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Abstract—Motivated by the swift global transmission of in-
fectious diseases, we present a comprehensive framework for
network-based epidemic control. Our aim is to curb epidemics us-
ing two different approaches. In the first approach, we introduce
an optimization strategy that optimally reduces travel rates. We
analyze the convergence of this strategy and show that it hinges
on the network structure to minimize infection spread. In the
second approach, we expand the classic SIR model by incorpo-
rating and optimizing quarantined states to strategically contain
the epidemic. We show that this problem reduces to the problem
of matrix balancing. We establish a link between optimization
constraints and the epidemic’s reproduction number, highlighting
the relationship between network structure and disease dynamics.
We demonstrate that applying augmented primal-dual gradient
dynamics to the optimal quarantine problem ensures exponential
convergence to a stationary point. We conclude by validating our
approaches using simulation studies that leverage public data
from counties in the state of Massachusetts.

Index Terms—Epidemics, networked control systems, stability
of nonlinear systems, compartmental models, optimization.

I. INTRODUCTION

T
HE recent COVID-19 pandemic underscored the critical
importance of controlling infectious disease spread [1],

[2]. Epidemics, when analyzed as interconnected networks
(e.g., cities, counties, or other societal structures), pose sig-
nificant challenges in preserving societal continuity and mini-
mizing socio-economic disruptions. Control systems methods
provide valuable tools for designing effective policies to
mitigate the impact of epidemics on public health, economies,
and society [3], [4].

Network-based epidemic models often adopt a compart-
mental approach, categorizing individuals into groups such as
susceptible, infected, and recovered [3], [4]. Control methods
in the literature primarily focus on optimal control and spectral

optimization. Optimal control optimizes model parameters to
minimize costs like the number of infections [5]–[9]. Spectral
optimization addresses resource allocation by minimizing the
maximum eigenvalue of the system matrix to limit spread
[10]–[13]. However, given the complexity of epidemic models,
designing and implementing policies to help mitigate the
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effects of an epidemic is computationally expensive and/or
NP-hard (e.g., from the perspective of spectral optimization,
the optimal node and link removal problems are NP-complete
and NP-hard, respectively [14]). Recent work sought com-
putationally efficient control strategies [15], [16]. Building
on these efforts, our goal is to develop efficient frameworks
for epidemic control that optimize resource allocation and
minimize societal impact.

Main Contributions. We propose two novel strategies for
network-based epidemic control. The first leverages optimal
control principles by optimizing model input parameters to
minimize an integrated cost function along the model trajec-
tory. The second draws on spectral optimization to allocate
resources efficiently, minimizing the spectral abscissa of the
model’s matrix for performance guarantees. Both strategies
rely on controlling the dominant eigenvalue of the system
matrix—one via travel restrictions and the other through
quarantine measures—to establish effective outbreak control
mechanisms. Our contributions are as follows:
• Optimizing Travel Rates: We introduce a novel approach

to suppress epidemic spread by optimizing travel rates
between network nodes (see Sec. IV). We analyze conver-
gence and show that this method curbs disease transmission
while preserving socio-economic activities by minimizing
the dominant eigenvalue of the infection spread matrix.
This underscores the centrality of the network analysis in
epidemic control.

• Optimizing Quarantine Rates: We extend the SIR model
to the SIQR model by incorporating a quarantine strategy
for both asymptomatic and symptomatic individuals (see
Sec. V). For the SIQR model, we demonstrate that optimiz-
ing quarantine costs becomes a matrix balancing problem
solvable in polynomial time. Furthermore, We clarify how
problem constraints relate to the basic reproduction number.
As an extension, we show that augmented primal-dual
dynamics yield semi-global exponential convergence to
a stationary (KKT) point of the quarantine optimization
problem.

• Model Validation: We validate the effectiveness of our
approaches using real-world network data (cf. Sec. VI),
computing optimal travel and quarantine rates for Mas-
sachusetts counties to illustrate the practical utility of our
strategies.

Paper Organization. The rest of this article is organized
as follows. In Sec. II we review necessary notation and
background, and in Sec. III we outline our problem formu-
lation. Sec. IV details our approach for epidemic control by
optimizing travel rates. In Sec. V we introduce our extension
of the SIR model to consider quarantined individuals, and we



demonstrate how epidemic control is achievable by optimizing
quarantine rates. Finally, in Sec. VI we present numerical
results obtained from simulations on networks using publicly
available data from Massachusetts counties.

II. NOTATION AND PRELIMINARIES

The sets of real, integer, complex, and natural numbers are
denoted by R, Z, C, and N, respectively. R≥0 (R>0) refers to
nonnegative (positive) real numbers, and R≤0 (R<0) refers to
nonpositive (negative) real numbers. Vectors and matrices are
denoted by lowercase and capital letters, respectively. For a
matrix A ∈ Rn×n, the entry at row i and column j is denoted
by aij . The column vector concatenating all columns of A
into a single column is a = vec(A). Vectors are assumed
to be column vectors unless stated otherwise. The standard
basis of Rn is denoted by {ei}

n
i=1. 1 denotes the all-ones

column vector, I the identity matrix, and 0 the all-zero vector
or matrix. Inequalities between vectors are elementwise. A
matrix is nonnegative (nonpositive, negative, positive) if all
its elements are nonnegative (nonpositive, negative, positive).
A matrix is essentially nonnegative if all off-diagonal elements
are nonnegative. The dominant eigenvalue and eigenvector of
a matrix A are λmax(A) and umax(A). For a vector a, ‖a‖ is
its Euclidean norm, and diag(a) is a diagonal matrix with a
as the diagonal elements. The element-wise multiplication of
two vectors a and b is a ◦ b. The transpose, spectral radius,
inverse, and Moore-Penrose inverse of a matrix A are denoted
by AT , ρ(A), A−1, and A+. The complex conjugate of A is
Ā, and its conjugate transpose is A∗. The spectral norm of a
square matrix A is ‖A‖2 = λmax(A

∗A)
1

2 . The derivative of a
variable s with respect to time t is denoted by ṡ. The gradient
of a function f is written as ∇f . A function is L-smooth if
it is continuously differentiable with a Lipschitz continuous
gradient having Lipschitz constant L. A neighborhood N (Z0)
of a matrix Z0 ∈ Cn×n is a set of matrices close to Z0 in
some metric. For x ∈ R, [x]+ := max{x, 0}.

