional errors of the Abacus
mock LRG monopole data with 25 box covariance (re-scaled by 1/25) are roughly 0.15%
between 0.15 < k < 0.2 hMpc~!. Ref. [55] compared different cosmological N-body codes
and found that RSD power spectra multipoles differed by ~ 0.5% in the same k-range, i.e.
the simulations themselves do not agree to these levels of precision, even before uncertainties
from initial condition generation, halo finding and additional physics are included [56]. In
addition to this, the large volume also reflects a level of precision that our models are not
designed for, meaning that contributions from, e.g., two-loop terms that we don’t include in
our theory can result in poor fits. For all of these reasons, we will primarily focus on results
using the un-rescaled covariance of the more reasonable single-box volume in the analysis of
this paper, while only commenting briefly on the 25 box covariance results when relevant.
Finally, when computing the covariance from a finite number of simulations, one should in
principle include corrections such as the Hartlap factor [57], which depends on the number of
bins in the data vector versus the number of independent mock data sets used. Given the
large number of EZmock simulations that we use, this factor is close to 1 and we therefore
do not observe any noticeable change in constraints when including the correction. We also

4Since these computationally efficient simulalions make use of the Zel’dovich approximation they may not
be as accurate at small scales. As we will show later, our models are able to obtain unbiased constraints up to
Emax = 0.2 hMpc~! but analytic covariances may be desirable in the future.



do not observe any significant bias in constraints arising from the finite number of mocks
and therefore neglect the Hartlap correction in our analyses.

3 Theory and model

The velocileptors code is based on the Lagrangian Perturbation Theory (LPT) approach
to large-scale structure. This approach treats dark matter as collisionless particles whose
mapping from initial (Lagrangian) positions, g, to their final observed coordinates, x is given
by € = q + ¥(q), where ¥(q) is the displacement field. The dynamical equation, based on
Newtonian gravity in an expanding spacetime, U4+ HE = —V P, is perturbatively expanded
and solved as ¥ = &) 4 @) 4 ®6) 4 The observed galaxy overdensity is derived
from number conservation, with the inclusion of a bias functional in the initial conditions,
F[d0(q)], that relates the tracer overdensity field to the linear matter field in the form of
a Taylor series [37, 38]. In Fourier space, this results in

14 04(k) = /d3q Fbo(q))e”*(a+¥(@)
Floo(q)] =1+ b1do + %b2(5o(q)2 _ <58>) + bs(s3(q) — <8(2)>) + b305(q), (3.1)

where sg = (9;0;/0% — §;;/3)d is the initial shear tensor. The Lagrangian biases bo describe
the response of galaxy formation to large-scale perturbations and are the free parameters of
the theory — absent a complete model of galaxy formation at small scales their values must
be measured directly from large-scale observables like the power spectrum, though rough
estimates for their sizes can be made through toy models like halo occupation distributions.
At 1-loop order there is only one non-degenerate cubic bias contribution which we include
schematically as Q3. Note that the Lagrangian bias parameters here are not equivalent to
the Eulerian ones (for example the standard linear bias is b = 1 + b1) but equivalent under a
set of linear transformations (see e.g. ref. [38]). Throughout most of this paper we will set
bs = 0 under the assumption that the cubic nonlinearities in galaxy clustering are consistent
with those from dynamical contributions alone [58]. We test this assumption in appendix D.

The modeling of observed galaxy clustering statistics is complicated by the peculiar veloc-
ities of the galaxies, whose line-of-sight components introduce anisotropies in the clustering
signal, an effect known as Redshift Space Distortions (RSD). In LPT, the transformation
into redshift space amounts to a boost along the LOS direction, 4 so that the redshift
space displacement field is

n(v-n)

U, =0 +0 =0+ TR (3.2)

where v is the galaxy peculiar velocity and H is the conformal Hubble parameter. We can
simplify this relation with the Einstein-deSitter Approximation (EdS), such that

T = w0 4o f(n- B0, (3.3)

where f is the linear growth rate. This can be expressed as a rotation of the real space
field via the matrix R = 0ij + n fri;n; such that ¥ = RMW ™ Defining the pairwise



displacement field in redshift space as Ay = W4(qy) — ¥s(qy), the redshift-space galaxy power
spectrum can be obtained from the cumulant expansion of

Poy(k) = [ & (*+50F(q)F(g)) (3.4)

a=q,—q>

In order to accurately capture the effects of long-wavelength (IR) linear displacements on
the power spectrum, particularly with respect to their smearing of the BAO, it is necessary
to include their effects beyond 1-loop order in perturbation theory [59-62]. This class of
techniques is known in the literature as “IR resummation”: in our scheme the linear piece, i.e.
the Afj(ll) component of A7, = <AfA;f >, is split into long- and short- wavelength components,
Afj’.hn = Afj’-< + Afj’?, with a cutoff scale kg, and we keep the Aff piece exponentiated
while expanding all other contributions to 1-loop order. Due to the matrix transformation
between the real and redshift space displacements, &% = R(M ™) hoth velocities and
displacements contribute to the resummed Afj. The expression for the power spectrum

becomes [38]
PPT(k) = [ ddq eiFaeshikins™ [ _ L aso L ko a0 45>
s,g (B)= qgele 22Jij+823k‘li]’ kl
1 s, loo i s . 1 s, s 5,10
_ikiijij P +6k1k]k‘k ijk+2lb1ki <1_2kiijij>> UZ _blkiijij
1 . .
+b] (1 - 2kiijf3>) Ein +ib3kUP 03 kiby U U
1 2¢2 . s,lin slinyrslin | . 5,20
+§b2§nn +2ib1b28linkiU; " —bokik; U U +1boki Uy
+b, (—kiijfj—i-Qikﬂ/is’lO) +20kibibs VI 4 bobyx +b2C+2ibsk; U, ;+2b1b30+.. } .
)

(3.5)

The other correlators appearing above (£, W, V', U, etc.) are defined in [37, 38, 59, 63].
We account for the sensitivity to small scales by introducing counterterms with coefficients,
Qn, that multiply the tree-level power spectrum. These coefficients describe couplings with
short-wavelength modes whose sizes are not directly specified by perturbation theory. While
their exact values (or even signs) are not known, we can put reasonable priors on them
based on the size of gravitational nonlinearities seen in N-body simulations and expected
nonlocalities induced by galaxy formation and baryonic physics, all of which contribute
additively to the «,,. Equivalently, the expected contribution of these effects dictates the
scales on which our perturbative model is valid. We therefore put Gaussian priors on each
counterterm centered at zero with widths set such that their corrections are perturbative at
our chosen kp.x. We similarly include stochastic contributions which we parametrize with
SNy = Rz, SNy = R%Jg, and SNy = R204, where Rz is the typical galaxy or halo formation
scale and the o, arise from correlations of stochastic modes in densities and velocities, (e.g.
(6v), (v?), etc.). These stochastic terms again account for the small-scale modes missing in
perturbation theory, whose signs and exact values are unknown, but whose rough size can
be estimated based on our understanding of the small-scale distribution and velocities of
galaxies in halos (see section 4.2 and appendix C and also ref. [64]). These contributions are



added to the 1-loop power spectrum, Pf gT (k), above to give our final LPT prediction

Pyg(k) = Pl (k) + (b+ f1i®)(bao + faop® + fauu®)k* P,y (k)
+ (SN + SNok?pu? + SNk ut), (3.6)

where P ;2 is the term containing b3&in in eq. (3.5) evaluated to linear order outside of
the exponential. This parameterization of the counterterms differs slightly from previous
works using velocileptors. While giving consistent results, it makes it easier to interpret
the counterterms as “fractional corrections” to the linear theory multipoles and motivates
our choice of prior width on these parameters. For example, a value of a, = 12.5 h~2Mpc?
corresponds to a 50% correction to the ntt moment at kya = 0.20 hMpc_l. We also note
that even though this parameterization may appear to introduce new degeneracies within the
counterterms, we find no significant change in constraints or increased projection effects.
In computing the observed power spectrum, we assume a fiducial cosmology to convert
0 and z to 3D distances using the fiducial distance-redshift relation. We need to account
for distortions in P(k) between assumed and true coordinates, the “Alcock-Paczynski (AP)
effect” [65], in our modeling. We do this by rescaling the theoretical power spectrum in true
cosmological coordinates to the observed coordinates by:
P (Kobs) = a1 °q) ' Po(k) s K = g1 Ky Ly (3.7)

S
with the scaling parameters above are defined by:®

ref » »
q = Ii{(i)), qL = Dalz) (3.8)

D)
D 4(z) is the comoving angular diameter distance and the “ref” superscript labels the values
from the fiducial cosmology.

Finally, we use a Legendre transformation to compute the predicted power spectrum
as multipoles,

(20 +

71) /11 d,u P(k,ﬂobs)['f(:u) (3'9)

Pf(kobs) — 9

where Ly(u) is the Legendre polynomial of order /.

4 Fitting methods

4.1 Standard template and ShapeFit

The traditional parameter compression method used originally by the BOSS/eBOSS col-
laborations involves choosing a reference cosmology, ©™f, and keeping the resultant linear
power spectrum, and by extension, the dependence on early-universe physics, fixed. The
“compressed” parameters being varied are then the amplitude, fosg and the distance scalings
transverse and along the line-of-sight, |, a; all of which are only dependent on late-time

®Previously in BOSS analyses(e.g. [48, 52]) we have used the notation a1, &, 1 in place of ¢, 1 but in
this paper we use the latter in order to be consistent with the conventions of other DESI papers.



dynamics. The quantity fosg, which controls the ratio of monopole-to-quadrupole amplitudes,
is a product of the growth rate, f ~ Q%5° and the total amplitude, o, at R = s-8h~'Mpc
scales. Here s = rq/ ng with rq being the BAO scale at the drag epoch. We will comment on
the s scaling further below. The two distance scaling parameters are defined by,

Href > Tref Tref q DA ~ Tref rref qL
o= B () g () Dald) () (T g gy
H(z) T4 T4 S D%t (z) \ ra T4 s

We highlight that these parameters used in the template fitting are different from the scaling

parameters defined in eq. (3.8) by a factor of (réef / rd).ﬁ This is because in the template
method we assume that most information comes from the BAO feature, and thus we account
for the fact that both changes in r4 and ¢ ; induce stretching in the observed BAO signal.”
In contrast, with a fitting method in which the underlying cosmology is directly being varied
(see next subsection), the changes to r4 affecting the BAO signal are automatically included
in the linear power spectrum which is self-consistently varied. We must also emphasize that
by including the factors of s in our « scaling parameters we are implicitly assuming distances
in units of the BAO scale, which motivates our use of the notation fogg. This subtlety is
discussed in detail in section 3 of ref. [51].

Despite sacrificing constraining power through the lack of sensitivity to the early universe
(the shape of the transfer function is held fixed by the reference cosmology), this “template”
fitting method was sufficient at a time when the tightest constraints on early-time physics
came from the CMB and LSS data was too noisy for direct fitting methods to be feasible
without significant priors from Planck. The advantages of the template fitting method include
the model-independence that allows for mapping the compressed parameter constraints to a
cosmological model of one’s choosing. Furthermore, computing the linear power spectrum
using a Boltzmann code such as CLASS or CAMB at every step of a Markov Chain Monte Carlo
(MCMC) sampler, in addition to calculating nonlinear perturbation theory (PT) corrections,
is computationally very expensive. Fixing the linear power spectrum avoids this step, allowing
for a faster fitting procedure without needing to train an emulator.

