
Scalable Verification of Multi-ACK Properties in
Loss-Based Congestion Control Implementations

Minh Vu∗, Hamid Bagheri∗, Lisong Xu∗, Wei Sun†, Mingrui Zhang∗
∗ University of Nebraska-Lincoln, {minh.vu, mzhang23}@huskers.unl.edu, {bagheri, xu}@unl.edu,

† Meta Platform, Inc, wesun@meta.com

Abstract—Congestion control algorithms, such as RENO and
CUBIC, are vital for the Internet. However, numerous bugs
have been discovered and reported in the Congestion Control
Algorithm Implementations (CCAIs), even in those that have
been extensively tested and used on the Internet for years, such
as Linux RENO and Linux CUBIC. Some of these bugs have
potentially severe impacts on the performance and stability of
the Internet. Unfortunately, current CCAI testing and verifica-
tion methods are inadequate for proving the absence of bugs,
require substantial verification expertise, or are not scalable to
a large number of acknowledgment packets (ACKs) that trigger
CCAI actions. To address all these shortcomings, we propose
an ACK Scalable Method, called ASM. Our experiments with
two representative loss-based CCAIs, Linux RENO and CUBIC,
demonstrate the promising performance of the proposed ASM
even with tens of thousands of ACKs.

Index Terms—TCP congestion control, verification, symbolic
execution, mathematical induction

I. INTRODUCTION

Congestion control algorithms are vital for the Internet as

they are responsible for efficiently and fairly allocating Internet

bandwidth among a large and dynamic number of users. How-

ever, there is no one-size-fits-all solution because it is chal-

lenging, if not impossible, to design a single congestion control

algorithm that works well for all types of Internet applications

and across all current and future Internet environments (e.g.,

wired, wireless, cellular, data centers, and Internet of Things).

As a result, various congestion control algorithms, such as

RENO [1], CUBIC [2], and BBR [3], have been proposed,

implemented, and deployed on the Internet [4]. Furthermore,

new congestion control algorithms are still being proposed for

improved performance or new types of applications every year.

While congestion control has a tremendous impact on the

Internet, numerous bugs have been detected and reported [5]–

[8] in Congestion Control Algorithm Implementations (CCAIs,

i.e., actual code) in popular operating systems, even in those

that have been extensively tested and used on the Internet for

years, such as Linux CUBIC [9] (current default) and Linux

RENO [10] (previous default). This is because CCAI develop-

ers may make mistakes in designing and implementing CCAIs,

especially since real-world CCAIs, like those in Linux, involve

multiple intertwined and evolving components contributed by

different groups of developers spanning over many years.

This work was supported in part by NSF CCF-2124116. This paper is based
on the work when Minh Vu was a Ph.D. student at UNL.

CCAI Properties: A CCAI adapts its TCP throughput to

changing network conditions by updating its state variables

in response to network events. For example, an important

state variable is the congestion window size, cwnd, which

determines the number of data packets that a CCAI can

transmit in a round-trip time (RTT). A network event could be

the arrival of an acknowledgment packet (ACK) or a timeout at

a TCP sender. Most CCAI properties are the expected state of

a CCAI in response to ACKs and can be classified into two

types: single-ACK and multi-ACK properties, depending on

whether a single or multiple ACKs are involved. For example,

a well-known multi-ACK property is the NoMoreThanOne

property [1], which requires that RENO must not increment

its cwnd by more than one packet (specifically the maximum

segment size) during the congestion avoidance stage in re-

sponse to all the ACKs in an RTT.

Current practices: There are three potential classes of

methods to check the correctness of CCAIs. Class 1 - Test-

ing methods aim at detecting CCAI bugs, such as manual

testing [11], [12], undirected random testing [13], feedback-

guided random testing [7], [14], genetic algorithm-based ran-

dom testing [15], and symbolic execution-enhanced random

testing [16], [17]. They are effective in scalably checking the

CCAI behaviors even for a large number of packets; however,

they are unable to prove the correctness of CCAIs (i.e., the

absence of bugs). Class 2 - Model verification methods, such

as CCAC [18] and Belief Framework [19], automatically prove

the correctness of approximate abstract models of CCAIs using

techniques, such as model checking, where the models are

written manually using formal specification languages. How-

ever, CCAIs may have bugs not captured in the approximate

abstract models. Class 3 - Code verification methods aim at

proving the correctness of the actual code of CCAIs. They can

be further classified into two sub-classes. Class 3.1 - Manual

code verification methods, such as theorem proving, construct

and conduct the proofs with the assistance of formal proof

management systems (e.g., Coq [20]). Class 3.2 - Automated

code verification methods, such as SCCT [8], automatically

prove the correctness of CCAI for a small number of packets

using techniques such as exhaustive symbolic execution [21]–

[23] and implementation-based model checking [24]–[26].

Limitations of current practices: While both testing

methods (Class 1, e.g., [7], [14]–[16]) and model verification

methods (Class 2, e.g., [18], [19]) improve our confidence in

CCAI, none of them verifies the correctness of the actual code979-8-3503-5171-2/24/$31.00 ©2024 IEEE

of CCAI. This is because testing methods are not guaranteed to

detect all possible bugs, and model verification methods only

prove the correctness of their approximate abstract models.

While manual code verification methods (Class 3.1) verify

the actual code of CCAI, they require substantial verification

expertise (e.g., theorem proving and formal specification)

and thus are hard to use by network protocol designers and

developers. For example, recent studies [22], [27] show that

“a major stumbling block to the adoption of formal methods”

is the lack of verification expertise in the network community.

This is why we could not find one example for this class.

While automated code verification methods (Class 3.2, e.g.,

SCCT [8]) verify the actual code of CCAI and require little

verification expertise, they are not scalable to multi-ACK

properties with a large number of ACKs, which are common

for multi-ACK properties. For example, the number of ACKs

in the NoMoreThanOne property is proportional to cwnd,

which could be thousands or higher in high-speed networks.

Our method: We propose an ACK Scalable Method, called

ASM, for network protocol designers and developers with

little verification expertise (i.e., ASM users) to check the

multi-ACK properties of CCAIs. ASM extends the current

automated code verification method, SCCT [8], significantly

improving its scalability in checking multi-ACK properties

using three techniques. 1) Aggregated Information: We convert

a CCAI to an equivalent Aggregation Congestion Control

Algorithm (Agg-Alg), which operates on aggregated informa-

tion of a sequence of ACKs and has the same congestion

control behavior as the CCAI. It is more scalable to verify

the Agg-Alg than the CCAI, because the Agg-Alg handles

aggregated ACK information whereas the CCAI handles indi-

vidual ACKs. 2) Symbolic Aggregated Information: We use

symbolic variables to represent the aggregated information

of multiple sequences of ACKs by leveraging the symbolic

execution technique (a powerful program analysis technique,

Section III-A). Intuitively, symbolic aggregated information

enables us to simultaneously check the behaviors of the Agg-

Alg in response to multiple sequences, instead of one sequence

at a time. 3) Mathematical Induction: We scalably prove the

equivalence between the CCAI and the Agg-Alg using the

proof by mathematical induction on the number of ACKs. As

a result, proving the correctness of the Agg-Alg is equivalent

to proving the correctness of the CCAI.

Contributions: We make the following contributions in

this paper. First, we propose ASM, which is the first CCAI

verification method that is scalable to a large number of ACKs,

requires little verification expertise, and verifies the actual

code of CCAIs. Note that our proposed ASM works only

for a CCAI with an equivalent Agg-Alg, for example, loss-

based Linux CCAIs, such as Linux RENO, CUBIC, BIC,

HIGHSPEED, and SCALABLE. We will discuss the extension

of ASM to delay-based CCAIs in Section VII-E. Second, we

evaluate the performance of ASM using two representative

real-world loss-based CCAIs, Linux RENO and Linux CU-

BIC. Our experiments show that ASM reduces the verification

time by several orders of magnitude compared with the current

TABLE I
REQUIRED CCAI API FUNCTIONS IN LATEST LINUX KERNEL

API Description

ssthresh() calculate a new ssthresh

cong_avoid() update cwnd in slow start and congestion avoidance

undo_cwnd() revert the unnecessary cwnd reduction

automated code verification method, SCCT [8]. For example,

it takes ASM only 1.5 minutes to check the NoMoreThanOne

property of Linux RENO for up to 10,000 ACKs in about

108 network environments, whereas SCCT already takes about

200 minutes for up to only 100 ACKs. Due to the superior

scalability of ASM, for the first time, we are able to prove

some fundamental properties of Linux RENO and CUBIC in

common network environments of the Internet.