The network is represented by a directed graph (digraph),
denoted as G = (V, E). In G, the set of nodes is expressed
as V = {v1, . . . , vn}, and the set of edges is defined as
E ⊆ {V × V ∪ (vi, vi) | vi ∈ V}, where each node has a
virtual self-edge. The number of nodes and edges are denoted
as |V| = n and |E| = m, respectively. A directed path of
length t exists from node vi to node vl if there is a sequence
of nodes vi ≡ l0, l1, . . . , lt ≡ vl such that (lτ , lτ+1) ∈ E for
τ = 0, 1, . . . , t− 1. A digraph is called “strongly connected”
if there is a directed path from every node vi to every other
node vl for all pairs of nodes vi, vl ∈ V . A square nonnegative
matrix A ∈ R

n×n
≥0 corresponds to a digraph G(A) with n

nodes {v1, . . . , vn} and a set edges E = {(vi, vj) | aij > 0}.

Definition 1 (Strongly Connected Matrix). A square non-

negative matrix A is said to be strongly connected if its

corresponding digraph G(A) is strongly connected.

Definition 2 (Primitive Matrix). A primitive matrix is a square

nonnegative matrix some power of which is positive.

Definition 3 (Matrix Stability and Function Convergence). A

matrix A is called continuous-time stable if all its eigenvalues

have real parts less than or equal to zero. A matrix A is called

discrete-time stable if all its eigenvalues have magnitudes less

than or equal to one. A function y(t) is said to decay at rate
α ≥ 0 starting at t0 if y(t) ≤ y

(

t0
)

e−α (t−t0), for all t ≥ t0.

Here, α is a constant that quantifies the exponential rate of

decay.

A. Network spread model of COVID-19

To model COVID-19 spread, we use a nuanced exten-
sion of the basic Susceptible-Infected-Recovered (SIR) model
by separating the infected individuals into symptomatic and
asymptomatic compartments (see [15], [17], [18] and refer-
ences therein). This division captures differing epidemiological
dynamics, such as infectiousness and detection rates between
these subgroups. The proposed model is:

ṡi = −si

n
∑

j=1

aij(β
axa

j + βsxs
j), (1a)

ẋa
i = si

n
∑

j=1

aij(β
axa

j + βsxs
j)− (ǫ+ ra)xa

i , (1b)

ẋs
i = ǫxa

i − rsxs
i , (1c)

ḣi = raxa
i + rsxs

i, (1d)

where n is the number of locations in our network, s =
(s1, . . . , sn) ∈ Rn is a vector with elements si equal to the
proportion of the population at location i being susceptible,
xa and xs are vectors with elements equal to the proportion
of the population at each location being asymptomatic and
symptomatic, respectively, and h is the vector with elements
hi denoting the portion of recovered population at node i.
aij is the rate at which infections at location j affect those
at location i (to be computed later), βa and βs are the
disease transmission rates of asymptomatic and symptomatic
individuals, respectively, ra and rs are the recovery rates of
asymptomatic and symptomatic, respectively, and ǫ is the rate
at which asymptomatic individuals develop symptoms.

Following [15], different parameters are utilized for symp-
tomatic and asymptomatic individuals due to the findings of
[19]. Specifically, in [19] it is shown that asymptomatic indi-
viduals exhibit a more rapid decline in viral load (compared
to symptomatic). Consequently, not only do they experience
quicker recovery, but they are also likely to be less contagious.

Remark 1. Model (1) offers a versatile framework. It can be

reduced to SIR or SEIR models (by setting βs = rs = ǫ = 0,

or βa = ra = 0, respectively), but its main advantage lies in

its extensibility, which is a key focus of this paper.

B. Construction of Infection Flow and Travel Rates Matrices

Infection Flow Matrix. To construct the infection flow matrix
A, we adopt the approach from [15], [18], which is particularly
suited for modeling the impact of mobility restrictions during
COVID-19. At each location i, the fixed population size is
denoted by Ni, and people travel from location i to location
j at a rate τij . The travel rate matrix T = [τij ]

n
i,j=1 is thus an

n×n matrix. Travel rates play a pivotal role in determining the



evolution of an epidemic, as evidenced by [20], which high-
lighted the strong correlation between regional disease spread
and human mobility. For instance, [21], [22] demonstrated how
spatial movements between network subpopulations critically
influence disease propagation, leveraging these concepts to
analyze and predict epidemic dynamics.

The adjacency matrix A, however, does not depend solely on
raw travel rates. Instead, it represents the effective contact rate

between susceptible and infected individuals across locations.
This follows principles established in metapopulation models
of epidemic spread [23], [24] and reflects recent advances
[18], [25]. Specifically, new infections arise due to interactions
between susceptibles and infected individuals either within the
same subpopulation or during visits to neighboring subpopu-
lations. The effective contact rate is defined as the ratio of
the time infected (asymptomatic and symptomatic) individ-
uals (local and visiting) spend outside (

∑n
j=1 Njτjlx

a
j and

∑n
j=1 Njτjlx

s
j , respectively) to the total time all individuals

spend outside in a given location (
∑n

k=1 Nkτkl). Formally,
τij combines with the effective contact rate at subpopulation
j to build the rate of change for the susceptible individuals at
location i:

ṡi = −
n
∑

l=1

siτil

(

∑n
j=1 Njτjlx

a
j

∑n
k=1 Nkτkl

βa +

∑n
j=1 Njτjlx

s
j

∑n
k=1 Nkτkl

βs

)

.

(2)
Thus, comparing (2) with (1a), we can define

aij =

n
∑

l=1

τilτjl
Nj

∑n
k=1 Nkτkl

. (3)

Travel Rates. To construct the travel rate matrix T , we
utilize the Human Mobility Flow dataset [26], derived from
SafeGraph data during the COVID-19 pandemic. This dataset
captures daily visitor flows between Census Block Groups

(CBGs) and provides population flow estimates reflecting
general mobility patterns. It also generates the estimates for the
whole population CBG-to-CBG flow. In our simulations, we
focus on county-level trips within Massachusetts, aggregating
flows within and between counties. The travel rate τij is
computed as:

τij = ti
Pf (i, j)

∑

k Pf (i, k)
,

where Pf is the population flow matrix, and Pf (i, j) represents
the number of daily trips from location i to j. Here, ti
represents the fraction of time individuals from node i spend
outside their residences. This formulation, rooted in real-time
mobility data, is adaptable to various spatial scales (e.g.,
counties, census tracts) and allows for flexible modeling of
heterogeneous disease spread dynamics.

By integrating origin-to-destination mobility patterns with
effective contact rates, our framework provides a robust
foundation for analyzing epidemic spread and control across
interconnected networks.

C. Stability and Splitting of Matrices

We now provide the following lemmas about the stability
of matrices that is important for our subsequent development.

Lemma 1 (A Perron–Frobenius version from [15]). Suppose

A is strongly connected with nonnegative off-diagonal entries.

Then A has a unique (simple) real eigenvalue λmax(A)
that strictly dominates all other in real part. Moreover, its

corresponding eigenvector umax(A) is real and positive.

