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ALMOST ISOTROPY-MAXIMAL MANIFOLDS OF

NON-NEGATIVE CURVATURE

ZHETING DONG, CHRISTINE ESCHER, AND CATHERINE SEARLE

Abstract. We extend the equivariant classification results of Escher and
Searle for closed, simply connected, Riemannian n-manifolds with non-negative
sectional curvature admitting isometric isotropy-maximal torus actions to the
class of such manifolds admitting isometric strictly almost isotropy-maximal
torus actions. In particular, we prove that any such manifold is equivariantly
diffeomorphic to the free, linear quotient by a torus of a product of spheres of
dimensions greater than or equal to three.

1. Introduction

The classification of closed, simply-connected Riemannian manifolds with posi-
tive or non-negative sectional curvature is a long-standing problem in Riemannian
geometry. One successful approach to this problem has been the Grove Symmetry
Program, which aims to classify such manifolds with “large” symmetries.

An important first step is to consider the case of continuous abelian symme-
tries, that is, of torus actions. The Symmetry Program suggests starting with the
largest possible torus action this class of manifolds can admit and then successively
reducing the rank of the torus in the hopes of finding either new examples, new
constructions, or new obstructions.

In particular, isotropy-maximal torus actions, that is, torus actions for which
the rank of the largest isotropy subgroup equals the cohomogeneity of the ac-
tion, are especially appealing due to the structure such an action imposes on the
manifold. Recently, Escher and Searle [8] obtained a classification up to equi-
variant diffeomorphism of closed, simply connected, non-negatively curved Rie-
mannian n-manifolds admitting effective, isometric isotropy-maximal T k-actions
for tpn`1q{2u ď k ď t2n{3u. This work suggests a different approach to the general
classification problem for this class of manifolds: rather than try to classify them
via the rank of the group action, instead classify such manifolds via the rank of the
largest possible isotropy group of the action. The classification in [8] handles the
first step, namely, the case where the action is isotropy-maximal. The next step in
this program is to reduce the rank of the largest possible isotropy subgroup.
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4622 Z. DONG, C. ESCHER, AND C. SEARLE

In this paper, we focus on almost isotropy-maximal torus actions, that is, torus
actions for which there exists an isotropy subgroup of rank equal to the cohomo-
geneity of the action minus one. In particular, we say the action is strictly almost
isotropy-maximal when the action is almost isotropy-maximal, but not isotropy-
maximal. Our main result, stated in Theorem D, gives an equivariant diffeomor-
phism classification of simply connected, non-negatively curved manifolds admit-
ting effective, isometric, almost isotropy-maximal torus actions, thus generalizing
the main result in [8].

We first introduce a crucial new tool for the proof of our main result: we show
that in our setting a strictly almost isotropy-maximal torus action can always be
extended to a locally standard and isotropy-maximal action.

Theorem A. Let T k act isometrically and effectively on Mn, a closed, simply
connected, non-negatively curved Riemannian manifold. Assume that the action
is strictly almost isotropy-maximal. Then the T k-action on Mn may be uniquely
extended to a smooth, effective T k`1-action that is isotropy-maximal and locally
standard. Moreover, Mn{T k`1 and all of its faces are diffeomorphic to disks, after
smoothing the corners.

We also obtain the following two extensions of Theorem 1.1 of Wiemeler [28],
and of Theorem B of Galaz-Garćıa, Kerin, Radeschi, and Wiemeler [11].

Theorem B. Let Mn be a closed, rationally elliptic n-manifold admitting a smooth,
effective, locally standard, and isotropy-maximal T k-action. Then Mn is equivari-
antly homeomorphic to a quotient of a free linear torus action of

(1.1) Zm “
ź

iăr

S2ni ˆ
ź

iěr

S2ni´1, ni ě 2, where n ď m ď 3n´ 3k.

If we add in the condition that the 4-dimensional faces of the quotient are diffeo-
morphic to disks, after smoothing the corners, then we may improve the conclusion
of Theorem B to one of equivariant diffeomorphism.

Theorem C. Let Mn be a closed, rationally elliptic n-manifold admitting a
smooth, effective, locally standard, and isotropy-maximal T k-action. Suppose all
4-dimensional faces of Mn{T k are diffeomorphic to disks, after smoothing the cor-
ners. Then Mn is equivariantly diffeomorphic to a quotient of a free linear torus
action of

(1.2) Zm “
ź

iăr

S2ni ˆ
ź

iěr

S2ni´1, ni ě 2, where n ď m ď 3n´ 3k.

We note that an isotropy-maximal action is also almost isotropy-maximal. Theo-
rems A, C, and the main result in [8] (Theorem 2.24 in this paper) are instrumental
in proving our next result.

Theorem D. Let T k act isometrically and effectively on Mn, a closed, simply
connected, non-negatively curved Riemannian manifold. Assume that the action is
almost isotropy-maximal. Then the following hold:

(1) tn`1
2 u ď k ď t 2n3 u, if the T k-action is isotropy-maximal;

(2) tn`2
2 u´1 ď k ď t 2n3 u´1, if the T k-action is strictly almost isotropy-maximal;

and
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ALMOST ISOTROPY MAXIMALITY AND NON-NEGATIVE CURVATURE 4623

(3) M is equivariantly diffeomorphic to a quotient of a free linear torus action
of a product of spheres as in Display (1.2), noting that when the action is
strictly almost isotropy-maximal then n ď m ď 3n´ 3k ´ 3.

In the situation of Theorem D, the torus action on the quotient Zm{T 1, where
T 1 is a free linear torus action, is defined as follows. Let T be a maximal torus
of

ś
iăr SOp2ni ` 1q ˆ ś

iěr SOp2niq. Then there is a natural linear action of T
on Zm. Moreover, T 1 can be identified with a subtorus of T and T {T 1 acts on
Zm{T 1 » M .

We note that the upper and lower bounds in Parts p1q and p2q of Theorem
D follow by combining Theorem 2.24 and the corresponding lower bounds on the
dimension, respectively, 2k ´ n ě 0 or 2k ´ n ` 1 ě 0, of the orbit of smallest
dimension.

Remark 1.1. When k ă t2n{3u, an almost isotropy-maximal T k-action need not be
isotropy-maximal. Consider, for example, the action of T 3 on S3 ˆ S3 given by

ppeiθ1 , eiθ2 , eiθ3q, pz1, z2, w1, w2q ÞÑ peiθ1z1, eiθ2z2, eiθ3w1, w2q,
where S3 ˆ S3 “ tpz1, z2, w1, w2q P C4 : z1z̄1 ` z2z̄2 “ w1w̄1 ` w2w̄2 “ 1u.

Recall that the symmetry rank of a manifold is defined to be the rank of the
isometry group of M . Closed manifolds of positive sectional curvature and maximal
symmetry rank were classified in Grove and Searle [15], where they found that
such manifolds are diffeomorphic to spheres, real projective spaces, lens spaces, or
complex projective spaces. In fact, they are equivariantly diffeomorphic to these
spaces with a linear torus action by work of Galaz-Garćıa [10]. For closed, simply
connected, non-negatively curved manifolds, we only have the following conjecture
(see [8], cf. Galaz-Garćıa and Searle [12]).

Maximal Symmetry Rank Conjecture. Let T k act isometrically and effectively
on Mn, a closed, simply connected, non-negatively curved Riemannian manifold.
Then the following hold:

(1) k ď t2n{3u; and
(2) When k “ t2n{3u, Mn is equivariantly diffeomorphic to Z{Tm with a linear

T k-action, where

Z “
ź

iďr

S2ni´1 ˆ
ź

iąr

S2ni ,

with ni ě 2, 0 ď m ď 2n mod 3, and the Tm-action on Z is free and linear.

Remark 1.2. The equivariant diffeomorphism classes of Mn in Part(2) of the Max-
imal Symmetry Rank Conjecture can be described as follows:

M3m » S3 ˆ ¨ ¨ ¨ ˆ S3,

M3m´1 » S5 ˆ S3 ˆ ¨ ¨ ¨ ˆ S3 or M3m{T 1,

M3m´2 »

$
’’’&

’’’%

S7 ˆ S3 ˆ ¨ ¨ ¨ ˆ S3 or

S5 ˆ S5 ˆ S3 ˆ ¨ ¨ ¨ ˆ S3 or

S4 ˆ S3 ˆ ¨ ¨ ¨ ˆ S3 or

M3m{T 2 or M3m´1{T 1,

where the T k-action is linear. In particular, the torus action on each of these
manifolds is isotropy-maximal.
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By Theorem B in [8], the Maximal Symmetry Rank Conjecture holds for isotropy-
maximal actions. By Theorem 7.1 in [8], for k “ t2n{3u, an almost isotropy-maximal
T k-action on a closed, simply connected, non-negatively curved manifold is, in fact,
isotropy-maximal. So, Theorem D sheds no new light on the Maximal Symme-
try Rank Conjecture. However, it does represent a step forward in understanding
the case of closed, simply connected, non-negatively curved manifolds of almost
maximal symmetry rank, for which little is known. Indeed, a classification for non-
negatively curved manifolds of almost maximal symmetry rank is only known in
dimensions less than or equal to 6. In particular, for dimensions 2 and 3, the classifi-
cation is well-known. In dimension 4, the classification is due to Kleiner [23], Searle
and Yang [25], Grove and Searle [15], Galaz-Garćıa [9], and Grove and Wilking [17].
In dimensions 5 and 6, the classification is due to, respectively, Galaz-Garcia and
Searle [13] and Escher and Searle [7]. For dimensions 5 and 6, Theorem D gives
us a simplified proof of the classification for those torus actions that are almost
isotropy-maximal.