The “ShapeFit” method is an extension to the standard template-fit compression, and
was conceived as a way to partially bridge the gap in constraining power between the standard
template and direct/full modeling methods, while preserving some of the model-independence
of the former technique [51]. This is achieved by allowing modifications to the shape of the

an(D)

(k) is the template power spectrum produced by CLASS and is fixed throughout

linear power spectrum via a multiplicative factor,

k
Pllin(k) = ﬂif(k) exp {m tanh [a In <>
a k;p

ref
lin
the fit. The form of this scaling was an ansatz chosen to best replicate the effect of varying

where

5Technically, this “ref” is not necessarily the same as the “ref” in the definitions of q,.- The one in
(r(rff/rd) refers to the reference template used in the standard template and ShapeFit fits, whereas in g, it
refers to the fiducial cosmology assumed when converting angles and redshift coordinates to physical distances
when measuring the power spectrum. However, in practice it is simplest to choose the same cosmology for the
template as was used for measuring the power spectrum from the data, so this distinction is not important.

"See discussion in appendix C of ref. [48], where however the pure AP parameters are referred to as a and
the BAO-rescaled ones are called é.



Wp, Wi, and ng on the shape of the power spectrum (logarithmic slope and small/large scale
limits), which would otherwise be captured in the transfer function when running CLASS.
The modified power spectrum P} (k) is what we provide to velocileptors to produce the
full 1-loop prediction for a given (fog, |, a1, m). For simplicity we keep fixed the second
shape parameter, n = 0. Allowing this parameter to vary accounts variations of the template
emulating a spectral index effect, which in this paper we do not consider. Following the
original ShapeFit paper [51] we choose for a and k), their proposed values, a = 0.6 and
ky, = 0.03 h Mpc~!. With this modification to the classic template analysis, ShapeFit is
now able to capture more information from the early universe without sacrificing its model
independence. As a drawback, the freedom given by the ShapeFit parametrization in the
linear power spectrum may not be sufficient to reproduce the exact shape of the transfer
function as modeled by the Direct/Full-Modeling Fit technique (see next subsection) when 1)
the fiducial cosmology is very different from the true cosmology, and 2) when the statistical
errors of the data are very small. In ref. [44] (figure 2) this effect is quantified for the power
spectrum, as well as in an upcoming paper (ref. [66], in prep) focused on DESI Y1 geometry.
On another hand, this effect could also be important if the ShapeFit compression technique is
applied to higher-order statistics, such as the bispectrum, but this has not been yet quantified,
as it goes beyond the scope of this paper.

4.2 Full modeling: ACDM and extensions

The alternative modeling technique to parameter compression is a more conventional forward-
modeling approach that involves directly varying the underlying parameters of a cosmological
model and making a theoretical prediction for the observed quantities. While the ACDM
model depends on six parameters: (wp, Weam, Ho, 1og(10'°Ay), M, and ng), some of these
parameters are not constrained by galaxy clustering analyses independently. For these
quantities we use priors derived from e.g. Big-Bang Nucleosynthesis (BBN) and/or CMB
anisotropies. We initially fix the spectral tilt and neutrino mass to the Abacus fiducial values
of (ns,M,) = (0.9649,0.06) — though see section 5.7. For the baryon abundance we adopt
a narrow gaussian BBN prior of N[u = 0.02237,0 = 0.00037] [67] (though see discussion
in appendix D). Within these constraints, in this “Full-Modeling” approach the shape of
the linear power spectrum is able to change at each step of the MCMC as the shape of
the transfer function is dependent on the ACDM parameters being varied. If done directly,
this method is more computationally expensive because the linear power spectrum must be
calculated using a Boltzmann code such as CLASS or CAMB in addition to the Velocileptors
PT corrections. However, through the use of an emulator we can efficiently and accurately
approximate the predictions for a given set of ACDM parameters. Under the assumption that
the predicted power spectrum multipoles are a smooth function of the underlying parameters
when close to some reasonably chosen values, we can use an emulator based on a Taylor series
expansion in the relevant parameter space [41, 48].% We find that the emulator agrees well
with the direct LPT prediction when going to fourth order in the Taylor expansion. After
employing such an emulator both for the Full-Modeling and template/ShapeFit methods,

81n the event that the data require a significantly different parameter space the analysis can be iterated
with the Taylor series recomputed closer to the best fit, assuming the data are sufficiently constraining.
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the MCMC chains converge (Gelman-Rubin |R — 1| < 0.01) within roughly 1-2 hours.” By
analytically marginalizing of stochastic and counterterm contributions (see appendix A), the
MCMC converges in 5-10 minutes for all methods. Therefore, the improved computational
efficiency of a compression is no longer relevant in our setup.

The advantage of the Full-Modeling approach is that it is sensitive to both the early-
universe physics that determines the shape of the transfer function, as well as late-time
dynamics/geometry. Parameters such as wp, Wedm, and Hy affect both the early- and late-
universe dynamics, and are thus expected to be more tightly constrained in the Full-Modeling
approach, when compared to the methods employing a template that fixes the early-universe
dependence. On the other hand, the Full-Modeling approach requires choosing a specific
cosmological model from the start, and a new MCMC fit is needed for any other model
being employed. The parameter compression methods, however, only require one fit, and
afterwards the results can be reused and mapped to any model of choice, though the model
of choice must be sufficiently close to the template cosmology unlike in the Full-Modeling
approach which does not suffer from this requirement.

We show in table 1 the parameters and priors used for the Full-Modeling and ShapeFit
methods. We show the priors on bias parameters for three parametrizations. The standard
setting in this paper is the “intermediate” freedom case for which the cubic bias is fixed to
zero while (14 b1)os, bgdg, and bsag are varied with Gaussian priors applied to the latter two.
The other parameter choices are discussed in appendix D. We analytically marginalize over
the parameters controlling the stochastic and counterterm contributions, and refer readers
to appendix A for further details and validation of this method.

Finally we remark that in order to make contact with earlier work, and in particular with
our companion papers, we use log(10'°Ay) as the “normalization” of the power spectrum
throughout. This choice, being the normalization of the curvature power spectrum at
k= 0.05Mpc™!, is actually better motivated for CMB surveys than galaxy redshift surveys.
Most of the constraining power of our data comes from quasi-linear scales and we better
constrain the matter power spectrum than the curvature (or potential) power spectrum. In
this respect a better choice for normalization may be og. We will discuss constraints on og
later. We also reiterate that the Full-modeling method does not require any re-scaling of

distances by s = rq/ rfff, and therefore the amplitude being constrained here is og not o,s.

4.3 Cosmological inference from compressed statistics

In order to interpret the ShapeFit and standard template results, we must do so in the context
of a chosen cosmological model such as ACDM. While it is simple to take a set of ACDM
parameters and compute the distances, H(z), Da(z), and rq using CLASS or CAMB, in order
to compute compressed parameters assuming a certain fiducial cosmology, it is more tricky in
reverse [51]. Instead we must fit ACDM parameters to the results of a fixed template fit with
another MCMC. We take the chains in the compressed parameters that were obtained from
the initial template fits, and compute the parameter mean vector and covariance matrix, i.e.
e = (f&g,o?”,ozl,m) and Cyy4. Treating © and Cyay4 as a “data” vector and associated
covariance, we can now sample in ACDM parameters so that for each proposed set of (wp,

9This is when using 8 parallel chains on a single node.
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Full-Modeling ShapeFit Bias Stoch/Counter
Min. F. Int. F.* Max. F.
Hy fos (14 b1)os a0
U[55, 79] uo, 2] U[0.5,3.0] N10,12.5]
wh ot boo3 0
N[0.02237,0.00037] | ©[0.5,1.5] | AN0,5] ANT0,5  AT0,5] N10,12.5]
Wedm o bso3 SNo
2[0.08, 0.16] U[0.5,1.5] 0 N[0,5]  N[0,5] | NT0,0(1/ny)]
log(1010 Ay) m bsod SNa
1[2.03,4.03] U-3.0,30 | o 0 NT0,5] | N[0, O(fuar0?/2g)]

Table 1. Velocileptors LPT priors on parameters used in the Full-Modeling (ACDM) and ShapeFit
fitting methods. The ACDM model involves Hy, Qp, Weam, log(10'°Ag) and all of the bias, stochastic,
and counterterms. The ShapeFit method fits fos, o, a1, m as well as the same bias, stochastic and
counterterms. The entries U [min, max| and N[y, o] refer to uniform and Gaussian normal distributions,
respectively. For the bias terms we show both minimal, intermediate (standard), and maximal freedom
cases, defined in appendix D. For the two counterterms we report the priors within the parameterization
for which the counterterms scale relative to the linear theory multipoles. The priors on the stochastic
terms are given in table 2 and discussed in the text.

Tracer | zeg | 1/7g | feat | 10810 My, | o SNy SN, SNy

LRG | 0.8 | 1000 | 0.1 13.3 7.8 2000 5.0 x 10* | 1.0 x 106
ELG | 1.1 | 300 | 0.1 11.9 2.9 1000 2500 2.5 x 104
QSO | 1.4 | 8000 | 0.03 12.7 5.7 | 1.5 x 10* | 5.0 x 10* | 1.0 x 109

Table 2. Relevant quantities used for the prior widths of stochastic parameters (see text). The typical
halo mass, log,, My, per galaxy is expressed in units of h~' My and 1/ng is expressed in h™3 Mpc?.
The characteristic velocities, o are in h~'Mpc. Motivated by these numbers, the last three cloumns
show the widths of the Gaussian priors (centered on 0 and in h~!Mpc units) that are used in this

est.
v

paper for each stochastic parameter within each redshift bin. The results do not depend upon the
precise values chosen.

Wedms I, log Ag) we compute the corresponding vector @¢ny = (fos, ), ar, m)iny. Assuming
all compressed parameters are Gaussian, we then use an MCMC to sample from the likelihood,

L x exp {;(@thy —0)7C; (O — (:))} . (4.3)

When inferring cosmological constraints from the ShapeFit parameters, care must be
taken in interpreting the amplitude fosg appropriately, as the slope rescaling via the m
parameter also changes oss. As noted in refs. [51, 68], the parameter f that is varied in
ShapeFit analyses is actually fA = f(Asp/Aggf)l/Q, where A, = s*?’PIllgl_Wiggle(kp/s, @) is
the amplitude of the no-wiggle power spectrum at the pivot scale, k, ~ 0.03AMpc~—!. The
parameter s describes the scaling of lengths relative to the BAO and is defined to be the ratio
ra/ réef. In order to generate the model 1-loop power spectrum multipoles, we must provide
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velocileptors with the linear power spectrum P}, (k) from eq. (4.2) and the growth factor
f. Defining LPT_RSD as the function that produces the power spectrum multipoles, the nearly
exact degeneracy between f and the power spectrum amplitude (see section 5.9) implies that

A 1/2
LPT_RSD [f X ( Af§> : Pl (k)
sp

As
<> LPT_RSD lf; (Ar§> X P{in(k:)] , (4.4)
sp

and thus the true fogs is given by

1/2
foss =[x [<A8p> dkgk2W]%L(kR)Pl/m(k)‘|

Aref 27
1/2 1/2
= f x (jje’}) l ;—IZHW,%(/@R)Hm(k) exp {mtanh [a In (:)] H (4.5)
Sp T a P
ref fid
o~ %fA;{,z X exp {;T; tanh [a In <T§>] } . (4.6)
sp

Here R is the smoothing scale of the amplitude parameter o and is chosen to be R = 8 h~!Mpc
by convention. There are now two ways in which one could use ShapeFit chains in order
to infer about cosmological parameters: one can use the above equations (either the exact
or approximate forms) to transform the sampled fA chain into fosg, and then use CLASS
to compute fogg for every set of ACDM parameters at the interpretation step; or one can
directly perform the interpretation on fA by always computing f and A, while sampling
in ACDM parameters. We find that the two approaches give consistent constraints in the
ACDM parameter space.

Finally, the m parameter in ShapeFit that controls the shape of the linear power spectrum
can be computed from ACDM parameters through the ratio [51]

d T(ky/s,©) P iggle(k, ©)
- 2 p/S; . T(O.k) = 8 , 4.7
Tk (“ T(kp,@ref)b — Ok = (k.0 o

with primordial power spectrum Pg.