Lemma 2 ([15]). The following statements characterize con-

tinuous and discrete-time matrix stability.

• (Continuous-time stability). A strongly connected matrix

P with nonnegative off-diagonal elements is continuous-

time stable if and only if there exists a vector d > 0 such

that Pd ≤ 0.

• (Discrete-time stability). A nonnegative strongly con-

nected matrix B is discrete-time stable if and only if there

exists a vector d > 0 such that Bd ≤ d.

• (Connection between Continuous-time and Discrete-time

stability). Suppose P = L−D where L is a nonnegative

matrix while D is a matrix with nonpositive off-diagonal

elements whose inverse is elementwise nonnegative. Sup-

pose further that both P and D−1L are strongly con-

nected. Then P is continuous-time stable if and only if

B = D−1L is discrete-time stable.

Lemma 1 restates Perron–Frobenius theorem for strongly
connected, essentially nonnegative matrices. Lemma 2 char-
acterizes matrix stability for both a continuous-time and a
discrete-time setting, establishing relationships between matrix
properties and stability conditions.

D. Balancing of Nonnegative Matrices

Matrix balancing adjusts elements of a given matrix to meet
specific criteria. A square matrix A ∈ R

n×n
≥0 is balanced if

A1 = AT
1, meaning each row sum equals the corresponding

column sum. A nonnegative matrix A ∈ R
n×n
≥0 can be

balanced if and only if it is strongly connected [27]. Balancing
A is equivalent to finding a nonnegative diagonal matrix D
such that DAD−1 is balanced.

Early works [28] considered matrix balancing as a condition
for a sequence of matrices to converge to a doubly stochastic
limit. More recent studies [29] approached balancing a given
matrix in a distributed manner, treating each row(/column)
as the set of incoming(/outgoing) links of a network node
(see [30] for a survey). We rely on the method from [31],
which shows that matrix balancing can be achieved in linear
time. Following this work, we state that the complexity is
proportional to the number of nonzero matrix entries (as
discussed in [15, Sec. 2.2]).

III. PROBLEM FORMULATION

Our goal is to optimally modify the elements of the COVID-
19 model (cf. Sec. 1) in a non-uniform way to mitigate disease
spread while minimizing economic costs. We focus on two
interrelated problems, denoted by P1 and P2:

P1 In the first problem, we aim to optimally modify the
travel rate matrix T (e.g., by implementing limited travel
restrictions) to curb infection spread (see Section IV).

P2 In the second problem, we extend the COVID-19 model
(cf. (1)) to include quarantined individuals. We then



optimally select location-dependent quarantine rates to
curb infections while minimizing associated economic
costs (see Section V).

Although P1 and P2 employ different control mea-
sures—travel restrictions and quarantines—they share a com-
mon technical foundation. Both problems reduce epidemic
control to established optimization frameworks by leveraging
network properties and spectral characteristics. This unified
approach ensures a coherent strategy for outbreak manage-
ment, where insights and methods from one problem inform
and strengthen the solution to the other.

IV. OPTIMAL TRAVEL RATES FOR EPIDEMIC CONTROL

A. Problem Structure

The network spread model of COVID-19 in (1) can be
written in matrix form as








ṡ
ẋa

ẋs

ḣ









=









0 −βa diag (s)A −βs diag (s)A 0

0 C βs diag (s)A 0

0 ǫI −rsI 0

0 raI rsI 0

















s
xa

xs

h









,

(4)
where C = βa diag (s)A − (ǫ + ra)I . We consider matrix A
as a function of τ = vec(T ), where T is the travel matrix
(cf. Sec. II-B). Under Assumptions 1 and 2 in [12], we can
decouple the dynamics of ẋ from ṡ and ḣ in (4), isolating
the infected compartments. This results in the infected system
matrix M(t, τ), which depends on time and travel rates. By
substituting the initial susceptible rate s(t0) into the system,
we obtain

M(t0, τ) =

(

C ′ βs diag (s(t0))A(τ)
ǫI −rsI

)

, (5)

where C ′ depends on A(τ) and is defined as
βa diag (s(t0))A(τ) − (ǫ + ra)I . For a fixed t0, we define
f(τ) = λmax (M(t0, τ)), and aim to solve the following
minimization problem:

min
τ

f(τ)

s.t. ‖τ − τ0‖1 ≤ b,

τ ≥ 0

(6)

where τ0 is the vector of initial travel rates and b is a budget on
the amount of travel rate change (measured using an ℓ1 norm)
from their initial values. The parameter b prevents drastic
changes in travel rates, mitigating potential social disruption.
This constraint ensures the practical feasibility of travel rate
adjustments.

In (6), we focus on minimizing the dominant eigenvalue of
the matrix M(t0, τ) by optimizing travel rates. In particular,
minimizing the dominant eigenvalue of the infected system
matrix is a powerful strategy for curbing the spread of infec-
tion. The formal justification for this approach is provided in
the following proposition.

Proposition 1. Consider the infected system matrix M(t0)
from (5). If the dominant eigenvalue of M(t0) is minimized

such that λmax(M(t0)) < −α for some α > 0 at time t0, then

the number of infected cases decays to zero at rate α, that is,

bounded asymptotically by a multiple of e−αt for all t ≥ t0.

Proof. The proof of Proposition 1 is established in [15].

B. Proposed Solution

We apply Projected Gradient Descent (PGD) by projecting
onto the constraint set, specifically the nonnegative orthant
of the ℓ1 ball. To ensure convergence, we use a backtracking
line search to adaptively adjust the stepsize based on sufficient
decrease conditions, enhancing robustness and convergence
(see [32]). The proposed algorithm is as follows:

Initialization:

set γ = 1 and choose β ∈ (0, 1),

Iteration:

while f(τk − γ∇f(τk)) > f(τk)−
γ

2
‖∇f(τk)‖

2,

set γ ← βγ,

yk+1 = τk − γ∇f(τk),

τk+1 = argmin
τ∈Ω

‖τ − yk+1‖
2
2,

(7)

where γ is the stepsize adjusted via backtracking with scaling
factor β ∈ (0, 1), τk = vec(Tk) represents the vectorized travel
rates matrix at iteration k, Ω is the projection set, and yk+1

is the auxiliary variable before projection onto the ℓ1 ball.
The update in (7) involves a gradient descent step followed

by projection onto the feasible set Ω. Computing the gradient
of the maximum eigenvalue requires specialized techniques,
while the projection step ensures the travel rates remain
practical and realistic under the imposed constraints.