II. BACKGROUND AND RELATED WORK

A. Background on CCAI

The TCP code of an operating system has multiple parts

for different purposes, such as the connection management

part for establishing and terminating a TCP flow, the reliability

part for providing reliable transfer in case of packet reordering

and loss, and the congestion control part (i.e., CCAI) for

determining the efficient TCP throughput while being fair

among all users and avoiding congestion collapse. In this

paper, we consider the verification of the CCAI part of TCP.

A CCAI generally consists of multiple components, such as

slow start, congestion avoidance, fast retransmit, fast recovery,

timeout, reordering, and undo, to handle different packet

dynamics. An important state variable of a CCAI is the

congestion window size, cwnd, which determines the number

of data packets that the CCAI can transmit in an RTT. Another

important state variable is the slow start threshold, ssthresh,

which determines whether the current stage is slow start (i.e.,

if cwnd<ssthresh) or congestion avoidance.

An operating system usually supports multiple CCAIs, and

adopts some architecture to simplify the development of a new

CCAI because different CCAIs often differ only in some com-

ponents (e.g., slow start and congestion avoidance). For exam-

ple, Linux adopts a pluggable congestion control architecture.

To develop a new CCAI in Linux, CCAI developers only

need to implement several Application Programming Interface

(API) functions defined in structure tcp_congestion_ops and

can re-use most of the current TCP code. Specifically, Table I

lists all three required API functions in the latest Linux kernel

(version 6.9) that each CCAI must implement. In addition,

there are several optional API functions that a CCAI may or

may not implement.

Because a CCAI adjusts its numerical state variables (e.g.,

cwnd and ssthresh) to adapt the TCP throughput to changing

network conditions, CCAI properties are usually numerical

properties about these numerical state variables, such as the

NoMoreThanOne property. The CCAI updates its numerical

state variables in response to network events, mainly the

arrivals of ACKs at a TCP sender, and thus most CCAI

properties are the expected state of the CCAI in response to

ACKs. Especially, many CCAI properties specify the expected

final state of the CCAI after a sequence of ACKs (e.g., all

ACKs in an RTT in the NoMoreThanOne property) instead

of the specific state after each individual ACK. By doing

so, the CCAI specifications allow that different CCAIs or

different versions of the same CCAI all follow the same

long-term requirements (e.g., per RTT) but may flexibly have

different short-term behaviors (e.g., per ACK) for flexible

implementations. For example, Linux RENO has changed

its congestion avoidance code multiple times over the past

decades but all following the same NoMoreThanOne property.

B. Related work

The works closely related to ASM have been summarized in

Section I. Below we summarize more generally related works.

CCAIs have been traditionally tested and evaluated mainly

for the performance (e.g., efficiency and fairness) using flow

modeling [28]–[30], network simulations [31], network emu-

lations and experiments [5], [11], [12], [32], [33], and trace

analysis [34], [35]. However, none of these methods can verify

the correctness of CCAIs. Flow modeling typically studies

the abstract behaviors of CCAIs that approximate the long-

term behaviors of CCAIs and thus is suitable for approximate

long-term performance evaluation but not for exact correctness

verification. Network simulations, emulations, experiments,

and trace analysis can be used to check the exact behaviors of

CCAIs but only in a limited number of network environments,

and thus can check to some extent but cannot verify the

correctness of CCAIs.

Most formal specification, testing, and verification work on

TCP implementations [24], [34], [36]–[41] focuses on the TCP

connection management, TCP options, or reliability, but with

no or little coverage on CCAIs. Some work [7], [14], [16]

detects the bugs or security issues of CCAIs but does not verify

the correctness of CCAIs. There is also some work on formal

specifications of other transport protocols (e.g., QUIC) [42].

However, they focus on other transport components, such as

connection management, with little coverage of CCAIs. For-

mal methods have also been used for synthesizing congestion

control algorithms [19].

There also exists a rich body of work on the verification

of general network software. Hyperkernel [43] verifies an

operating system kernel using a SMT solver. Symbolic execu-

tion is used to generate high-coverage test cases for network

protocols [44], [45]. Symbolic execution has been combined

with model checking to test OpenFlow applications [26].

Symbolic execution has also been combined with theorem

proving to verify network function software [22], [23]. For-

mal methods [46] have been used to reason and verify the

network performance. Static analysis-based techniques [47]–

[49] have been used for finding bugs in network protocols.

These approaches are usually faster than exhaustive symbolic

execution when checking large implementations. However, it

is hard for them to detect deep bugs that only emerge after a

large number of packets.

Code 1. A function to be verified
1 i n t a b s o l u t e (i n t a)
2 i f (a >= 0)
3 r e t u r n a ; / / t r u e b r an c h
4 e l s e
5 r e t u r n −a ; / / f a l s e b r an c h

Code 2. Verification code for Code 1
1 vo id c h e c k a b s o l u t e ()
2 i n t a = sym value (−1000000000 , 1000000000) ;
3 i n t abs a = a b s o l u t e (a) ;
4 a s s e r t (abs a >= 0) ; / / check p r o p e r t y

Code 3. Creating a symbolic value
1 i n t sym value (i n t low , i n t h i gh)
2 r e t u r n a s y m bo l i c i n t e g e r be tween low and h i gh
3 c r e a t e d by t h e s y m bo l i c e x e c u t i o n e n g i n e

III. MOTIVATING EXAMPLES

A. Exhaustive symbolic execution

Symbolic execution [50] has evolved significantly to be-

come a powerful and popular technique to test and verify

software programs in recent years [51]. It can find all possible

execution paths of a program, each of which is a possible flow

of control of the program. If all possible execution paths can

be exhaustively explored to verify that a property holds for

every execution path, we can formally prove that the property

holds for the program, and such a verification technique is

referred to as exhaustive symbolic execution [21]–[23].

Code 2 illustrates how to use exhaustive symbolic execution

to verify function absolute() defined in Code 1. The property

to check is that the return value of absolute() is always non-

negative for any integer argument a between -109 and 109.

Code 2 first assigns a to a symbolic value by calling function

sym_value() (line 2). Different from normal concrete values,

a symbolic value can be intuitively treated as a mathematical

symbol representing a set of concrete values. For example, a

is associated with all possible integers between −109 and 109.

Code 2 then calls absolute() with argument a (line 3), and

finally checks whether the property holds (line 4).

When Code 2 is executed by a symbolic execution engine,

such as KLEE [52], a total of two execution paths are explored,

and their corresponding path constraints are reported. The path

constraint of an execution path describes the set of all possible

concrete values leading to the execution path. The two execu-

tion paths of Code 2 differ only in the if statement of Code 1.

One path executes the true branch (i.e., Code2:lines1,2,

Code3:lines1,2, Code2:line3, Code1:lines1,2,3, Code2:line4),

and the corresponding path constraint is a>=0 (i.e., condition

of Code1:line2). The other path executes the false branch and

the corresponding path constraint is a<0.

The strength of exhaustive symbolic execution is that the

path constraint of each execution path essentially defines an

equivalence class of concrete values leading to the same path

and thus we only need to exhaustively verify that the property

holds for each path (i.e., each equivalence class) instead of

each concrete value. For example, we only need to verify the

property for the two execution paths of Code 2, although a has

a total of 2 × 109 − 1 different concrete values. Specifically,

for the path with constraint a>=0, we have abs_a=a and thus

KLEE determines that assert(abs_a>=0) is true; for the other

path with constraint a<0, we have abs_a=-a and thus KLEE

determines that assert(abs_a>=0) is also true. Thus, the

property holds for function absolute().

The scalability of exhaustive symbolic execution heavily

depends on the total number of execution paths of the code

under test. The higher the number, the poorer the scalability.

This is because it takes both time and memory to explore

each execution path. Therefore, a scalable verification method

should have a bounded number of execution paths (defined

in Section IV-C). Intuitively, the upper bound of the number

of execution paths is independent of the range of symbolic

values. For example, Code 2 has at most two execution paths,

and that is independent of the range of a.

B. SCCT scalability challenge

SCCT [8] based on exhaustive symbolic execution is an

automated code verification method (i.e., Class 3.2) proposed

recently. It can automatically prove the correctness of CCAIs,

but is not scalable to a large number of ACKs as demonstrated

below. To simplify our discussion, let’s consider a simplified

version of Linux RENO, which is referred to as sRENO. We

also consider TCP setting where a TCP receiver sends an ACK

for each data packet.