Finally, we note that in dimensions 4 and 6 all non-negatively curved manifolds
of almost maximal symmetry rank already appear in the almost isotropy-maximal
classification. However, in dimension 5, the almost maximal symmetry rank clas-
sification also includes the Wu manifold, SUp3q{SOp3q, which does not admit an
almost isotropy-maximal torus action. In fact, the Wu manifold is not even topolog-
ically a quotient by a free linear torus action on a product of spheres of dimension
3 or larger: the long exact sequence in homotopy associated to such a fibration
gives us a contradiction, as π2pSUp3q{SOp3qq – Z2. In particular, it is not clear
that this phenomenon only occurs in low dimensions or if it is an indication that
in higher dimensions, a classification of closed, simply connected, non-negatively
curved manifolds of almost maximal symmetry rank may include more than just
those manifolds appearing in the almost isotropy-maximal classification.

1.1. Organization. The paper is organized as follows. In Section 2, we gather
preliminary definitions and facts that are used throughout the paper. In Section
3, we prove an analog of Proposition 6.1 in [8] (Proposition 2.22 here) for strictly
almost isotropy-maximal actions. In Section 4, we show how to extend the isometric
T k-action to a smooth T k`1-action, thus proving Theorem A. In Section 5, we prove
Theorems B, C, and D.

2. Preliminaries

In this section we gather basic results and facts. See [8] for more details on many
of the concepts in this section.

2.1. Transformation groups. Let G be a compact Lie group acting on a smooth
manifold M . We denote by Gx “ tg P G : gx “ xu the isotropy group at x P M
and by Gpxq “ tgx : g P Gu » G{Gx the orbit of x.

We say that the G-action is effective or almost effective if
Ş

xPM Gx is trivial or
finite, respectively. The action is said to be free if every isotropy group is trivial
and almost free if every isotropy group is finite. The free rank of an action is the
rank of the maximal subtorus that acts almost freely.

We sometimes denote MG “ tx P M : gx “ x for all g P Gu, the fixed point set
of the G-action, by FixpM ;Gq. Its dimension is defined as the maximum dimension
of its connected components.
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One measurement for the size of a transformation group G ˆ M Ñ M is the
dimension of its orbit space, M{G, also called the cohomogeneity of the action.
This dimension is clearly constrained by the dimension of the fixed point set MG

of G in M . In fact, dimpM{Gq ě dimpMGq ` 1 for any non-trivial, non-transitive
action. In light of this, the fixed-point cohomogeneity of an action, denoted by
cohomfixpM ;Gq, is defined by

cohomfixpM ;Gq “ dimpM{Gq ´ dimpMGq ´ 1 ě 0.

A manifold with fixed-point cohomogeneity 0 is also called a G-fixed-point-homogen-
eous manifold.

Finally we recall Theorem 9.1 of Chapter 1 of Bredon [1] which allows us to lift
a group action to a covering space.

Theorem 2.1. [1] Let G be a connected Lie group acting effectively on a connected,
locally path-connected space X and let X 1 be any covering space of X. Then there
is a connected covering group G1 of G with an effective action of G1 on X 1 covering
the given action. Moreover, G1 and its action on X 1 are unique.

The kernel of G1 Ñ G is a subgroup of the group of deck transformations of
X 1 Ñ X. In particular, if X 1 Ñ X has finitely many sheets, then so does G1 Ñ G.
If G has a stationary point in X, then G1 “ G and FixpX 1;Gq is the full inverse
image of FixpX;Gq.
2.2. Torus actions. In this subsection we recall notation and facts about smooth
G-actions on smooth n-manifolds, M , in the special case when G is a torus. We first
recall the definitions of an isotropy-maximal torus action and an almost isotropy-
maximal torus action.

Definition 2.2 (Isotropy-maximal action). Let Mn be a connected manifold with
an effective T k-action. We call the T k-action on Mn isotropy-maximal provided
either of the following equivalent conditions holds:

(1) There is a point x P M such that the dimension of its isotropy group is n´k,
that is, dimpT k

x q “ n´ k; or
(2) There is a point x P M such that dimpT kpxqq “ 2k ´ n.

Note that n´k is the largest possible dimension of any isotropy subgroup of a T k

action on M and 2k ´ n is correspondingly the smallest possible dimension of any
orbit. The following lemma in [22] shows that the existence of an isotropy-maximal
torus action on M implies that there is no larger torus acting on M effectively.

Lemma 2.3. [22] Let M be a connected manifold with an effective T k-action. Let
T l Ă T k be a subtorus of T k. Suppose that the action of T k restricted to T l on M
is isotropy-maximal. Then T l “ T k.

We also define the concept of an almost isotropy-maximal action.

Definition 2.4 ((Strictly) almost isotropy-maximal action). Let Mn be a con-
nected manifold with an effective T k-action.

(1) We call the T k-action on Mn almost isotropy-maximal if
(a) There is a point x P M such that the dimension of its isotropy group is

n´ k ´ 1, that is, dimpT k
x q “ n´ k ´ 1; or, equivalently

(b) There is a point x P M such that dimpT kpxqq “ 2k ´ n` 1.
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4626 Z. DONG, C. ESCHER, AND C. SEARLE

(2) We call a T k-action strictly almost isotropy-maximal if the action is almost
isotropy-maximal but not isotropy-maximal.

Lemma 2.5 generalizes Lemma 2.3 to almost isotropy-maximal actions.

Lemma 2.5. Let M be a connected manifold with an effective T k-action. Let
T l Ă T k be a subtorus of T k. Suppose that the action of T k restricted to T l on M
is almost isotropy-maximal. Then l “ k or l “ k ´ 1.

Remark 2.6. Both Lemma 2.3 and Lemma 2.5 hold for almost effective actions,
since their respective proofs depend only on the toral rank of the action.

Finally, we recall the following result of Su [27] (cf. Hattori and Yoshida [21]),
which we use in Case 2.c of Step 2 of the proof of Theorem A in order to lift a
torus action on a simply-connected base space of a principal torus bundle to its
total space.

Theorem 2.7. [27] Let P Ñ X be a principal T l-bundle and suppose that T k acts
on X. If H1pX;Zq “ 0, then the T k-action can be lifted to P .

2.3. Torus manifolds and orbifolds. An important subclass of manifolds ad-
mitting an effective, isotropy-maximal torus action is formed by torus manifolds.
For more details on torus manifolds, we refer the reader to Hattori and Masuda
[20], Masuda and Panov [24], and Buchstaber and Panov [2].

Definition 2.8 (Torus manifold). A torus manifold M is a 2n-dimensional closed,
connected, orientable, smooth manifold with an effective smooth action of an n-
dimensional torus T such that MT ‰ H, or, equivalently, the T -action is isotropy-
maximal.

We recall the definition of a characteristic submanifold and generalize it.

Definition 2.9 ((Generalized) characteristic submanifold). Let T k act smoothly
and effectively on a closed manifold Mn with 2k ě n ´ 1. Let F be a connected
component of FixpM ;S1q for some circle subgroup S1 Ă T k. Then F is called a
characteristic submanifold of M if 2k “ n and it satisfies the following properties:

(1) F is of codimension 2 in M ; and
(2) F contains a T k-fixed point.

More generally, we say that F is a generalized characteristic submanifold provided
it satisfies Property (1) and contains an orbit of dimension 2k ´ n or 2k ´ n` 1.

Remark 2.10. Generalized characteristic submanifolds only occur in the presence
of an almost isotropy-maximal torus action. Moreover, for any such action, if
the rank of the isotropy subgroup of the smallest orbit of the action is equal to
m ě 1, there are m generalized characteristic submanifolds containing that orbit,
each corresponding to the fixed point set of some distinct circle subgroup of the
isotropy subgroup.

We emphasize that the action of each such circle on M is fixed-point-homogen-
eous. Moreover, given x P M such that T pxq is an orbit of smallest dimension, for
each generalized characteristic submanifold F containing T pxq, there is a chain of
inclusions of totally geodesic submanifolds that we may specify as follows. We let

T pxq Ă Fj Ă Fj´1 Ă ¨ ¨ ¨ Ă F2 Ă F1 “ F Ă M
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denote the chain of inclusions, where the subscript corresponds to the rank of
the torus fixing the submanifold, j is equal to either n ´ k or n ´ k ´ 1, and
dimpFiq “ n´ 2i, with 1 ď i ď j.

An important class of T k-actions on an n-dimensional manifold Mn consists of
locally standard torus actions, whose definition in [8] we now recall.

Definition 2.11 (Locally standard). A T k-action on Mn is called locally standard
if for each point x P M , there is a neighborhood of x in M which is T k-equivariantly
diffeomorphic to

T r ˆW ˆ Rm,

where r “ k ´ dimpT k
x q, W is a faithful T k

x -representation of real dimension
2 dimpT k

x q, and T k – T r ˆ T k
x acts trivially on Rm, T r acts trivially on W , and T k

x

acts trivially on T r.