Gradient Descent Step. Computing the gradient of a matrix
maximum eigenvalue can be challenging [33]. To address this,
we use [34, Thm. 2], which states:

Theorem 1 ([34]). Let λ0 be a simple eigenvalue of a matrix

Z0 ∈ Cn×n, with u0 as an associated eigenvector, such that

Z0u0 = λ0u0. Then a (complex) function λ and a (complex)

vector function u are defined for all Z in some neighborhood

N (Z0) ∈ Cn×n of Z0, such that λ(Z0) = λ0, u(Z0) = u0,

and

Zu = λu, u∗
0u = 1, for Z ∈ N (Z0).

Moreover, the functions λ and u are ∞ times differentiable on

N (Z0) and the differentials at Z0 are

dλ = v∗0(dZ)u0/v
∗
0u0 , (8)

and

du = (λ0I − Z0)
+

(

I −
u0v

∗
0

v∗0u0

)

(dZ)u0 , (9)

where v0 is the eigenvector associated with the eigenvalue λ̄0

of Z∗
0 , satisfying Z∗

0v0 = λ̄0v0, and dZ is the differential of

Z.

Let Z0 = M(t0, τk) in Theorem 1, with λmax and
umax denoting the maximum eigenvalue and its corresponding
eigenvector, such that M(t0, τk)umax = λmaxumax. In a



neighborhood N (M(t0, τk)) ∈ Cn×n, there exists a function
f satisfying f(M(t0, τk)) = λmax, and its gradient is:

∂f(M(t0, τk))

∂τij
=

v∗max

(

∂M(t0,τk)
∂τij

)

umax

v∗maxumax
, (10)

where vmax is the eigenvector associated with λ̄max

of M(t0, τk)
∗, satisfying M(t0, τk)

∗vmax = λ̄maxvmax.
Since M(t0, τk) is real, M(t0, τk)

∗
= M(t0, τk)

T and
M(t0, τk)

T
vmax = λmaxvmax. By the Perron–Frobenius theo-

rem (Lemma 1), the dominant eigenvector is real and positive,
so v∗max = vTmax. Note that vTmax and umax are the left
and right eigenvectors corresponding to λmax of M(t0, τk).
Consequently, (10) simplifies to:

∂f(M(t0, τk))

∂τij
=

vTmax

(

∂M(t0,τk)
∂τij

)

umax

vTmaxumax
, (11)

providing the gradient vector ∇f(M(t0, τk)). This gradient is
then used in the gradient descent step specified in (7).

Projection Step. The projection step in (7) minimizes ‖τ −
yk+1‖

2
2 subject to the constraint set of (6), resulting in linear

constraints. This problem can be reformulated as a convex
Quadratic Programming (QP) problem [35], allowing the
optimal τ to be efficiently computed at each step.

Convergence Analysis. To analyze the convergence of the
proposed algorithm to a stationary point and the operation of
(7), we present the following lemmas.

Note that the spectral norm of the Hessian matrix ∇2f(τ)
is |λmax(∇

2f(τ))| because the Hessian matrix of f(τ) is
symmetric and real.

Lemma 3. The eigenvalues of the matrix M(t0, τ) (cf. (5))
are continuous functions of τ .

Proof. This follows directly from the continuity of the roots
of the characteristic polynomial of M(t0, τ) [36].

Lemma 4. The function f(τ) = λmax (M(t0, τ)) is L-smooth.

Proof. The set of all matrices M(t0, τ) over possible travel
rate matrices T (defined in Section II-B) is bounded and
compact. By Thm. 1, f(τ) is ∞ times differentiable, so every
element of its Hessian is continuous and differentiable. From
the continuity of the Hessian and maximum eigenvalue (see
Thm. 1) we have that the largest element of the Hessian
achieves its maximum value on the compact set consisting of
all M(t0, τ) over all the possible travel rate matrices T . As a
result, the spectral norm of the Hessian of f(τ) (‖∇2f(x)‖2)
is bounded and from [37] the maximum eigenvalue function
f(τ) has a Lipschitz continuous gradient.

After establishing that the dominant eigenvalue function
f(τ) is L-smooth,we present the convergence result for the
PGD operation with backtracking line search described in (7).

Theorem 2. Let f(τk) = λmax (M(t0, τk)). Executing the

operation in (7), we have

lim
k→∞

∇(f(τk)) = 0. (12)

Proof. Let {τk} be the sequence generated by (7). From the
convergence of backtracking line search for differentiable and
L-smooth functions [32], it follows that limk→∞ ∇(f(τk)) =
0.

Theorem 2 establishes global convergence for the proposed
PGD algorithm, independent of the initial point.

V. COVID-19 MODEL WITH OPTIMAL QUARANTINE

RATES

As another outbreak-controlling paradigm inspired by the
optimization framework discussed earlier, this section extends
the COVID-19 model in (1) by incorporating quarantine
measures for infected individuals. Assigning an economic cost
to each quarantined individual, we aim to optimize quarantine
strategies to minimize the quarantined population while con-
taining the infection spread.

A. Integrating Quarantining into a COVID-19 Model

The extended model introduces the following modifications:

1) Asymptomatic infected individuals xa
i at each node i (a)

exhibit automatic recovery at a rate of ra, or (b) develop
symptoms at a rate of ǫ, or (c) are quarantined with rate
qai , with ki denoting the proportion of the quarantined
population at node i.

2) Symptomatic cases xs
i (a) experience automatic recov-

ery at a rate of rs, or (b) transition to a quarantined state
at a rate of qsi .

3) Quarantined individuals ki recover at a rate of rq .

The resulting Susceptible-Infected-Quarantined-Recovered
(SIQR) model is:

ṡi = −si

n
∑

j=1

aij(β
axa

j + βsxs
j), (13a)

ẋa
i = si

n
∑

j=1

aij(β
axa

j + βsxs
j)− (ǫ+ ra + qai )x

a
i , (13b)

ẋs
i = ǫxa

i − (rs + qsi )x
s
i , (13c)

k̇i = qai x
a
i + qsix

s
i − rqki, (13d)

ḣi = raxa
i + rsxs

i + rqki, (13e)

The SIQR model retains the notation of (1) and incorporates
quarantining for both asymptomatic and symptomatic individ-
uals, who recover at a rate rq .