CCAI function to check: We check function sreno_avoid()

of sRENO shown in Code 4, which updates cwnd during the

congestion avoidance stage in response to each ACK that

acknowledges a new data packet. Variable cwnd_cnt keeps

track of the number of ACKs.

Property to verify: We verify the NoMoreThanOne property

of RENO [1] for all possible cwnd values in a range, say [1,

max_cwnd] packets, where max_cwnd is a user-chosen constant.

Verification method: Code 5 illustrates how SCCT

checks whether the NoMoreThanOne property holds for

sreno_avoid() in an RTT. It considers a sRENO sender,

whose initial value of cwnd is init_cwnd (line 3) that is a

symbolic value between 1 and max_cwnd (line 2). The sRENO

sender receives a total of init_cwnd number of ACKs from

the sRENO receiver in an RTT, and handles these ACKs using

a for loop (lines 5 and 6). Finally, Code 5 compares the new

value of cwnd with its initial value and checks the property

(line 7). SCCT uses KLEE [52] to run Code 5. If the property

holds for all the execution paths explored by KLEE, SCCT

reports that the property holds for sreno_avoid(). Note that

variable init_cwnd denotes the initial cwnd value just before

an RTT, and it is not the initial cwnd value when a TCP

connection is just established. Also, note that Code 5 sets

other variables, such as cwnd_cnt, to only a concrete value

(line 4) to simplify the discussion of this example. In real-

world verification, they should also have symbolic values to

cover all possible concrete values.

Scalability challenge: SCCT has poor scalability because

each concrete value of init_cwnd leads to a different execution

Code 4. A function of sRENO for a single ACK
1 i n t cwnd , cwnd cnt ; / / c o n n e c t i o n v a r i a b l e s
2 vo id s r e n o a v o i d ()
3 cwnd cnt += 1 ; / / one ACK
4 i f (cwnd cnt >= cwnd)
5 {cwnd cnt −= cwnd ; cwnd ++;} / / u p d a t e cwnd

Code 5. SCCT verification code for sRENO
1 vo id s c c t c h e c k s r e n o a v o i d ()
2 i n t i n i t c w n d = sym value (1 , max cwnd) ; / / s y m b o l i c
3 cwnd = i n i t c w n d ; / / i n i t i a l cwnd
4 cwnd cnt =0; / / o t h e r i n i t i a l s
5 f o r (i n t k =1; k<=i n i t c w n d ; k ++) / / m u l t i p l e ACKs
6 s r e n o a v o i d () ; / / h a n d l e each ACK
7 a s s e r t (cwnd <= i n i t c w n d + 1) ; / / check p r o p e r t y

path of Code 5 and 4. For example, if init_cwnd = 1, the

corresponding path runs the for loop (Code5:lines5,6) for

one iteration to handle one ACK. But if init_cwnd = 2, the

corresponding path runs the for loop for two iterations to

handle two ACKs and thus is different. Also, note that Code 4

may be executed differently at the if statement (Code4:line4)

in different for loop iterations depending on the values of

cwnd and cwnd_cnt.

We can see that the total number of execution paths of SCCT

is unbounded. Specifically, the number of execution paths of

SCCT increases as max_cwnd increases, because max_cwnd is

the total number of possible concrete values of init_cwnd.

Intuitively, SCCT is not scalable to a large number of ACKs,

because max_cwnd is also the maximum number of ACKs. In

this paper, we propose a new verification method that has only

a bounded number of execution paths and thus is more scalable

than SCCT.

IV. CCAI VERIFICATION PROBLEM

A. Which part of CCAIs to verify?

Same as SCCT, we choose to verify the API functions of

Linux CCAIs as described in Section II-A. This is because

different CCAIs differ only in these API functions. Also, for

a new CCAI, these API functions are possibly more likely

to have bugs than the other parts that are shared among all

CCAIs and thus have already been extensively tested.

B. What properties of CCAIs to verify?

In this paper, we focus on the multi-ACK properties of

CCAIs. For example, the NoMoreThanOne property discussed

in the motivating example in Section III-B involves init_cwnd

ACKs, and init_cwnd could be tens of thousands in the

current Internet. More properties will be discussed in the

evaluation experiments in Section VII.

C. Design goals of the proposed verification method

There are three design goals for our proposed method.

• Goal 1: Code verification. It proves the correctness of

CCAI code against a multi-ACK property.

• Goal 2: ACK scalable. It has a bounded number N of

execution paths with respect to the number n of ACKs in

an RTT, and thus is scalable to a large number of ACKs.

• Goal 3: Little verification expertise. It does not require

substantial verification expertise (e.g., theorem proving

and formal specification), which network protocol design-

ers and developers, by and large, lack [27].

Definition: N is bounded with respect to n, if there exists

a constant C, such that N < C for any n; otherwise, N is

unbounded. Intuitively, N is bounded with respect to n, if an

upper bound of N is independent of n.

None of the current CCAI testing and verification methods

achieves all three design goals. Especially, SCCT, a state-of-

the-art verification method achieves Goals 1 and 3, but not

Goal 2, because it has an unbounded number of execution

paths as demonstrated in Section III-B.

V. OUR VERIFICATION METHOD

We propose an ACK Scalable Method, called ASM, to

verify the API functions of a CCAI against a multi-ACK

property. ASM is proposed for the network protocol designers

and developers (i.e., users), who should have in-depth CCAI

expertise but do not need substantial verification expertise.

ASM users take the following three steps to verify the

API functions of a CCAI against a multi-ACK property.

Step 1: Build the Agg-Alg of the CCAI. Step 2: Check the

equivalence between the Agg-Alg and the original CCAI. Step

3: Check the correctness of the Agg-Alg against the property.

Goal 1 is achieved because the Agg-Alg is equivalent to the

original CCAI (Step 2), and thus proving the correctness of the

Agg-Alg (Step 3) is equivalent to proving the correctness of

the original CCAI. Goal 2 is analytically proved in Section VI.

Goal 3 is achieved because ASM uses exhaustive symbolic

execution so that ASM users do not need to have substantial

verification expertise, such as theorem proving. In addition,

ASM uses the same programming language as the original

CCAI (i.e., C for Linux kernel) to specify the Agg-Alg and use

assertions to specify the multi-ACK properties so that ASM

users do not need to learn formal specification languages.

A. Step 1: Building the Agg-Alg for a CCAI

Figure 1 illustrates the difference between a CCAI and its

Agg-Alg. The CCAI operates on individual ACKs, including

normal ACKs (green blocks in the figure) that acknowledge

new data packets and are handled in slow start and congestion

avoidance stages, and duplicate ACKs (red blocks in the

figure) that are handled in other stages (e.g., fast recovery).

Because a CCAI mainly stays in the congestion avoidance

stages, most ACKs handled by the CCAI are normal ACKs.

The Agg-Alg is designed to operate on the aggregated in-

formation of these normal ACKs to be ACK scalable. The

information of a sequence of consecutive normal ACKs, up to

the current congestion window size, is aggregated (blue blocks

in the figure). Intuitively, the aggregated information (each

blue block) contains the information of at most all the normal

ACKs in an RTT. Note that the RTT boundaries are shown in

the figure just to help the readers understand the diagram, and

we do not need the RTT boundaries when aggregating ACKs.

RTT 1 RTT 2 RTT 3 RTT 4

CCAI:

Agg-Alg:

RTT 5

Fig. 1. Operations of CCAI and Agg-Alg in several RTTs. Each green block
is a normal ACK that acknowledges new data packets, each red block is a
duplicate ACK, and each blue block represents the aggregated information of
the corresponding normal ACKs.

Code 6. sRENO Agg-Alg for a sequence of n ACKs
1 i n t cwnd , cwnd cnt ; / / c o n n e c t i o n v a r i a b l e s
2 vo id s r e n o a v o i d a g g (i n t n)
3 a s s e r t (1 <= n <= cwnd) ; / / up t o t h e ACKs i n a RTT
4 cwnd cnt += n ; / / n ACKs
5 i f (cwnd cnt >= cwnd)
6 {cwnd cnt −= cwnd ; cwnd ++;} / / u p d a t e cwnd

An ASM user builds the Agg-Alg for a CCAI by re-

implementing the frequent API functions and keeping the

occasional API functions of the CCAI. There are two types of

API functions. 1) Frequent API Functions: An API function

is frequent if it handles normal ACKs, because it is triggered

frequently in response to all the normal ACKs. Among the

required API functions listed in Table I, cong_avoid() is a

frequent API function, because it is called repeatedly for each

normal ACK during the slow start and congestion avoidance

stages. 2) Occasional API Functions: An API function is

occasional if it handles duplicate ACKs, because it is trig-

gered only occasionally in special cases. Among the required

API functions, ssthresh() and undo_cwnd() are occasional

functions. ssthresh() is called only when a congestion event

(e.g., three duplicate ACKs) is detected and then CCAI needs

to reduce cwnd. undo_cwnd() is called only when a CCAI

discovers that a congestion event was mistakenly detected and

cwnd was unnecessarily reduced.

