Scalable Verification of Multi-ACK Properties in
Loss-Based Congestion Control Implementations

Minh Vu*, Hamid Bagheri*, Lisong Xu*, Wei Sunf, Mingrui Zhang*
* University of Nebraska-Lincoln, {minh.vu, mzhang23} @huskers.unl.edu, {bagheri, xu}@unl.edu,
T Meta Platform, Inc, wesun@meta.com

Abstract—Congestion control algorithms, such as RENO and
CUBIC, are vital for the Internet. However, numerous bugs
have been discovered and reported in the Congestion Control
Algorithm Implementations (CCAIs), even in those that have
been extensively tested and used on the Internet for years, such
as Linux RENO and Linux CUBIC. Some of these bugs have
potentially severe impacts on the performance and stability of
the Internet. Unfortunately, current CCAI testing and verifica-
tion methods are inadequate for proving the absence of bugs,
require substantial verification expertise, or are not scalable to
a large number of acknowledgment packets (ACKs) that trigger
CCALI actions. To address all these shortcomings, we propose
an ACK Scalable Method, called ASM. Our experiments with
two representative loss-based CCAIs, Linux RENO and CUBIC,
demonstrate the promising performance of the proposed ASM
even with tens of thousands of ACKs.

Index Terms—TCP congestion control, verification, symbolic
execution, mathematical induction

I. INTRODUCTION

Congestion control algorithms are vital for the Internet as
they are responsible for efficiently and fairly allocating Internet
bandwidth among a large and dynamic number of users. How-
ever, there is no one-size-fits-all solution because it is chal-
lenging, if not impossible, to design a single congestion control
algorithm that works well for all types of Internet applications
and across all current and future Internet environments (e.g.,
wired, wireless, cellular, data centers, and Internet of Things).
As a result, various congestion control algorithms, such as
RENO [1], CUBIC [2], and BBR [3], have been proposed,
implemented, and deployed on the Internet [4]. Furthermore,
new congestion control algorithms are still being proposed for
improved performance or new types of applications every year.

While congestion control has a tremendous impact on the
Internet, numerous bugs have been detected and reported [5]-
[8] in Congestion Control Algorithm Implementations (CCAls,
i.e., actual code) in popular operating systems, even in those
that have been extensively tested and used on the Internet for
years, such as Linux CUBIC [9] (current default) and Linux
RENO [10] (previous default). This is because CCAI develop-
ers may make mistakes in designing and implementing CCAls,
especially since real-world CCAISs, like those in Linux, involve
multiple intertwined and evolving components contributed by
different groups of developers spanning over many years.

This work was supported in part by NSF CCF-2124116. This paper is based
on the work when Minh Vu was a Ph.D. student at UNL.

979-8-3503-5171-2/24/$31.00 ©2024 IEEE

CCAI Properties: A CCAI adapts its TCP throughput to
changing network conditions by updating its state variables
in response to network events. For example, an important
state variable is the congestion window size, cwnd, which
determines the number of data packets that a CCAI can
transmit in a round-trip time (RTT). A network event could be
the arrival of an acknowledgment packet (ACK) or a timeout at
a TCP sender. Most CCAI properties are the expected state of
a CCALI in response to ACKs and can be classified into two
types: single-ACK and multi-ACK properties, depending on
whether a single or multiple ACKs are involved. For example,
a well-known multi-ACK property is the NoMoreThanOne
property [1], which requires that RENO must not increment
its cwnd by more than one packet (specifically the maximum
segment size) during the congestion avoidance stage in re-
sponse to all the ACKs in an RTT.

Current practices: There are three potential classes of
methods to check the correctness of CCAls. Class I - Test-
ing methods aim at detecting CCAI bugs, such as manual
testing [11], [12], undirected random testing [13], feedback-
guided random testing [7], [14], genetic algorithm-based ran-
dom testing [15], and symbolic execution-enhanced random
testing [16], [17]. They are effective in scalably checking the
CCAI behaviors even for a large number of packets; however,
they are unable to prove the correctness of CCAIs (i.e., the
absence of bugs). Class 2 - Model verification methods, such
as CCAC [18] and Belief Framework [19], automatically prove
the correctness of approximate abstract models of CCAIs using
techniques, such as model checking, where the models are
written manually using formal specification languages. How-
ever, CCAIs may have bugs not captured in the approximate
abstract models. Class 3 - Code verification methods aim at
proving the correctness of the actual code of CCAls. They can
be further classified into two sub-classes. Class 3.1 - Manual
code verification methods, such as theorem proving, construct
and conduct the proofs with the assistance of formal proof
management systems (e.g., Coq [20]). Class 3.2 - Automated
code verification methods, such as SCCT [8], automatically
prove the correctness of CCAI for a small number of packets
using techniques such as exhaustive symbolic execution [21]-
[23] and implementation-based model checking [24]-[26].

Limitations of current practices: While both testing
methods (Class 1, e.g., [7], [14]-[16]) and model verification
methods (Class 2, e.g., [18], [19]) improve our confidence in
CCALI, none of them verifies the correctness of the actual code



of CCAL This is because testing methods are not guaranteed to
detect all possible bugs, and model verification methods only
prove the correctness of their approximate abstract models.
While manual code verification methods (Class 3.1) verify
the actual code of CCAI, they require substantial verification
expertise (e.g., theorem proving and formal specification)
and thus are hard to use by network protocol designers and
developers. For example, recent studies [22], [27] show that
“a major stumbling block to the adoption of formal methods”
is the lack of verification expertise in the network community.
This is why we could not find one example for this class.
While automated code verification methods (Class 3.2, e.g.,
SCCT [8]) verify the actual code of CCAI and require little
verification expertise, they are not scalable to multi-ACK
properties with a large number of ACKs, which are common
for multi-ACK properties. For example, the number of ACKs
in the NoMoreThanOne property is proportional to cwnd,
which could be thousands or higher in high-speed networks.

Our method: We propose an ACK Scalable Method, called
ASM, for network protocol designers and developers with
little verification expertise (i.e., ASM users) to check the
multi-ACK properties of CCAIs. ASM extends the current
automated code verification method, SCCT [8], significantly
improving its scalability in checking multi-ACK properties
using three techniques. 1) Aggregated Information: We convert
a CCAI to an equivalent Aggregation Congestion Control
Algorithm (Agg-Alg), which operates on aggregated informa-
tion of a sequence of ACKs and has the same congestion
control behavior as the CCAIL It is more scalable to verify
the Agg-Alg than the CCAI, because the Agg-Alg handles
aggregated ACK information whereas the CCAI handles indi-
vidual ACKs. 2) Symbolic Aggregated Information: We use
symbolic variables to represent the aggregated information
of multiple sequences of ACKs by leveraging the symbolic
execution technique (a powerful program analysis technique,
Section III-A). Intuitively, symbolic aggregated information
enables us to simultaneously check the behaviors of the Agg-
Alg in response to multiple sequences, instead of one sequence
at a time. 3) Mathematical Induction: We scalably prove the
equivalence between the CCAI and the Agg-Alg using the
proof by mathematical induction on the number of ACKs. As
a result, proving the correctness of the Agg-Alg is equivalent
to proving the correctness of the CCAL

Contributions: We make the following contributions in
this paper. First, we propose ASM, which is the first CCAI
verification method that is scalable to a large number of ACKs,
requires little verification expertise, and verifies the actual
code of CCAIs. Note that our proposed ASM works only
for a CCAI with an equivalent Agg-Alg, for example, loss-
based Linux CCAIs, such as Linux RENO, CUBIC, BIC,
HIGHSPEED, and SCALABLE. We will discuss the extension
of ASM to delay-based CCAIs in Section VII-E. Second, we
evaluate the performance of ASM using two representative
real-world loss-based CCAIls, Linux RENO and Linux CU-
BIC. Our experiments show that ASM reduces the verification
time by several orders of magnitude compared with the current

TABLE I
REQUIRED CCAI API FUNCTIONS IN LATEST LINUX KERNEL
API Description
ssthresh () calculate a new ssthresh

cong_avoid () |update cwnd in slow start and congestion avoidance

undo_cwnd ()

revert the unnecessary cwnd reduction

automated code verification method, SCCT [8]. For example,
it takes ASM only 1.5 minutes to check the NoMoreThanOne
property of Linux RENO for up to 10,000 ACKs in about
108 network environments, whereas SCCT already takes about
200 minutes for up to only 100 ACKs. Due to the superior
scalability of ASM, for the first time, we are able to prove
some fundamental properties of Linux RENO and CUBIC in
common network environments of the Internet.