5 Results

Before we present the results from the various systematic tests of velocileptors and the
different modeling methods, we first revisit the issue of covariance volume. In figure 2 we
present 1D posterior constraints from the Full-Modeling fit to LRG mock data as a function
of covariance volume, i.e. multiples of the single-box volume such that the covariance is
rescaled by 1/n,n = 1,3,5,---,15. We show results for fits using two different k-ranges,
0.02 < k[AMpc '] < 0.18 and 0.02 < k [ AMpc '] < 0.20 (which will be our ‘standard’ range).
We find that as the volume is increased, the constraints in €2,, shift towards the truth as
the error bars tighten, which is indicative of a prior volume effect. For Hy and log(10'°A4,)
the constraints remain mostly stable as the volume is increased, with small shifts increasing
with volume that likely relate to the increasing sensitivity to two-loop effects that are not
included in the model. For similar reasons, we observe a divergence in constraints between
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Figure 2. 1D posteriors from the Full-Modeling fit as the covariance volume is varied from that of a
single box (8 [h~1Gpc]?) to 15 boxes ((120 [h~*Gpc)?]).

kmax = 0.18 and kpax = 0.20 hMpc_1 that grows as the volume is increased. This shows
that when using an ultra-tight covariance such as that of the 200 A~ 'Gpc simulation volume,
one can expect 1 — 20 offsets in constraints arising purely from theoretical errors due to
the limited number of terms included in the 1-loop power spectrum model. In addition, as
mentioned earlier, the N-body simulations themselves have systematic errors that become
important at these volumes and can contribute to the shifts we observe.

5.1 Baseline comparison

We begin with comparing constraints in the compressed parameter space between the standard
template and ShapeFit approaches, using the single-box covariance, as shown in the left
panel of figure 3. We see that the posterior means of the two methods agree very closely,
with slightly smaller contours for the standard template due to varying fewer parameters.
Since the reference template used in these fits is the true Abacus cosmology, we expect
a|,. =1 and m = 0. In both cases, the means of all parameters are within 1o of the expected
values. When interpreting these results in terms of a ACDM cosmology, however, we see
a significant difference in the constraints from the two compression methods (right panel
of figure 3). While both methods give unbiased constraints on ACDM parameters (within
1o of truth) the error bars for all parameters are significantly larger for the template case
due to the lack of information from the power spectrum shape in the template approach.
This is expected, as the template method was traditionally combined with external data sets
under the assumption that the parameters determining the shape are not as well constrained
from LSS data than e.g. CMB anisotropies, but in our setup we rely purely on the LSS data
alone(but see section 5.6). Meanwhile, when comparing the constraints between the ShapeFit
and Full-Modeling methods, we find a very close agreement in the shape and orientations of

— 14 —



El ShapefFit Il Template
—— Template Il ShapeFit

Il Full-Modeling
1.05f | 1 70
@ 65 <£
1
t L t t t
1
1.02¢ } 1 1
//'
5 1.00- 7T -~
098t —" | ] i
—t ‘ =
| B—
TN i AL r 7 1
-0.1} T
1

0.4 05 097 1.03 008 1.02-0.1 0.0 055 035 65 70 253035 0.8 0.9
fosg ay a, m Qm Ho log(101%A,) og

a
-
o
o

Ho

log(101°A,)

N W w
n o u

m
o
o
T
1
i
1
1
.
T
1
.
y A
L |
\
S ]
]
1
.
T
1
T T
O;
o o
00 ©

Figure 3. (left): comparison of constraints of compressed parameters for the standard template
method vs. ShapeFit. (right): comparison of constraints on ACDM parameters for the standard
template, ShapeFit, and full modeling methods. The single-box covariance is used for these results,
with our ‘standard’ kmax = 0.2 Mpc ™! (see section 5.2 for the discussion of kpax dependence).

the contours, showing that the ShapeFit method is able to match the constraining power of
direct model fitting, at least for the ACDM case for which it was designed. We do observe
mild differences in the tightness of constraints between the ShapeFit and Full-Modeling
methods. These could be due to a combination of various approximations in the ShapeFit
method, such as controlling the shape of P, with only one parameter and assuming the
compressed parameters to be perfectly Gaussian in the interpretation step.

5.2 Dependence on kpyax

We next test the dependence on scale cuts of our model, for the different methods. In all cases
we fix the lower bound of the k-range to 0.02AMpc~!. This is fully in the linear regime so
the stability of the theory is not affected by the specific value chosen, but this choice simply
removes points too close to the fundamental mode of the cubic box (k = 0.003 hMpc™!).
We then run our fits with upper bounds of kmax = 0.16 — 0.26 hMpc~!. The results are
shown for Full-Modeling and ShapeFit in figure 4 for the LRG, ELG, and QSO tracers. The
higher k-modes, above ~ 0.2 h Mpc ™!, correspond to smaller scales which are more sensitive
to nonlinear effects and galaxy/halo formation physics, which are not well-understood and
therefore difficult to model. Our model includes non-linearities only at the 1-loop level and
bias only up to cubic order. We therefore expect biases to worsen as higher k-modes are
included in the fit. For the single-box volume we find the two methods to remain relatively
stable as kmax is increased as the observational errors match or exceed the theoretical or
modeling errors, however we do observe 2> 1o offsets in the og constraints for LRG and
ELG tracers in the Full-modeling method when kpyax > 0.22 hMpc_l. We additionally find
that for the ELG sample we get more of an tightening of constraints in many parameters
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as kmax is increased than for the other samples. This could be due to the redshift coverage
and higher number density of the mock ELG sample.

In figure 5 we repeat this test for the LRG tracers but using the 25 box covariance. We
show constraints in the ACDM as well as ShapeFit parameter spaces. In this case we obtain
significantly biased constraints when kmax > 0.2 AMpc™!. In the ACDM parameters, we find
a mild improvement in constraining power of Full-Modeling at kyax = 0.18 hkMpc ™! versus our
usual setting of kyax = 0.20 hMpcfl. This worsening of constraints when k.« is increased is
likely due to a sensitivity to higher-order effects that our theory does not adequately describe,
and which become increasingly important with increasing k. When using an extremely tight
covariance, the additional high-k points push the fit towards incorrect models and away
from the constraints coming from low-k data points. In the compressed parameter space we
observe slightly more significant offsets (= 1.0) in the a; and fosg constraints for ShapeFit at
Kmax = 0.18 AMpc~t. When deriving summary statistics from the Full-Modeling constraints,
the o), and o) parameters are significantly more tightly constrained than in the ShapeFit
and Template methods because the ACDM priors in Full-Modeling restrict the allowable
values that the scaling parameters can take [52]. We use the results from figures 4-5 to

motivate a choice of kp.x = 0.20 hMpcf1

as our baseline analysis setting, as this is the
largest kmax for which all three modeling methods are acceptably close to truth (< 1o offsets)
in the ACDM parameter space in both the single-box and full covariance volume cases.
As we proceed to the remainder of tests presented in this paper, we refer readers to
figure 6 for a summary figure of 1D constraints on €y, Hg, and log 10! A, obtained from

each of the tests.

5.3 Joint fitting of LRG, ELG, and QSO mocks

We now turn to the joint fitting of data samples from different tracers and redshift bins.
The three tracers are Luminous Red Galaxies (LRG, z = 0.8), Emission Line Galaxies
(ELG, z = 1.1), and Quasars (QSO, z = 1.4). For the Full-Modeling case, we still
sample in ACDM parameters as usual but compute separate Py(k) models for each red-
shift bin and the likelihood is computed from all data sets, i.e. the data vector becomes
d = (P[RG, pIRG pELG pELG POQSO, 2QSO). This results in a total effective volume of 600
(h~1Gpc)3. We do not assume any correlation between tracers at different redshifts,' so
the total joint covariance matrix has zeros in the indices corresponding to cross correlations
between different tracers. This ensures that contributions to the log-likelihood such as
APZ»LRGCZ-?AP]ELG = 0. We use a separate set of nuisance parameters for each type of
tracer. For the standard template and ShapeFit fits, the free parameters (foss,q 1, m) are
in general redshift dependent. While in principle one could use a single fosg(z = 0) as a free
parameter and then rescale by the fiducial growth factor D(z, 2, = Q9) in order to get the
corresponding parameter for the different samples, the redshift dependence of the a’s and
m parameters is not as obvious. Instead we perform the parameter compression separately
for the LRG, ELG, and QSO samples and obtain three sets of (foss,a) 1,m). to be used

9The mean data vectors for the LRG, ELG, and QSO tracers actually came from the same 25 realizations
and therefore share initial conditions. In principle this means that the redshift bins are not truly uncorrelated,
but we assume so in this work for simplicity.
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obtained with a covariance appropriate to the 25 box volume, fitting to the LRG cubic mock data.
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Figure 6. Constraints on ACDM parameters for the three modeling methods for a variety of different
fit settings and data sets to be discussed in the text. The results are obtained with the covariance for
a single box, 8 (h~*Gpc)?, volume and kpay = 0.2 Mpc™'. In many of the cases Q,, appears slightly
below the truth, which is in part due to projection effects. Here “standard” refers to our baseline
result on the LRG mocks.

as “summary statistics” of each tracer sample. It is in the cosmological interpretation step
that we can either infer ACDM parameters from a single sample or from the combination
of (foss,a),1,m). sets of multiple tracer samples.

In the three panels of figure 7 we show a comparison between results of fitting a single
sample versus joint fits of multiple tracers, for the standard template, ShapeFit, and Full-
Modeling methods respectively. We observe that in each method, the ELG data is significantly
more constraining than the LRG sample, and thus the joint fitting constraints appear to be
dominated by the ELG sample. The QSO mocks are the least constraining data set, due to the
lower number density of Quasars from which the power spectrum is measured. Therefore the
error bars at each Fourier mode are larger than those of the ELG and LRG data, resulting in
significantly poorer constraints in the model parameters governing the power spectrum shape,
i.e. Oy and Hyg. Meanwhile, the amplitude parameter log A, is not as sensitive to the type of
tracer and we observe smaller differences in constraint between the tracer types. Overall, the
tightest constraints on all parameters are obtained in the joint analysis of LRG+ELG+QSO,
but with an almost negligible improvement coming from the inclusion of QSO data.

5.4 Full-shape + BAO reconstruction

In addition to fitting the full-shape power spectra using our model, we can gain extra
constraining power through a joint analysis with the reconstructed BAO correlation function.
The BAO reconstruction procedure aims to undo some of the damping of the BAO signal due
to nonlinear structure growth in order to sharpen its peak, allowing for a better measurement
of the cosmological distance-redshift relation via the well-defined drag horizon scale (see
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e.g. refs. [49, 69-73]). This procedure begins by smoothing the observed clustering signal
by a Gaussian filter S(k) = exp(—(kRs)?/2), which serves to filter out small-scale modes.
Next, we use this smoothed density to estimate the smoothed Zel’dovich displacement,
X ~ S(k)¥yzq, which we subtract from the observed galaxy field as well as from a random
matter density field in order to preserve large-scale power. The reconstructed galaxy density
field is then dyec = dq — Js, with dq and g being the displaced galaxy and shifted random fields,
respectively. Moving to redshift space once again amounts to a rotation of the real-space field,
Xs = Rx with matrix R defined in section 3. In the literature one commonly encounters
two methods for reconstructions in redshift space: RecSym [72] and RecIso [69, 71]. The
first applies the transformation into redshift space equally to both d4 and 5, whereas the
latter method keeps the shifted field in real-space (see ref. [73] for further discussion). For
the DESI simulations considered in this work, the RecSym procedure is applied to produce
the post-reconstruction mock data.