The aggregated information of a sequence of normal ACKs

depends on the CCAI. It may contain one or more of the

following variables depending on the CCAI: number of ACKs,

arrival time of the last ACK, average packet delay, maximum

or minimum packet delay, and other possible aggregated

metrics. For example, the aggregated information of Linux

RENO contains just the number of ACKs, and the aggregated

information of Linux CUBIC contains the number of ACKs

and the arrival time of the last ACK.

As an illustrating example, let’s consider sRENO described

in Section III-B and consider sreno_avoid() shown in Code 4

as its implementation of frequent API function cong_avoid().

The sRENO Agg-Alg re-implements this API function as

sreno_avoid_agg() shown in Code 6.

There are several differences between the original CCAI

sreno_avoid() and the new Agg-Alg sreno_avoid_agg().

1) They are designed to handle different numbers of ACKs.

For example, to handle a sequence of n normal ACKs,

sreno_avoid() is called n times once for each ACK,

whereas sreno_avoid_agg() is called only once for the

whole sequence. 2) They have different arguments. The

original sreno_avoid() has arguments (if any) describing

the information of an individual ACK, whereas the new

sreno_avoid_agg() has an argument, n, which describes the

aggregated information of a sequence of n ACKs. 3) The

new sreno_avoid_agg() may not have any loop, such as for,

while, and repeat, depending on n. This programming con-

straint is necessary to achieve a bounded number of execution

paths (i.e., Goal 2).

Functions sreno_avoid() and sreno_avoid_agg() are

equivalent in that they have the same final values of CCAI

state variables, such as cwnd, starting from any initial values of

these state variables for the same sequence of n normal ACKs

in an RTT. The range of n depends on cwnd. For example, if

there are at most cwnd data packets in an RTT and there is

an ACK for each data packet, there are at most cwnd ACKs

in an RTT. Then n could be any number between 1 and cwnd,

which is checked at line 3 of sreno_avoid_agg().

B. Step 2: Checking equivalence

For each frequent API function, ASM checks the equiv-

alence between the original CCAI implementation (denoted

by f()) and the Agg-Alg implementation (denoted by

f_agg()) developed by an ASM user. For example, if f() is

sreno_avoid(), then f_agg() is sreno_avoid_agg(). Specif-

ically, the ASM user provides both f() and f_agg(), and

then ASM runs asm_check_equ() shown in Code 7 to check

whether they have the same final value of cwnd starting from

any init_cwnd after n ACKs in an RTT. The equivalence is

checked for all possible values of init_cwnd in [1, max_cwnd]

and all possible values of n in [1, init_cwnd].

The challenge is that asm_check_equ() should have a

bounded number of execution paths to achieve Goal 2. As

a result, we may not call f() for n times (i.e., a for loop)

when finding the final cwnd value of f() after n ACKs.

We propose to address this challenge using proof by mathe-

matical induction as illustrated in Code 7, which has two steps.

1) The base step (lines 3 to 6) checks the equivalence between

f() and f_agg() for only 1 ACK. 2) The induction step (lines

7 to 11) assumes that they are equivalent for n-1 ACKs, and

then calculates the final cwnd value of f() after n ACKs (line

10) by first calling f_agg() once to handle the first n-1 ACKs

and then calling f() once to handle the last ACK. By doing

so, our proposed asm_check_equ() does not have any for loop

and then has a bounded number of execution paths.

C. Step 3: Checking property

At this step, ASM runs a verification code written by an

ASM user to check whether a property holds for the Agg-Alg.

Because Step 2 already proves that the Agg-Alg is equivalent

to the original CCAI, if a property holds for the Agg-Alg then

it holds for the original CCAI (i.e., Goal 1).

A verification code checks the behavior of the API functions

of a CCAI in response to a sequence of ACKs accord-

ing to the property. ASM verification code is very sim-

ilar to that of SCCT. A general SCCT verification code

scct_check_prop() is illustrated in Code 8 that checks f() for

a property involving n ACKs, and a general ASM verification

Code 7. ASM Step 2: Check equivalence
1 vo id asm check equ (f () , f agg ())
2 i n t i n i t c w n d = sym value (1 , max cwnd) ;
3 cwnd = i n i t c w n d ; / / ba se s t e p
4 check i f t h e f o l l o w i n g two have t h e same f i n a l cwnd
5 1) c a l l f () f o r 1 ACK
6 2) c a l l f agg () f o r 1 ACK
7 cwnd = i n i t c w n d ; / / i n d u c t i o n s t e p
8 n = sym value (2 , i n i t c w n d) ;
9 check i f t h e f o l l o w i n g two have t h e same f i n a l cwnd

10 1) c a l l f agg () f o r n−1 ACKs t h e n c a l l f () f o r 1 ACK
11 2) c a l l f agg () f o r n ACKs

Code 8. SCCT code to check property
1 vo id s c c t c h e c k p r o p ()
2 i n i t i a l i z e v a r i a b l e s , such as i n i t c w n d and RTT
3 c a l l f () n t i m e s t o h a n d l e n ACKs
4 check whe the r t h e p r o p e r t y h o l d s

Code 9. ASM Step 3: Check property
1 vo id asm check prop ()
2 i n i t i a l i z e v a r i a b l e s , such as i n i t c w n d and RTT
3 c a l l f agg () once t o h a n d l e n ACKs
4 check whe the r t h e p r o p e r t y h o l d s

Code 10. ASM verification code for sRENO Agg-Alg
1 vo id asm check s reno avo id agg ()
2 i n t i n i t c w n d = sym value (1 , max cwnd) ; / / s y m b o l i c
3 cwnd = i n i t c w n d ; / / i n i t i a l cwnd
4 cwnd cnt =0; / / o t h e r i n i t i a l s
5 s r e n o a v o i d a g g (i n i t c w n d) ; / / h a n d l e ACKs
6 a s s e r t (cwnd <= i n i t c w n d + 1) ; / / check p r o p e r t y

code asm_check_prop() is illustrated in Code 9 that checks

f_agg(). They may call other API functions based on the

property to check. Their difference is that the SCCT code calls

f() for n times (Code8:line3) and the ASM code calls f_agg()

only once (Code9:line3). As a result, the SCCT code has an

unbounded number of execution paths whereas the ASM code

has a bounded number of execution paths.

As an example, a specific SCCT verification code is Code 5

discussed in Section III-B, which checks sreno_avoid()

against the NoMoreThanOne property involving init_cwnd

ACKs. A specific ASM code is shown in Code 10, which

checks sreno_avoid_agg() for the same property. Again, their

difference is that the SCCT code calls sreno_avoid() for

init_cwnd times (Code5:lines5,6) and the ASM code calls

sreno_avoid_agg() only once (Code10:line5).

Note that to reduce the required verification expertise (i.e.,

Goal 3), the verification code is written in the same pro-

gramming language as the original CCAI and the property

is specified using assertions that ASM users are familiar with.

VI. SCALABILITY ANALYSIS

In this section, we analytically study the scalability of

ASM and SCCT. We consider a general type of properties

that compare the cwnd before and after calling frequent API

function cong_avoid() to handle a total of n ∈ [1, init_cwnd]

ACKs in an RTT, where init_cwnd ∈ [1, max_cwnd]. For

example, NoMoreThanOne belongs to this type, and we will

evaluate several properties of Linux RENO and CUBIC also

belonging to this type in Section VII.

Let f() denote the original CCAI implementation of API

cong_avoid(), for example, sreno_avoid() in Code 4. Let

Nf() denote the maximum number of execution paths of

f(), which is bounded because it handles only one ACK.

For example, the Nf() of sreno_avoid() is no more than 2

because there is only one if statement (line 4).

Let f_agg() denote the Agg-Alg implementation of API

cong_avoid(), for example, sreno_avoid_agg() in Code 6.

Let Nf agg() denote the maximum number of execution paths

of f_agg(), which is bounded by design (Section V-A). For

example, the Nf agg() of sreno_avoid_agg() is no more than

8 because there are only three if statements (line 5 and also

assert at line 3 has two if statements).