II. BACKGROUND AND RELATED WORK
A. Background on CCAI

The TCP code of an operating system has multiple parts
for different purposes, such as the connection management
part for establishing and terminating a TCP flow, the reliability
part for providing reliable transfer in case of packet reordering
and loss, and the congestion control part (i.e., CCAI) for
determining the efficient TCP throughput while being fair
among all users and avoiding congestion collapse. In this
paper, we consider the verification of the CCAI part of TCP.

A CCAI generally consists of multiple components, such as
slow start, congestion avoidance, fast retransmit, fast recovery,
timeout, reordering, and undo, to handle different packet
dynamics. An important state variable of a CCAI is the
congestion window size, cwnd, which determines the number
of data packets that the CCAI can transmit in an RTT. Another
important state variable is the slow start threshold, ssthresh,
which determines whether the current stage is slow start (i.e.,
if cwnd<ssthresh) or congestion avoidance.

An operating system usually supports multiple CCAls, and
adopts some architecture to simplify the development of a new
CCALI because different CCAIs often differ only in some com-
ponents (e.g., slow start and congestion avoidance). For exam-
ple, Linux adopts a pluggable congestion control architecture.
To develop a new CCAI in Linux, CCAI developers only
need to implement several Application Programming Interface
(API) functions defined in structure tcp_congestion_ops and
can re-use most of the current TCP code. Specifically, Table I
lists all three required API functions in the latest Linux kernel
(version 6.9) that each CCAI must implement. In addition,
there are several optional API functions that a CCAI may or
may not implement.

Because a CCAI adjusts its numerical state variables (e.g.,
cwnd and ssthresh) to adapt the TCP throughput to changing
network conditions, CCAI properties are usually numerical
properties about these numerical state variables, such as the
NoMoreThanOne property. The CCAI updates its numerical
state variables in response to network events, mainly the
arrivals of ACKs at a TCP sender, and thus most CCAI



properties are the expected state of the CCAI in response to
ACKs. Especially, many CCAI properties specify the expected
final state of the CCAI after a sequence of ACKs (e.g., all
ACKs in an RTT in the NoMoreThanOne property) instead
of the specific state after each individual ACK. By doing
so, the CCAI specifications allow that different CCAls or
different versions of the same CCAI all follow the same
long-term requirements (e.g., per RTT) but may flexibly have
different short-term behaviors (e.g., per ACK) for flexible
implementations. For example, Linux RENO has changed
its congestion avoidance code multiple times over the past
decades but all following the same NoMoreThanOne property.

B. Related work

The works closely related to ASM have been summarized in
Section 1. Below we summarize more generally related works.

CCAIs have been traditionally tested and evaluated mainly
for the performance (e.g., efficiency and fairness) using flow
modeling [28]-[30], network simulations [31], network emu-
lations and experiments [5], [11], [12], [32], [33], and trace
analysis [34], [35]. However, none of these methods can verify
the correctness of CCAIls. Flow modeling typically studies
the abstract behaviors of CCAIs that approximate the long-
term behaviors of CCAIs and thus is suitable for approximate
long-term performance evaluation but not for exact correctness
verification. Network simulations, emulations, experiments,
and trace analysis can be used to check the exact behaviors of
CCAIs but only in a limited number of network environments,
and thus can check to some extent but cannot verify the
correctness of CCAls.

Most formal specification, testing, and verification work on
TCP implementations [24], [34], [36]—-[41] focuses on the TCP
connection management, TCP options, or reliability, but with
no or little coverage on CCAIs. Some work [7], [14], [16]
detects the bugs or security issues of CCAls but does not verify
the correctness of CCAIs. There is also some work on formal
specifications of other transport protocols (e.g., QUIC) [42].
However, they focus on other transport components, such as
connection management, with little coverage of CCAIs. For-
mal methods have also been used for synthesizing congestion
control algorithms [19].

There also exists a rich body of work on the verification
of general network software. Hyperkernel [43] verifies an
operating system kernel using a SMT solver. Symbolic execu-
tion is used to generate high-coverage test cases for network
protocols [44], [45]. Symbolic execution has been combined
with model checking to test OpenFlow applications [26].
Symbolic execution has also been combined with theorem
proving to verify network function software [22], [23]. For-
mal methods [46] have been used to reason and verify the
network performance. Static analysis-based techniques [47]-
[49] have been used for finding bugs in network protocols.
These approaches are usually faster than exhaustive symbolic
execution when checking large implementations. However, it
is hard for them to detect deep bugs that only emerge after a
large number of packets.

Code 1. A function to be verified
I int absolute(int a)
if (a >= 0)
return a; // true branch

4 else

return -—a; // false branch

Code 2. Verification code for Code 1

1 void check_absolute( )

int a = sym_value(-1000000000, 1000000000);
int abs_a = absolute(a);
4 assert(abs_a >= 0); // check property

Code 3. Creating a symbolic value
I int sym_value(int low, int high)
return a symbolic integer between low and high
created by the symbolic execution engine

III. MOTIVATING EXAMPLES
A. Exhaustive symbolic execution

Symbolic execution [50] has evolved significantly to be-
come a powerful and popular technique to test and verify
software programs in recent years [51]. It can find all possible
execution paths of a program, each of which is a possible flow
of control of the program. If all possible execution paths can
be exhaustively explored to verify that a property holds for
every execution path, we can formally prove that the property
holds for the program, and such a verification technique is
referred to as exhaustive symbolic execution [21]-[23].

Code 2 illustrates how to use exhaustive symbolic execution
to verify function absolute () defined in Code 1. The property
to check is that the return value of absolute () is always non-
negative for any integer argument a between -10° and 10°.
Code 2 first assigns a to a symbolic value by calling function
sym_value () (line 2). Different from normal concrete values,
a symbolic value can be intuitively treated as a mathematical
symbol representing a set of concrete values. For example, a
is associated with all possible integers between —10° and 10°.
Code 2 then calls absolute () with argument a (line 3), and
finally checks whether the property holds (line 4).

When Code 2 is executed by a symbolic execution engine,
such as KLEE [52], a total of two execution paths are explored,
and their corresponding path constraints are reported. The path
constraint of an execution path describes the set of all possible
concrete values leading to the execution path. The two execu-
tion paths of Code 2 differ only in the if statement of Code 1.
One path executes the true branch (i.e., Code2:linesl,2,
Code3:lines1,2, Code2:line3, Codel:lines1,2,3, Code2:line4),
and the corresponding path constraint is a>=0 (i.e., condition
of Codel:line2). The other path executes the false branch and
the corresponding path constraint is a<o.

The strength of exhaustive symbolic execution is that the
path constraint of each execution path essentially defines an
equivalence class of concrete values leading to the same path
and thus we only need to exhaustively verify that the property
holds for each path (i.e., each equivalence class) instead of
each concrete value. For example, we only need to verify the



property for the two execution paths of Code 2, although a has
a total of 2 x 10° — 1 different concrete values. Specifically,
for the path with constraint a>=0, we have abs_a=a and thus
KLEE determines that assert (abs_a>=0) is true; for the other
path with constraint a<0, we have abs_a=-a and thus KLEE
determines that assert (abs_a>=0) is also true. Thus, the
property holds for function absolute ().

The scalability of exhaustive symbolic execution heavily
depends on the total number of execution paths of the code
under test. The higher the number, the poorer the scalability.
This is because it takes both time and memory to explore
each execution path. Therefore, a scalable verification method
should have a bounded number of execution paths (defined
in Section IV-C). Intuitively, the upper bound of the number
of execution paths is independent of the range of symbolic
values. For example, Code 2 has at most two execution paths,
and that is independent of the range of a.

B. SCCT scalability challenge

SCCT [8] based on exhaustive symbolic execution is an
automated code verification method (i.e., Class 3.2) proposed
recently. It can automatically prove the correctness of CCAls,
but is not scalable to a large number of ACKs as demonstrated
below. To simplify our discussion, let’s consider a simplified
version of Linux RENO, which is referred to as SRENO. We
also consider TCP setting where a TCP receiver sends an ACK
for each data packet.