We model the damping of the BAO feature in the reconstructed power spectrum, P =
Pyq + Pss — 2 P45 within the Zel’dovich approximation by splitting the linear theory predictions
into the wiggle and no-wiggle components'' and apply an exponential damping factor!?
to the wiggle part [73]

P(k, ) = (b+ fu?)? (PNW (k) + e M0 P (k) (5.1)

where the ¥? in the damping factor is the isotropic component of the linear pairwise
displacement Agl]d = <A§ldA?d>, of the displaced density field at |q| = rq, i.e.

S2(u) = 2614 (a) (52)
4=7d

= [14 £+ P?] [252(0) - 252(ra)] (5.3)

5(0) = 5 [ 31— 8)%jolha) Fin (). (5.0

Finally, after generating the reconstructed power spectrum, we use a Fourier transform
to obtain the reconstructed correlation function. We limit our model to linear bias as it
has been found in previous works that the IR damping of the BAO feature dominates over
other nonlinear effects such as mode-coupling which are largely cancelled by reconstruction.
Following ref. [73] we employ a new method for modeling the broadband that is not degenerate
with the BAO signal, which in Fourier space involves using a basis of cubic splines. When
fitting the correlation function in configuration space this is equivalent to setting a minimum
scale, rmin, with the exception of two Hankel transformed basis functions that are included

"There are numerous methods for performing this split. Here we use the method described in appendix D
of ref. [74] that uses a sine transform to identify the BAO feature in real space and subtracts it before
transforming back to Fourier space to produce a wigge-free power spectrum.

12Previous works studying BAO reconstruction have sometimes derived different damping factors for Py,
P;, and P,,. This results from a 15* order approximation in LPT, and a more consistent approach has the
randoms damped by the same factor. This subtlety is described in detail in ref. [73], as well as in ref. [75]
for a slightly different reconstruction scheme. However, we find that the difference between the old and new
methods results in negligible effects to the fit posteriors.
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in the quadrupole:
2'2

QQ,n (TA) = 27_‘_2

/dkk2W3 (Z - n) ga(kr), n=0,1 (5.5)
where W is the piecewise cubic spline kernel [76, 77], jo is a v = 2 spherical Bessel function,
and we choose A = 0.06 hMpc~! for the separation scale of the splines. We additionally
include a template of polynomials in even powers of r for the monopole and quadrupole
moments, truncated at quadratic order, to marginalize over contamination by large-scale
systematics below some kpi,. The broadband model in configuration space is thus [73]:

Tkmin 2
80(7”) = ap,0 + ap,1 ( 2 )
™

TKmin

Bo(r) =
2(r) = azp + az 1 < 9

2
> + A%(a92Q20(rA) + az3921(rA)) (5.6)

where kpi, = 0.02 hMpc*1 and the parameters {ag 0, 0,1, a2,0, 021,022,023} can be analyti-
cally marginalized over. We use broad Gaussian priors centered at 0 with widths of 5 x 10° for
all of these broadband parameters. Finally, we note that one should also include some more
flexibility in the damping factor by introducing parameters ¥ | in the exponent in eq. (5.1)
to marginalize over the effects of nonlinearities. However, we did not find this necessary in
the tests presented here, and so the damping factors vary only as f, Pin, and rq change in
Full-modeling and likewise with ShapeFit through the fos;s and m parameters.

The joint covariance matrix is computed numerically using the reconstructed corre-
lation function realizations of the EZmock simulations. So the joint data vector is now
d = {PY"(k), PP*(k), £0°% (r), €5°°* (1)} with cross-correlations between PP™(k) and €2°%(r)
accounted for as nonzero off-diagonal elements in the joint covariance matrix. (e.g. see
figure 3 of [48])

We show in figure 8 comparisons of the cosmological constraints pre/post BAO recon-
struction. We find that for all three modeling methods there is significant improvement in
constraints when joint-fitting with the post-recon correlation function, most significantly
in Hy as the cleaner measurement of BAO scale from the sharpened peak allows for better
calibration of the distance-redshift relation that constrains Hubble’s constant. When com-
paring all methods we find consistent constraints between ShapeFit and Full-Modeling that
are both tighter than those of the standard template.

5.5 Beyond ACDM: wCDM model

With the expected improvement in cosmological parameter estimation from future galaxy
redshift surveys, we hope to place better constraints on parameters not just underlying the
standard ACDM model, but also departures from it. From the Friedmann equations, the
energy density of a specific component of the Universe is related to the scale factor, a, by

p ox g 30+w) (5.7)

where w = p/p is the equation of state parameter. One of the simplest extensions to ACDM
involves allowing the dark energy equation of state to differ from the value of —1 that
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Figure 8. Comparison of cosmological constraints with and without BAO reconstruction for each
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methods. For all plots above, we present results using the covariance appropriate to the single-box
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the inclusion of post-reconstruction BAO data. In both plots we show the results with the single-box
(2h=1Gpc)? volume. In the legends, “FS” refers to the pre-reconstruction full-shape power spectrum
data, and “BAO” refers to the BAO signal in the post-reconstruction correlation function.

corresponds to a cosmological constant (A) as the energy density is constant in that case.
On the other hand, “quintessence” models have w # —1 such that dark energy is a dynamic
quantity in the Universe.'?

Figure 9 shows in the left panel the constraints on wCDM parameters obtained from each
of the three modeling methods, for the covariance of the single-box volume. Since the Abacus
cosmology assumes a cosmological constant for dark energy, the expected value is —1. We
find that the ShapeFit and Full-Modeling methods both give constraints on w that are within
1o of the expected equation of state. Meanwhile the parameters in the template method are
very poorly constrained when w is varied. When changing the properties of dark energy away
from the cosmological constant the universe’s expansion history and geometry are significantly
altered, thus affecting the o | parameters and fogss. This results in the observed degeneracies
between w and the other parameters (which also determine fogg, and o ;). If those three
parameters are the only information we have from the data, as is the case in the template

fit, then this results in very poor constraints. However, moving far along those degeneracy

131f dark energy is described by a scalar field, ¢, with a canonical kinetic term then the equation of state
can be interpreted in terms of kinetic and potential energies via,

3P -V(9)
307 +V(9)
Under this assumption the equation of state is usually expected to lie between —1 < w < 1, with values

w < —1/3 leading to cosmic acceleration. However, more exotic models exist that do allow for negative kinetic
energies.

— 24 —



directions also significantly affects the shape of the power spectrum, which the ShapeFit and
Full-Modeling methods are sensitive to. Therefore these two methods do not suffer from
the degeneracies as much as the template fit. Comparing ShapeFit to Full-Modeling, we
find that the constraints on parameters from the ShapeFit method are a bit wider than in
Full-Modeling. This is likely because all of the shape information is contained in a single
parameter, which then needs to be interpreted as constraints on three different cosmological
parameters (w,wn, and Hp), as these all control the shape of the power spectrum. Thus, a
poorer measurement of m results in more sensitivity to the degeneracies in shape that the
template fit also suffered from. Finally, we also note that projection effects (see appendix B)
in Full-Modeling cause close-to 1o offsets in the w, Qy,, and Hy parameters. While these
shifts are not huge for this dataset, we also are interested into what extent including more
data can mitigate projection effects. We show in the right panel of figure 9 a comparison
of Full-Modeling fits with and without the inclusion of reconstructed BAO data. We find
that including BAO results in noticeable improvements in the constraints by shifting the
posteriors closer to the truth. These projection effects are not as significant in the ShapeFit
method, which suggests that the extra information that Full-modeling obtains w.r.t. ShapeFit
may come from regions of the power spectrum that are degenerate with counterterm and/or
stochastic parameters. A similar effect was observed and reported in ref. [52] when comparing
fosg constraints between Full-Modeling and standard template methods in BOSS data.

5.6 Priors from CMB

The ‘standard’ template method was conceived at a time when the data from galaxy redshift
surveys was not constraining enough on early-universe physics to be competitive with
constraints from probes such as Planck that modeled CMB anisotropies. In particular, data
from CMB anisotropies tightly constrain the ACDM parameters that determine the shape
of the power spectrum [78], and this shape is left unaltered by late-time physics such as
dark energy or spatial curvature. These constraints are tighter than those from the galaxy
survey themselves. In such a scenario, the primary degrees of freedom to be constrained by
galaxy surveys are late time growth and the late-time distance-redshift relation. The template
method was intended to be used in conjunction with the other probes, such that most of
the information on P(k) shape came from strong priors using results from e.g. Planck. To
demonstrate this, we repeat the cosmological inference of the template results, but including
an additional likelihood derived from the Planck 2018 results [79]. We do this by taking
the chains from the baseline model of the Planck Legacy Archive, “base plikHM TT lowl
lowE”, and compute the covariance matrix, Cp1, from the (wh, Weam) samples. We do not
apply a prior on A or Hy as we are interested in how information from galaxy clustering
constrains the late-time growth compared to Planck. When we sample in these ACDM
parameters we now include the additional likelihood

1
L) o exp {—2A®TCp11A@} , (5.8)

where A@ is the difference between the sampled (wp, Weam) and the values in the Abacus
cosmology. Because we are including the CMB prior on wy, we remove the BBN prior that
we usually use in our standard analyses. We show these results, comparing the template,
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Figure 10. Comparison of ACDM constraints from the template fit(blue), Full-Modeling (green),
and ShapeFit (red) with Planck priors, on the Abacus LRG (z = 0.8) mock data. On the left we show
the fits with the covariance for the full (25 x (2h~*Gpc)?) volume while the right figure shows the
results with the single-box (2h~1Gpc)? volume. In the Qcqmh? — Qph? panels we include black lines
showing the Planck prior.

Shapefit, and Full-Modeling methods with Planck priors, in figure 10, using the LRG (z = 0.8)
mock data within the standard ACDM model. We see that the inclusion of Planck priors
significantly tightens the constraints on €2;,,. Despite us not applying any prior on Hy and
log A, we still observe a shift to the truth and tightening in those parameter constraints for
all three methods, with the log A5 posterior slightly narrower for the Full-Modeling approach.
Overall, all three methods agree very closely in all of the parameters when including these
priors, suggesting that the difference in constraining power of these methods is almost entirely
due to shape information (which is better determined by the CMB than the galaxy survey).

5.7 Varying ng

For previous fullshape analyses from spectroscopic surveys, it was common/necessary to fix
(or impose tight priors) on several of the ACDM parameters such as wy, M,, and ng, using
information from the CMB and BBN. With the increasing constraining power of DESI and
future surveys it is of interest to see how much we can untangle fullshape analyses from
other probes. While a tight prior on wj (see appendix D) is still necessary, the improved
constraining power of DESI may allow us to free ns and/or M,.'* To investigate the impact
of uncertainty in ns on our analysis given the statistical uncertainties in Y1, we chose mock
data from one of the DESI Y1 redshift bins (LRG; 0.4 < z < 0.6) with an appropriate analytic
covariance. We compare constraints on ACDM parameters with various prior choices on ng,
including a uniform prior, Gaussian with widths of 10x and 5x Planck 2018 constraints

In this paper we only perform tests with ns free and refer readers to ref. [44] for a discussion on varying M,,.
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Figure 11. The left panel shows Full-Modeling fits to the mean of Cutsky mocks in the DESI
Y1, LRG 0.4 < z < 0.6 redshift bin, with different priors on ns;. We use the notation U[min, max]
and Ny, o] to denote uniform and Gaussian priors, respectively. In the right panel we compare
Full-Modeling ns fixed versus free using the synthetic mocks created with velocileptors simulating
the full Y1 footprint: BGS (0.1 < z < 0.4), LRG (0.4 < z < 0.6), LRG (0.6 < z < 0.8), LRG
(0.8 < z < 1.1), ELG (0.8 < z < 1.1), ELG (1.1 < z < 1.6), and QSO (0.8 < z < 2.1). We show

constraints with uniform priors on n, in the free case.