Theorem 1. The number of execution paths of ASM, denoted

by NASM , is bounded with respect to max_cwnd.

Proof : NASM is the sum of the numbers of execution paths

of ASM at Steps 2 and 3, denoted by Nstep2 and Nstep3,

respectively. That is, NASM = Nstep2 +Nstep3.

At Step 2, ASM checks the equivalence between f() and

f_agg() using asm_check_equ() in Code 7. We have Nstep2 ≤
N2

f()×N3
f agg()× cstep2 where cstep2 is a constant depending

on the number of if statements in Code 7, because f() is

called twice and f_agg() is called three times. Also, because

both Nf() and Nf agg() are bounded with respect to max_cwnd,

Nstep2 is bounded. That is, Nstep2 is Θ(1).
At Step 3, ASM checks the property of f_agg() using

asm_check_prop() in Code 9. We have Nstep3 ≤ Nf agg() ×
cstep3 where cstep3 is a constant depending on the number of

if statements in Code 9, because f_agg() is called once. Thus,

Nstep3 is bounded with respect to max_cwnd and is Θ(1).
Overall, NASM is bounded and is Θ(1).

Theorem 2. The number of execution paths of SCCT, denoted

by NSCCT , is unbounded with respect to max_cwnd.

Proof : SCCT checks the property of f() using

scct_check_prop() in Code 8. NSCCT has a lower

bound Ω(max cwnd) and an upper bound O(Nf()
max cwnd),

because f() is called n times and there are a total of max_cwnd

possible values of n. That is, in the best case (e.g., when

Nf() is 1), NSCCT increases linearly as max_cwnd, and in

the worst case, NSCCT increases exponentially as max_cwnd.

Therefore, NSCCT is unbounded.

We measure and show the specific values of both NASM

and NSCCT for Linux RENO and CUBIC in Section VII.

VII. EXPERIMENTS

A. Overview

We design and conduct experiments to answer the following

research questions.

• RQ1: Can ASM verify the code of loss-based CCAIs?

• RQ2: Is ASM ACK-scalable?

CCAI to verify: To answer RQ1, we consider two real-

world loss-based CCAIs: Linux RENO and Linux CUBIC,

the previous and current default CCAI of Linux and Android

devices, respectively. Both had or have been used by billions

of users worldwide. We consider their API functions [9], [10]

in the latest Linux kernel (version 6.9).

Verification methods: To answer RQ2, we run the following

two verification methods. 1) SCCT [8] belongs to Class

3.2 (automated code verification). It is a state-of-the-art tool

to verify real-world CCAIs and has successfully detected

multiple CCAI bugs. 2) Our proposed ASM is developed

by extending the open-source SCCT. The source code of

ASM and all the experiments in this paper is available at

https://github.com/verifiabletcp/asm. We run both SCCT and

ASM using a popular symbolic execution engine - KLEE [52].

Properties to check: We consider only multi-ACK prop-

erties involving a large number of ACKs (e.g., thousands),

because SCCT can already check the properties involving a

small number of ACKs (e.g., several) [8]. In the experiments,

both SCCT and ASM check properties with a symbolic

number of ACKs.

Network environments: We check CCAIs mainly in the

network environments with cwnd up to the order of 104 packets

and the RTT duration rtt_duration up to max_rtt_duration

= 200 ms, which cover common network environments of the

current Internet (e.g., 1 Kbps to 10 Gbps of bandwidth, 1 ms

to 200 ms of RTT). Both SCCT and ASM check CCAIs in

networks with symbolic bandwidth and symbolic RTTs.

Machine used: We run all our experiments on a DELL

Precision 3630 Tower with 128 GByte memory and Intel Core

i7-8700K CPU at 3.70 GHz x 12.

B. Case Study 1: Linux RENO

1) Introduction: We demonstrate the applicability and eval-

uate the performance of ASM using a representative loss-based

CCAI, Linux RENO, which was the default CCAI of Linux.

It had been used by billions of Linux and Android devices

worldwide and is still used by a large number of devices.

2) Properties to check: We check two fundamental proper-

ties of RENO [1] about the maximum increment of frequent

API function cong_avoid(). 1) NoMoreThanDouble: It should

not increment its cwnd more than double in an RTT in

the slow start stage, 2) NoMoreThanOne in the congestion

avoidance stage. These two properties involve two input vari-

ables: init_cwnd (i.e., the initial cwnd before an RTT) and

ssthresh, which determine the stage of RENO. If init_cwnd

< ssthresh, it is the slow start stage; otherwise, it is the

congestion avoidance stage. These two maximum increment

properties are fundamental to RENO. However, these two

properties have not been verified for Linux RENO, to the best

of our knowledge, for common network environments of the

current Internet, because they involve init_cwnd number of

ACKs that could be tens of thousands in the current Internet.

We write both ASM and SCCT verification code in language

C that is the programming language of Linux RENO, and

specify the properties using assertions that Linux network

developers are familiar with. The code checks the properties

using symbolic values to cover all possible init_cwnd in [1,

max_cwnd] and all possible ssthresh in [1, max_ssthresh]. In

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 10 20 30 40 50 60 70 80

RTT 1 RTT 2 RTT 3 RTT 4

ssthresh

slow
start

congestion
avoidance

c
w

n
d

ACK

Original RENO
Agg-Alg RENO

Property

Fig. 2. An example with ssthresh=20 and init_cwnd=10. The RENO
Agg-Alg generates the same final cwnd as the original RENO in each RTT,
and the maximum increment properties hold (cwnd ≤ property) in each RTT.

addition, it checks all possible values of other related variables,

such as cwnd_cnt in Code 4 and 6.

3) Original Linux RENO implementation: Because the

Agg-Alg of CCAI differs from the original CCAI only in

the implementations of the frequent API functions, let’s con-

sider the only frequent required API function cong_avoid().

The original RENO implementation of API cong_avoid() is

function tcp_reno_cong_avoid() in Linux kernel source file

tcp_input.c [10]. It is called for each received ACK and has

one major argument: acked that is the number of data packets

acknowledged by the ACK.

4) RENO Agg-Alg: We develop the Agg-Alg of Linux

RENO by re-implementing API function cong_avoid(). The

Agg-Alg implementation has the same final cwnd as the orig-

inal implementation tcp_reno_cong_avoid() for a sequence

of 1 ≤ n ≤ init_cwnd ACKs. Intuitively, the RENO Agg-Alg

captures the behavior of the original RENO for a sequence of

ACKs in an RTT. We capture the aggregated information of

a sequence of ACKs for RENO using variable total_acked,

which is the total number of data packets acknowledged by

all the ACKs in the sequence. The Agg-Alg implementation

directly calculates the final cwnd using argument total_acked.

To help the readers better understand the relation between

the original RENO function tcp_reno_cong_avoid() and the

RENO Agg-Alg, let’s consider an example where init_cwnd

of the first RTT is 10 packets and ssthresh is 20 packets. Fig-

ure 2 plots the new cwnd values calculated by both functions

for the first 4 RTTs involving a total of 73 ACKs. To handle

these ACKs, the original RENO function is called 73 times,

once for each ACK, and the RENO Agg-Alg is called only

4 times, once for each RTT. The RENO Agg-Alg generates

the same final cwnd as the original RENO at the end of each

RTT. Below we will prove their equivalence for a large range

of init_cwnd and ssthresh and for every ACK instead of just

the last ACK in each RTT in Figure 2.

Also to help the readers understand the maximum increment

properties of RENO, Figure 2 plots the maximum increment

line for each RTT and the properties hold if cwnd is always

no higher than the corresponding maximum increment line at

the end of every RTT. We can see that the properties hold for

this example. Below we will check these properties for a large

10
-2

10
-1

10
 0

10
 1

10
 2

10
 3

10
 1

10
 2

10
 3

10
 4

ti
m

e
 (

m
in

u
te

s
)

max_cwnd and max_ssthresh

SCCT
ASM - total
ASM - equi.
ASM - prop.

Fig. 3. The verification time of ASM
(total = prove equivalent + prove prop-
erty alone) is several orders of magni-
tude shorter than SCCT.

10
 0

10
 1

10
 2

10
 3

10
 4

10
 5

10
 1

10
 2

10
 3

10
 4

e
x
e

c
u

ti
o

n
 p

a
th

s

max_cwnd and max_ssthresh

SCCT
ASM - total
ASM - equi.
ASM - prop.