CCAI function to check: We check function sreno_avoid ()
of sSRENO shown in Code 4, which updates cwnd during the
congestion avoidance stage in response to each ACK that
acknowledges a new data packet. Variable cwnd_cnt keeps
track of the number of ACKs.

Property to verify: We verify the NoMoreThanOne property
of RENO [1] for all possible cwnd values in a range, say [I,
max_cwnd] packets, where max_cwnd is a user-chosen constant.

Verification method: Code 5 illustrates how SCCT
checks whether the NoMoreThanOne property holds for
sreno_avoid() in an RTT. It considers a sRENO sender,
whose initial value of cwnd iS init_cwnd (line 3) that is a
symbolic value between 1 and max_cwnd (line 2). The SRENO
sender receives a total of init_cwnd number of ACKs from
the SRENO receiver in an RTT, and handles these ACKs using
a for loop (lines 5 and 6). Finally, Code 5 compares the new
value of cwnd with its initial value and checks the property
(line 7). SCCT uses KLEE [52] to run Code 5. If the property
holds for all the execution paths explored by KLEE, SCCT
reports that the property holds for sreno_avoid (). Note that
variable init_cwnd denotes the initial cwnd value just before
an RTT, and it is not the initial cwnd value when a TCP
connection is just established. Also, note that Code 5 sets
other variables, such as cwnd_cnt, to only a concrete value
(line 4) to simplify the discussion of this example. In real-
world verification, they should also have symbolic values to
cover all possible concrete values.

Scalability challenge: SCCT has poor scalability because
each concrete value of init_cwnd leads to a different execution

Code 4. A function of SRENO for a single ACK
1 int cwnd, cwnd_cnt; // connection variables
> void sreno_avoid( )
cwnd_cnt += 1;
4 if (cwnd_cnt >= cwnd)
5 {cwnd_cnt —= cwnd;

/! one ACK

cwnd++;} // update cwnd

Code 5. SCCT verification code for sSRENO

1 void scct_check_sreno_avoid( )

int init_cwnd = sym_value(l, max_cwnd); // symbolic
cwnd = init_cwnd; // initial cwnd

4 cwnd_cnt=0; // other initials

5 for (int k=1; k<=init_cwnd; k++) // multiple ACKs

6 sreno_avoid (); // handle each ACK
assert (cwnd <= init_cwnd+1); /1 check property

path of Code 5 and 4. For example, if init_cwnd = 1, the
corresponding path runs the for loop (Code5:lines5,6) for
one iteration to handle one ACK. But if init_cwnd = 2, the
corresponding path runs the for loop for two iterations to
handle two ACKSs and thus is different. Also, note that Code 4
may be executed differently at the if statement (Code4:line4)
in different for loop iterations depending on the values of
cwnd and cwnd_cnt.

We can see that the total number of execution paths of SCCT
is unbounded. Specifically, the number of execution paths of
SCCT increases as max_cwnd increases, because max_cwnd 1S
the total number of possible concrete values of init_cwnd.
Intuitively, SCCT is not scalable to a large number of ACKs,
because max_cwnd is also the maximum number of ACKs. In
this paper, we propose a new verification method that has only
a bounded number of execution paths and thus is more scalable
than SCCT.

IV. CCAI VERIFICATION PROBLEM
A. Which part of CCAls to verify?

Same as SCCT, we choose to verify the API functions of
Linux CCAIs as described in Section II-A. This is because
different CCAIs differ only in these API functions. Also, for
a new CCAI, these API functions are possibly more likely
to have bugs than the other parts that are shared among all
CCAIs and thus have already been extensively tested.

B. What properties of CCAIs to verify?

In this paper, we focus on the multi-ACK properties of
CCAIs. For example, the NoMoreThanOne property discussed
in the motivating example in Section III-B involves init_cwnd
ACKs, and init_cwnd could be tens of thousands in the
current Internet. More properties will be discussed in the
evaluation experiments in Section VIIL.

C. Design goals of the proposed verification method
There are three design goals for our proposed method.

e Goal 1: Code verification. It proves the correctness of
CCAI code against a multi-ACK property.

e Goal 2: ACK scalable. It has a bounded number ~ of
execution paths with respect to the number n of ACKs in
an RTT, and thus is scalable to a large number of ACKs.



o Goal 3: Little verification expertise. It does not require
substantial verification expertise (e.g., theorem proving
and formal specification), which network protocol design-
ers and developers, by and large, lack [27].

Definition: n is bounded with respect to n, if there exists
a constant C, such that N < C for any n; otherwise, n is
unbounded. Intuitively, x is bounded with respect to n, if an
upper bound of v is independent of n.

None of the current CCAI testing and verification methods
achieves all three design goals. Especially, SCCT, a state-of-
the-art verification method achieves Goals 1 and 3, but not
Goal 2, because it has an unbounded number of execution
paths as demonstrated in Section III-B.

V. OUR VERIFICATION METHOD

We propose an ACK Scalable Method, called ASM, to
verify the API functions of a CCAI against a multi-ACK
property. ASM is proposed for the network protocol designers
and developers (i.e., users), who should have in-depth CCAI
expertise but do not need substantial verification expertise.

ASM users take the following three steps to verify the
API functions of a CCAI against a multi-ACK property.
Step 1: Build the Agg-Alg of the CCAI Step 2: Check the
equivalence between the Agg-Alg and the original CCAI Step
3: Check the correctness of the Agg-Alg against the property.

Goal 1 is achieved because the Agg-Alg is equivalent to the
original CCAI (Step 2), and thus proving the correctness of the
Agg-Alg (Step 3) is equivalent to proving the correctness of
the original CCAI. Goal 2 is analytically proved in Section VI.
Goal 3 is achieved because ASM uses exhaustive symbolic
execution so that ASM users do not need to have substantial
verification expertise, such as theorem proving. In addition,
ASM uses the same programming language as the original
CCAI (i.e., C for Linux kernel) to specify the Agg-Alg and use
assertions to specify the multi-ACK properties so that ASM
users do not need to learn formal specification languages.

A. Step 1: Building the Agg-Alg for a CCAI

Figure 1 illustrates the difference between a CCAI and its
Agg-Alg. The CCAI operates on individual ACKs, including
normal ACKs (green blocks in the figure) that acknowledge
new data packets and are handled in slow start and congestion
avoidance stages, and duplicate ACKs (red blocks in the
figure) that are handled in other stages (e.g., fast recovery).
Because a CCAI mainly stays in the congestion avoidance
stages, most ACKs handled by the CCAI are normal ACKs.
The Agg-Alg is designed to operate on the aggregated in-
formation of these normal ACKs to be ACK scalable. The
information of a sequence of consecutive normal ACKs, up to
the current congestion window size, is aggregated (blue blocks
in the figure). Intuitively, the aggregated information (each
blue block) contains the information of at most all the normal
ACKs in an RTT. Note that the RTT boundaries are shown in
the figure just to help the readers understand the diagram, and
we do not need the RTT boundaries when aggregating ACKs.

RTT 1 RTT 2 RTT 3 RTT 4 RTT5

NSRS ENENENENOEOENONEOEREERNEOED
] [ ] EEEER ]

CCAl:
Agg-Alg:

Fig. 1. Operations of CCAI and Agg-Alg in several RTTs. Each green block
is a normal ACK that acknowledges new data packets, each red block is a
duplicate ACK, and each blue block represents the aggregated information of
the corresponding normal ACKs.

Code 6. sRENO Agg-Alg for a sequence of n ACKs
I int cwnd, cwnd_cnt; // connection variables
> void sreno_avoid_agg(int n)
assert(l <= n <= cwnd);
4 cwnd_cnt += n;
if (cwnd_cnt >= cwnd)
6 {cwnd_cnt —= cwnd;

//upto the ACKs in a RTT
//n ACKs

cwnd++;} // update cwnd

An ASM user builds the Agg-Alg for a CCAI by re-
implementing the frequent API functions and keeping the
occasional API functions of the CCAI There are two types of
API functions. 1) Frequent API Functions: An API function
is frequent if it handles normal ACKs, because it is triggered
frequently in response to all the normal ACKs. Among the
required API functions listed in Table I, cong_avoid() is a
frequent API function, because it is called repeatedly for each
normal ACK during the slow start and congestion avoidance
stages. 2) Occasional API Functions: An API function is
occasional if it handles duplicate ACKs, because it is trig-
gered only occasionally in special cases. Among the required
API functions, ssthresh() and undo_cwnd() are occasional
functions. ssthresh () is called only when a congestion event
(e.g., three duplicate ACKs) is detected and then CCAI needs
to reduce cwnd. undo_cwnd () is called only when a CCAI
discovers that a congestion event was mistakenly detected and
cwnd was unnecessarily reduced.