B. Problem Formulation for Minimizing Quarantine Rates

Let qa = (qa1 , . . . , q
a
n), q

s = (qs1, . . . , q
s
n), and q = (qa, qs)

represent the column vectors of quarantine rates. To analyze
the disease-free equilibrium, we decouple the dynamics of ẋ
from (13) and focus on the 2n× 2n sub-matrix M(t, q):

M(t, q) =

(

E βs diag (s(t))A
ǫI −(rsI + diag (qs))

)

, (14)

where E = βa diag (s(t))A−(ǫ+ra)I−diag (qa). The objec-
tive is to minimize quarantine rates qsi , q

a
i to control infection

spread and reduce economic costs within the network. These



rates can be assumed to be nonnegative. We note also that
there is an upper bound on what these rates could plausibly
be, since the inverse of these rates represents the time a
typical individual would spend before being quarantined under
a scenario where individuals do not transition between classes
(e.g., symptomatic, asymptomatic, recovered). Consequently,
we may assume without loss of generality a bound of 1 on all
quarantine rates. To achieve this, we formulate the following
optimization problem:

minq

n
∑

i=1

zai
1− qai

+
zsi

1− qsi

s.t. λmax(M(t0, q)) ≤ −α,

0 ≤ q ≤ 1,

(15)

where za = (za1 , . . . , z
a
n) and zs = (zs1, . . . , z

s
n) represent the

relative economic costs associated with quarantining asymp-
tomatic and symptomatic cases at each node, respectively. The
objective function in (15) aims to minimize the total economic
cost of quarantine rates across all nodes. This formulation
accounts for the challenges in identifying and quarantining
asymptomatic individuals by incorporating random testing
strategies. The potentially higher costs associated with detect-
ing and quarantining asymptomatic carriers are reflected in the
cost parameters za. The economic cost for each node increases
nonlinearly with quarantine rates, modeling the growing lo-
gistical complexity and resource requirements associated with
quarantining a larger fraction of the population. The summa-
tion aggregates these costs over all nodes, and the optimization
seeks quarantine rates q that minimize this combined cost. The
constraints ensure that the maximum eigenvalue of M(t0, q)
is bounded by −α, enforcing a condition for controlling
infection spread (see Proposition 1). The upper bounds on
both qa and qs allow for adjusting quarantine rates based on
available resources and testing capabilities, acknowledging the
practical limitations in selective quarantining. Consequently,
the optimization problem balances minimizing quarantine-
associated costs with achieving a decay rate of −α for infected
cases.

C. Proposed Solution

The optimization method for solving problem (15) differs
from our previous PGD-based approach for travel rates due to
the nonlinear constraints involved. Unlike the linear constraints
in problem (6), problem (15) introduces nonlinear constraints
on quarantine rates, requiring an alternative approach.

Reduction of the Optimization Problem to Weight-

Balancing. We now demonstrate that problem (15) can be
reduced to a matrix balancing problem. This reduction relies
on Assumption 1, which is typically satisfied by epidemic
model parameters, as verified using Massachusetts data. In
practice, the matrix balancing algorithm successfully solves
problem (15) under these conditions.

Assumption 1. Consider the matrix B0:

B0 =

(

βa diag(s(t0))A− (ǫ+ ra + 1)I βs diag(s(t0))A
ǫI −(rs + 1)I

)

Let m be the largest absolute value of any diagonal element

of B0. Defining x = minj(ǫβ
ssj(t0)Ajj), we assume:

1 +
x

m2
≥ m.

Assumption 1 is needed to ensure the solution is nonnega-
tive. Now, we present the main theorem of our study:

Theorem 3. The minimum quarantining problem in (15) can

be reduced to a matrix balancing problem provided that the

Assumption 1 is satisfied, the infection flow matrix A (from

Sec. II-B) is strongly connected, s(t0) > 0, and the problem

is feasible.

Proof. See Appendix A.

Inspired by [15], we reduced problem (15) to a matrix
balancing problem, which is known to have polynomial com-
plexity with respect to the number of unknown variables (2n).
Problem (15) is inherently complex due to the eigenvalue
condition in its first constraint, which can potentially lead to
higher-order computational complexity. Although the matrix
balancing approach requires inverting a 2n×2n matrix B0—an
operation with cubic complexity—our proposed solution re-
mains polynomial in terms of the number of parameters (2n).

Remark 2. Problems (6) and (15) can be reformulated as Ge-

ometric Programs (GPs). For (6), this would still require GD

in a transformed space, complicating analysis. For (15), while

matrix scaling is formulated as a GP in [38], the presented

complexity analysis has not proved to be competitive. Thus,

our proposed solutions generally outperform GP formulations

in terms of efficiency and speed.

Connection of Constraints with the Epidemic Basic Re-

production Number. In epidemiological analysis, the repro-
duction number R0 is a key metric, as it indicates whether
a disease outbreak will escalate or dissipate naturally. Unfor-
tunately, calculating R0 is often non-trivial due to the lack
of comprehensive data. Motivated by this, we establish a
relationship between the constraint λmax(M(t0)) ≤ −α and
the epidemic’s reproduction number R0. This connection is
crucial, as modifying our constraints can prevent an epidemic
from escalating into a pandemic or spreading extensively
within a population.

Theorem 4. The set R0 ≤ 1 is equivalent to λmax ≤ 0.

Proof. See Appendix B.

Theorem 4 implies that imposing the condition
λmax(M(t0)) ≤ −α provides a set of solutions that
enforces a bound on the disease reproduction number R0 ≤ r,
for r ∈ [0, 1].

While matrix balancing is our primary method—yielding
a closed-form solution as shown in Appendix A, we now
present a complementary approach via augmented primal-dual
gradient dynamics to demonstrate semi-global exponential
convergence under an alternative set of conditions.

Convergence via Augmented Primal-Dual Gradient Dy-

namics for Optimal Quarantine Control. We now extend
our approach to solving the optimal quarantine problem by



applying the augmented primal-dual gradient dynamics (Aug-
PDGD). This extension demonstrates semi-global exponential
convergence to a KKT point of the problem. The following
propositions and theorems collectively establish this result.

Proposition 2. Assuming the feasibility of (15), the cost

function, defined as f(q) =
∑n

i=1

(

za
i

1−qa
i

+
zs
i

1−qs
i

)

, is continu-

ously differentiable and strongly convex on the feasible domain

0 ≤ q < 1. Moreover, M(t0, q) can be expressed as the sum of

an essentially nonnegative matrix and a diagonal matrix with

the elements of the vector −q on its diagonal. Therefore, as

demonstrated in [39], the dominant eigenvalue of the matrix

M(t0, q) is convex. Defining g1(q) = λmax(M(t0, q)) + α,

g(1+i) = −qi, and g2n+1+i = qi − 1 for all i ∈ {1, . . . , 2n},

g(q) is continuously differentiable and convex.

Given Proposition 2, we are now ready to analyze the
augmented primal-dual gradient dynamics. We introduce the
augmented Lagrangian of (15) formulated as [40]

Lρ(q, λ) = f(q) + Θρ(q, λ), λ ≥ 0, (16)

where

Θρ(q, λ) :=

4n+1
∑

i=1

[ρgi(q) + λi]
2
+ − λ2

i

2ρ
.