Fig. 4. The number of execution paths
of ASM is bounded, whereas that of
SCCT is unbounded (increases expo-
nentially).

range of init_cwnd and ssthresh.

We develop the RENO Agg-Alg according to the RENO

specification [1] and the original Linux RENO code [10]. The

RENO Agg-Alg is written in language C that is the same as

the original RENO. We notice that the developed RENO Agg-

Alg is almost the same as the original RENO implementation

tcp_reno_cong_avoid(), except replacing argument acked

with total_acked. That is, we do not need to develop the

RENO Agg-Alg from scratch, instead, we only need to make

some simple changes to the original RENO code.

5) Check properties and equivalence: We use both SCCT

and ASM to verify the property with max_cwnd and

max_ssthresh up to 104 packets. For example, if both are 104,

they check whether the properties hold for all 104×104 = 108

possible combinations of init_cwnd and ssthresh, and ASM

also checks the equivalence between the original RENO and

Agg-Alg for all these 108 combinations and all possible 104

ACKs. Figures 3 and 4 show their verification times and

numbers of execution paths. ASM quickly verifies that the

properties hold for Linux RENO for all 108 combinations of

init_cwnd and ssthresh, but SCCT is unable to complete the

verification within 1000 minutes.

Scalability: Figure 3 shows that ASM is several orders of

magnitude faster than SCCT. For example, when max_cwnd

and max_ssthresh are 100 packets, it takes SCCT about 200

minutes to verify the properties, whereas it takes ASM about

5 seconds to verify the equivalence, about 1 second to verify

the properties alone, and about 6 seconds in total. Even when

max_cwnd and max_ssthresh are 10000 packets (i.e., 10000

ACKs), it takes ASM only 1.5 minutes to verify the equiva-

lence and properties. The reason for the different scalability of

ASM and SCCT is that the number of ASM execution paths

is bounded whereas that of SCCT is unbounded as proved

by Theorems 1 and 2 and confirmed in Figure 4. Note that

Figure 4 shows that the number of SCCT execution paths

increases exponentially. The reason that the verification time

of ASM still increases with a bounded number of execution

paths is that the constraints of symbolic execution have larger

ranges of variables and then take a longer time to solve.

C. Case Study 2: Linux CUBIC

1) Introduction: We demonstrate the applicability and eval-

uate the performance of ASM using another representative

loss-based CCAI, Linux CUBIC, which is currently being used

by billions of Linux and Android devices worldwide. Linux

CUBIC has replaced Linux RENO as the default congestion

control approach of all Linux devices since around 2006.

Another reason that we select CUBIC is that its behavior is

more complicated than RENO in that it depends on not only

the number of ACKs but also their arrival times.
2) Properties to check: We check two maximum increment

properties. 1) MaxCwndIncrement: CUBIC should not incre-

ment its cwnd more than 1.5 times in an RTT in the congestion

avoidance stage. 2) MaxTargetIncrement: CUBIC should not

increment its target more than 1.5 times in an RTT in the

congestion avoidance stage. Variable target is the expected

cwnd of CUBIC after one RTT. The MaxTargetIncrement

is required in the CUBIC specification [2] and implies the

MaxCwndIncrement property. These two properties involve

two input variables: origin that is the origin point of the

cubic function that CUBIC follows to increment cwnd, and

rtt_duration that is the duration of an RTT. We check these

properties using symbolic values to cover all possible origin

in [2, max_origin] packets and all possible rtt_duration in

[1, max_rtt_duration] ms.
3) Original Linux CUBIC implementation: The original

CUBIC implementation of frequent API cong_avoid() is

function cubictcp_cong_avoid() in Linux kernel source file

tcp_cubic.c [9]. It is called for each received ACK and has

one major argument acked.
4) CUBIC Agg-Alg: The general behavior of Linux CUBIC

is complicated because it may bypass some computational-

intensive code based on some conditions of the ACK arrival

times to reduce the CPU load. As a result, the behavior of

CUBIC depends on the arrival time of each individual ACK,

and thus it is challenging to develop the Agg-Alg of CUBIC

for all possible cases. In this paper, we consider a case where

the behavior of CUBIC depends on only the arrival time of

the last ACK in an RTT instead of the arrival times of all the

ACKs in the RTT. In this case, the aggregated information of a

sequence of ACKs can be captured by two variables: variable

total_acked, and variable last_ack_time that is the arrival

time of the last ACK in the sequence. Specifically, we develop

the Agg-Alg of CUBIC by re-implementing API function

cong_avoid(), and the Agg-Alg implementation has the same

final cwnd value as the original cubictcp_cong_avoid() for a

sequence of 1 ≤ n ≤ init_cwnd ACKs.
5) Check properties and equivalence: We use both SCCT

and ASM to check the two maximum increment properties of

CUBIC with max_rtt_duration = 200 ms and max_origin

up to 104 packets. We check the behavior of CUBIC only

in the first RTT after a loss event, because the first RTT has

the maximum increment among all the RTTs in the concave

region [2] of CUBIC. ASM verifies that the properties hold for

Linux CUBIC in all checked network environments, but SCCT

is unable to complete the verification within 1000 minutes.

10
-2

10
-1

10
 0

10
 1

10
 2

10
 3

10
 1

10
 2

10
 3

10
 4

ti
m

e
 (

m
in

u
te

s
)

max_origin

SCCT
ASM - total
ASM - equi.
ASM - prop.

Fig. 5. The verification time of ASM
(total = prove equivalent + prove prop-
erty alone) is several orders of magni-
tude shorter than SCCT.

10
 0

10
 1

10
 2

10
 3

10
 4

10
 5

10
 1

10
 2

10
 3

10
 4

e
x
e

c
u

ti
o

n
 p

a
th

s

max_origin

SCCT
ASM - total

ASM - equi.
ASM - prop.

Fig. 6. The number of branches of
ASM is bounded, whereas that of
SCCT is unbounded (increases expo-
nentially).

Scalability: Figures 5 and 6 show their verification times

and numbers of execution paths. We can see that ASM is

several orders of magnitude faster than SCCT. For example,

when max_origin is 100 packets, it takes SCCT about 100

minutes to verify the properties, whereas it takes ASM about

4.5 minutes to verify the equivalence, about 1.3 minutes to

verify the properties alone, and about 5.8 minutes in total.

Even when max_origin is 10000 packets (i.e., 10000 ACKs), it

still takes ASM only about 14 minutes to verify the properties.

The fundamental reason for the different scalability of ASM

and SCCT is that the number of ASM execution paths is

bounded whereas that of SCCT is unbounded as proved in

Theorems 1 and 2 and confirmed in Figure 6.

Extreme environments: We also run additional experiments

to check these two properties in extreme network environments

with RTTs up to 2000 ms. With such a wider range of RTTs,

both ASM and SCCT take longer to check the properties,

because the symbolic execution constraints have larger ranges

of variables and then take longer to solve. Both ASM and

SCCT report violations of the MaxTargetIncrement property

in network environments with very long RTTs. This is because

Linux CUBIC does not limit target as required in the CUBIC

specification [2], and then target may increment more than

1.5 times in a very long RTT.

The reported violation of the MaxTargetIncrement property

is consistent with the finding in a previous work [7]. Different

from the previous work which reports only some specific

network environments where the property is violated, ASM

reports the ranges of all the network environments where the

property is violated. Also different from the previous work,

ASM verifies that the MaxCwndIncrement property still holds

in all these network environments. Therefore, the final cwnd

increment of Linux CUBIC still follows the requirement of

the CUBIC specification [2], although the intermediate target

calculation does not follow exactly the CUBIC specification.

D. Case Study 3: Both Linux RENO and CUBIC

1) Introduction: Different from the first two case studies,

each involving only one CCAI, this case study involves two

CCAIs. Because CCAIs are designed to compete and coexist

with other CCAIs, some properties involve two CCAIs.

 4

 6

 8

 10

 12

 14

 16

 18

 110 120 130 140 150 160 170 180

c
w

n
d

time (ms)

RENO
CUBIC

Fig. 7. Linux CUBIC bug: The aver-
age cwnd of current CUBIC is lower
than that of RENO.

 4

 6

 8

 10

 12

 14

 16

 18

 110 120 130 140 150 160 170 180

c
w

n
d

time (ms)

RENO
CUBIC/Fixed

Fig. 8. Fixed Linux CUBIC: CU-
BIC archives at least the same average
throughput as RENO.