The aggregated information of a sequence of normal ACKs
depends on the CCAI It may contain one or more of the
following variables depending on the CCAI: number of ACKs,
arrival time of the last ACK, average packet delay, maximum
or minimum packet delay, and other possible aggregated
metrics. For example, the aggregated information of Linux
RENO contains just the number of ACKs, and the aggregated
information of Linux CUBIC contains the number of ACKs
and the arrival time of the last ACK.

As an illustrating example, let’s consider SRENO described
in Section III-B and consider sreno_avoid () shown in Code 4
as its implementation of frequent API function cong_avoid ().
The sRENO Agg-Alg re-implements this API function as
sreno_avoid_agg () shown in Code 6.

There are several differences between the original CCAI
sreno_avoid() and the new Agg—Alg sreno_avoid_agg ().
1) They are designed to handle different numbers of ACKs.
For example, to handle a sequence of n normal ACKs,
sreno_avoid() 1is called n times once for each ACK,
whereas sreno_avoid_agg() is called only once for the
whole sequence. 2) They have different arguments. The
original sreno_avoid() has arguments (if any) describing



the information of an individual ACK, whereas the new
sreno_avoid_agg () has an argument, n, which describes the
aggregated information of a sequence of n ACKs. 3) The
new sreno_avoid_agg () may not have any loop, such as for,
while, and repeat, depending on n. This programming con-
straint is necessary to achieve a bounded number of execution
paths (i.e., Goal 2).

Functions and sreno_avoid_agg() are
equivalent in that they have the same final values of CCAI
state variables, such as cwnd, starting from any initial values of
these state variables for the same sequence of n normal ACKs
in an RTT. The range of n depends on cwnd. For example, if
there are at most cwnd data packets in an RTT and there is
an ACK for each data packet, there are at most cwnd ACKs
in an RTT. Then n could be any number between 1 and cwnd,
which is checked at line 3 of sreno_avoid_agg ().

sreno_avoid/()

B. Step 2: Checking equivalence

For each frequent API function, ASM checks the equiv-
alence between the original CCAI implementation (denoted
by f£() and the Agg-Alg implementation (denoted by
f_agg()) developed by an ASM user. For example, if £ () is
sreno_avoid(), then f_agg() is sreno_avoid_agg(). Specif—
ically, the ASM user provides both £() and f_agg(), and
then ASM runs asm_check_equ () shown in Code 7 to check
whether they have the same final value of cwnd starting from
any init_cwnd after n ACKs in an RTT. The equivalence is
checked for all possible values of init_cwnd in [1, max_cwnd]
and all possible values of n in [1, init_cwnd].

The challenge is that asm_check_equ() should have a
bounded number of execution paths to achieve Goal 2. As
a result, we may not call £() for n times (i.e., a for loop)
when finding the final cwnd value of £() after n ACKs.

We propose to address this challenge using proof by mathe-
matical induction as illustrated in Code 7, which has two steps.
1) The base step (lines 3 to 6) checks the equivalence between
£() and f_agg () for only 1 ACK. 2) The induction step (lines
7 to 11) assumes that they are equivalent for n-1 ACKs, and
then calculates the final cwna value of £ () after n ACKs (line
10) by first calling £_agg () once to handle the first n-1 ACKs
and then calling £ () once to handle the last ACK. By doing
80, our proposed asm_check_equ () does not have any for loop
and then has a bounded number of execution paths.

C. Step 3: Checking property

At this step, ASM runs a verification code written by an
ASM user to check whether a property holds for the Agg-Alg.
Because Step 2 already proves that the Agg-Alg is equivalent
to the original CCAL if a property holds for the Agg-Alg then
it holds for the original CCAI (i.e., Goal 1).

A verification code checks the behavior of the API functions
of a CCAI in response to a sequence of ACKs accord-
ing to the property. ASM verification code is very sim-
ilar to that of SCCT. A general SCCT verification code
scct_check_prop () is illustrated in Code 8 that checks £ () for
a property involving n ACKs, and a general ASM verification

Code 7. ASM Step 2: Check equivalence

I void asm_check_equ(f(), f_agg())
2 int init_cwnd = sym_value(l, max_cwnd);

cwnd = init_cwnd; /! base step
4 check if the following two have the same final cwnd
5 1) call f() for 1 ACK
6 2) call f_agg() for 1 ACK

cwnd = init_cwnd; // induction step
8 n = sym_value (2, init_cwnd);
9 check if the following two have the same final cwnd
10 1) call f_agg() for n-1 ACKs then call f() for 1 ACK
11 2) call f_agg() for n ACKs

Code 8. SCCT code to check property
I void scct_check_prop( )
initialize variables, such as init_cwnd and RTT
call f() n times to handle n ACKs
4 check whether the property holds

Code 9. ASM Step 3: Check property
I void asm_check_prop( )
initialize variables, such as init_cwnd and RTT
call f_agg() once to handle n ACKs
4 check whether the property holds

Code 10. ASM verification code for sSRENO Agg-Alg

I void asm_check_sreno_avoid_agg( )

int init_cwnd = sym_value(l, max_cwnd); // symbolic
cwnd = init_cwnd; // initial cwnd

4 cwnd_cnt=0; // other initials
sreno_avoid_agg (init_cwnd); // handle ACKs

6 assert (cwnd <= init_cwnd+1); // check property

code asm_check_prop () is illustrated in Code 9 that checks
f_agg (). They may call other API functions based on the
property to check. Their difference is that the SCCT code calls
£ () for n times (Code8:line3) and the ASM code calls f_agg ()
only once (Code9:line3). As a result, the SCCT code has an
unbounded number of execution paths whereas the ASM code
has a bounded number of execution paths.

As an example, a specific SCCT verification code is Code 5
discussed in Section III-B, which checks sreno_avoid()
against the NoMoreThanOne property involving init_cwnd
ACKs. A specific ASM code is shown in Code 10, which
checks sreno_avoid_agg () for the same property. Again, their
difference is that the SCCT code calls sreno_avoid() for
init_cwnd times (Code5:lines5,6) and the ASM code calls
sreno_avoid_agg () only once (CodelO:lineS).

Note that to reduce the required verification expertise (i.e.,
Goal 3), the verification code is written in the same pro-
gramming language as the original CCAI and the property
is specified using assertions that ASM users are familiar with.

VI. SCALABILITY ANALYSIS

In this section, we analytically study the scalability of
ASM and SCCT. We consider a general type of properties
that compare the cwnd before and after calling frequent API
function cong_avoid () to handle a total of n € [1, init_cwnd]
ACKs in an RTT, where init_cwnd € [l, max_cwnd]. For
example, NoMoreThanOne belongs to this type, and we will
evaluate several properties of Linux RENO and CUBIC also
belonging to this type in Section VIIL.



Let £() denote the original CCAI implementation of API
cong_avoid(), for example, sreno_avoid() in Code 4. Let
Ny denote the maximum number of execution paths of
£(), which is bounded because it handles only one ACK.
For example, the Nf() of sreno_avoid() is no more than 2
because there is only one it statement (line 4).

Let £_agg() denote the Agg-Alg implementation of API
cong_avoid(), for example, sreno_avoid_agg () in Code 6.
Let Ny _qq4q() denote the maximum number of execution paths
of f_agg(), which is bounded by design (Section V-A). For
example, the Ny 44() Of sreno_avoid_agg () is no more than
8 because there are only three if statements (line 5 and also
assert at line 3 has two if statements).

Theorem 1. The number of execution paths of ASM, denoted
by Nasn, is bounded with respect to max_cwnd.

Proof: N sy is the sum of the numbers of execution paths
of ASM at Steps 2 and 3, denoted by Nyiep2 and Ngyeps,
respectively. That is, Nasyr = Ngtep2 + Nsteps.

At Step 2, ASM checks the equivalence between f () and
f_agg () using asm_check_equ () in Code 7. We have Nyiepo <
NJ%() x N }”_agg() X Cstep2 Where Cstepo is a constant depending
on the number of if statements in Code 7, because f () is
called twice and f_agg () is called three times. Also, because
both NV I and N f_agg() are bounded with respect to max_cwnd,
Nitepo is bounded. That is, Ngzepo is O(1).