(ons = 0.004) [79], and with ns fixed. These results are shown in the left panel of figure 11
for the Full-Modeling method. We find that for both the 10x and 5x priors on ns the
constraints on weam, Ho, and log A5 are identical to those when ng is fixed, suggesting that
the Full-Modeling constraints on ACDM parameters are robust even if the ns constraints
from the CMB are systematically off by 100. In order to see how well ng can be constrained
completely independently from Planck we additionally fit to noiseless synthetic mock data
vectors simulating all seven DESI Y1 redshift bins: BGS (0.1 < z < 0.4), LRG (0.4 < z < 0.6),
LRG (0.6 < z < 0.8), LRG (0.8 < z < 1.1), ELG (0.8 < z < 1.1), ELG (1.1 < z < 1.6),
and QSO (0.8 < z < 2.1) using the appropriate Y1 analytic covariance for each redshift bin.
We compare the case with uniform priors on ns to the case with ng fixed. These results are
shown in the right panel of figure 11. We find that despite the slight degradation in
constraint with the flat prior on ng, we are able to measure ng to a 3% precision.

5.8 Comparison of LPT and EPT

In addition to the LPT model that we primarily focus on in this paper, velocileptors also
has an Eulerian perturbation theory module. The EPT kernels are constructed from the
Lagrangian kernels while setting the IR resummation scale, kir, to zero. The Eulerian and
Lagrangian theories differ in their treatment of cold dark matter, the first describing dark
matter as a perfect pressureless fluid, and the latter describing it as collisionless particles.
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The overdensities derived from both theories agree order-by-order except when particle
trajectories cross. The EPT model in velocileptors employs the galaxy bias scheme
described in ref. [80]. The mapping between the Lagrangian and Eulerian bias bases can
be achieved within velocileptors via the transformations [37]:

by =1+bf

8 2
bf:b§+ﬁbf, bE:bL—#)f

S S

bE = 3p% + bl (5.9)

Lastly, the IR resummation in EPT is performed by splitting the wiggle and no-wiggle
parts of the power spectrum, using the same method as is employed in modeling the poste-
reconstruction BAO correlation function (section 5.4) and applying a damping factor to the
wiggle component. We refer readers to ref. [37] for full details of the Eulerian model and
how it compares to LPT. We show in figure 12 a comparison of Full-Modeling constraints
when fitting the LRG cubic mocks using LPT and EPT. We see that the constraints agree
to within fractions of a o. A more detailed comparison between the two models, including
fits to the ELG and QSO mocks for ShapeFit and Full-Modeling, is presented in ref. [47]
along with comparisons to other EFT models on the market.

5.9 Varying f and og separately

The “standard” method of compression involves varying f while keeping o,g fixed to the
fiducial value aéef, and then reporting the product as "¢t In principle, one should be
able to vary f and o4 independently and present the result as f""o§™°. This is because
the degeneracy between f and o is broken in the 1-loop terms of the power spectrum. In
order to test the ability to constrain osg, we run a fit in which osg(z = 0) is a free parameter
in addition to f(z) and the other compressed parameters. We vary os3(z = 0) by re-scaling

the linear power spectrum by:

2

where o4 = 0.8076 for the Abacus fiducial cosmology. The reported fogg is then fogg =
f(2)ossD(z) where the growth factor D(z) is computed from the fiducial value of Oy, = 0.315.
We show these results in figure 13. We observe that even though foss agrees with that
obtained from the standard method, the osg constraint of 0.570 £ 0.087 is significantly
below the true value of 0.8076. This implies a growth rate f(z) ~ [Q2m(2)]%% > 1 which
is unphysical. While it is unfortunate that the 1-loop corrections to the power spectrum
can not sufficiently constrain f and osg independently, we reiterate that our constraint on
foss remains robust. We also note a slight degeneracy between ogg and m. While m is
designed to change the shape of the power spectrum, o is an integrated quantity that is
also mildly affected by changes in the shape.
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Figure 12. Full-Modeling fits to the mean of LRG Cubic mocks using the LPT and EPT models
within velocileptors.

6 Conclusion

Observations are probing the Universe and its evolution with unprecedented precision, allowing
for significant improvements in measurements of fundamental parameters. The increased
constraining power of these data also increases the sensitivity of our results to systematic
effects present in models and analysis methods. The largest galaxy redshift survey to date,
the Dark Energy Spectroscopic Instrument (DESI), is currently under way with its first
year of Fullshape data being unblinded in the spring of 2024. To prepare for unblinding we
must have a detailed understanding of the sources of systematic and theoretical error when
fitting observations, the flexibility and limitations of our models, and the performance of
different analysis methods. In this paper we presented tests of these effects using the public
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effective-perturbation-theory code velocileptors, fitting data from the AbacusSummit
suite of simulations. Our focus will be on cosmological constraints using the Lagrangian
Perturbation Theory (LPT) module in velocileptors, though we also explore fits using
its Eulerian Perturbation Theory (EPT) counterpart. In particular, we fit LRG, ELG, and
QSO mock data at effective redshifts of z = 0.8, 1.1, 1.4 respectively, consisting of clustering
measurements from 25 cubic boxes of 8 (h~'Gpc)? each for a total volume of 200 (h~'Gpc)?
for each tracer type. Companion papers to this one, using other effective perturbation theory
codes Folpsyv and PyBird, are scheduled to appear concurrently (refs. [44, 45], including in
addition a comparison paper (ref. [47]) showing that all three effective-theory pipelines and
models behave very similarly when the underlying assumptions and settings are consistent.
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In this paper we discussed three modeling methods: (1) the standard Template fit, the
default method used in previous BOSS and eBOSS analyses, that compresses observed multi-
poles into three summary statistics, ( foss,,a1) while keeping the linear power spectrum
fixed; (2) the ShapeFit method which introduces an additional compressed parameter m
to the standard Template that modulates the shape of the linear template power spectrum
which depends on early universe physics; and (3) the Full-Modeling method which directly
samples in the parameter space of a cosmological model in order to fit the data. The first two
methods are model-agnostic and so the compression only needs to be performed once, after
which the obtained summary statistics can be mapped to any cosmological model (ACDM
or extensions) of ones choosing. Despite the Full-Modeling method technically requiring
a Boltzmann code to compute the linear power spectrum at every step of an MCMC, the
use of Taylor series expansion emulators make the difference in computational cost/time
negligible when compared to the compressed analyses.

We showed throughout the paper that the increased information from the shape of
the linear power spectrum results in significant improvements in cosmological constraints
in ShapeFit when compared to the standard Template analysis, when CMB data are not
included. Compared to the Full-Modeling approach, ShapeFit provides consistent results on
ACDM (and wCDM) parameters with minimal loss in constraining power. In varying the
upper bound of the fitting range, we found that the models give unbiased constraints for
scale cuts up to kmax < 0.2 hMpc~!. When including priors from Planck in order to constrain
early universe information, all three methods give consistent results. Since the upcoming data
will include tracers from different redshifts, we tested the ability of our pipelines in fitting
simultaneously the tracers from three redshift bins, finding the joint analysis to improve the
constraints without any noticeable systematic effects.

Because one of the most powerful sources of cosmological information in LSS that DESI
can detect is the Baryon Acoustic Oscillation (BAO) signal, whose well-defined scale can be
used as a standard ruler to constrain the distance-redshift relation, we combined our fullshape
analyses with post-reconstruction BAO correlation function, finding significant improvements
in constraints for each modeling method. Finally, we also show how each method performs
when extending the parameter space beyond the standard ACDM model by varying the dark
energy equation of state parameter w. The ShapeF'it and Full-Modeling methods are both able
to obtain consistent and unbiased constraints within the wCDM model, whereas the standard
template suffers greatly from degeneracies that can not be broken without shape information.

In addition to the velocileptorsLPT model, the pipeline also has a module based on
Eulerian perturbation theory (EPT). We show that these two theoretical frameworks provide
consistent constraints, in agreement with the more extensive comparisons along with other
PT pipelines, FOLPSv and PyBird, presented in ref. [47].

We conclude by summarizing the optimal setup for velocileptors for DESI Y1 fullshape
analyses. The scaling of the biases with og appears to be a more natural choice of parameter-
ization that is closer to the constraints from the data and can ameliorate shifts to lower og
in the posteriors when the data is not sufficiently constraining. We recommend against the
use of the partial Jeffrey’s prior in attempts to reduce projection effects, due to it being a
highly informative prior in the cosmological parameters. Our counterterm parameterization
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that scales relative to linear theory allows for a more intuitive choice of priors on the «,,
parameters as “fractional corrections to linear theory”. When fitting the hexadecapole we
strongly suggest restricting the k-range in Py to a kg max ~ 0.1 hMpc~! as this minimizes
the model’s sensitivity to higher orders in perturbation theory and non-linear effects such
as Fingers of God. For the monopole and quadrupole a scale cut of kmax = 0.20 hMpc ™!
has been found to perform well. Finally, we also suggest the use of physically motivated
Gaussian priors on the stochastic parameters that can be justified based on the characteristic
physical scales in the system (as captured, for example, in the halo model).

7 Data availability

Data from the plots in this paper are available on Zenodo as part of DESI’s Data Management
Plan (DOI: 10.5281/zenodo.10951714). The data used in this analysis will be made public
along the Data Release 1 (details in https://data.desi.lbl.gov/doc/releases/).
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A Analytic marginalization

We can substantially speed up our MCMC fits by analytically marginalizing over the linear
nuisance parameters in our model, i.e. the parameters of the stochastic and counterterm
contributions (ag, g, ag, SNy, SN2, SNy). By reducing the number of sampled parameters
our chains are able to converge in under 10 minutes instead of an hour or two. The procedure
for marginalizing over the linear parameters b; involves splitting the theoretical prediction,
into the piece dependent on the nonlinear parameters a that we sample in and the “template”
piece that is multiplied by the linear parameters: ¥ = W(a) + >°; ;¥ ;. The likelihood
distribution marginalized over the linear nuisance parameters is given by [81, 82]

P(¥,| ¥, ¥y, 00) = /d9 L(Wq|Wo,¥,0)P(0), (A.1)

where ¥, is the data and P(6@) denotes the priors on parameters 6;, which we choose to
be Gaussian (centered at zero) with widths oy ;:

1 62
— ! e <_;> (4.2)
2#05’1. 204,

The model likelihood in the integrand is

P(HZ“O'QJ)

L(Wg|Wo, W;,0) = (2m) "2 |C 7|

¢ o (oS o )T Ea (s 0] (4
Defining A = ¥; — ¥( and log Ly = —%ATC_IA we get

-1 ..0-0-(@201\1@ -++5--)+ CATC19,%,
P(W 4|, ¥, 09) o<£0/d0 e 3 220,500 (¥ it ey 0 )12 ’

_ co/do exp —% (676 - VTL1V)}
n/2 3
- (27T|)L| Loe2 Y (A4)

where we completed the square in the second line and defined the matrices L;; = \IIEZ»C _I\Ilu i+
0ij/(0s05) and V; = \IIEZ-C_lA before taking the multivariate Gaussian integral. So then
the log-likelihood consists of the four terms

1 1
log P = log Lo+ VL™V — S log|L| + glog(%r). (A.5)

Despite analytically marginalizing over the linear parameters, we can always recover their
distribution using the chain containing non-linear parameters. At each step of the chain,
the nonlinear parameters are fixed and the likelihood is a Gaussian function of the linear
parameters with known mean and variance, i.e. for step n in the MCMC, the likelihood
depends on linear parameter 6#; like:

log £,,; = (0; — G_i)T./\/fl(Qi — 0;) + const (A.6)
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Figure 14. Comparison of Full-Modeling constraints with and without analytic marginalization of
linear parameters: ag, ae, SNg, SNo. Here we show results for the full 25 x (2 h~1Gpc)? volume to
show that our analytical marginalization method is robust even at very large volumes.