We now recall the definitions of an orbifold and a torus orbifold. For more details
about orbifolds and actions of tori on orbifolds, see Haefliger and Salem [18], and
[11].

Definition 2.12 (Orbifold). An n-dimensional (smooth) orbifold, denoted by O,
is a second-countable, Hausdorff topological space |O|, called the underlying topo-
logical space of O, together with an equivalence class of n-dimensional orbifold
atlases.

In analogy with a torus manifold, we may define a torus orbifold, as follows.

Definition 2.13 (Torus orbifold). A torus orbifold, O, is a 2n-dimensional, closed,
orientable orbifold with an effective smooth action of an n-dimensional torus T such
that OT ‰ H, or, equivalently, the T -action is isotropy-maximal.

Recall that a closed, simply connected topological space is called rationally el-
liptic if π˚pXq b Q and H˚pX;Qq are finite-dimensional Q-vector spaces. In [11],
they outline the proof of the following proposition in the proof of their Theorem A,
which we use in the proof of Theorem D.

Proposition 2.14. [11] Let O be a closed, rationally elliptic, simply connected 2n-
dimensional torus orbifold with a smooth torus action, Tn. Then the face poset of
the quotient O{T is combinatorially equivalent to the face poset of

Pn “
ź

iăr

Σni ˆ
ź

iěr

∆ni ,

where Σni “ S2ni{Tn
i , and ∆ni “ S2ni`1{Tni`1 is an ni-simplex.

The Tni -action on S2ni is the suspension of the standard Tni -action on R2ni ,
and Σni is a lunar suspension of ∆ni´1, namely, it is obtained as the suspension of
∆ni´1, ignoring the simplicial structure of ∆ni´1. Note that each ni-simplex has
ni ` 1 facets and each Σni has ni facets. The number of facets of Pn in this case
is bounded between n and 2n.

2.4. Geometric results in the presence of a lower curvature bound. We
now recall some general results about G-manifolds with positive and non-negative
sectional curvature which we use throughout. The first of these is the Splitting
Theorem of Cheeger and Gromoll.
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Theorem 2.15. [3] Let M be a compact manifold of non-negative sectional curva-
ture. Then π1pMq contains a finite normal subgroup ψ such that π1pMq{ψ is a finite

group extended by Zk, and $M , the universal covering of M , splits isometrically as
M ˆ Rk, where M is compact and non-negatively curved.

As mentioned in Remark 2.10, a manifold admitting an almost isotropy-maximal
torus action is an example of an S1-fixed-point-homogeneous manifold. Closed,
simply connected, fixed-point-homogeneous manifolds of positive curvature were
classified in Grove and Searle [16]. More recently, in Spindeler [26], the following
characterization of closed, non-negatively curved fixed-point-homogeneous mani-
folds is given.

Theorem 2.16. [26] Let G be a compact Lie group. Assume that G acts fixed-
point-homogeneously on a closed, non-negatively curved Riemannian manifold M .
Let F be a fixed point set component of maximal dimension. Then there exists a
smooth submanifold N Ă M , without boundary, such that M is diffeomorphic to the
normal disk bundles DpF q and DpNq glued together along their common boundary,
E, that is,

M “ DpF q YE DpNq.
Further, N is G-invariant and all points of M z tFYNu belong to principal G-orbits.

Remark 2.17. In the above disk bundle decomposition, the projection maps πF :
E Ñ F and πN : E Ñ N are both G-equivariant.

Lemma 3.29 in [26], which we include here, shows that in the special case where
M is simply connected, the dimension of N is bounded from above. Although
it was originally stated for manifolds of non-negative sectional curvature with an
isometric G-action, the proof of the lemma shows that it also holds in the smooth
setting.

Lemma 2.18. [26] Let M be a smooth G-fixed-point-homogeneous manifold which
decomposes as in Theorem 2.16. Assume that M is simply connected and G is
connected. Then the codimension of N in M is greater than or equal to two.

The following theorem from [7] gives us topological information about the fun-
damental groups of E, F , and N .

Theorem 2.19. [7] Let Mn be a simply connected manifold that decomposes as the
union of two disk bundles as follows:

Mn “ Dk1pN1q YE Dk2pN2q.
If k1 “ k2 “ 2, then π1pN1q and π1pN2q are cyclic groups.

Moreover,

(1) If ki “ 2, π2pNiq “ 0, for i “ 1, 2 and π1pNiq is infinite for some i P t1, 2u,
then π1pEq – Z2.

(2) If ki ě 3, for some i P t1, 2u, then π1pEq – π1pNiq and π1pNi`1q “ 0, with
the indices taken mod 2.

We now claim that for ki ě 2 for some i P t1, 2u, the fundamental groups of each
of the Ni are cyclic under the same hypotheses as in Theorem 2.19. We see this
as follows. Using the arguments in the proof of Lemma 3.29 in [26] (Lemma 2.18
here), we see that if ki ě 2 for some i P t1, 2u, then ki`1 ě 2. Part (1) of Theorem
2.19 gives us the result for ki “ ki`1 “ 2. If ki ě 3 for some i P t1, 2u, using
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the results of Part (2) of Theorem 2.19 and the long exact sequences in homotopy
associated to Sk1´1 Ñ E Ñ N1 and Sk2´1 Ñ E Ñ N2, the result follows. Hence
we obtain Corollary 2.20.

Corollary 2.20. Let Mn be a simply connected manifold that decomposes as the
union of two disk bundles as follows:

Mn “ Dk1pN1q YE Dk2pN2q,

with ki ě 2 for some i P t1, 2u. Then the fundamental groups of N1 and N2 are
cyclic.

Combining Proposition 4.5 from [28], Proposition 2.14, and Theorem 4.2 in [4],
we obtain the following result that characterizes the orbit space of a simply con-
nected torus orbifold that additionally is either rationally elliptic or non-negatively
curved. Recall that a nice manifold with corners is a manifold with corners such
that every codimension k face is contained in exactly k facets, see Davis [4].

Proposition 2.21. [4, 11, 28] Let X be a closed, simply connected torus orbifold
that is either rationally elliptic or non-negatively curved. Then the quotient space,
X2n{Tn, is a nice manifold with corners all of whose faces are acyclic, and X2n{Tn

is combinatorially equivalent to

(2.1) Pn “
ź

iăr

Σni ˆ
ź

iěr

∆ni .

Further, if we assume that all four-dimensional faces of X2n{Tn are diffeomorphic
to standard disks, after smoothing the corners, then X2n{Tn is diffeomorphic to
Pn.

For Mn, a closed, simply connected, non-negatively curved n-manifold admitting
an isometric, effective, and isotropy-maximal T k-action, the following Proposition
6.1 from [8] gives us information about the structure of the quotient space, Mn{T k,
as well as a complete description of the corresponding isotropy groups.

Proposition 2.22. [8] Let T k act isometrically, effectively, and isotropy-maximally
on Mn, a closed, simply connected, non-negatively curved Riemannian manifold.
Then the following are true:

(1) The torus action on M is locally standard, in particular, M{T is a nice
manifold with corners, such that the isotropy groups are constant on all open
faces of M{T ; and

(2) M{T and all closed faces of M{T are diffeomorphic to standard disks, after
smoothing the corners.

We also make use of Theorem 2.23, which follows by combining Theorem D from
[11] with Corollary 2.37 from [8].

Theorem 2.23. [8,11] Let M be a closed, simply connected, non-negatively curved
Riemannian manifold admitting an effective, isometric, almost isotropy-maximal
torus action. Then M is rationally elliptic.

Finally, we recall Theorem A in [8], which we need for the proof of Theorem D.
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Theorem 2.24. [8] Let T k act isometrically and effectively on Mn, a closed, simply
connected, non-negatively curved Riemannian manifold. Assume that the action is
isotropy-maximal. Then the following hold:

(1) tpn` 1q{2u ď k ď t2n{3u; and
(2) M is equivariantly diffeomorphic to a quotient by a free linear torus action

of

Zm “
ź

iăr

S2ni ˆ
ź

iěr

S2ni´1, ni ě 2, where n ď m ď 3n´ 3k.

The torus action referred to in Part (2) of Theorem 2.24 is defined as in Theorem
D.

Remark 2.25. It has come to our attention that there is an omission in the state-
ment of Theorem 3.7 in [8]. A result correcting that omission can be found in
Theorem 1.1 in Wiemeler [29]. Since Theorem 3.7 is used in the proof of Theorem
A in [8] to improve the equivariant homeomorphism classification to an equivariant
diffeomorphism classification, it is important to clarify that with Theorem 1.1 in
[29], the equivariant diffeomorphism classification results in Theorem A in [8] still
hold.