The augmented primal-dual gradient dynamics are given by

q̇(t) = −∇f(q(t))−
4n+1
∑

i=1

[ρgi(q(t)) + λi(t)]+∇gi(q(t))

(17a)

λ̇(t) =

4n+1
∑

i=1

[ρgi(q) + λi(t)]+ − λi(t)

ρ
ei. (17b)

We now establish the Lipschitz smoothness of the cost
function and the constraints in the following theorems.

Theorem 5. Given g1(q) = λmax(M(t0, q)) + α, (11) and

(14) imply that

∇g1(q) =
vmax ◦ umax

vTmaxumax
.

Recall that vTmax and umax represent the left and right eigen-

vectors associated with λmax(M(t0, q)). Hence, ‖∇g1(q)‖ ≤
Lg,1 (see Appendix C for proof), and g1(q) is also Mg,1-

smooth (see Lemma 4). Additionally, for all i ≥ 2, the

gradients ∇gi are Lipschitz continuous and have bounded

norms, which is evident from their definitions.

Proposition 3 ([40]). Denoting y(t) = (q(t), λ(t)), t ≥ 0 as a

differentiable trajectory satisfying (17). Then, for a KKT point

of (16), y∗ = (q∗, λ∗), we have ‖y(t) − y∗‖ ≤ ‖y(0) − y∗‖,

for all t ≥ 0.

With bounded trajectories established, we have the follow-
ing theorem.

Theorem 6. The gradient of the cost function f(q) is Lipschitz

continuous over the region traversed by the primal gradient

dynamics described by (17).

Proof. See Appendix D.

We now verify that the Linear Independence Constraint

Qualification (LICQ) holds at q∗ in Proposition 4.

Proposition 4. Let the active set at the local optimal solution

q∗ be denoted by I := {i : gi(q
∗) = 0}. Therefore, q∗ is a

regular local minimum, i.e., ∇gi(q
∗) for i ∈ I are linearly

independent.

Proof. See Appendix E.

Combining convexity, Lipschitz, and regularity conditions,
Corollary 1 establishes semi-global exponential stability of the
Aug-PDGD at the KKT point.

Corollary 1. Under Propositions 2 and 4, and Theorems 5

and 6, the application of augmented primal-dual gradient dy-

namics (Aug-PDGD) to (15) achieves semi-global exponential

stability. Specifically, the KKT point y∗ = (q∗, λ∗) is a semi-

globally exponentially stable equilibrium of the Aug-PDGD.

This result follows immediately from Theorem 6, Proposi-
tion 4 and the results of [40], which examine the stability
of Aug-PDGD for smooth convex optimization problems with
general convex and nonlinear inequality constraints. Conse-
quently, the distance to the optimal solution decays exponen-
tially from any initial point, although the convergence rate may
depend on the initial distance to a stationary point.

It should be noted that [40] assumes the Lipschitz continuity
of ∇f(q). However, as stated in Theorem 6, what is actually
required is the Lipschitz continuity of ∇f(q) over the region
invariant under the primal gradient dynamics.

VI. SIMULATION RESULTS

In this section, we present simulation results for our opti-
mization strategies. For problems P1 and P2, we consider a
14-node network representing the counties of Massachusetts
to demonstrate the applicability and advantages of our ap-
proaches in real world scenarios.

A. Model Parameters

Massachusetts 14-Node Network. The network consists of 14
nodes, each representing a Massachusetts county. Population
data (Ni, i ∈ {1, ..., 14}) is sourced from the 2020 Census
[41], while travel rates (τ ) for the infection flow matrix (A) are
derived from the Human Mobility Flow dataset [26] following
Section II-B. We assume ti =

1
3 , representing one-third of the

time spent outside.

Epidemic and Economic Parameters. County-level GDP
data from the Bureau of Economic Analysis [42] is used to
compute economic losses (zai , z

s
i ) as zai = zsi = gi/gmax,

where gi is the GDP of county i, and gmax is the highest
GDP across all counties. Epidemic parameters are taken from
[17], [18], with recovery rates (ra = rs = rq = γ = 0.2),
symptom development rate (ǫ = 0.32), and transmission rates
(βa, βs). Following [15], βa = ηβs with η = 0.6754, and βs

is adjusted to match observed growth rates. Adjustments to β
ensure A aligns with the required growth rate.
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Fig. 1. Optimal f(τ) values in problem (6) for various budgets b, as travel
rates τ change via (7).

Initial Rates. Initial susceptible rates (s(t0)) are calculated
using cumulative case data [43] adjusted for underreporting
by dividing cumulative cases by 0.14 [18], [44]. For node
i, si(t0) = 1 − ci(t0)/(0.14Ni), where ci(t0) is the cumu-
lative cases. April 1, 2020, is used as the initial state (t0).
Recovered cases are estimated using the U.S. recovery ratio on
April 1, 2020 ( 8878

215215 [15]), scaled by node-level cumulative
infected cases plus deaths. Active cases (symptomatic: 14%,
asymptomatic: 86%) are adjusted by 0.14 to account for
underreporting.

B. Massachusetts County-Level 14 Node Network

Optimizing Travel Rates. We validate the optimal solution
for (6) over the Massachusetts 14-node network.

Figure 1 displays f(τ) = λmax

(

M(t0, τ)
)

(cf. (6)) com-
puted via the PGD algorithm. For each budget b, the algorithm
converges to a local optimum τ∗. As b increases, the optimal
travel rates diverge from the uncontrolled values, minimizing
f(τ) and lowering λmax

(

M(t0, τ
∗)
)

for larger b. Specifically,
when b > 20, f(τ∗) < 0, so the epidemic converges faster to a
disease-free equilibrium. The degree of restrictions (quantified
by b) mainly affects travel rates, necessitating network-specific
customization.

Figure 2 shows the cumulative number of infected and
recovered cases using the optimal travel rates from the PGD
algorithm. As expected, larger b—implying stricter lockdown
measures—results in fewer cumulative cases and faster epi-
demic control. Similarly, Fig. 3 illustrates the number of
active infected cases for these optimal travel rates. Notably,
for b > 20, we achieve a reduction rate of −α = −0.0231,
corresponding to halving active cases every 30 days.

Optimizing Quarantine Rates. Figures 4 and 5 compare our
optimal quarantining rates with various policies. In uniform

quarantining, all locations share identical rates chosen so
that the total economic cost matches that of the optimal
policy. In random quarantining, rates are drawn uniformly at
random, scaled to equal the our optimal policy’s cost. In a
uniformly bounded decline policy, rates are set to keep each
node’s infection decay rate within a bound, again matching the
optimal economic cost. For the same economic expenditures,
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Fig. 2. Cumulative cases (infected, quarantined, recovered) under varying
travel rate constraints in Massachusetts.
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Fig. 3. Active cases (asymptomatic and symptomatic) with different travel
rate constraints in Massachusetts.

our optimal quarantine rates minimize both cumulative and
active infections across the network.