with variance A and the mean 6; determined by the (fixed) non-linear parameters. Recon-
structing the distribution of parameter 6; simply amounts to averaging over all of these
Gaussians. This allows us to still be able to e.g. check the effects of our priors or to identify
any degeneracies between linear parameters and others in the model that could be driving
projection effects. We show in figure 14 a comparison of constraints from the Full Modeling
method with and without analytic marginalization of the linear parameters. For the param-
eters that are being sampled in both cases, we find consistent behavior in the contours as
expected. In order to make sure that the analytic marginalization is also correctly handling
the parameters that we marginalize over, we maximize the first two terms in (A.5) (the latter
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Params FM Standard (o) | FM Analytic Marg (o)
Hy 67.67 (0.35) 67.63 (0.34)
+0.0026
Nolinear O 0.3139 (0.0023) 0.3143 (+0:0026)
log(10104,) | 2.998 (+0917) 3.001 (70955
bog 1.642 (5:013) 1.644 (*5073)
by 0.8982 (1049) 0.8705 (F033)
b —0.7607 (*032) —0.8512 (1929)
o 0.6987 (6.1) 2.468
' s ~11.69 (5.7) —13.08
Linear
SNo —890.3 (420) -962.4
SN, —1.919e4 (4300) —1.911e4

Table 3. Comparison of Full-Modeling best-fit parameters with and without analytic marginalization.
Uncertainties of the posterior distributions are given in parentheses for all sampled parameters.

terms describe the volume/width of the likelihood surface). This gives us the best-fitting
values for the nonlinear parameters. From the maximized posterior, the corresponding best-fit
points of the analytically marginalized parameters can then be directly calculated:

o = Z VL. (A7)

Once we have found the best-fitting nonlinear parameters and by extension ¥ = ‘Il]gf +
Do O?f\IIEE, the maximum log-likelihood is just:
log P — —%[prf]Tc—lq:bf +log|C™!| ~ & log(2m). (A.8)

In table 3 we show the best-fitting parameter values from Full-Modeling fits with and
without analytic marginalization. We see that the parameters that we marginalize over are
well behaved and on the same order as they take when being sampled.

We also note the third term in eq. (A.5), —(1/2) log | L|, which is the log of the determinant
of the (linear parameter) part of the Fisher matrix. One prior choice that one can very easily
implement is a “partial Jeffrey’s prior” which removes this term from the likelihood. This
prior can cause significant shifts in constraints in cases where parameter projection effects are
noticeable, as the Jeffrey’s prior removes some of the phase space volume from the likelihood.
We discuss the implications of such a prior in appendix B.

B Parameter projection effects and the role of priors

In this section we discuss the role of priors on the parameters of our model and the effect
they can have on parameter projection effects — defined here as shifts in the marginal
posteriors away from the maximum likelihood regions due to a non-Gaussian posterior surface.
These effects frequently arise when there are several parameters in the model that are poorly
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Figure 15. Toy model examples of information loss in projected posteriors. The left panel shows the
posteriors from sampling from a likelihood distribution that is constructed out of the sum of a small
Gaussian and a Rosenbrock function in 2D. The dashed lines label the maximum likelihood values of
the two parameters x; and 3. The ‘truth’, and likelihood maximum, appears to be in the tail of the
1D posteriors due to the large volume (area) at only slightly lower likelihood near z1 ~ x2 ~ 0. The
right panel shows posteriors from two different “data sets” (different likelihood distributions). Data 1
is constructed from a Rosenbrock function and Data 2 is a Gaussian distribution. While in the full
space (2D) it is clear the posteriors disagree, in projection (here 1D) the posteriors appear consistent.

constrained or partially degenerate. If there are degeneracies between parameters in the
model, regions of the parameter space far from the maximum likelihood point may have very
little likelihood penalty compared to the best fit. In spaces with large numbers of dimensions
the “parameter volume” in such regions can be large, and integration over a subset of these
parameters can shift the peaks or means of the marginal posterior distribution significantly
away from the maximum likelihood values or the “input cosmology” in our tests. In addition,
when the data are not sufficiently powerful the constraints on the cosmological parameters
can depend on the choice of priors and the parameterization.

It is notoriously difficult to visualize complex probability distributions in high-dimensional
spaces, and unfortunately projections necessarily remove information even if they are given
from many viewpoints. For this reason marginal likelihoods can appear consistent (i.e.
overlap in projection) when they are not and they can appear inconsistent when they are
actually consistent. Even linear changes of the projection axes can change the appearance
of concordance. Such issues are by no means specific to our models: projection effects in
high-dimensional parameter spaces have been encountered in many areas of cosmology and
have been widely discussed in the literature (see e.g. refs. [83-87] for recent discussions).

In figure 15 we show two toy model examples of projections, where the left plot is
inspired by figure 1 of ref. [85] and the right plot is inspired by figure 1 of ref. [84]. For the
first example, we construct a fake likelihood distribution by adding a Rosenbrock function,
f(z1,22) = (1.0—21)2+0.5(z2 — 23)2, and a sharp 2D Gaussian centered at (7, = 2.5, 75 = 6)
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with a width of ¢ = 0.25 along both parameter directions. The maximum of the total
likelihood distribution is very close to the center of the Gaussian, and is labeled with grey
dashed lines in the figure. However, the contribution of the Rosenbrock function peaks at
(1.0,1.0) but in a much more gradual way. The result is more likelihood “volume” for the
MCMC to explore near (1.0,1.0) than near the true maximum of the whole likelihood. As a
result, the marginal posterior distributions for parameters x; and z9 are significantly offset
from the true best-fitting points.

The second cautionary example of projections is presented in the right panel of figure 15
and shows posteriors from two “data sets”, which we simulate by constructing two different
fake likelihood distributions. For Data 1 we again use a Rosenbrock function, f(x1,x2) =
(1.0 — 21)? 4+ 10(z2 — 2%)? and for Data 2 we use a Gaussian with means (7, = 1.5, Z2 = 0.0)
and widths of 0.2. In this example we demonstrate how the constraints on x; and z9 appear
to agree for the two data sets when looking at the 1D posteriors, but in the 2D panel the
two data sets are clearly in tension. This serves as a cautionary tale about interpreting
constraints from a multi-dimensional posterior surface when looking at the projections onto
lower dimensions. It is naturally difficult to visualize an N-dimensional volume, but looking
only at 1D or 2D projections of the full distributions might lead one to misinterpret results.

Finally, as an honorable mention, we refer readers to figure 7 of ref. [83] in which the
authors show a toy model of posteriors from two different data sets with three sampled
parameters, x, y, z. The posteriors for these three parameters are consistent between data sets.
However, after performing a linear transformation to new coordinates, (x +y — z, x + z — vy,
y~+z—x) one finds discrepant constraints on x +y— z. This shows that tensions can be hidden
due to particular choices of parameterization, and that appropriate coordinate-independent
metrics are necessary to measure the consistency between data sets or results.

B.1 Projection effects for DESI

To demonstrate the impact of projection effects in the specific case of DESI data with
covariances similar to those expected from the first year we turn to synthetic data created
with velocileptorsfor each of the seven DESI Y1 redshift bins: BGS (0.1 < z < 0.4), LRG
(04<2<06,06<2<0.8,08<z2<1.1),ELG (0.8<z<1.1,1.1< z<1.6), and QSO
(0.8 < z < 2.1). Since the data we are fitting to have been generated from the model, with no
noise added, the best-fit point occurs at “truth” and has x? = 0. However x? may rise slowly
along some directions which have significant volume, shifting the marginalized posteriors away
from the best-fit point. While the ACDM (with and without fixing n,) and kACDM models
do not exhibit significant projection effects, we do observe them for wCDM. We show the
wCDM joint fits to the seven Y1 redshift bins in figure 16. Note that the marginal posteriors
on several parameters (black lines in the left hand panels of figure 16) peak way from the
input model, even though the model is, by construction, a good fit to the (mock) data and
the maximum likelihood point is (again by construction) at the true values of the parameters.
As the data become more constraining these projection effects are reduced — shown as the
red contours in the same figure where the errors have been scaled down by a factor of 5.
Note that some projection effects are still visible in the red contours. The posterior for 2,
is still offset by a non-trivial fraction of its “new” error bar, but the absolute value of the
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Figure 16. Full-Modeling wCDM fits to synthetic data created in each of the DESI Y1 redshift bins
with corresponding analytic covariances. Left: intermediate fits with the real Y1 volumes (black)
compared to fits with the covariances rescaled by a factor of 1/5. Right: minimal freedom fits with
three different prior choices on the analytically marginalized counter and stochastic terms. The black
contours correspond to a partial Jeffrey’s prior (only on linear parameters) discussed in the text, the
red contours show the fit with our usual Gaussian priors described in table 1, and the green contours
correspond to ‘infinite’ priors. The stars in the 2D panels and solid vertical lines in the diagonal (1D
posterior) panels denote the best-fit models obtained by running a minimizer starting at the MAP
values of the chains.

offset is reduced. As we continue to reduce the error bars the contours shrink to eventually
be d-functions at the true values. It is also worth noting another feature of these projection
effects. They typically occur when there are many parameters, some of which are partially
degenerate. They also tend to lead to shifts that are O(10). This is because the likelihood
falls as exp[—x?/2] moving away from the best-fit point, while the volume in parameter
space grows as a power of the “parameter distance”. Eventually the Gaussian overcomes
the impact of the volume. In the right panel of figure 16 we show wCDM constraints to the
same synthetic data using three choices of priors on the linear parameters (ay,a2,SNp,SN3):
infinite uniform, Gaussian, and the (partial) Jeffrey’s prior. The stars and solid vertical
lines denote the best-fit values obtained from running a minimizer, and demonstrate that
the shift between marginal posteriors and maximum likelihood values are due to projection
effects. We find that these projection effects are slightly reduced when switching from the
flat to Gaussian prior, showing that the Gaussian priors on the linear parameters are not
entirely uninformative. The projection effects are more significantly reduced when applying
the Jeffrey’s prior and we discuss the implications of using such a prior in the next section.

B.2 Jeffrey’s prior and reparameterizations

In addition to shifts in the posteriors such that they peak away from the ‘true’ values,
insufficiently constraining data in a high-dimensional parameter space can lead to increased
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sensitivity to priors and choice of parameterizations. This is another manifestation of the
likelihood not dominating the posterior and is a generic feature of inference in high dimensions.
If we had firm theoretical reasons to prefer one model parameterization over another this
would not be a problem, but in practice there are several choices between which there is
little theoretical preference. We discuss some of these implications here — first discussing
the choice of parameters and then the Jeffrey’s prior.

A natural'® set of parameters for the model would be the cosmological parameters (e.g.
og) and the bias parameters and counterterms (b; and «;). However some of these are at
least partially degenerate. Lowering A, or og while raising a can leave a k?P unchanged,
and a similar upward adjustment of b; can reduce much of the impact from the other terms

“volume” at

so that x? changes little. Since, for linear priors on b; and «y, there is more
large values than small there is a natural tendency to shift the posterior to lower og. The
quantities best-constrained from observation are the power spectrum multipoles, and in
particular the monopole. For this reason we use parameters that are closer to the data
space, i.e. bog rather than b (see table 1). While this is a natural choice, in terms of the
b; it corresponds to a prior that rises with og [88]. For example, the Jacobian translating
between (b, 0g) and (bog, og) is simply og. Inference using the second set of parameters is
thus equivalent to inference using the first, plus a prior P(og) & 0g. When oy is not well
constrained by the data, this prior choice will shift the marginal posterior. Similar comments

hold for the other parameters of course.