3. Almost isotropy-maximal torus actions

In this section, our goal is to prove a partial analog of Proposition 2.22 for
strictly almost isotropy-maximal actions. We first establish some notation. Let
MTk

0 pnq denote the class of closed, non-negatively curved Riemannian n-manifolds
admitting an isometric and effective T k-action. For simplicity of notation, we let T
denote the torus T k, when the rank is clear from context. If the T k-action on M is
also almost isotropy-maximal, by Remark 2.10, the torus action is S1-fixed-point-
homogeneous with generalized characteristic submanifold F Ă M fixed by a circle
subgroup C Ă T k, containing a smallest orbit. In particular, the action of T {C
on F is also almost isotropy-maximal. By Theorem 2.16, M admits an equivariant
disk bundle decomposition as

(3.1) M “ DpF q YE DpNq,
where N is an invariant submanifold at maximal distance from F . By Lemma 2.18,
codimpNq ě 2, and by Corollary 2.20, the fundamental groups of F and N are
cyclic.

Observe that when the action is not isotropy-maximal, there are cases where
the torus action on M may not be locally standard everywhere, due to the possi-
ble existence of fixed point sets of disconnected groups. Hence, we introduce the
following general property.

Property C. Let M P MTk

0 pnq and let M be S1-fixed-point-homogeneous. Let
F and N be as in Display (3.1). If N is either the fixed point set component of a
connected subgroup of T k or fixed by no subgroup of T k, we say N satisfies Property
C.

Recall that by Remark 2.10, for a strictly almost isotropy-maximal torus action
on a closed manifold, the chain of inclusions of totally geodesic submanifolds is
given as follows:

T pxq – T 2k´n`1 Ă Fn´k´1 Ă Fn´k´2 Ă ¨ ¨ ¨ Ă F2 Ă F1 “ F Ă M,
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where the subscript corresponds to the rank of the torus fixing the submanifold and
dimpFiq “ n´ 2i.

Lemma 3.1. Let M P MTk

0 pnq and suppose that the T k-action is strictly almost
isotropy-maximal. Let F denote a generalized characteristic submanifold in M .
Then the induced torus action on each Fi in the chain of inclusions of totally geo-
desic submanifolds is strictly almost isotropy-maximal and of cohomogeneity strictly
less than n´ k. In particular, it follows that each Fi decomposes as

(3.2) Fi “ DpFi´1q YDpNFiq.
The proof of Lemma 3.1 is straightforward and left to the reader.
Before we state Theorem 3.3, we need to make one more definition. Observe

that N Ă M and each NFi Ă Fi satisfy Property C for an isometric, effective,
isotropy-maximal torus action on a closed, simply-connected, non-negatively curved
manifold. However, for strictly almost isotropy-maximal torus actions, this need
not be the case. To avoid this situation when working with strictly almost isotropy-
maximal torus actions, we next define the notion of a Property C manifold.

Definition 3.2 (Property C manifold). Let M P MTk

0 pnq and suppose that the
T k-action is strictly almost isotropy-maximal. For any generalized characteristic
submanifold F of M , suppose that in the corresponding disk bundle decompositions
as in Displays (3.1) and (3.2), N and NFi , 1 ď i ď n ´ k ´ 1, satisfy Property C.
We then say that pM,T kq is a Property C manifold.

We are now in a position to state Theorem 3.3. Before we do, we remark that all
disks in this section are standard, that is, they have the standard smooth structure.

Theorem 3.3. Let pM,T kq be a Property C manifold with M simply connected.
Then the following hold

(1) The action of T k on Mn is locally standard; and
(2) M{T is diffeomorphic to a disk, after smoothing the corners.

Remark 3.4. If pM,T kq is not a Property C manifold then the torus action on M
can fail to be locally standard in numerous ways, both on DpNq and on F , and
hence, in the latter case, on DpF q.

The proof of Theorem 3.3 follows along the same lines as the proofs of the main
theorem in Dong [6] and Proposition 2.22, and is by induction on the dimension of
the orbit space. We establish it in four steps. The first step is to prove Proposition
3.5, the anchor of the induction. The second and third steps are to prove Theorem
3.6 and Theorem 3.9, which establish an analogue of Theorem 3.3 for F and for N ,
respectively. The fourth and last step is to prove Parts (1) and (2) of Theorem 3.3.

3.1. Step 1 of the Proof of Theorem 3.3. Since a strictly almost isotropy-
maximal cohomogeneity one torus action only has isotropy subgroups of rank 0,
the T -action on M must be almost free and so M{T is a circle. But, by Corollary
6.3 of Chapter 2 in [1], this contradicts the hypothesis that M is simply connected
and hence this case does not occur. Therefore, the base case for the induction is
when the action is by cohomogeneity two. We establish this case in Proposition
3.5.

Proposition 3.5. Theorem 3.3 holds for the case n´ k “ 2.
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Proof. As the action is strictly almost isotropy-maximal, the largest isotropy sub-
group has rank 1. By Theorem 8.6 of Chapter 4 in [1], the quotient space is a
closed 2-disk, D2, whose interior corresponds to principal orbits and whose bound-
ary, BD2, corresponds to the singular orbits. In particular, there is only one singular
isotropy group, T 1, and BD2 is the image of its fixed point set in the quotient space.
As we saw above, M decomposes as a union of disk bundles over the generalized
characteristic submanifold, F , and N , the submanifold at maximal distance from
F . Since the image of N in M{T k corresponds to an interior point of D2, N is a
principal orbit and so N “ T k. By Theorem 2.19, π1pNq is cyclic, so k “ 1 and
hence n “ 3. That is, we need only prove Theorem 3.3 for an isometric, strictly
almost isotropy-maximal T 1-action on a closed, simply connected, non-negatively
curved 3-manifold.

The action of the circle is S1-fixed-point-homogeneous, and using work of [9]
we see that M3 is equivariantly diffeomorphic to S3 with a linear T 1-action and
decomposes as a union of disk bundles over F and N , both of which are circles,
with F being fixed by the T 1-action and N being a T 1-orbit. In particular, F {T is
diffeomorphic to S1 and N{T is a point.

To show that the T 1-action on S3 is locally standard, we note that since F
is a fixed circle in M3, the Slice theorem gives us directly that the action in a
neighborhood of F is locally standard. Since N is a principal orbit, its isotropy
group is trivial. It is then clear that the action is locally standard in a neighborhood
of N . Since E is a principal circle bundle over F , the T 1-action on E is also locally
standard. Via the disk bundle decomposition, we see that the T 1-action is locally
standard on M , which finishes the proof. !
3.2. Step 2 of the Proof of Theorem 3.3. In this subsection, our goal is to
prove Theorem 3.6, which establishes an analog of Theorem 3.3 for F .

Theorem 3.6. Let pM,T kq be a Property C manifold with M simply connected.
Assume that Theorem 3.3 holds for torus actions of cohomogeneity ă n´ k. Then
the induced torus action on F is locally standard and F {T is diffeomorphic to a
disk or a product of a disk with a circle after smoothing the corners.

Before we begin the proof of Theorem 3.6, we note that neither F nor N need be
simply connected, but by Corollary 2.20, they both have cyclic fundamental group.
We prove the following technical lemma and proposition, which allow us to treat
the cases where their respective fundamental groups are cyclic.

Lemma 3.7. Let M P MTk

0 pnq and suppose that the T k-action is strictly almost

isotropy-maximal. Assume that π1pMq is cyclic and denote by $M the Riemannian
universal cover of M . Then one of the following holds:

(1) If π1pMq – Zq, $M is a closed, simply connected, non-negatively curved
manifold admitting an isometric, strictly almost isotropy-maximal T k-action;
and

(2) If π1pMq – Z, $M “ M ˆ R, and M is a closed, simply connected, non-
negatively curved manifold admitting an isometric, isotropy-maximal T k-
action or a strictly almost isotropy-maximal T k´1-action.

Proof. We begin with the proof of Part (1). By Theorem 2.15, $M , the universal
cover of M , is a closed, simply connected, non-negatively curved n-dimensional
manifold. Let π : $M Ñ M be the covering map. By Theorem 2.1, it follows that
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the T k-action on M lifts to a T k-action on $M , since the lifted group finitely covers
T k. Since the T k-action on M is strictly almost isotropy-maximal, there is an
x P M with Tn´k´1 isotropy. Restricting to this subaction, we may apply Theorem
2.1 to see that π´1pxq is also fixed by Tn´k´1. Hence the T k-action on $M is strictly
almost isotropy-maximal, as desired.

We now prove Part (2). By Theorem 2.15, the universal cover of M splits

isometrically as $M “ M ˆ R, where M is a closed, simply connected, pn ´ 1q-
dimensional manifold of non-negative curvature. By Theorem 2.1, since the kernel
of the covering map π : rT k Ñ T k is a subgroup of the group of deck transformations
of π : $M Ñ M , rT k is of the form T l ˆ Rs where l ` s “ k and s P t0, 1u.

Theorem 1 of Hano [19] states that the connected component of the identity
of the isometry group of a simply connected Riemannian product manifold is the
product of the identity components of the isometry groups of the corresponding
factors. Thus, we have

Isom0p$Mq – Isom0pRq ˆ Isom0pMq,
and so

Isom0p$Mq – Rˆ Isom0pMq.
If rT k “ T k, then T k Ă Isom0pMq and any non-trivial orbit of the T k-action on
$M must lie entirely in the M factor. That is, the rT k-action leaves M invari-
ant and fixes the R-factor. As in the proof of Part (1), the rT k-action on $M is
strictly almost isotropy-maximal, and thus the T k-action is isotropy-maximal on
M . Now assume that rT k “ T k´1 ˆ R. Again, as the T k-action on M is strictly

almost isotropy-maximal, it follows that the T k´1-action on M
n´1

is strictly almost
isotropy-maximal. This concludes the proof of Part (2). !