At Step 3, ASM checks the property of f_agg() using
asm_check_prop () in Code 9. We have Nyieps < Ny _qgq() X
Csteps Where cgieps 1s a constant depending on the number of
if statements in Code 9, because f_agg () is called once. Thus,
Niteps is bounded with respect to max_cwnd and is ©(1).

Overall, N4gps is bounded and is ©(1). O

Theorem 2. The number of execution paths of SCCT, denoted
by Ngccor, is unbounded with respect to max_cwnd.

Proof: SCCT
scct_check_prop ()
bound Q(max_cwnd) and an upper bound O(Ny(
because £ () is called n times and there are a total of max_cwnd
possible values of n. That is, in the best case (e.g., when
Ny is 1), Nscor increases linearly as max_cwnd, and in
the worst case, Ngcor increases exponentially as max_cwnd.
Therefore, Ngccor is unbounded. [

checks the property of £() using

in Code 8. Ngccr has a lower

max_cwnd )
9

We measure and show the specific values of both N g,
and Ngcor for Linux RENO and CUBIC in Section VII.

VII. EXPERIMENTS
A. Overview
We design and conduct experiments to answer the following
research questions.

o RQ1: Can ASM verify the code of loss-based CCAIs?

e RQ2: Is ASM ACK-scalable?

CCAI to verify: To answer RQI, we consider two real-
world loss-based CCAIs: Linux RENO and Linux CUBIC,
the previous and current default CCAI of Linux and Android

devices, respectively. Both had or have been used by billions
of users worldwide. We consider their API functions [9], [10]
in the latest Linux kernel (version 6.9).

Verification methods: To answer RQ2, we run the following
two verification methods. 1) SCCT [8] belongs to Class
3.2 (automated code verification). It is a state-of-the-art tool
to verify real-world CCAIs and has successfully detected
multiple CCAI bugs. 2) Our proposed ASM is developed
by extending the open-source SCCT. The source code of
ASM and all the experiments in this paper is available at
https://github.com/verifiabletcp/asm. We run both SCCT and
ASM using a popular symbolic execution engine - KLEE [52].

Properties to check: We consider only multi-ACK prop-
erties involving a large number of ACKs (e.g., thousands),
because SCCT can already check the properties involving a
small number of ACKs (e.g., several) [8]. In the experiments,
both SCCT and ASM check properties with a symbolic
number of ACKs.

Network environments: We check CCAIs mainly in the
network environments with cwnd up to the order of 10* packets
and the RTT duration rtt_duration up to max_rtt_duration
= 200 ms, which cover common network environments of the
current Internet (e.g., 1 Kbps to 10 Gbps of bandwidth, 1 ms
to 200 ms of RTT). Both SCCT and ASM check CCAIs in
networks with symbolic bandwidth and symbolic RTTs.

Machine used: We run all our experiments on a DELL
Precision 3630 Tower with 128 GByte memory and Intel Core
i7-8700K CPU at 3.70 GHz x 12.

B. Case Study 1: Linux RENO

1) Introduction: We demonstrate the applicability and eval-
uate the performance of ASM using a representative loss-based
CCAI, Linux RENO, which was the default CCAI of Linux.
It had been used by billions of Linux and Android devices
worldwide and is still used by a large number of devices.

2) Properties to check: We check two fundamental proper-
ties of RENO [1] about the maximum increment of frequent
API function cong_avoid (). 1) NoMoreThanDouble: It should
not increment its cwnd more than double in an RTT in
the slow start stage, 2) NoMoreThanOne in the congestion
avoidance stage. These two properties involve two input vari-
ables: init_cwnd (i.e., the initial cwnd before an RTT) and
ssthresh, which determine the stage of RENO. If init_cwnd
< ssthresh, it is the slow start stage; otherwise, it is the
congestion avoidance stage. These two maximum increment
properties are fundamental to RENO. However, these two
properties have not been verified for Linux RENO, to the best
of our knowledge, for common network environments of the
current Internet, because they involve init_cwnd number of
ACKSs that could be tens of thousands in the current Internet.

We write both ASM and SCCT verification code in language
C that is the programming language of Linux RENO, and
specify the properties using assertions that Linux network
developers are familiar with. The code checks the properties
using symbolic values to cover all possible init_cwnd in [,
max_cwnd] and all possible ssthresh in [1, max_ssthresh]. In



MCGE RTT2 | RTT3 | RIT4 |

24 f slow congestion 1

22 - start ' avoidance — B
TR HHHHH ssthresh

cwnd

Original RENO —+—
Agg-AlgRENO M

‘ ‘ ‘ ‘ Property = =

0 10 20 30 40 50 60 70 80
ACK

Fig. 2. An example with ssthresh=20 and init_cwnd=10. The RENO
Agg-Alg generates the same final cwnd as the original RENO in each RTT,
and the maximum increment properties hold (cwnd < property) in each RTT.

addition, it checks all possible values of other related variables,
such as cwnd_cnt in Code 4 and 6.

3) Original Linux RENO implementation: Because the
Agg-Alg of CCAI differs from the original CCAI only in
the implementations of the frequent API functions, let’s con-
sider the only frequent required API function cong_avoid().
The original RENO implementation of API cong_avoid() is
function tcp_reno_cong_avoid () in Linux kernel source file
tep_input.c [10]. It is called for each received ACK and has
one major argument: acked that is the number of data packets
acknowledged by the ACK.

4) RENO Agg-Alg: We develop the Agg-Alg of Linux
RENO by re-implementing API function cong_avoid (). The
Agg-Alg implementation has the same final cwnd as the orig-
inal implementation tcp_reno_cong_avoid() for a sequence
of 1 < n < init_cwnd ACKs. Intuitively, the RENO Agg-Alg
captures the behavior of the original RENO for a sequence of
ACKs in an RTT. We capture the aggregated information of
a sequence of ACKs for RENO using variable total_acked,
which is the total number of data packets acknowledged by
all the ACKs in the sequence. The Agg-Alg implementation
directly calculates the final cwnd using argument total_acked.

To help the readers better understand the relation between
the original RENO function tcp_reno_cong_avoid() and the
RENO Agg-Alg, let’s consider an example where init_cwnd
of the first RTT is 10 packets and ssthresh is 20 packets. Fig-
ure 2 plots the new cwnd values calculated by both functions
for the first 4 RTTs involving a total of 73 ACKs. To handle
these ACKs, the original RENO function is called 73 times,
once for each ACK, and the RENO Agg-Alg is called only
4 times, once for each RTT. The RENO Agg-Alg generates
the same final cwnd as the original RENO at the end of each
RTT. Below we will prove their equivalence for a large range
of init_cwnd and ssthresh and for every ACK instead of just
the last ACK in each RTT in Figure 2.

Also to help the readers understand the maximum increment
properties of RENO, Figure 2 plots the maximum increment
line for each RTT and the properties hold if cwnd is always
no higher than the corresponding maximum increment line at
the end of every RTT. We can see that the properties hold for
this example. Below we will check these properties for a large

SCCT —e— SCCT —e—
ASM - total =—&— ASM - total —&—
102 ASM - equi. 104 L ASM - equi.
. ASM - prop. ° ASM - prop.
i3 =
S 10! g 10°
£ g
E 2
- 0 ¥ | 5 24
. ./P/'/ g 1
£ 3 - - .
16 11
107 10
102 - : 10°
10" 102 10° 104 10" 102 108 104

max_cwnd and max_ssthresh max_cwnd and max_ssthresh

Fig. 3. The verification time of ASM Fig. 4. The number of execution paths
(total = prove equivalent + prove prop- of ASM is bounded, whereas that of

erty alone) is several orders of magni- SCCT is unbounded (increases expo-
tude shorter than SCCT. nentially).

range of init_cwnd and ssthresh.

We develop the RENO Agg-Alg according to the RENO
specification [1] and the original Linux RENO code [10]. The
RENO Agg-Alg is written in language C that is the same as
the original RENO. We notice that the developed RENO Agg-
Alg is almost the same as the original RENO implementation
tcp_reno_cong_avoid (), except replacing argument acked
with total_acked. That is, we do not need to develop the
RENO Agg-Alg from scratch, instead, we only need to make
some simple changes to the original RENO code.