A method that is sometimes used in the statistics literature to reduce the impact of
parameter changes is to include a “Jeffrey’s prior”. This corresponds to the square root of the
determinant of the Fisher matrix, and has the same role as the familiar /=g d*z in General
Relativity. If implemented consistently, this removes the Jacobian from transformations of
variables and so is sometimes termed'® “uninformative”. There are some concerns about
taking this approach in our situation however.!'” First, we do not believe that the physics
indicates that e.g. (In[1 + b'°], cosh 0g) is as good a parameter set as (bog,og) for example.
Our parameters have at least some theoretical justification that we’d like to include as “prior
information” in our model specification. Secondly, as usually implemented, the Jeffrey’s prior
is a strong function of several key cosmological parameters.

To see this, let us consider the partial Jeffrey’s prior that is sometimes introduced. This
involves computing v/det F' for only those parameters that enter the model linearly (if all
parameters enter linearly, then this is the “full” Jeffrey’s prior, however in that limit the
likelihood is Gaussian so the issue of projection effects does not arise). The calculation in the
previous appendix shows that introducing such a prior is equivalent to dropping the log ||L||
term in eq. (A.5) (see also ref. [86]), making this a very easy change to make. That this
prior is a strong function of the underlying cosmological parameters is most easily seen by

15This is not the only choice. One could imagine choosing e.g. log priors in the mass scale of the halos
hosting the galaxies, or linear deviations from the peak-background split prediction (where the b,>1 are
non-linear functions of b1), or many other choices.

16While common, this nomenclature is incorrect. A much better term would be “reparametersation invariant”
since in general — and in our case — the prior is “informative” from the point of view of inference.

"The Jeffrey’s prior and problems with it are also discussed in ref. [89], including an example from ref. [90].
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Figure 17. A 2D slice through the partial Jeffrey’s prior for ACDM. We show the variation of the
prior in the 2, and A, directions, with all other parameters fixed to their best fit. The dashed grey
lines in the lower left panel show the values of log(101°A,) and (2, along which det F' was evaluated
in each of the other panels. The dashed grey line in the upper left panel shows a power law oc A2  o§.

Note the strong dependence of this prior on the cosmological parameters (see text).

again considering og. The Fisher matrix has the form

J(theory) o1 J(theory)

F o~
O(param) J(param)

~ (template) C~! (template) (B.1)

where in the second step we have used the fact that for parameters entering linearly the
derivative is just some linear-parameter-independent template — e.g. for ak?P it would be
k?P. In the case of our perturbative model, each of these ‘templates’ is Py, or some integral
over one or more powers of P, and thus we expect the template to scale as a power of A
or og. The Fisher matrix is thus also a (high) power of A4 or og and so including such a
prior has the effect of shifting the marginal posterior to higher og.

Figure 17 shows a 2D slice through this (high-dimensional) prior to illustrate the previous
points. We have chosen to show the variation in the 2, and A, directions with all of the
other parameters held fixed at their best-fit points. The strong dependence on A is clear
(ox A2 x ), and has been described above. The 2,,, dependence can be understood similarly.
Raising €2,,,, with all other parameters fixed, changes the shape of P, with more power on
the quasi-linear scales of relevance to DESI (and less power at large scales). The increase in
the amplitude of P}, increases det F' in the same manner as for Ag or og. The dependence on
each of the other parameters can be similarly computed and understood, though they are not
shown here for simplicity. The introduction of such a prior is thus “informative” or “strongly
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informative” in the sense of introducing non-negligible shifts in the marginal posteriors given
the size of the uncertainties. We note that in making figure 17 we used the more traditional
form for the counterterms, e.g. ak?Py, instead of the parameterization of eq. (3.6), since
it is in that context that (partial) Jeffrey’s priors have typically been discussed. For most
of this paper we have chosen parameters scaling like aag, meaning that the “template” is
closer to k?Pyy, / a§ and is therefore largely independent of og. Indeed, we find that in our
preferred parameterization the (partial) Jeffrey’s prior scales much more weakly with og than
what is usually encountered. However, the strong dependence on §2,, and other cosmological
parameters is unaffected by this particular reparameterization.

There are two things to note about these examples. First, in each case the shift in the
marginal posterior was accomplished by the introduction of a what is effectively a prior,
and not by any change in the model or the data. It relies on the fact that the data are not
sufficiently constraining such that such prior or parameterization choices are relevant. Second,
the two approaches change the prior through different parts of the theory. In the first case
we modified the biases while in the second we introduced a prior through the counterterms.

Luckily the existing theoretical models are sufficiently accurate to model much more
constraining data than DESI Y1 without the need to introduce additional free parameters
(see the main body of the paper and refs. [38, 47]). As the data become more constraining the
impact of parameter choices and priors is expected to reduce, as shown earlier. Combining
the DESI data with other datasets that can break degeneracies is also expected to reduce the
impact of these effects. In this sense, the Y1 data may well be a “worst case” scenario.

C Connection to the halo model

It is sometimes helpful to establish the expected sizes of the terms in the theoretical model.
This can be done through arguments of self-consistency (see main text), and by comparing to
other models. In this appendix we compare the PT approach to a simplified, analytical halo
model [91, 92] with the goal of understanding the expected size of the stochastic terms (see also
the discussion in ref. [48]). Since our goal is to gain insight, we shall deal with an analytically
tractable version of the halo model in which galaxies reside in spherical, self-similar halos
whose centers are distributed according to biased linear theory with scale-independent bias.
If n(M) is the volume density of halos per unit mass, and each halo has a Fourier-space
density profile u(k, m, z), normalized to unity as k — 0, then the power spectrum is (see e.g.
ref. [93] for a recent, pedagogical discussion with references to the original literature)

Py(k,p, z) = Py (k, i, 2) + Py 720 (k, p, 2) + PPt (C.1)

If Neen(m) and Ngai(m) denote the mean number of centrals and satellites in a halo of mass
m the mean number density of galaxies is simply ng = [ dm n(m) [Neen(m) + Neat(m)]. To
compute the clustering we need to know the statistics of the galaxy occupation, and we
shall follow standard practice in assuming the centrals are Bernoulli distributed while the
satellites are Poisson distributed.

Under the above assumptions the 2-halo term in the power spectrum is given by:

2
p2hato _ (bg + F;ﬂ) Bin, (C.2)

— 41 —



where the bias is

by(k,p,2) = - /dm n(m) b(m) [Ncen +Nsatu(k,m,z)e‘k2“2”§(m)/2} (C.3)
g
and the effective growth rate of structure is
F(kyu,2)=f /dm n(m (_) u(k,m)e_k2“2‘7c21(m)/2 (C.4)

which tends to f as & — 0. In the above we have written the (linear) bias of a halo of
mass m as b(m) and the mean matter density in the Universe as p. We have also used the
fact that in going into redshift-space, the density profile acquires a damping factor from
the virial motions in halos:

u(k,m, z) — u(k,m, z)e_kQ“Zag/Q, (C.5)

where o3(m) is the velocity dispersion of such a halo in distance units. The 1-halo term has
in its integrand the term (N (N — 1)) which, when expanded is:

(N(N — 1)) = ((Ncen + Nsat)(Neen + Nsat — 1))

= (N2, = Neen + 2NeenNsat + Neat (Nsar — 1))
= 2(NecenNsat) + (Nsat(Nsat — 1))

2(Nee

n><Nsat> + <Nsat>2 (CG)

where in going from the second to third line we used that Neen = 0,1 — (N2,) = (Neen).
We obtain the last equality by assuming that the centrals and satellites are uncorrelated
and that Ng, follows a Poisson distribution, such that (N2,) = (Ngat)? + (Ngat). Using this,
the 1-halo term becomes (dropping the ()’s for simplicity):

1
Pgl‘halO = ﬁg/dm n(m) {Nfat lu(k,m, 2)|* e~FiuPog(m) 4 2Ngat Neentu(k, m, z)e_k2“203(m)/2] .
(C.7)

L if we assume Poisson fluctuations

shot _
P 9

Finally, the shot noise power spectrum is simply
for the galaxies and halos.

Our perturbative model should be able to describe any ‘complete’ model of galaxy
clustering, whether or not that model is correct in detail. We can make the connection by
considering the low-k limit of the halo model. To make our expressions slightly simpler we
shall make an additional approximation that u(k,m,z) ~ 1 on the scales of interest, which
corresponds to assuming that kryi, < 1. We shall further assume that o4 > i so that the
impact of virial velocities is more important than the fact that the satellites do not sit at
the halo center. Under these approximations, and for small k,

by (ks 1, 2) = nlg dm n(m) b(m) [Ncen b New (1 - 1k2u203(m))} (C.8)
_ ﬁi dm n(m) b(m)Nga — 4:2 2 1 /dm n(m) b(m) Nego2(m)  (C.9)

g
= beg (1 - ;kquJ%’eﬁ) (C.10)
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The k?u? term above, combined with the b or fu? term from the other power of by in eq. (C.2)
contributes to the counterterms, «;.

Since the mass-integral in F extends all the way to m = 0, the k?u? correction is smaller
than for the bias and we shall neglect it, taking /' — f henceforth. The 1-halo term becomes

1
Pgl_ha10 = ﬁ/dm n(m) ]\/vsat67162#203/2 [Ncen + Nsateikzu%g/ﬂ (C.11)
g
1
~ J;_iat ( o SR ) (C.12)
g9

Thus we see that the halo model predicts that the stochastic terms are of order SNg ~ ﬁg_l

(from PgShOt in eq. (C.1)) and SNg ~ fsataieﬁf/ﬁg (from eq. (C.12)) as described in the main
text. Here fg.t is the satellite fraction such that fsatO'%eﬂ is the mean velocity dispersion of
halos weighted by NcenNgat, such that roughly speaking Jieﬁ is the mean velocity dispersion
of the satellites in question. We often refer to fsla/tQO'l’eff as a “characteristic halo velocity”
for simplicity.

The simple derivation above neglects several physical effects, including halo compensation
and exclusion, correlations between the halo density and velocity profiles and between local
environment and profile, correlations between mass bins in the halo shot noise, etc. It is
sufficient for order of magnitude estimates, since most of the neglected effects also have
characteristic size set by the mean inter-galaxy separation or the virial or infall velocity of the
halo but it should not be taken as a ‘complete’ model of clustering. As a single example of
an effect missed by this simple treatment, let us further consider the effect of virial motions
in eq. (C.5). Another way to account for the effect of FoG in the galaxy power spectrum is
to introduce a random velocity field €;(s) to each galaxy, such that the observed position is
S+ 7 - ;. In this case the galaxy 2-point function with these additional velocities is [94, 95]

Pk,p) = /d3s e"k'8<eik“(€ﬁ(s)*€ﬁ(0)) (14 d4(8))(1+ 59(0))>

~ /d3s eik‘3<€ikﬂ(5ﬁ(s)_5ﬁ(0))>(1 +§g(s)) (C.13)

where in the second line we have made the (unphysical) assumption that the virial motions
and galaxy densities are uncorrelated in order to isolate the pure effect of virial velocities
usually called FoGs (in the literature models making this approximation are frequently
referred to as “dispersion” or “streaming” models). The expectation value of the exponential
can be expanded in powers of ku as

In <eik“(€ﬁ(s)7€ﬁ(0))> =1-Kk*p? [Uz - fe(s)} + O(k*u?), (C.14)

where & is the correlation function of the virial velocities projected along the line of sight.
Since it describes virial motions, this correlation must fall rapidly to zero outside of the
halo radius, Ry, and asymptote to the mean square velocity, o2, as s — 0. Expanding this
cumulant to first order we see that, in addition to the damping of the profile coming from
—k?p202 in eq. (C.14) we also gain the contribution

P(k,u) D k2,ﬁ/d3s e () (14 &(s)) = k(1 + 07) /d3s s ¢ (s) (C.15)
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where we have used that the linear galaxy density is smooth compared to the support of
& and 03 is its the mean on the halo scale. The integral in the final expression is simply
the noise spectrum of the virial motions, which we expect to be positive and white on large
(> Ry,) scales and of order ~ 02R3. In order to differentiate between satellites and centrals we
can simply set e = 0 for central galaxies such that the cumulant in equation (C.14) is instead
simply unity for the central-central correlation and 1 — %kQ,uQag for the central-satellite cross
correlation. This gives the FoG prescription in the ‘analytic halo model’, derived above, with
the addition of a positive, scale-dependent noise along the line of sight.!®

We reiterate that our aim here was to motivate the scale of stochastic contributions and
not to make claims about what numerical value (or even sign) they will take. We see that
the term discussed above, while missed by the halo model, did scale in the same manner
as the included terms as we stated above. Other allowed parameter combinations, such as

R;‘fbcrv for the stochastic piece, should be subdominant.