Proposition 3.8. Let M P MTk

0 pnq with a strictly almost isotropy-maximal T k-
action. Assume that Theorem 3.3 holds for torus actions of cohomogeneity ă n´k.
Let An´2l be a component of the fixed point set of some T l Ă T k. Suppose that
pA, T k´lq is a Property C (sub)manifold and π1pAq is cyclic and non-trivial. Then,
the T k´l-action on A is locally standard and one of the following holds:

(1) If π1pAq is finite, then A{T k´l is diffeomorphic to Dn´k´l after smoothing
the corners; and

(2) If π1pAq – Z, then A{T k´l is diffeomorphic to S1ˆDn´k´l´1 or to Dn´k´l

after smoothing the corners.

Proof. We first show that the induced T k´l-action on An´2l is locally standard.
Let rA be the universal cover of A. Then we see from the proof of Lemma 3.7 that
rA admits a strictly almost isotropy-maximal action.
If π1pAq – Zq, then the T k´l-action on A lifts to a T k´l-action on rA and the

covering map π : rA Ñ A is equivariant with respect to these actions. Thus p rA, T k´lq
is also a Property C manifold and the hypothesis gives us that the T k´l-action on rA
is locally standard. Since being locally standard is a local condition, it immediately
follows that the induced action of T k´l on A is locally standard.

If π1pAq – Z, then by Theorem 2.15, rA “ Ā ˆ R. If the lifted group is T k´l,
then the action is isotropy-maximal on Ā. Combining Proposition 2.22 with the
fact that the torus action on the R-factor is trivial yields that the T k´l-action on
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rA is locally standard and again, since being locally standard is a local condition, it
immediately follows that the induced action of T k´l on A is locally standard.

If instead the lifted group is T k´l´1ˆR, then the action of T k´l´1 on Ā is strictly
almost isotropy-maximal. Moreover, we see, as in the case when the fundamental
group is finite, that pĀ, T k´l´1q is a Property C manifold. Thus the action is locally
standard on Ā by hypothesis. Since T k´l´1 acts trivially on the R-factor of rA, it
follows that the T k´l´1-action on rA is then locally standard. To see that the T k´l-
action on A is locally standard, it remains to show that the commuting T 1-action
that lifts to an R-action on the R-factor of rA is free. But this follows immediately
from Theorem 2.1, for if the corresponding T 1-action on A has non-trivial isotropy,
then the lift of that isotropy subgroup would be compact, contradicting the fact
that T 1 lifts to R.

We now prove Part (1). By Part (1) of Lemma 3.7, rA is a closed, simply
connected, non-negatively curved manifold admitting an isometric, strictly almost
isotropy-maximal torus action and so by hypothesis rA{T k´l is diffeomorphic to a
disk. By letting p : rA Ñ A, pA : A Ñ A{T k´l, and p rA : rA Ñ rA{T k´l it follows
that the induced map

pA ˝ p ˝ p´1
rA

: rA{T k´l Ñ A{T k´l

is a surjective local diffeomorphism between compact Hausdorff spaces, and hence
it is a covering map. Since rA{T k´l is diffeomorphic to a disk, it must be a regular
covering map. If the covering is m-sheeted, then there exists a non-trivial element
in the deck group acting on m points of the fiber. By Brouwer’s fixed point the-
orem any such transformation should have a fixed point in the disk. As all deck
transformations act freely, this transformation must be trivial. Hence m “ 1 and
pA˝p˝p´1

rA
is a diffeomorphism after smoothing the corners. The result then follows.

It remains to prove Part (2). In the case where the lifted group is T k´l on rA,
by Part (2) of Lemma 3.7 and its proof, T k´l acts isotropy-maximally on Ā with
T k´l acting trivially on the R-factor. By hypothesis, Ā{T k´l is diffeomorphic to a
disk. Thus rA{T k´l » Dn´k´l ˆR. Since pA ˝ p ˝ p´1

rA
: rA{T k´l Ñ A{T k´l is a local

diffeomorphism and rA{T k´l is simply connected, the path-lifting property holds.
Hence, pA ˝ p ˝ p´1

rA
is a covering map (see, for example, the proof of Proposition

6 of Section 5.6 in do Carmo [5]). Since A is closed, it follows that A{T k´l is
diffeomorphic to Dn´k´l´1 ˆ S1, after smoothing the corners.

If instead the lifted group is T k´l´1ˆR, then pĀˆRq{pT k´l´1ˆRq “ Ā{T k´l´1.
Since the T k´l´1-action on Ā is strictly almost isotropy-maximal, the hypothesis
implies that Ā{T k´l´1 is diffeomorphic to a disk, after smoothing the corners. It
remains to show that rA{pT k´l´1 ˆ Rq is diffeomorphic to A{T k´l, but this follows
as in the proof of Part (1). !
Proof of Theorem 3.6. Since F is a closed, totally geodesic submanifold of M , it
is non-negatively curved. Moreover, F admits a strictly almost isotropy-maximal
T k´1-action of cohomogeneity strictly less than n´ k. Since pM,T kq is a Property
C manifold, by definition, so is pF, T k´1q. If F is simply connected, then by hy-
pothesis, the T k´1-action on F is locally standard and F {T k´1 is diffeomorphic to
a standard disk Dn´k´1 after smoothing the corners. It remains to consider the
case where F is not simply connected. Since π1pF q is cyclic, the result follows from
Proposition 3.8. !

Licensed to University of Bonn. Prepared on Fri Jul 25 13:46:15 EDT 2025 for download from IP 131.220.249.224.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ALMOST ISOTROPY MAXIMALITY AND NON-NEGATIVE CURVATURE 4635

3.3. Step 3 of the Proof of Theorem 3.3. Our goal in this subsection is to
prove Theorem 3.9, which establishes an analogue of Theorem 3.3 for N .

Theorem 3.9. Let pM,T kq be a Property C manifold with M simply connected.
Assume that Theorem 3.3 holds for torus actions of cohomogeneity ă n´ k. Then
the induced torus action on N is locally standard and N{T is diffeomorphic to a
disk or the product of a disk and a circle, after smoothing the corners.

Before we begin the proof of Theorem 3.9, we generalize Proposition 2.22 to
closed, non-negatively curved manifolds with cyclic fundamental group admitting
an isotropy-maximal torus action in Proposition 3.10. We leave the details of the
proof to the reader, observing that the proof of Part (1) of Proposition 3.10 follows
along the lines of the proof of Case (2) of Proposition 2.22. To obtain the proof
of Part (2) of Proposition 3.10, M{T can be shown to be diffeomorphic to a disk
by applying the corresponding arguments of the proof of Proposition 3.8, using the
fact that when π1pMq – Z the lifted group can only be T k´1ˆR, with the R-factor
acting freely on the R-factor in $M . Since a diffeomorphism of nice manifolds with
corners preserves faces, we see that all closed faces of M{T are diffeomorphic to
disks. With this, we obtain Proposition 3.10.

Proposition 3.10. Let M P MTk

0 pnq with an isotropy-maximal T k-action. Sup-
pose that M has cyclic fundamental group. Then the following are true:

(1) The torus action on M is locally standard, in particular, M{T is a nice
manifold with corners, such that the isotropy groups are constant on all open
faces of M{T ; and

(2) M{T and all closed faces of M{T are diffeomorphic to disks, after smoothing
the corners.

The proof of Theorem 3.9 breaks into two cases. Recall that F is fixed by
C Ă T . Observe that πF : E Ñ F is a C-bundle over F . Let x P M be chosen so
that T pxq – T k{Tn´k´1 – T 2k´n`1 is an orbit of smallest dimension in Mn, and
x1 P E so that πF px1q “ x. The orbit T px1q in E is an orbit of type T {T 1 where T 1

is some codimension-one subtorus of Tx – Tn´k´1. Since the T {C-action on F is
locally standard by Theorem 3.6 and T pxq is an orbit of smallest dimension, there
is a neighborhood of T px1q in M which is equivariantly diffeomorphic to

(3.3) pT {T 1 ˆW ˆ Rq ˆ R “ T {T 1 ˆW ˆ R2,

where W is a faithful T 1-representation of dimension 2 dimpT 1q and T acts trivially
on R2 since one of the R-factors is normal to E. Let T pyq be the projection of the
orbit T px1q to N . Since dimpT px1qq “ dimpT pxqq ` 1, there are two cases:

Case 1. T pyq is an orbit of smallest dimension, so, dimpT pyqq “ dimpT pxqq; or
Case 2. T pyq is not an orbit of smallest dimension, so, dimpT pyqq “ dimpT pxqq`1.

We further subdivide Case 2 into two subcases, as follows. Since πN is an
equivariant map, it follows that T pyq is a T -orbit of type T {pH0 ˆ T 1q, where
H0 Ă C, is a finite subgroup. By a similar argument as above, we see that T pyq
has an invariant neighborhood in M equivariantly diffeomorphic to

(3.4) T {T 1 ˆH0 W ˆ R2,
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where T 1 acts effectively on W and the H0-action on W ˆ R2 commutes with the
T 1-action. Moreover, since πN is an equivariant submersion, there is an R-factor
normal to N because there was an R-factor normal to E in Display (3.3).