5) Check properties and equivalence: We use both SCCT
and ASM to verify the property with max_cwnd and
max_ssthresh up to 10% packets. For example, if both are 10,
they check whether the properties hold for all 10* x 10* = 108
possible combinations of init_cwnd and ssthresh, and ASM
also checks the equivalence between the original RENO and
Agg-Alg for all these 10% combinations and all possible 10*
ACKs. Figures 3 and 4 show their verification times and
numbers of execution paths. ASM quickly verifies that the
properties hold for Linux RENO for all 10% combinations of
init_cwnd and ssthresh, but SCCT is unable to complete the
verification within 1000 minutes.

Scalability: Figure 3 shows that ASM is several orders of
magnitude faster than SCCT. For example, when max_cwnd
and max_ssthresh are 100 packets, it takes SCCT about 200
minutes to verify the properties, whereas it takes ASM about
5 seconds to verify the equivalence, about 1 second to verify
the properties alone, and about 6 seconds in total. Even when
max_cwnd and max_ssthresh are 10000 packets (i.e., 10000
ACKs), it takes ASM only 1.5 minutes to verify the equiva-
lence and properties. The reason for the different scalability of
ASM and SCCT is that the number of ASM execution paths
is bounded whereas that of SCCT is unbounded as proved
by Theorems 1 and 2 and confirmed in Figure 4. Note that
Figure 4 shows that the number of SCCT execution paths
increases exponentially. The reason that the verification time
of ASM still increases with a bounded number of execution
paths is that the constraints of symbolic execution have larger
ranges of variables and then take a longer time to solve.



C. Case Study 2: Linux CUBIC

1) Introduction: We demonstrate the applicability and eval-
vate the performance of ASM using another representative
loss-based CCAI, Linux CUBIC, which is currently being used
by billions of Linux and Android devices worldwide. Linux
CUBIC has replaced Linux RENO as the default congestion
control approach of all Linux devices since around 2006.
Another reason that we select CUBIC is that its behavior is
more complicated than RENO in that it depends on not only
the number of ACKs but also their arrival times.

2) Properties to check: We check two maximum increment
properties. 1) MaxCwndIncrement: CUBIC should not incre-
ment its cwnd more than 1.5 times in an RTT in the congestion
avoidance stage. 2) MaxTargetIncrement: CUBIC should not
increment its target more than 1.5 times in an RTT in the
congestion avoidance stage. Variable target is the expected
cwnd of CUBIC after one RTT. The MaxTargetIncrement
is required in the CUBIC specification [2] and implies the
MaxCwndIncrement property. These two properties involve
two input variables: origin that is the origin point of the
cubic function that CUBIC follows to increment cwnd, and
rtt_duration that is the duration of an RTT. We check these
properties using symbolic values to cover all possible origin
in [2, max_origin] packets and all possible rtt_duration in
[l, max_rtt_duration] ms.

3) Original Linux CUBIC implementation: The original
CUBIC implementation of frequent APl cong_avoid() 1is
function cubictcp_cong_avoid() in Linux kernel source file
tep_cubic.c [9]. It is called for each received ACK and has
one major argument acked.

4) CUBIC Agg-Alg: The general behavior of Linux CUBIC
is complicated because it may bypass some computational-
intensive code based on some conditions of the ACK arrival
times to reduce the CPU load. As a result, the behavior of
CUBIC depends on the arrival time of each individual ACK,
and thus it is challenging to develop the Agg-Alg of CUBIC
for all possible cases. In this paper, we consider a case where
the behavior of CUBIC depends on only the arrival time of
the last ACK in an RTT instead of the arrival times of all the
ACKs in the RTT. In this case, the aggregated information of a
sequence of ACKs can be captured by two variables: variable
total_acked, and variable last_ack_time that is the arrival
time of the last ACK in the sequence. Specifically, we develop
the Agg-Alg of CUBIC by re-implementing API function
cong_avoid (), and the Agg-Alg implementation has the same
final cwnd value as the original cubictcp_cong_avoid() for a
sequence of 1 < n < init_cwnd ACKs.

5) Check properties and equivalence: We use both SCCT
and ASM to check the two maximum increment properties of
CUBIC with max_rtt_duration = 200 ms and max_origin
up to 10* packets. We check the behavior of CUBIC only
in the first RTT after a loss event, because the first RTT has
the maximum increment among all the RTTs in the concave
region [2] of CUBIC. ASM verifies that the properties hold for
Linux CUBIC in all checked network environments, but SCCT
is unable to complete the verification within 1000 minutes.

108 10° ; T
SCCT —e— SCCT —e—
SM - total —H&— ASM - total —&—
102 ASM - equi. 104+ ASM-equi.
. ASM - prop. ° ASM - prop.
@ =
g 10! P8 0l
£ 5
% 1()°I § 102
£ %
= (o]
107" 10"
102 . . 10°
10! 102 10° 104 10’ 102 10° 10

max_origin max_origin

Fig. 5. The verification time of ASM Fig. 6. The number of branches of
(total = prove equivalent + prove prop- ASM is bounded, whereas that of
erty alone) is several orders of magni- SCCT is unbounded (increases expo-
tude shorter than SCCT. nentially).

Scalability: Figures 5 and 6 show their verification times
and numbers of execution paths. We can see that ASM is
several orders of magnitude faster than SCCT. For example,
when max_origin is 100 packets, it takes SCCT about 100
minutes to verify the properties, whereas it takes ASM about
4.5 minutes to verify the equivalence, about 1.3 minutes to
verify the properties alone, and about 5.8 minutes in total.
Even when max_origin is 10000 packets (i.e., 10000 ACKs), it
still takes ASM only about 14 minutes to verify the properties.
The fundamental reason for the different scalability of ASM
and SCCT is that the number of ASM execution paths is
bounded whereas that of SCCT is unbounded as proved in
Theorems 1 and 2 and confirmed in Figure 6.

Extreme environments: We also run additional experiments
to check these two properties in extreme network environments
with RTTs up to 2000 ms. With such a wider range of RTTs,
both ASM and SCCT take longer to check the properties,
because the symbolic execution constraints have larger ranges
of variables and then take longer to solve. Both ASM and
SCCT report violations of the MaxTargetIncrement property
in network environments with very long RTTs. This is because
Linux CUBIC does not limit target as required in the CUBIC
specification [2], and then target may increment more than
1.5 times in a very long RTT.

The reported violation of the MaxTargetIncrement property
is consistent with the finding in a previous work [7]. Different
from the previous work which reports only some specific
network environments where the property is violated, ASM
reports the ranges of all the network environments where the
property is violated. Also different from the previous work,
ASM verifies that the MaxCwndIncrement property still holds
in all these network environments. Therefore, the final cwnd
increment of Linux CUBIC still follows the requirement of
the CUBIC specification [2], although the intermediate target
calculation does not follow exactly the CUBIC specification.

D. Case Study 3: Both Linux RENO and CUBIC

1) Introduction: Different from the first two case studies,
each involving only one CCAI, this case study involves two
CCAIs. Because CCAIs are designed to compete and coexist
with other CCAls, some properties involve two CCAIs.



1 —
'8 RENG —— 8 RENO ——
CUBIC —%— 16| CUBIC/Fixed —x—

16| 6

14} 14

2 12} 2 12

5 10 S 104

8t 8

6 6

4

110 120 130 140 150 160 170 180
time (ms)

4 . . . . . .
110 120 130 140 150 160 170 180
time (ms)

Fig. 7. Linux CUBIC bug: The aver- Fig. 8. Fixed Linux CUBIC: CU-
age cwnd of current CUBIC is lower BIC archives at least the same average
than that of RENO. throughput as RENO.

2) Property to check: We check the friendliness property of
CUBIC [2] that CUBIC should achieve at least the same aver-
age throughput as RENO in network environments with small
bandwidth-delay products where RENO performs well. Ac-
cording to the network environments discussed in the CUBIC
specification [2], we consider networks with congestion_cwnd
€ [2, 38] packets that is the cwnd of a TCP flow right before
a congestion event, and with rtt_duration € [1, 100] ms.
Both RENO and CUBIC start from a congestion event with
the same initial cwnd = congestion_cwnd. Both call their
implementations of API function ssthresh() to reduce their
cwnd in response to the congestion event, and then call their
implementations of API function cong_avoid() to increment
their cwnd in response to the ACKs in r RTTs. Finally, the
code checks whether the average cwnd of CUBIC in r RTTs
is always higher than or equal to that of RENO.