Given that (6) and (15) can be solved efficiently, we can
periodically re-optimize the travel rates or quarantine measures
based on the current epidemic state. This would impose stricter
rules initially when susceptible rates are higher, gradually re-
laxing restrictions as the susceptible population decreases. This
approach maintains the benefits of adaptability while avoiding
premature relaxation of control measures, aligning with the
practical reality that policy changes require implementation
time.

VII. CONCLUSIONS

In this paper, we presented a framework for epidemic con-
trol with two approaches. The first focuses on strategically re-
ducing travel rates to contain the virus, utilizing the maximum
eigenvalue function and the PGD algorithm for optimization.
The second enhances the SIR model with a quarantine strategy
to minimize costs and decrease new infections rapidly through
node-specific rates. We propose a solution that simplifies
optimal quarantining into a weight-balancing problem and
establish a link between optimization constraints and the
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Fig. 4. Cumulative cases (infected, quarantined, recovered) for different
quarantine rates in Massachusetts. For the optimal policy, α = 0.023, halving
infections every 30 days.
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Fig. 5. Active cases (asymptomatic and symptomatic) for various quarantine
policies in Massachusetts. For the optimal policy, α = 0.023, halving
infections every 30 days.

epidemic’s basic reproduction number. Finally, applying (Aug-
PDGD) to our optimal quarantine problem ensures exponential
stability of the solution.

Our numerical results highlight the efficiency of both ap-
proaches in controlling the epidemic. Although we constructed
the network within the county-level framework, it’s noteworthy
that, given data availability, these methods can be applied to
much smaller nodes (e.g., zip code or census track levels).

APPENDIX A
PROOF OF THEOREM 3

Consider the problem formulation in (15). Setting w = 1−q,
we equivalently have

minw

n
∑

i=1

zai
wa

i

+
zsi
ws

i

s.t. λmax(A0) ≤ 0 ,

0 ≤ w ≤ 1 ,

(18)

where from (14)

A0 =

(

diag (wa) + E′ βs diag (s(t0))A
ǫI diag (ws)− (rs + 1− α)I

)

,

and E′ = βa diag (s(t0))A− (ǫ+ ra + 1− α)I .
We now find the range of α ensuring there exists a nonneg-

ative w satisfying the maximum eigenvalue constraint in (18).
First assume

α < min(rs+1, ǫ+ra+1−max
i

(βa diag (s(t0))A)ii), (19)

where maxi (β
a diag (s(t0))A)ii is the maximum diagonal

element of βa diag (s(t0))A, which is known and fixed. If (19)
does not hold, then matrix A0 cannot be continuous time stable
(the first constraint in (18) fails for any w). In particular, when
(19) is not satisfied, no d > 0 can fulfill A0d ≤ 0, regardless
of w (see the first bullet of Lemma (2)).

Let us write

A0 = diag (w) +

(

E′ βs diag (s(t0))A
ǫI −(rs + 1− α)I

)

= diag (w) +B0, (20)

where w = (wa, ws) ∈ R2n, and E′ = βa diag (s(t0))A −
(ǫ + ra + 1− α)I . By the Perron-Frobenius theorem, adding
the nonnegative diagonal diag (w) cannot decrease the largest
eigenvalue of B0. Thus, for (18) to be feasible, B0 must be
Hurwitz. Condition (19) is necessary but may not be sufficient
for B0 to be Hurwitz. To address that, write

B0 =

(

βa diag (s(t0))A− (ǫ+ ra + 1)I βs diag (s(t0))A
ǫI −(rs + 1)I

)

+ αI = C0 + αI.

So C0 must be Hurwitz, and α must be chosen such that
adding αI does not does not destabilize C0. Hence, α <
−λmax(C0) is required for feasibility.

Since B0 is Hurwitz, B0 is invertible and −B−1
0 ≥ 0 ( [45,

Thm. 10.3]). By Lemma 2, A0 is continuous-time stable if and
only if −B−1

0 diag (w) is discrete-time stable. Since changing
the order of the product of two matrices does not affect
the eigenvalues of the product, equivalently diag (w)(−B−1

0 )
must be discrete-time stable. By part (3) of Lemma 2, this
holds if and only if −B−1

0 − diag (w)
−1 is continuous-time

stable.
For nonnegative w, let vi = wi

−1. Then (18), ignoring w ≤
1, is equivalent to

minv zT v

s. t. λmax(−B−1
0 − diag (v)) ≤ 0,

v ≥ 0

(21)

where −B−1
0 is Metzler. Due to the strong connectivity of A,

the two upper blocks in B0 are strongly connected, and its two
lower diagonal blocks ensure B0 is also strongly connected.
Hence, −B0 is irreducible, so −B−1

0 is also irreducible. The
objective in (21) is to find v∗ minimizing zT v∗ such that
−B−1

0 −diag (v∗) is Hurwitz. By [16, Theorem 3], this reduces
to a matrix balancing problem. Specifically, let d∗ ∈ R2n

>0 be
such that

(diag (d∗))−1 diag (z)(−B−1
0 ) diag (d∗)



is weight balanced. Then (21) has a unique optimum

v∗ = (diag (d∗))−1(−B−1
0 ) diag (d∗)1 . (22)

Hence, (18) is equivalent to a matrix balancing problem for
w ≥ 0, or equivalently q ≤ 1.

To finalize, we also require w ≤ 1 (equivalently q ≥ 0). Let
us see the solution v∗ in more detail. As discussed previously,
B0 is a Hurwitz matrix with nonnegative off-diagonal elements
and negative diagonal elements. Suppose m is the absolute
value of the most negative diagonal element of B0, or

m = max
i

|(B0)ii| > 0 .

Let us write B0 = B−mI , where B is a nonnegative matrix.
From the Perron-Frobenius theorem, we have ρ(B) > 0 and
ρ(B)−m is an eigenvalue of the Hurwitz matrix B0.