The normal bundle of the orbit T pyq in N is an invariant sub-bundle of the
normal bundle of the orbit T pyq Ă M . By the Slice theorem, the normal bundle
of the tangent bundle to the orbit T pyq is isomorphic to the homogeneous vector
bundle T {T 1 ˆH0 W ˆ R2.

Since T 1 – Tn´k´2 acts effectively and isotropy-maximally on W , the invariant
sub-bundles of this normal bundle are of the form

(3.5) T {T 1 ˆH0 W
1 ˆ Rj ,

where W 1 is a faithful T 2-representation of dimension 2 dimpT 2q, with T 2 Ă T 1, and
0 ď j ď 2. Since one R-factor is normal to N , the dimension of N must be either
2k´n`2`2 dimpT 2q`1 or 2k´n`2`2 dimpT 2q. In the first case, the codimension
of N is 2 dimpT 1q´ 2 dimpT 2q` 1 and in the second it is 2 dimpT 1q´ 2 dimpT 2q` 2.

The two subcases are then:

Case 2.a. The codimension of N is odd and greater than or equal to three; and

Case 2.b. The codimension of N is even and greater than or equal to two.

Note that if the codimension of N is strictly greater than 2, then π1pF q “ 0 by
Theorem 2.19. Moreover, when T 2 Ĺ T 1, N is fixed by a subtorus T3 Ă T 1, where
T 1{T 2 – T3. Note that in Case 2.a, while N is fixed by a subtorus T3, it is not
the fixed point set component of T3.

In Proposition 3.11, we consider Case 2.a, letting r “ dimpT3q “ dimpT 1q ´
dimpT 2q.
Proposition 3.11. Let M P MTk

0 pnq be simply connected and let the T k-action
be strictly almost isotropy-maximal. Let C be the circle subgroup of T k fixing F .
Suppose that T r fixes N and codimpNq “ 2r ` 1, with 1 ď r ď k. Then C acts
freely on N , and N{C is a closed, simply connected, non-negatively curved manifold
with an induced isometric, strictly almost isotropy-maximal T k´r´1-action.

Proof. Suppose that C does not act freely on N . Let Γ be a subgroup of C fixing
a point z P N . Since πN : E ÝÑ N is an S2r-bundle over N and C acts freely on
E, it follows that Γ must act freely on π´1

N pzq » S2r. But Γ is a subgroup of C,
hence it acts by orientation preserving isometries. Since the fiber is S2r, Γ must fix
a point, giving us a contradiction.

Moreover, whenever π1pF q “ 0, regardless of the codimension of N , the funda-
mental group of N is generated by the C-orbit in N . This follows exactly as in the
proof of Lemma 6.3 in [28] (cf. the proof of Part 5 of Theorem 3.3 in [6]). Since
the codimension of N is greater than or equal to 3 in this case, π1pF q is trivial, and
so the closed, non-negatively curved manifold, N{C, must have trivial fundamental
group. Finally, since T pyq is the smallest possible orbit in N , it follows that its
image in N{C is also the smallest possible orbit in N{C. Since C acts freely on
N , N{C is a manifold. Recall that while N is fixed by T r, it is not a fixed point
set component of T r. Now, while we cannot say that N is non-negatively curved,
we do know that N{C in M{C is non-negatively curved (see the proof of Theorem
3.28 in [26] (Theorem 2.16 here)). The result then follows. !

We now consider Case 2.b.
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Lemma 3.12. Let pM,T kq be a Property C manifold with M simply connected.
Suppose that dimpNq “ n ´ 2r ´ 2 and N is fixed by T r Ă T 1 Ă T , with r ě 0.
Then the induced action on N is locally standard and N{T and all of its faces are
diffeomorphic to disks, after smoothing the corners.

Proof. Recall that T 1ˆH0 is fixing the T pyq-orbit in N and dimpT pyqq “ 2k´n`2.
Let C be the circle fixing F . We first claim that H0 is trivial.

Suppose that H0 is non-trivial in order to derive a contradiction. Note that the
pT 1 ˆ H0q{T r-action on the unit normal S2pn´k´r´2q´1 to the T pyq-orbit in N is
of rank n ´ k ´ r ´ 2, that is, of maximal symmetry rank. This implies that the
induced pT 1 ˆH0q{T r-action is H 1-ineffective, where H 1 – H0 is some non-trivial
subgroup of T 1 ˆH0. Hence N is fixed by some non-trivial, disconnected subgroup
of T k, and so pM,T kq is not a Property C manifold, a contradiction.

We now assume that H0 is trivial. A straightforward calculation shows that the
induced torus action on N is isotropy-maximal. We break the proof into two cases:
r ě 1 and r “ 0.

In the first case, if N is simply connected, we may use Proposition 2.22 to see
that the induced T k´r-action is locally standard and N{T and all of its faces are
diffeomorphic to disks, and if N is not simply connected, we use Proposition 3.10
to obtain the same result.

Suppose then that r “ 0. Then dimpNq “ n ´ 2 and N is not fixed by any
isometry. Again, while we cannot say that N is non-negatively curved, we do have
thatN{C inM{C is a non-negatively curved manifold. Moreover, the induced torus
action on N{C is isotropy-maximal. Since dimpNq “ n´ 2, we cannot assume that
π1pF q is trivial. We then have two cases: where N{C is simply connected and
where π1pN{Cq is cyclic. In both cases, we see that the torus action is locally
standard and its quotient space and all of the faces of its quotient space are disks,
by Proposition 2.22 for the first case and by Proposition 3.10 for the second case.
Since N is a principal circle bundle over N{C, it follows that the action on N is
locally standard and N{T and all of its faces are disks. !
Remark 3.13. In the case where H0 is non-trivial, while pM,T kq is not a Property
C manifold, we still obtain that the action on N is locally standard and N{T
and all of its faces are diffeomorphic to disks. This follows because N is fixed
by a disconnected subgroup of the torus and so N is non-negatively curved, has
cyclic fundamental group, and admits an induced almost-effective isotropy-maximal
T k´r-action. The same argument as in the case where r ě 1 and H0 is trivial then
applies.

We are now ready to prove Theorem 3.9.

Proof of Theorem 3.9. Assume first that we are in Case 1. Then T pyq is an orbit of
smallest dimension. Since T pyq Ă N is a smallest orbit, and N is an invariant sub-
manifold, there is some generalized characteristic submanifold, F 1 “ FixpM ;T 1q,
containing N , for some T 1 Ă T k. Indeed, N is the fixed point set component of
some subtorus of Ty and is one of the F 1

i in the chain of inclusions of totally geodesic
submanifolds in F 1, where i denotes the rank of the subtorus fixing N . By Lemma
3.1, the induced action of the torus on N is strictly almost isotropy maximal and
of cohomogeneity strictly less than n´ k.

Note that pF 1, T k{T 1q is a Property C manifold. Applying the arguments made
earlier in the proof of Theorem 3.6 for F to F 1, we see that the action on F 1 and
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hence on N is locally standard. Thus, pN,T {T3q is a Property C manifold. Since
N has cyclic fundamental group, Proposition 3.8 gives us the proof of Case 1.

We now consider Case 2, beginning with Case 2.a. In order to show that the
induced torus action on N is locally standard and N{T is diffeomorphic to a disk,
note that the lifted action on the total space of a principal S1-bundle over a manifold
admitting a locally standard torus action is also locally standard. Since N is of
dimension n´ 2r ´ 1, the cohomogeneity of the induced T -action on N and hence
the cohomogeneity of the induced torus action on N{C are both strictly less than
n ´ k. The result then follows by Proposition 3.11 and the hypothesis. For Case
2.b, Lemma 3.12 gives us the result. This completes the proof of Case 2. !

3.4. Step 4 of the Proof of Theorem 3.3. In order to finish the proof of The-
orem 3.3, it remains to prove Parts (1) and (2), that is, we need to show that the
torus action on M is locally standard and M{T is diffeomorphic to a standard disk
Dn´k after smoothing the corners.

Proof of Theorem 3.3. Recall that by Theorems 3.6 and 3.9, the induced torus ac-
tions on F and on N are locally standard and both F {T and N{T are diffeomorphic
to either a disk or a product of a circle and a disk, after smoothing the corners.

We now show that the T k-action on DpF q is locally standard and that DpF q{T
is either a disk or a product of a disk with a circle. Since F is fixed by a circle
subgroup, and the action of the circle on the unit normal circle to F is free, the
torus action on DpF q is locally standard, as desired.

When F {T is a disk, we have

DpF q{T » F {T ˆ I » Dn´1´k ˆ I » Dn´k.

In the case where F {T is the product of a disk with a circle, we have that DpF q{T
is a 1-disk bundle over Dn´k´2ˆS1. Recall that a 1-disk bundle comes from a line
bundle and oriented line bundles are in one-to-one correspondence with H1pB;Z2q,
where B denotes the base of the line bundle. Here, the base is Dn´k´2 ˆ S1, so
there are only two such bundles: Dn´k´1 ˆ S1 or Dn´k´2 ˆMb, where Mb is the
Möbius band.