3) Check property: ASM is faster than SCCT. For example,
ASM takes 1.3 minutes and SCCT takes 38.2 minutes to
check the property with R = 2 RTTs in all the above network
environments. As expected, both ASM and SCCT take longer
to check the property as r increases.

Both ASM and SCCT detect violations of the friendli-
ness property. Figure 7 shows the experiment results of one
reported violation with congestion_cwnd = 10 packets and
rtt_duration = 4 ms. The results are obtained by running a
Mininet experiment where both RENO and CUBIC start with a
loss event. CUBIC achieves a lower average cwnd than RENO
and thus violates the friendliness property. By investigating
the Linux CUBIC code [9], we find that this violation is due
to three bugs. First, Linux CUBIC may mistakenly not update
cwnd for several RTTs when the RTT is very short. Second,
it does not match the RENO cwnd increment once cwnd
reaches congestion_cwnd as described in the latest CUBIC
specification [2]. Third, it mistakenly emulates the current
cwnd of RENO instead of one RTT in the future. We have
reported all three bugs [53] to and have been confirmed by
the Linux maintainers. We have also submitted patches to fix
these bugs and the experiment results of our fixed CUBIC
are shown in Figure 8. The fixed CUBIC achieves a similar
average cwnd as RENO, and has better performance than the
original CUBIC.

E. Discussions and Limitations

RQ1: Yes, we have developed the Agg-Algs for two rep-
resentative loss-based CCAIs, Linux RENO and CUBIC, and
checked the correctness of their code using ASM.

RQ2: Yes, ASM is ACK scalable (up to 10000 ACKs in
experiments). In the experiments, the numbers of execution
paths of ASM are bounded with respect to the number of
ACKs in an RTT whereas those of SCCT are unbounded, and
as a result, the verification times of ASM are several orders
of magnitude shorter than those of SCCT. However, ASM is
not necessarily faster than SCCT in detecting bugs.

Can ASM be applied to delay-based CCAIs? ASM works
for a delay-based CCAI, if it has an equivalent Agg-Alg.
Intuitively, if a delay-based CCAI operates on aggregated ACK
information once or several times per RTT, it has an equivalent
Agg-Alg. For example, Linux VEGAS [54] adjusts cwnd once
per RTT using the minimum RTT sample observed in the last
RTT, and thus it can be verified using ASM. However, most
delay-based Linux CCALISs, such as BBR [3], do not have an
equivalent Agg-Alg, because they operate on individual ACK
information and may change their cwnd value or pacing rate
after each ACK. In our future work, we plan to slightly modify
these delay-based Linux CCAIs to operate on aggregated ACK
information several times per RTT so that they have an Agg-
Alg. For example, a modified BBR estimates the bottleneck
bandwidth several times per RTT instead of per ACK, and then
adjusts its pacing rate and cwnd several times per RTT instead
of per ACK. The concept of coarse-grained congestion control
algorithms using aggregated ACK information has recently
garnered significant interest [55], [18], [19]. We anticipate
that this concept will become increasingly important and
popular, because coarse-grained algorithms can maintain low
CPU overhead in ever-increasing high-speed networks while
delivering throughput comparable to fine-grained algorithms
using per-ACK information [55], and because their correctness
can be more scalably verified.

What are other limitations of ASM? ASM is suitable for
verifying the multi-ACK properties that describe the behaviors
of a CCALI in response to the ACKs in an RTT. For example,
all the properties of Linux RENO and CUBIC checked in
case studies 1 and 2 involve the ACKs only in a single RTT.
However, ASM may not scale well with multi-RTT properties
that describe the behaviors of a CCAI in response to the ACKs
in multiple RTTs, as the friendliness property in case study 3.
One approach to scalably verifying the multi-RTT properties
is to develop an Agg-Alg that captures the behavior of a CCAI
over multiple RTTs instead of only one RTT as in ASM.

VIII. CONCLUSION

In this paper, we have proposed ASM to verify the correct-
ness of the actual code of CCAIs for multi-ACK properties.
Our experiments on two widely used real-world loss-based
CCAIs show that ASM significantly reduces verification time
and requires little verification expertise, though it demands
substantial CCAI expertise.



[1]
[2]

[3]

[7]

[8]

[9]
(10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

REFERENCES

M. Allman, V. Paxson, and E. Blanton, “TCP congestion control,” RFC
5681, September 2009.

L. Xu, S. Ha, I. Rhee, V. Goel, and L. Eggert, “CUBIC for fast and
long-distance networks,” IETF RFC 9438, August 2023, https://www.
rfc-editor.org/rfc/rfc9438.

N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, and V. Jacobson, “BBR:
Congestion-based congestion control,” Coomunications of the ACM,
vol. 60, no. 2, pp. 58-66, Feb. 2017.

P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP congestion
avoidance algorithm identification,” IEEE Transactions on Networking,
vol. 22, no. 4, pp. 1311-1324, Aug. 2014.

N. Cardwell, Y. Cheng, L. Brakmo, M. Mathis, B. Raghavan,
N. Dukkipati, H. Chu, A. Terzis, and T. Herbert, “PacketDrill: Scriptable
network stack testing, from sockets to packets,” in Proceedings of
USENIX ATC, San Jose, CA, June 2013, pp. 213-218.

P.  McManus, “Thanks Google for open source TCP
fix,” September 2015, http://bitsup.blogspot.com/2015/09/
thanks- google-tcp-team-for-open-source.html.

W. Sun, L. Xu, S. Elbaum, and D. Zhao, “Model-agnostic and efficient
exploration of numerical state space of real-world TCP congestion
control implementations,” in Proceedings of USENIX Symposium on
Networked Systems Design and Implementation (NSDI), Boston, MA,
Feb. 2019, pp. 719-734.

W. Sun, L. Xu, and S. Elbaum, “Scalably testing congestion control
algorithms of real-world TCP implementations,” in Proceedings of IEEE
ICC, Kansas City, MO, May 2018, pp. 1-6.

Linux CUBIC Source Code in Latest Kernel, https://git.kernel.org/pub/
scm/linux/kernel/git/stable/linux.git/tree/net/ipv4/tcp_cubic.c.

Linux RENO Source Code in Latest Kernel, https://git.kernel.org/pub/
scm/linux/kernel/git/stable/linux.git/tree/net/ipv4/tcp_cong.c.

S. Ha, L. Le, I. Rhee, and L. Xu, “Impact of background traffic on
performance of high-speed TCP variant protocols,” Computer Networks,
vol. 51, no. 7, pp. 1748-1762, May 2007.

Y. Li, D. Leith, and R. Shorten, “Experimental evaluation of high-speed
congestion control protocols,” IEEE/ACM Transactions on Networking,
vol. 15, no. 5, pp. 1109-1122, October 2007.

W. Sun, L. Xu, and S. Elbaum, “Limitations of emulating realistic
network environments for correctness testing of internet applications,”
in Proceedings of IEEE ICC, Kansas City, MO, May 2018, pp. 1-6.
S. Jero, E. Hoque, D. Choffnes, A. Mislove, and C. Nita-Rotaru,
“Automated attack discovery in TCP congestion control using a model-
guided approach,” in Proceedings of Network and Distributed Systems
Security (NDSS), San Diego, CA, Feb. 2018.

D. Ray and S. Seshan, “Cc-fuzz: Genetic algorithm-based fuzzing for
stress testing congestion control algorithms,” in Proceedings of ACM
Workshop on Hot Topics in Networks (HotNets), Austin, TX, USA,
November 2022, pp. 1-7.

N. Kothari, R. Mahajan, T. Millstein, R. Govindan, and M. Musuvathi,
“Finding protocol manipulation attacks,” in Proceedings of ACM SIG-
COMM, Toronto, Canada, August 2011.

M. Vu, P. Ha, and L. Xu, “Efficient correctness testing of Linux network
stack under packet dynamics,” in Proceedings of IEEE International
Conference on Communications (ICC), Ireland, Jun. 2020.

V. Arun, M. T. Arashloo, A. Saeed, M. Alizadeh, and H. Balakrishnan,
“Toward formally verifying congestion control behavior,” in Proceedings
of ACM SIGCOMM, Aug. 2021, pp. 1-16.