2) Property to check: We check the friendliness property of

CUBIC [2] that CUBIC should achieve at least the same aver-

age throughput as RENO in network environments with small

bandwidth-delay products where RENO performs well. Ac-

cording to the network environments discussed in the CUBIC

specification [2], we consider networks with congestion_cwnd

∈ [2, 38] packets that is the cwnd of a TCP flow right before

a congestion event, and with rtt_duration ∈ [1, 100] ms.

Both RENO and CUBIC start from a congestion event with

the same initial cwnd = congestion_cwnd. Both call their

implementations of API function ssthresh() to reduce their

cwnd in response to the congestion event, and then call their

implementations of API function cong_avoid() to increment

their cwnd in response to the ACKs in R RTTs. Finally, the

code checks whether the average cwnd of CUBIC in R RTTs

is always higher than or equal to that of RENO.

3) Check property: ASM is faster than SCCT. For example,

ASM takes 1.3 minutes and SCCT takes 38.2 minutes to

check the property with R = 2 RTTs in all the above network

environments. As expected, both ASM and SCCT take longer

to check the property as R increases.

Both ASM and SCCT detect violations of the friendli-

ness property. Figure 7 shows the experiment results of one

reported violation with congestion_cwnd = 10 packets and

rtt_duration = 4 ms. The results are obtained by running a

Mininet experiment where both RENO and CUBIC start with a

loss event. CUBIC achieves a lower average cwnd than RENO

and thus violates the friendliness property. By investigating

the Linux CUBIC code [9], we find that this violation is due

to three bugs. First, Linux CUBIC may mistakenly not update

cwnd for several RTTs when the RTT is very short. Second,

it does not match the RENO cwnd increment once cwnd

reaches congestion_cwnd as described in the latest CUBIC

specification [2]. Third, it mistakenly emulates the current

cwnd of RENO instead of one RTT in the future. We have

reported all three bugs [53] to and have been confirmed by

the Linux maintainers. We have also submitted patches to fix

these bugs and the experiment results of our fixed CUBIC

are shown in Figure 8. The fixed CUBIC achieves a similar

average cwnd as RENO, and has better performance than the

original CUBIC.

E. Discussions and Limitations

RQ1: Yes, we have developed the Agg-Algs for two rep-

resentative loss-based CCAIs, Linux RENO and CUBIC, and

checked the correctness of their code using ASM.

RQ2: Yes, ASM is ACK scalable (up to 10000 ACKs in

experiments). In the experiments, the numbers of execution

paths of ASM are bounded with respect to the number of

ACKs in an RTT whereas those of SCCT are unbounded, and

as a result, the verification times of ASM are several orders

of magnitude shorter than those of SCCT. However, ASM is

not necessarily faster than SCCT in detecting bugs.

Can ASM be applied to delay-based CCAIs? ASM works

for a delay-based CCAI, if it has an equivalent Agg-Alg.

Intuitively, if a delay-based CCAI operates on aggregated ACK

information once or several times per RTT, it has an equivalent

Agg-Alg. For example, Linux VEGAS [54] adjusts cwnd once

per RTT using the minimum RTT sample observed in the last

RTT, and thus it can be verified using ASM. However, most

delay-based Linux CCAIs, such as BBR [3], do not have an

equivalent Agg-Alg, because they operate on individual ACK

information and may change their cwnd value or pacing rate

after each ACK. In our future work, we plan to slightly modify

these delay-based Linux CCAIs to operate on aggregated ACK

information several times per RTT so that they have an Agg-

Alg. For example, a modified BBR estimates the bottleneck

bandwidth several times per RTT instead of per ACK, and then

adjusts its pacing rate and cwnd several times per RTT instead

of per ACK. The concept of coarse-grained congestion control

algorithms using aggregated ACK information has recently

garnered significant interest [55], [18], [19]. We anticipate

that this concept will become increasingly important and

popular, because coarse-grained algorithms can maintain low

CPU overhead in ever-increasing high-speed networks while

delivering throughput comparable to fine-grained algorithms

using per-ACK information [55], and because their correctness

can be more scalably verified.

What are other limitations of ASM? ASM is suitable for

verifying the multi-ACK properties that describe the behaviors

of a CCAI in response to the ACKs in an RTT. For example,

all the properties of Linux RENO and CUBIC checked in

case studies 1 and 2 involve the ACKs only in a single RTT.

However, ASM may not scale well with multi-RTT properties

that describe the behaviors of a CCAI in response to the ACKs

in multiple RTTs, as the friendliness property in case study 3.

One approach to scalably verifying the multi-RTT properties

is to develop an Agg-Alg that captures the behavior of a CCAI

over multiple RTTs instead of only one RTT as in ASM.

VIII. CONCLUSION

In this paper, we have proposed ASM to verify the correct-

ness of the actual code of CCAIs for multi-ACK properties.

Our experiments on two widely used real-world loss-based

CCAIs show that ASM significantly reduces verification time

and requires little verification expertise, though it demands

substantial CCAI expertise.

REFERENCES

[1] M. Allman, V. Paxson, and E. Blanton, “TCP congestion control,” RFC

5681, September 2009.
[2] L. Xu, S. Ha, I. Rhee, V. Goel, and L. Eggert, “CUBIC for fast and

long-distance networks,” IETF RFC 9438, August 2023, https://www.
rfc-editor.org/rfc/rfc9438.

[3] N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, and V. Jacobson, “BBR:
Congestion-based congestion control,” Coomunications of the ACM,
vol. 60, no. 2, pp. 58–66, Feb. 2017.

[4] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP congestion
avoidance algorithm identification,” IEEE Transactions on Networking,
vol. 22, no. 4, pp. 1311–1324, Aug. 2014.

[5] N. Cardwell, Y. Cheng, L. Brakmo, M. Mathis, B. Raghavan,
N. Dukkipati, H. Chu, A. Terzis, and T. Herbert, “PacketDrill: Scriptable
network stack testing, from sockets to packets,” in Proceedings of

USENIX ATC, San Jose, CA, June 2013, pp. 213–218.
[6] P. McManus, “Thanks Google for open source TCP

fix,” September 2015, http://bitsup.blogspot.com/2015/09/
thanks-google-tcp-team-for-open-source.html.

[7] W. Sun, L. Xu, S. Elbaum, and D. Zhao, “Model-agnostic and efficient
exploration of numerical state space of real-world TCP congestion
control implementations,” in Proceedings of USENIX Symposium on

Networked Systems Design and Implementation (NSDI), Boston, MA,
Feb. 2019, pp. 719–734.

[8] W. Sun, L. Xu, and S. Elbaum, “Scalably testing congestion control
algorithms of real-world TCP implementations,” in Proceedings of IEEE

ICC, Kansas City, MO, May 2018, pp. 1–6.
[9] Linux CUBIC Source Code in Latest Kernel, https://git.kernel.org/pub/

scm/linux/kernel/git/stable/linux.git/tree/net/ipv4/tcp cubic.c.
[10] Linux RENO Source Code in Latest Kernel, https://git.kernel.org/pub/

scm/linux/kernel/git/stable/linux.git/tree/net/ipv4/tcp cong.c.
[11] S. Ha, L. Le, I. Rhee, and L. Xu, “Impact of background traffic on

performance of high-speed TCP variant protocols,” Computer Networks,
vol. 51, no. 7, pp. 1748–1762, May 2007.

[12] Y. Li, D. Leith, and R. Shorten, “Experimental evaluation of high-speed
congestion control protocols,” IEEE/ACM Transactions on Networking,
vol. 15, no. 5, pp. 1109–1122, October 2007.

[13] W. Sun, L. Xu, and S. Elbaum, “Limitations of emulating realistic
network environments for correctness testing of internet applications,”
in Proceedings of IEEE ICC, Kansas City, MO, May 2018, pp. 1–6.

[14] S. Jero, E. Hoque, D. Choffnes, A. Mislove, and C. Nita-Rotaru,
“Automated attack discovery in TCP congestion control using a model-
guided approach,” in Proceedings of Network and Distributed Systems

Security (NDSS), San Diego, CA, Feb. 2018.
[15] D. Ray and S. Seshan, “Cc-fuzz: Genetic algorithm-based fuzzing for

stress testing congestion control algorithms,” in Proceedings of ACM

Workshop on Hot Topics in Networks (HotNets), Austin, TX, USA,
November 2022, pp. 1–7.