B−1
0 = (B −mI)−1 =

1

m
(
1

m
B − I)−1

= −
1

m

∞
∑

n=0

(

1

m
B

)n

= −
1

m

∞
∑

n=0

(

I +
1

m
B0

)n

.
(23)

By substituting (23) in (22), v∗ can be derived as

v∗ =
1

m
(diag (d∗))−1

∞
∑

n=0

(

I +
1

m
B0

)n

diag (d∗)1 . (24)

Thus, to have w ≤ 1, we require v∗ ≥ 1 or equivalently, the
sum of row elements of

(diag (d∗))−1
∞
∑

n=0

(

I +
1

m
B0

)n

diag (d∗)

should be greater or equal to m. Indeed, defining
∑∞

n=0

(

I + 1
m
B0

)n
= Q, we need

2n
∑

j=1

d∗j
d∗i

Qij ≥ m ∀i ∈ {1, 2, . . . , 2n} . (25)

Notice that 1
m
B0 is a matrix with nonnegative off-diagonal

elements and negative diagonal elements of −1 ≤ (B0)ii
m

<
0. Thus, (I + 1

m
B0) is a nonnegative matrix with diagonal

elements, and

0 ≤ (I +
1

m
B0)ii < 1 .

Hence,

Q ≥ I + [I +
1

m
B0] + [(I +

1

m
B0)

2] = Q̄ (26)

Letting (I + 1
m
B0)ii = 0, we have

(I +
1

m
B0) ≥

(

1
m
Ã βs

m
diag (s(t0))A

ǫ
m
I 0

)

, (27)

where Ã = βa diag (s(t0))A that its diagonal elements are
replaced with zero. Substituting (27) into (26), we derive a
lower bound of Q̄ as Q̃:

Q̃ =

(

Q̃11 Q̃12
ǫ
m
I + ǫ

m2 Ã I + ǫβs

m2 diag (s(t0))A

)

, (28)

where

Q̃11 = I +
Ã

m
+

1

m2
(Ã2 + ǫβs diag (s(t0))A),

Q̃12 =
βs

m
diag (s(t0))A+

βs

m2
Ã diag (s(t0))A .

From the definition of B0 in (20), m can be written as

m = max
(

rs + 1− α,

ǫ+ ra + 1− α−min (βa diag(s(t0))A)ii

)

.

Substituting Assumption 1 into the definition of Q̃, we have

Q̃ii = 1 +
1

m2
((Ã2)jj + ǫβssi(t0)Ajj)

≥ 1 +
ǫ

m2
βssi(t0)Ajj ≥ 1 +

x

m2

≥ m , i ∈ {1, . . . , n} ,

and

Q̃ii = 1 +
1

m2
ǫβssj(t0)Ajj ≥ 1 +

x

m2
≥ m

≥ m , i ∈ {n+ 1, . . . , 2n} .

Finally,
2n
∑

j=1

d∗j
d∗i

Qij ≥ Qii ≥ Q̄ii ≥ Q̃ii ≥ m , (29)

for all i ∈ {1, 2, . . . , 2n}. Hence, v∗ ≥ 1, and equivalently
q∗ ≥ 0. Subsequently, substituting the definitions of v and w,
the optimal quarantined rates are calculated as

q∗ = 1+ 1./
(

(diag (d∗))
−1

B−1
0 (diag (d∗))1

)

.

APPENDIX B
PROOF OF THEOREM 4

We will establish that initiating from R0 < 1 leads us to
λmax(M(t0)) ≤ 0. Assume

R0 ≤ 1 .

We have

M(t0) =

(

E βs diag (s(t0))A
ǫI −(rs + diag (qs))I

)

,

where E = βa diag (s(t0))A − (ǫ + ra + diag (qa))I . Let us
write M(t0) as

M(t0) = F + V,

where

F =

(

βa diag (s(t0))A βs diag (s(t0))A
0 0

)

,

and

V =

(

−(ǫ+ ra)I − diag (qa)) 0

ǫI −(rs + diag (qs))I

)

.

Note that F is nonnegative and V is Metzler and Hurwitz.
Using the definition of R0 in [12, Definition 1] we have

R0 = ρ(FV −1) = ρ(−FV −1) ≤ 1. (30)

Utilizing the early results of Thm. 3, (30) is equivalent with

λmax(F + V ) ≤ 0,

(i.e., F + V is Hurwitz). Hence, we have

λmax(M(t0)) = λmax(F + V ) ≤ 0.

Therefore, the set λmax(M(t0)) ≤ 0 is equivalent with the set
R0 ≤ 1.



APPENDIX C

We argue that
∥

∥

∥

vmax◦umax

vT
max

umax

∥

∥

∥
is bounded for any choice of

M(t0, q). Without loss of generality, we may assume the left
and right eigenvectors are normalized to have unit norm. In
that case, the norm of the numerator is automatically bounded.

Applying Lemma 1 to M(t0, q) and M(t0, q)
T , we have

that umax and vmax are positive as are the respective dominant
eigenvectors. Hence, the dot product of the corresponding
Perron-Frobenius left and right eigenvectors is always positive.
This also implies that the denominator is bounded away from
zero, for otherwise by compactness we could find a matrix
M such that vTmaxumax = 0, contradicting positivity of these
vectors. Therefore, ‖∇g1(q)‖ is bounded.

APPENDIX D
PROOF OF THEOREM 6

It is obvious that the gradient of f(q) is Lipschitz as long
as every qi(0) is bounded away from 1. We thus need to
argue that the primal-dual dynamics keep all qi(0) uniformly
bounded away from one.

We start by expressing the primal dynamics as given
by (17a):

q̇(t) = −∇f(q(t))−
4n+1
∑

i=1

[ρgi(q(t))+λi(t)]+∇gi(q(t)). (31)

Here, λ(t) ∈ R
(4n+1)
≥0 is a vector that remains in a compact

region of space for all t ≥ 0 by Proposition 3. Therefore,
using (5), we can state that the second part of (31) is bounded.

Note that as qi → 1, we have |∇if(q(0))| approaches
∞, and q̇i < 0. This immediately implies there is some
q′ < 1 such that the region [0, q′]n remains invariant under
the differential equation (31). Remaining within this region
implies the Lipschitz continuity of ∇f(q).

APPENDIX E
PROOF OF PROPOSITION 4

Suppose q∗ is a local minimum of (15). Therefore, q∗i 6= 1
for all i ∈ {1, 2, . . . , 2n}. This implies the active set is

I = {j : gj(q
∗) = 0, j ∈ J} ,

where J = {1, 2, . . . , 2n+ 1}.
First, assume I 6= J . From the definition provided for g1,

∇g1 = vmax◦umax

vT
max

umax

is an element-wise positive vector by the
same analysis provided in Appendix D. It is therefore evident
that any 2n vectors of gj , for all j ∈ J , would have linearly
independent gradients at any point q∗.

Now, consider I = J . This implies q∗ = 0. However,
for our model of the outbreak in (15), setting all quarantine
rates equal to zero implies having no interventions. Hence, the
constraint function g1 = λmax(M(t0, q = 0)) + α would not
be active. Hence, I cannot include all j ∈ J , and this proves
the non-linearity of the active set at any local minimum q∗.
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