A. Agarwal, V. Arun, D. Ray, R. Martins, and S. Seshan, “Towards
provably performant congestion control,” in Proceedings of USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
Santa Clara, CA, Apr. 2024, pp. 951-978.

The Coq proof assistant, https://coq.inria.fr/.

K. Zhang, D. Zhuo, A. Akella, A. Krishnamurthy, and X. Wang, “Auto-
mated verification of customizable middlebox properties with Gravel,”
in Proceedings of USENIX NSDI, CA, Feb. 2020, pp. 221-239.

A. Zaostrovnykh, S. Pirelli, R. Iyer, M. Rizzo, L. Pedrosa, K. Argyraki,
and G. Candea, “Verifying software network functions with no verifica-
tion expertise,” in Proceedings of ACM SOSP, Canada, Oct. 2019.

A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. Argyraki, and G. Candea,
“A formally verified NAT,” in Proceedings of ACM SIGCOMM, 2017.
M. Musuvathi and D. Engler, “Model checking large network protocol
implementations,” in Proceedings of USENIX NSDI, San Francisco, CA,
March 2004.

[25]

[26]

[27]

(28]

[29]

(30]

[31]
[32]

[33]

[34]

[35]

[36]

[37]

[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang, F. Long,
L. Zhang, and L. Zhou, “MoDist: Transparent model checking of
unmodified distributed systems,” in Proceedings of USENIX NSDI,
Boston, MA, April 2009.

M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford, “A NICE
way to test OpenFlow applications,” in Proceedings of USENIX NSDI,
San Jose, CA, April 2012.

R. Jhala, R. Majumdar, R. Alur, A. Datta, D. Jackson, S. Krishnamurthi,
J. Regehr, N. Shankar, and C. Tinelli, “NSF workshop on formal
methods: Future directions & transition to practice,” NSF, Tech. Rep.,
2012.

J. Padhye, V. Firoiu, D. Towsley, and J. Kursoe, “Modeling TCP
throughput: A simple model and its empirical validation,” in Proceedings
of the ACM SIGCOMM, 1998, pp. 303-314.

F. Kelly, “Mathematical modelling of the Internet,” in Mathematics
Unlimited - 2001 and Beyond, B. Engquist and W. Schmid, Eds.
Springer, 2001, pp. 685 — 702.

D. Chiu and R. Jain, “Analysis of the increase/decrease algorithms
for congestion avoidance in computer networks,” Journal of Computer
Networks and ISDN, vol. 17, no. 1, pp. 1-14, June 1989.

Network Simulator 3, https://www.nsnam.org/.

F. Yan, J. Ma, G. Hill, D. Raghavan, R. Wahby, P. Levis, and K. Win-
stein, ‘“Pantheon: the training ground for Internet congestion-control
research,” in Proceedings of USENIX ATC, Boston, MA, Jul. 2018.

J. Padhye and S. Floyd, “On inferring TCP behavior,” in Proceedings
of ACM SIGCOMM, San Diego, CA, August 2001.

S. Bishop, M. Fairbairn, M. Norrish, P. Sewell, M. Smith, and K. Wans-
brough, “Rigorous specification and conformance testing techniques for
network protocols, as applied to TCP, UDP, and sockets,” in Proceedings
of ACM SIGCOMM, Philadelphia, PA, August 2005, pp. 265-276.

V. Paxson, “Automated packet trace analysis of TCP implementations,”
in Proceedings of ACM SIGCOMM, Cannes, France, September 1997.

M. Hippel, C. Vick, S. Tripakis, and C. Nita-Rotaru, “Automated attacker
synthesis for distributed protocols,” in Proceeding of International
Conference on Computer Safety, Reliability, and Security (SAFECOMP),
Lisbon, Portugal, Sep. 2020, pp. 133-149.

S. Bishop, M. Fairbairn, H. Mehnert, M. Norrish, T. Ridge, P. Sewell,
M. Smith, and K. Wansbrough, “Engineering with logic: Rigorous test-
oracle specification and validation for TCP/IP and the sockets APL”
Journal of the ACM, vol. 66, no. 1, Dec. 2018.

P. Fiterau-Brosteam, R. Janssen, and F. Vaandrager, “Combining model
learning and model checking to analyze TCP implementations,” in
Proceedings of Internation Conference on Computer Aided Verification
(CAV), Canada, July 2016, pp. 454—471.

M. Smith and K. Ramakrishnan, “Formal specification and verifica-
tion of safety and performance of TCP selective acknowledgment,”
IEEE/ACM Transactions on Networking, vol. 10, no. 2, pp. 193-207,
August 2002.

L. Lcokefeer, D. Williams, and W. Fokkink, “Formal specification and
verification of TCP extended with the window scale option,” Science of
Computer Programming, vol. 118, no. 1, pp. 3-23, Mar. 2016.

Z. Shukur, N. Alias, M. Halip, and B. Idrus, “Formal specification
and validation of selective acknowledgement protocol using Z/EVES
theorem prover,” Journal of Applied Sciences, vol. 6, no. 8, pp. 1712—
1719, 2006.

K. McMillan and L. Zuck, “Formal specification and testing of QUIC,”
in Proceedings of ACM SIGCOMM, Beijing, China, Aug. 2019, pp.
227-240.

L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt,
E. Torlak, and X. Wang, “Hyperkernel: Push-button verification of an
os kernel,” in Proceedings of the 26th Symposium on Operating Systems
Principles (SOSP 17), Shanghai, China, 2017, p. 252-2609.

J. Song, C. Cadar, and P. Pietzuch, “SymbexNet: Testing network
protocol implementations with symbolic execution and rule-based spec-
ifications,” IEEE Transactions on Software Engineering, vol. 40, no. 7,
pp. 695-709, July 2014.

M. Vu, L. Xu, S. Elbaum, W. Sun, and K. Qiao, “Efficient systematic
testing of network protocols with temporal uncertain events,” in Proceed-
ings of IEEE International Conference on Computer Communications
(INFOCOM), Paris, France, Apr. 2019, pp. 604-612.

M. Arashloo, R. Beckett, and R. Agarwal, “Formal methods for network
performance analysis,” in Proceedings of NSDI, Boston, MA, April
2023, pp. 221-239.



[47]

[48]

[49]

[50]

D. Engler and M. Musuvathi, “Static analysis versus software model
checking for bug finding,” in Proceedings of International Conference
on Verification, Model Checking and Abstract Interpretation, Venice,
Italy, Jan. 2004, pp. 191-210.

0. Udrea, C. Lumezanu, and J. Foster, “Rule-based static analysis of
network protocol implementation,” in Proceedings of USENIX Security
Symposium, Vancouver, Canada, July 2006, pp. 130-157.

Q. Chen, Z. Qian, Y. Jia, Y. Shao, and Z. Mao, “Static detection
of packet injection vulnerabilities: A case for identifying attacker-
controlled implicit information leaks,” in Proceedings of ACM SIGSAC
Conference on Computer and Communications Security (CCS), Denver,
CO, Oct. 2015, pp. 388-400.

J. King, “Symbolic execution and program testing,” Communications of
the ACM, vol. 19, no. 7, pp. 385-394, July 1976.

[51]

[52]

[53]

[54]

[55]

R. Baldoni, E. Coppa, D. D’elia, C. Demetrescu, and I. Finocchi, “A
survey of symbolic execution techniques,” ACM Computing Surveys,
vol. 51, no. 3, July 2018.

C. Cadar, D. Dunbar, and D. Engler, “KLEE: unassisted and automatic
generation of high-coverage tests for complex systems programs,” in
Proceedings of USENIX OSDI, San Diego, CA, December 2008.

M. Zhang, “[patch net] tcp_cubic fix to achieve at least the same
throughput as reno,” https://lore.kernel.org/netdev/20240810223130.
379146- 1-mrzhang97 @ gmail.com/t/#u.

Linux Vegas Source Code in Latest Kernel, https:/git.kernel.org/pub/
scm/linux/kernel/git/stable/linux.git/tree/net/ipv4/tcp_vegas.c.

A. Narayan, F. Cangialosi, D. Raghavan, P. Goyal, S. Narayana,
R. Mittal, M. Alizadeh, and H. Balakrishnan, “Restructuring endpoint
congestion control,” Proceedings of ACM SIGCOMM, pp. 30-43, Aug.
2018.