[16] N. Kothari, R. Mahajan, T. Millstein, R. Govindan, and M. Musuvathi,
“Finding protocol manipulation attacks,” in Proceedings of ACM SIG-

COMM, Toronto, Canada, August 2011.
[17] M. Vu, P. Ha, and L. Xu, “Efficient correctness testing of Linux network

stack under packet dynamics,” in Proceedings of IEEE International

Conference on Communications (ICC), Ireland, Jun. 2020.
[18] V. Arun, M. T. Arashloo, A. Saeed, M. Alizadeh, and H. Balakrishnan,

“Toward formally verifying congestion control behavior,” in Proceedings

of ACM SIGCOMM, Aug. 2021, pp. 1–16.
[19] A. Agarwal, V. Arun, D. Ray, R. Martins, and S. Seshan, “Towards

provably performant congestion control,” in Proceedings of USENIX

Symposium on Networked Systems Design and Implementation (NSDI),
Santa Clara, CA, Apr. 2024, pp. 951–978.

[20] The Coq proof assistant, https://coq.inria.fr/.
[21] K. Zhang, D. Zhuo, A. Akella, A. Krishnamurthy, and X. Wang, “Auto-

mated verification of customizable middlebox properties with Gravel,”
in Proceedings of USENIX NSDI, CA, Feb. 2020, pp. 221–239.

[22] A. Zaostrovnykh, S. Pirelli, R. Iyer, M. Rizzo, L. Pedrosa, K. Argyraki,
and G. Candea, “Verifying software network functions with no verifica-
tion expertise,” in Proceedings of ACM SOSP, Canada, Oct. 2019.

[23] A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea,
“A formally verified NAT,” in Proceedings of ACM SIGCOMM, 2017.

[24] M. Musuvathi and D. Engler, “Model checking large network protocol
implementations,” in Proceedings of USENIX NSDI, San Francisco, CA,
March 2004.

[25] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou, “MoDist: Transparent model checking of
unmodified distributed systems,” in Proceedings of USENIX NSDI,
Boston, MA, April 2009.

[26] M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A NICE
way to test OpenFlow applications,” in Proceedings of USENIX NSDI,
San Jose, CA, April 2012.

[27] R. Jhala, R. Majumdar, R. Alur, A. Datta, D. Jackson, S. Krishnamurthi,
J. Regehr, N. Shankar, and C. Tinelli, “NSF workshop on formal
methods: Future directions & transition to practice,” NSF, Tech. Rep.,
2012.

[28] J. Padhye, V. Firoiu, D. Towsley, and J. Kursoe, “Modeling TCP
throughput: A simple model and its empirical validation,” in Proceedings

of the ACM SIGCOMM, 1998, pp. 303–314.

[29] F. Kelly, “Mathematical modelling of the Internet,” in Mathematics

Unlimited - 2001 and Beyond, B. Engquist and W. Schmid, Eds.
Springer, 2001, pp. 685 – 702.

[30] D. Chiu and R. Jain, “Analysis of the increase/decrease algorithms
for congestion avoidance in computer networks,” Journal of Computer

Networks and ISDN, vol. 17, no. 1, pp. 1–14, June 1989.

[31] Network Simulator 3, https://www.nsnam.org/.

[32] F. Yan, J. Ma, G. Hill, D. Raghavan, R. Wahby, P. Levis, and K. Win-
stein, “Pantheon: the training ground for Internet congestion-control
research,” in Proceedings of USENIX ATC, Boston, MA, Jul. 2018.

[33] J. Padhye and S. Floyd, “On inferring TCP behavior,” in Proceedings

of ACM SIGCOMM, San Diego, CA, August 2001.

[34] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wans-
brough, “Rigorous specification and conformance testing techniques for
network protocols, as applied to TCP, UDP, and sockets,” in Proceedings

of ACM SIGCOMM, Philadelphia, PA, August 2005, pp. 265–276.

[35] V. Paxson, “Automated packet trace analysis of TCP implementations,”
in Proceedings of ACM SIGCOMM, Cannes, France, September 1997.

[36] M. Hippel, C. Vick, S. Tripakis, and C. Nita-Rotaru, “Automated attacker
synthesis for distributed protocols,” in Proceeding of International

Conference on Computer Safety, Reliability, and Security (SAFECOMP),
Lisbon, Portugal, Sep. 2020, pp. 133–149.

[37] S. Bishop, M. Fairbairn, H. Mehnert, M. Norrish, T. Ridge, P. Sewell,
M. Smith, and K. Wansbrough, “Engineering with logic: Rigorous test-
oracle specification and validation for TCP/IP and the sockets API,”
Journal of the ACM, vol. 66, no. 1, Dec. 2018.

[38] P. Fiterau-Brosteam, R. Janssen, and F. Vaandrager, “Combining model
learning and model checking to analyze TCP implementations,” in
Proceedings of Internation Conference on Computer Aided Verification

(CAV), Canada, July 2016, pp. 454–471.

[39] M. Smith and K. Ramakrishnan, “Formal specification and verifica-
tion of safety and performance of TCP selective acknowledgment,”
IEEE/ACM Transactions on Networking, vol. 10, no. 2, pp. 193–207,
August 2002.

[40] L. Lcokefeer, D. Williams, and W. Fokkink, “Formal specification and
verification of TCP extended with the window scale option,” Science of

Computer Programming, vol. 118, no. 1, pp. 3–23, Mar. 2016.

[41] Z. Shukur, N. Alias, M. Halip, and B. Idrus, “Formal specification
and validation of selective acknowledgement protocol using Z/EVES
theorem prover,” Journal of Applied Sciences, vol. 6, no. 8, pp. 1712–
1719, 2006.

[42] K. McMillan and L. Zuck, “Formal specification and testing of QUIC,”
in Proceedings of ACM SIGCOMM, Beijing, China, Aug. 2019, pp.
227–240.

[43] L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt,
E. Torlak, and X. Wang, “Hyperkernel: Push-button verification of an
os kernel,” in Proceedings of the 26th Symposium on Operating Systems

Principles (SOSP 17), Shanghai, China, 2017, p. 252–269.

[44] J. Song, C. Cadar, and P. Pietzuch, “SymbexNet: Testing network
protocol implementations with symbolic execution and rule-based spec-
ifications,” IEEE Transactions on Software Engineering, vol. 40, no. 7,
pp. 695–709, July 2014.

[45] M. Vu, L. Xu, S. Elbaum, W. Sun, and K. Qiao, “Efficient systematic
testing of network protocols with temporal uncertain events,” in Proceed-

ings of IEEE International Conference on Computer Communications

(INFOCOM), Paris, France, Apr. 2019, pp. 604–612.

[46] M. Arashloo, R. Beckett, and R. Agarwal, “Formal methods for network
performance analysis,” in Proceedings of NSDI, Boston, MA, April
2023, pp. 221–239.

[47] D. Engler and M. Musuvathi, “Static analysis versus software model
checking for bug finding,” in Proceedings of International Conference

on Verification, Model Checking and Abstract Interpretation, Venice,
Italy, Jan. 2004, pp. 191–210.

[48] O. Udrea, C. Lumezanu, and J. Foster, “Rule-based static analysis of
network protocol implementation,” in Proceedings of USENIX Security

Symposium, Vancouver, Canada, July 2006, pp. 130–157.
[49] Q. Chen, Z. Qian, Y. Jia, Y. Shao, and Z. Mao, “Static detection

of packet injection vulnerabilities: A case for identifying attacker-
controlled implicit information leaks,” in Proceedings of ACM SIGSAC

Conference on Computer and Communications Security (CCS), Denver,
CO, Oct. 2015, pp. 388–400.

[50] J. King, “Symbolic execution and program testing,” Communications of

the ACM, vol. 19, no. 7, pp. 385–394, July 1976.

[51] R. Baldoni, E. Coppa, D. D’elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Computing Surveys,
vol. 51, no. 3, July 2018.

[52] C. Cadar, D. Dunbar, and D. Engler, “KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of USENIX OSDI, San Diego, CA, December 2008.

[53] M. Zhang, “[patch net] tcp cubic fix to achieve at least the same
throughput as reno,” https://lore.kernel.org/netdev/20240810223130.
379146-1-mrzhang97@gmail.com/t/#u.

[54] Linux Vegas Source Code in Latest Kernel, https://git.kernel.org/pub/
scm/linux/kernel/git/stable/linux.git/tree/net/ipv4/tcp vegas.c.

[55] A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal, S. Narayana,
R. Mittal, M. Alizadeh, and H. Balakrishnan, “Restructuring endpoint
congestion control,” Proceedings of ACM SIGCOMM, pp. 30–43, Aug.
2018.