D Further tests

D.1 Dependence on wy prior

We next test the dependence of our constraints on the prior set on wy. The standard setting
that we choose is a Gaussian prior centered on w{™® = 0.02237 with a width of o = 0.00037,
which is based on the recentmost Big-Bang Nucleosynthesis (BBN) constraints on primordial
deuterium abundance [67] which places stringent constraints on wy,. We test the dependence
on the prior by loosening it to ¢ = 0.001. The results are shown in figure 18. Within each
individual method we show results for the covariance appropriate to the single-box volume.
We find that for all three methods, Hy becomes significantly less constrained. Meanwhile
the Q, constraints remain unchanged in all methods.

In the Full-Modeling analysis, the measurement of €, is extracted from the shape of
the power spectrum and scale of matter-radiation equality keq, and these depend on the full
matter abundance rather than wy and wcqn, separately. We thus do not see a degradation in
the Q, constraint when the prior on wy is relaxed. In the template and ShapeFit analyses
QO is inferred from the compressed parameters, and because f ~ Q%5° we can extract a
measurement of €),,, from the compressed amplitude parameter without any dependence on
wp prior. In the ShapeFit case, additional constraining power on €2, comes from the shape
parameter m, but just like in the Full-Modeling case this power spectrum shape information
translates to a measurement (), without any reliance on w specifically.

For the Hy measurement we do observe a significant degradation in constraining power
when the prior on wy is relaxed. In the template analysis, information about cosmological
distances is extracted from the BAO feature and thus constrains H(z)ry and Da(z)/rq.
Breaking the degeneracy between Hj and r, requires a physical (dimensionful) length scale
for the distance-redshift relation beyond just the angular size of the BAO feature [96]. This
is accomplished with knowledge about wj (which determines r4) from either BBN or CMB
and then leads to a direct measurement of Hy. Therefore, relaxing the prior on wj; worsens
the constraint on Hy. The inclusion of the shape parameter m, while in general improving

18We thank Misha Ivanov for pointing out that the sign of this effect in N-body simulations is often positive.
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In all cases we use the single box covariance. The bottom right plot shows a comparison of the three
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constraints when compared to the standard template, does not compensate for the changes
in wp information and therefore ShapeFit also experiences worse Hy constraint. The Full-
Modeling method can in principle constrain wjy (and by extension r4) in the absence of an
external prior because the amplitude of BAO wiggles depend on wp and weqm and can be
modulated in Full-Modeling analyses, but this is still a much weaker constraint than what
can be accomplished with a BBN prior [97].

D.2 Minimal and maximal freedom in the bias parameters

In this section we discuss three possible choices in freedom in the bias parameters. In total
there are four bias parameters: by, be, bs, and b3. The first two parameters multiply the
initial do(¢) and 62(q) overdensity fields in the bias expansion. The non-local tidal bias
parameter, bs multiplies the initial shear field and, due to degeneracies between terms, the
third order bias contributions are combined into a single operator with coefficient b3. In the
Lagrangian picture the bias contributions are evaluated at the initial positions q, whereas
in the Eulerian framework the bias expansion is performed at observed coordinates . This
implies that the non-local bias terms in Eulerian PT are dependent on both the initial
Lagrangian non-local contributions as well as gravitational evolution such that the Eulerian
biases are affine transformations of the Lagrangian ones, with coefficients dependent on the
definition of the bias operators in each space. Therefore, one commonly sees in the literature
of Eulerian PT models (e.g. [51, 98]) a “minimal” and “maximal” freedom parametrization
where the first assumes a local Lagrangian bias initially with no third-order contributions
(b = bl = 0) and that tidal and 3rd order biases are induced entirely by gravitational
nonlinearity [99]. In such a case, the tidal and third order Eulerian biases would coevolve
with the linear bias terms, i.e. b oc b = bF — 1. In the maximal freedom case, on the other
hand, all bias parameters are allowed to vary independently.

The two other Fourier space EFT models that will be used in the DESI collaboration,
FOLPSv and PyBird, are both based on the Eulerian frameworks and it has been shown that
velocileptorsLPT and EPT agree closely with the other two models under a consistent
choice of parametrization [47]. For this reason we are interested in comparing the three
parameter choices within LPT. In the Lagrangian picture, it is not clear how well motivated
the initially local bias assumption is, and for most of this paper we chose an intermediate
option in which the tidal bias b, is allowed to vary along with b1 and bo, but the third order
bias is kept fixed to zero, both because the cubic bias is expected to be small for intermediate
mass halos and, more importantly, quite degenerate with the counterterms. We advise caution
against restricting the parameter space further when fitting the high volume simulations with
the 25 box covariance, as the tightness of the error bars can result in poor behavior of the
model, which we demonstrate in the left panel of figure 19. While at kyayx = 0.18 AMpc—!

L results in a bimodal

the constraints are fine, raising the scale cut to knax = 0.2 AMpc™
distribution appearing in the posteriors, most likely driven by some two-loop effects. However,
including the b parameter fixes the bimodal behavior and we instead recover more Gaussian
posteriors. We also show that this problem is induced by the extremely tight covariance from
the full 25- cubic box volume. In the right panel of figure 19 we compare the Full-Modeling
constraints between both kyax values with minimal freedom for the single box volume and

find the two in agreement without any non-Gaussian behavior.
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Figure 19. (left): Full-Modeling constraints for the minimal freedom parametrization with
kmax = 0.18 AMpc~! (grey), kmax = 0.20hMpc~! (dark green), and intermediate freedom case
with kpax = 0.20 hMpc! (light green dashed). In the minimum freedom case there is a bimodal
distribution (most pronounced in Qcqmh?) that appears when kpay is raised from 0.18 to 0.2 hMpc~t.
The bi-modality disappears if the bs parameter is included, as in the intermediate freedom case. (right):
Full-Modeling constraints in the minimal freedom case with kpax = 0.18 (grey) and 0.20 hMpc—!
(green) using the single-box covariance.

I we proceed with the

Choosing the single-box covariance and a kpax = 0.2hMpc™
comparison between the minimal, intermediate, and maximal freedom bias parametrizations.
The results are shown in figure 20 for the Full-Modelling and ShapeFit methods. We find
that the parameters primarily controlling the shape of the linear power spectrum, i.e. 2, in
FM and m in SF, are the most affected by the differences in parameterization. Meanwhile the
amplitude og in FM is fairly resistant to these changes. We remind the reader that og is more
directly constrained in LSS analyses than log(10'% Ay), suggesting it is a better way of quoting
the normalization of the theory for these purposes. We find that fixing b3 = 0 does not
result in significant offsets away from the true cosmology, and mostly just tighten constraints.
This is consistent with previous tests on the bias parametrization, and our standard choice
of fixing b3 in this paper mirrors that of previous analyses using velocileptors [48, 88|.
We conclude this section by reiterating that despite the improvement in constraining power
obtained in the minimal freedom case, fixing both b; and b3 can lead to poor performance
of the model in capturing the nonlinear effects that become increasingly important at very
high simulation volumes, and it therefore is safer to use the intermediate freedom choice.
In addition, depending on the method of galaxy sample-selection, larger values of b, than
expected can occur due to assembly bias (see e.g. ref. [100]). This further motivates keeping
bs as a free parameter. While we have justification for the choice of fixing b3 = 0, it is also a
valid and more conservative option to allow b3 to vary and we do not strongly discourage
the maximal freedom choice in future analyses.
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Figure 20. Comparison of minimal (bs = b3 = 0), intermediate (b3 = 0), and maximal (bs, b3 free)
freedom parametrizations using the single box covariance and kmax = 0.20 AMpc~!. The Full-Modeling
constraints are in the left figure and ShapeFit on the right.

D.3 Including hexadecapole

The 1-loop LPT model we use predicts the full angular dependence of the power spectrum
P(k, ) and therefore makes consistent predictions for the power spectrum hexadecapole and
above in addition to the monopole and quadrupole. However, it should be noted that since
the linear theory hexadecapole is substantially smaller than the monopole or quadrupole
(there are no linear theory ¢ > 4 multipoles) these higher multipoles will be more sensitive
to nonlinear effects (e.g. Finger of God (FoG)), and thus the range of scales over which
their 1-loop PT predictions is valid may be smaller. We present results of including the
hexadecapole in figure 21 for the covariance of the single-box volume. We find a slight
tightening of the constraints when including the hexadecapole.

In figure 22 we show in the left panel the ACDM parameter constraints of all three
methods when fitting ¢ = 0, 2, 4 instead of just £ = 0, 2, using the covariance for the 25 box
volume. As with the previous comparisons between methods, we find consistent constraints
between ShapeFit and Full-Modeling and looser constraints for the standard template. We
also test the dependence of the hexadecapole on it’s k-range by lowering the upper bound
from kpax = 0.2 hMpc~! down to 0.15 and 0.1 hMpc~!, while keeping the range of scales
of the monopole and quadrupole moments fixed at 0.2 hMpc~!. While we see very little
change in constraints in this case, other data sets may have significantly larger FoG effects (or
observational systematics) that could affect the hexadecapole at k > 0.1 AMpc~!. For this
reason we still suggest using kmax = 0.1 hMpc~! for the hexadecapole and correspondingly
widening the a4 prior to N'[0,20] to maintain the 20% scaling at the new kpax.
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Figure 21. Comparison of constraints between ¢ = 0,2 and ¢ = 0,2,4. We present fits using the
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E Emulator error/performance

In order to speed up likelihood evaluations, we employ emulators that reproduce the theoretical
power spectrum multipole predictions using a Taylor series centered on reasonably chosen
values for the cosmological parameters, €, i.e. the Abacus fiducial values. The emulator
is trained by evaluating the full velocileptors prediction on a grid with 9 points in each
parameter direction, resulting in 9V evaluations for N cosmological parameters. For each
training point, e.g. Q, = (h, Wy, Wedm,10g(101°A4y)),, velocileptors computes the power
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included. (right): comparison of constraints on ACDM parameters, varying kmax of the hexadecapole
while keeping kyax of the monopole and quadrupole at 0.2 hMpc~?

spectrum multipoles and separates the 19 terms within each multipole (i.e. the terms P,
multiplied by 1,b1, b3, b1ba, etc.) into a table. After the grid of Py, (2, k) has been computed
for every n’th set of cosmological parameters, we take numerical derivatives up to fourth
order in each parameter using the finite differencing method.!? These arrays of derivatives are
then stored for later use. At each step of an MCMC, the emulated power spectrum multipole
terms are produced for the proposal set of parameters €2, by constructing the Taylor series:

o aPZm
Pemu(ﬂ’na k) - Pé,m(ﬂm k) + ’ ( O,Z - Qnﬂ,)—i_
oY
>~ O Prm (o — 23)(Qoj — D j) + (E.1)
aﬂ 89 0,8 n,? 0,j n,j Tt :

where €2 is the set of cosmological parameters that the Taylor series was centered around,
Qp; is the i’th cosmological parameter in said vector, and N is the number of parameters
being varied in €2. In order to demonstrate the accuracy of the emulator, we perform fits to
the LRG cubic mocks both with the emulator and without. The results are shown in figure 23
for ShapeFit and Full-Modeling. In both cases, the emulator reproduces the constraints
of the direct computation exactly.

9findiff; https://github.com/maroba/findiff [101].
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