We next show that the T -action on DpNq is locally standard and that DpNq{T
is diffeomorphic to one of Dn´k, Dn´k´1 ˆ S1, or Dn´k´2 ˆ Mb. We break the
proof into the same cases as in the proof of Theorem 3.9.

In Case 1, since N is fixed by some subtorus, and the action of the subtorus
on the unit normal sphere to N is of maximal symmetry rank, the torus action on
DpNq is locally standard and the normal disk bundle of N modulo the subtorus
action is a disk. In the case where N{T is a disk, we see that

DpNq{T » N{T ˆ∆l » Dn´k.

If instead N{T is a product of a disk with a circle, as we saw above with DpF q{T ,
DpNq{T is then either Dn´k´1 ˆ S1 or Dn´k´2 ˆMb.

We now consider Case 2. Since pM,T kq is a Property C manifold, H0 Ă C
is trivial by the proof of Lemma 3.12. This fact combined with the invariant
neighborhood description given in Display (3.5) gives us that the T -action on DpNq
is locally standard. Moreover, in Case 2.a, we obtain

DpNq{T – N{T ˆ pΣm ˆ Iq – Dn´k,
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and in Case 2.b, we obtain

DpNq{T – N{T ˆ p∆m ˆD2q – Dn´k.

Since E is a principal circle bundle over F , we see that the action on E is locally
standard and since E{T “ F {T , we see that E{T is also diffeomorphic to a disk or
the product of a disk and circle. It then follows that the T -action on M is locally
standard.

We have seen that DpF q{T and DpNq{T can both be one of Dn´k, Dn´k´1ˆS1,
orDn´k´2ˆMb. Recall that by Corollary 6.3 of Chapter 2 in [1], π1pM{T q is trivial.
Hence, if both DpF q{T and DpNq{T are diffeomorphic to either Dn´k´1 ˆ S1 or
Dn´k´2ˆMb, thenM{T is diffeomorphic toDn´k´1ˆS1 orDn´k´2ˆMb, giving us
a contradiction. If instead one of DpF q{T or DpNq{T is diffeomorphic to a disk and
the other to Dn´k´2 ˆ Mb, then M{T is diffeomorphic to Dn´k´2 ˆ RP2, again
giving us a contradiction. Likewise, one sees that if one of DpF q{T or DpNq{T
is diffeomorphic to Dn´k´1 ˆ S1 and the other to Dn´k´2 ˆ Mb, then M{T is
homotopy equivalent to Dn´k´2 ˆ Mb, a contradiction. There are two cases left
to consider, either both DpF q{T or DpNq{T are diffeomorphic to a disk, or one of
DpF q{T or DpNq{T is diffeomorphic to a disk and the other to Dn´k´1 ˆ S1. In
the first case it is clear that M{T is diffeomorphic to a disk. In the latter case,
considering the quotient of the disk bundle decomposition, one sees that M{T is
diffeomorphic to a disk, as desired. !

The proof of Theorem 3.3 is now complete.

4. The proof of theorem A

The goal of this section is to prove Theorem A. Recall that by Theorem 2.16,
M decomposes as

M “ DpF q YE DpNq,
where F is a generalized characteristic submanifold fixed by a circle subgroup C
of T k, N is a T k-invariant submanifold at maximal distance from F , and E is the
common boundary of their respective disk bundles. Moreover, by Corollary 2.20,
both F and N have cyclic fundamental group.

We first show that the extension of the T k-action, if it exists, is unique.

Proposition 4.1. Let T k act smoothly and (almost) effectively on Mn, a connected
manifold, and assume that the action is strictly almost isotropy-maximal. If the T k-
action admits a non-trivial extension to a smooth, (almost) effective, and isotropy-
maximal T k`1-action, then the extension is unique.

Proof. Suppose instead that there exist two different (almost) effective T k`1 exten-
sions of the T k-action, each of which is isotropy-maximal. Let each be denoted by
T kˆT 1

i , i “ 1, 2, with T 1
1 and T 1

2 distinct, smooth, and (almost) effective circle ac-
tions on Mn. Consider the group G generated by T k, T 1

1 , and T 1
2 and the subgroup

H “ T 1
1 X T 1

2 . Then H is isomorphic to the identity, Zk, or S1. In the first two
cases, G must be of rank k`2. But, by Lemma 2.3, since each of the T k`1

i actions is
the largest possible (almost) effective torus action on M , we obtain a contradiction.
Hence T 1

1 X T 1
2 – S1 and therefore T 1

1 “ T 1
2 and the result follows. !

Proof of Theorem A. The proof is again by induction on the cohomogeneity of the
action. As described in the proof of Theorem 3.3, the anchor of the induction con-
sists of an isometric, strictly almost isotropy-maximal T 1-action on a non-negatively
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curved 3-manifold. We already saw in the proof of Theorem 3.3 that this T 1-action
is locally standard and T 1-fixed-point-homogeneous. In particular, M3 decomposes
as a union of disk bundles, M3 “ DpF q YDpNq, where F is a fixed circle and N
is a circle orbit. Moreover, M zF consists only of principal orbits of the T 1-action.
Thus, we can apply the construction contained in the proof of Proposition 3.6 in [14]
to obtain a smooth T 2-action extending the isometric T 1-action. By construction,
the T 2-action is locally standard. Note that the extended action is by cohomogene-
ity one and since M3 is closed and simply connected, it follows that the quotient
space is an interval. Uniqueness of the extension follows directly from Proposition
4.1. We summarize this result in Lemma 4.2.

Lemma 4.2. Let M3 be a closed, simply connected, non-negatively curved Rie-
mannian manifold admitting an isometric, effective, and strictly almost isotropy-
maximal T 1-action. Then the isometric T 1-action on M3 may be extended to a
unique, smooth, isotropy-maximal T 2-action. Moreover, the extended T 2-action is
locally standard and M3{T 2 is a 1-disk and its faces are 0-disks.

We now consider an isometric, strictly almost isotropy-maximal T k-action on
Mn, a closed, simply connected, non-negatively curved Riemannian manifold. For
any isometric, strictly almost isotropy-maximal T l-action on a closed, simply con-
nected, non-negatively curved manifold, Mm, of cohomogeneity m ´ l ă n ´ k,
we assume that the isometric T l-action extends to a smooth, locally standard, and
isotropy-maximal T l`1-action.

We break the proof into two steps: Step 1, where we extend the torus action
first on DpF q, and Step 2, where we prove the corresponding result for DpNq. In
order to complete the proof of Theorem A, we note that by Proposition 4.1, since
the extended (almost) effective actions agree on their common boundary, E, we
obtain a smooth, isotropy-maximal, (almost) effective T k`1-action on all of M .
Moreover, by construction, the T k`1-action is locally standard. We observe that
in the case where the extended action is almost effective, we may then mod out by
the finite ineffective kernel to obtain the desired effective, smooth, locally standard,
isotropy-maximal T k`1-action on all of M .

It remains only to prove Steps 1 and 2.

Step 1. The T k-action on DpF q extends to a smooth, (almost) effective, isotropy
maximal and locally standard T k`1-action, and F {T and DpF q{T and all of their
faces are diffeomorphic to disks, after smoothing the corners.

We first show that we can extend the induced isometric, strictly almost isotropy-
maximal T k´1-action on F to a smooth, effective, isotropy-maximal, and locally
standard T k-action.

We first consider the case where π1pF q is finite. By Part (1) of Lemma 3.7, we
may lift the action to a strictly almost isotropy-maximal torus action on rF , a closed,
simply-connected, non-negatively curved manifold. Theorem 2.1 guarantees us that
the lift commutes with the deck transformations. By the induction hypothesis,
we may extend the T k´1-action on rF to a smooth, isotropy-maximal and locally
standard T k-action. This then allows us to extend the T k´1-action on F to a
smooth, isotropy-maximal and locally standard T k-action. We note in this case
that the action on F is almost effective.

Likewise, if π1pF q – Z, then by Part (2) of Lemma 3.7, we have two cases
according to whether the lifted group is compact or not. In the case of rT k´1 “

Licensed to University of Bonn. Prepared on Fri Jul 25 13:46:15 EDT 2025 for download from IP 131.220.249.224.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ALMOST ISOTROPY MAXIMALITY AND NON-NEGATIVE CURVATURE 4641

T k´1, the action of T k´1 on rF » F̄ ˆ R is isotropy-maximal on the F̄ factor
and trivial on the R-factor. We can then extend the T k´1-action on rF by an R,
obtaining a smooth, isotropy-maximal pT k´1ˆRq-action on F̄ ˆR. For the case of
rT k´1 “ T k´2 ˆ R, the action is strictly almost isotropy-maximal on the F̄ factor
and trivial on the R-factor. We can then use the induction hypothesis to extend the
T k´2-action on F̄ to again obtain a smooth, isotropy-maximal pT k´1ˆRq-action on
F̄ˆR. In both cases this action commutes with the deck transformations and hence
induces a smooth (almost) effective T k-action on F that is both isotropy-maximal
and locally standard.

In both of the above cases, by Proposition 2.22, we see that rF {T k and all of its
faces are diffeomorphic to disks, after smoothing the corners. A similar argument
as in the proof of Proposition 3.8 then gives us that F {T k and all of its faces are
diffeomorphic to disks, after smoothing the corners.

Note that the extended T k-action on F commutes with the C-action on F , since
the latter action is trivial. To see that the action now extends to DpF q, note that
the C-action acts on the normal space to F by rotating the fibers. As in the proof
of Proposition 3.6 [14], we see that this gives us the desired (almost) effective T k`1-
action on νpF q and hence on DpF q via the exponential map. Since F {T k and all
of its faces are diffeomorphic to disks, after smoothing the corners, we may argue
as in Step 4 of the proof of Theorem 3.3 to see that DpF q{T and all of its faces are
diffeomorphic to disks, after smoothing the corners.

Step 2. The T k-action on DpNq extends to a smooth, (almost) effective, isotropy
maximal and locally standard T k`1-action, and F {T and DpF q{T and all of their
faces are diffeomorphic to disks, after smoothing the corners.

As in the proof of Theorem 3.3 there are two cases to consider. Recall that
πF : E Ñ F is a C-bundle over F . Recall also that we choose x P F such that
T pxq is a smallest orbit in F and x1 P E such that x1 P π´1

F pxq. We let T pyq be the
projection of the orbit T px1q to N . There are then two cases:

Case 1. T pyq is an orbit of smallest dimension, so, dimpT pyqq “ dimpT pxqq; or
Case 2. T pyq is not an orbit of smallest dimension, so, dimpT pyqq “ dimpT pxqq`1.

As before, Case 2 breaks into two further subcases, which we relabel to avoid
confusion:

Case 2.c. The codimension of N is odd and greater than or equal to 3; and

Case 2.d. The codimension of N is even and greater than or equal to 2.

Recall that for Case 2.c, codimpNq “ 2r`1, r ě 1, and for Case 2.d, codimpNq “
2r ` 2, r ě 0, where N is fixed by a subtorus of rank r.

For Case 1, recall that as we saw in the proof of Case 1 of Theorem 3.9, N is
contained in some generalized characteristic submanifold, F 1, containing T pyq. In
fact, N is the fixed point set component of some subtorus T i Ă Ty, with 1 ď i ď
n ´ k ´ 1, and is thus one of the F 1

i in the chain of inclusions of totally geodesic
submanifolds in F 1. Moreover, T i acts by maximal symmetry rank on the unit
normal sphere to N . Since N has cyclic fundamental group, as in the proof of Step
1, we may now extend the induced torus action on N by first extending the lifted
action on rN via the induction hypothesis. Since the T i-action on the unit normal
sphere to N is of maximal symmetry rank, and T i commutes with the circle of the
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extension, we may extend the action to DpNq. Moreover, N{T , DpNq{T , and all
of their respective faces are diffeomorphic to disks, after smoothing the corners.

For Case 2.c, the arguments in Proposition 3.11 do not rely on N satisfying
Property C. So, we may conclude here as well that N is a principal C-bundle over
a closed, simply connected, non-negatively curved manifold, N{C, with an induced
isometric strictly almost isotropy-maximal T k´r´1-action. By the induction hy-
pothesis, we may extend the isometric T k´r´1-action on N{C to a T k´r-action on
N{C that is smooth, isotropy-maximal and locally standard. By Theorem 2.7, we
may lift the T k´r-action to N to obtain a smooth, isotropy-maximal, and locally
standard T k´r`1-action on N . Further, the T r-action on the unit normal sphere
to N is of maximal symmetry rank and commutes with the circle action of the
extension. We then argue as in Case 1 to see that there is a smooth, (almost)
effective, isotropy-maximal, and locally standard T k`1-action on DpNq and that
N{T , DpNq{T , and all of their respective faces are diffeomorphic to disks, after
smoothing the corners.

For Case 2.d, we first consider the case where N satisfies Property C. There are
two subcases to consider: when r ě 1 and r “ 0.

We begin with the case when r ě 1 and N satisfies Property C. As we saw in
the proof of Theorem 3.3, the induced torus action on N is isotropy-maximal and
locally standard. The action of T r on its normal S2r`1 is strictly almost isotropy-
maximal. The T r-action fixes N , so we extend the T r-ineffective T k-action on
N to a T r`1-ineffective T k`1-action on N . By the induction hypothesis, we may
also extend the effective T r-action on the p2r` 2q-dimensional fibers of the normal
bundle of N to an effective T r`1-action. This extended action can then be extended
to the open cone over the unit normal sphere by simply coning the action. This
then yields a T r`1-action on νpNq. By exponentiating, we then have a smooth,
(almost) effective, isotropy-maximal, and locally standard T k`1-action on all of
DpNq. We use the same argument as in Case 1 to see that N{T , DpNq{T , and all
of their respective faces are diffeomorphic to disks, after smoothing the corners.

Now, consider the case when r “ 0 and N satisfies Property C. In particular, N
is fixed by no subgroup of T k. Then we extend the action on DpNq as in the proof
of Proposition 3.6 in [14]. This gives us the desired smooth, (almost) effective,
isotropy-maximal, and locally standard T k`1-action on DpNq. In fact, in the proof
of Lemma 3.12, we saw that N{T k and all of its faces are diffeomorphic to disks,
after smoothing the corners and since the T 1 extending the T k-action fixes N , we
see that N{T k`1 has exactly the same quotient space. Since the T 1 fixing N acts
freely on the unit normal circle to N , DpNq{T and all of its faces are diffeomorphic
to disks, after smoothing the corners.

If N does not satisfy Property C, then we extend the T k action as we did in
Case 2.d when r ě 1. That is, the pT rˆH 1q-action in the proof of Proposition 3.12
fixes N , so we extend the pT r ˆH 1q-ineffective T k-action on N to a pT r`1 ˆH 1q-
ineffective T k`1-action on N . By the induction hypothesis, we may also extend the
linear pT r ˆH 1q-action on the normal S2r`1 to a linear pT r`1 ˆH 1q-action which
is H2 – H 1-ineffective, where H2 Ă T r`1 ˆH 1. By exponentiating, we then have
a smooth T k`1-action on all of DpNq that is H2-ineffective. We then obtain an
almost effective, smooth, isotropy-maximal, locally standard T k`1-action on DpNq.
Since N is non-negatively curved, we use once again the same argument as in Case
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1 to see that that N{T , DpNq{T , and all of their respective faces are diffeomorphic
to disks, after smoothing the corners. !

5. The proofs of theorems B, C, and D

In this section we prove Theorems B, C, and D. We observe that the proofs of
Theorems B and C are quite similar and so are done simultaneously.

Proof of Theorems B and C. For an isotropy-maximal T k-action, we claim that
the free rank is at most 2k ´ n. If we suppose instead that the free rank is strictly
less than 2k ´ n, then we can apply the arguments of the proof of Proposition 5.1
in [8], to see that there must be a point in M fixed by a subtorus of rank strictly
greater than n´k. However, this is impossible, as it would contradict the fact that
the maximal rank of an isotropy subgroup of a T k-action on an n-manifold is n´k.

Let T 2k´n be the almost freely acting subtorus of T k. Then Mn{T 2k´n is a
closed, simply connected, p2n ´ 2kq-dimensional orbifold admitting an induced
smooth Tn´k-action with a Tn´k fixed point, that is, a torus orbifold. Since the
quotient of a closed, rationally elliptic manifold by an effective, almost free torus
action is rationally elliptic, we have that X2n´2k “ Mn{T 2k´n is rationally elliptic
(see Observation 6.6 in [8]). Letting Pn´k be as in Display (2.1), we see that in
the case of Theorem B, it follows that Mn{T k “ X2n´2k{Tn´k is homeomorphic
to Pn´k by Proposition 2.21. In the case of Theorem C, again by Proposition 2.21,
we have that Mn{T k is diffeomorphic to Pn´k, after smoothing the corners. Note
that the homeomorphism or diffeomorphism is weight-preserving by construction,
see [28].

By assumption, the T k-action on M is locally standard. It then follows by the
Cross-Sectioning Theorem in [8] that a cross-section for the action on M exists. In
the case of Theorem B, the weight-preserving homeomorphism between the orbit
spaces then yields an equivariant homeomorphism between the total spaces by
Theorem 3.5 in [8]. For Theorem C, the weight-preserving diffeomorphism between
the orbit spaces gives rise to an equivariant diffeomorphism between the total spaces
by Theorem 3.7 in [8], taking into account Remark 2.25. We thus obtain the desired
total spaces as in the proof of Case 2 of Theorem 2.24. !

We are now ready to prove Theorem D.

Proof of Theorem D. As mentioned in Section 1, Theorem 2.24 takes care of the
case when the torus action is isotropy-maximal, so we restrict our attention to the
case where the torus action is strictly almost isotropy-maximal. We first note that
M is rationally elliptic by Theorem 2.23. We then apply Theorem A to extend the
isometric T k-action on Mn to a smooth, isotropy-maximal, and locally standard
T k`1-action. Moreover, Theorem A gives us that M{T k`1 and all of its faces, and
in particular, its 4-dimensional faces, are diffeomorphic to disks, after smoothing
the corners. The result now follows by Theorem C. !
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