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Decision-support systems for environmental management of coastal areas must account for brine
and seawater dynamics. Physics-based models of these phenomena are computationally expensive,
which limits their usefulness for decision-making under uncertainty. Data-driven modeling tech-
niques, such as extended dynamic mode decomposition (xDMD), ameliorate these challenges. We
demonstrate that xDMD, equipped with a novel domain-decomposition component, effectively rep-
resents a validated, real-world, coupled nonlinear seawater inundation model. It serves as an efficient
surrogate of process-based simulations, capable of accurate reproduction and reconstruction of miss-
ing pressure and salinity data in the interpolation regime. It effectively predicts low-rank pressure
distributions (repeated dynamics) but struggles to forecast long-term salinity dynamics (cumulative
evolution). The addition of domain decomposition improves the robustness and accuracy of xDMD,
with the overlapping domain approach outperforming the non-overlapping one in the projection ac-
curacy. In our experiments, xDMD is 1700 times faster than the process-based model and requires
800 times less storage, while efficiently capturing pressure and salinity dynamics.
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1. INTRODUCTION

Rising sea levels and more frequent, intense storm surges pose serious challenges to fresh-
water resources management, infrastructure protection, and resilience of coastal communities
(Azevedo de Almeida and Mostafavi, 2021). Process-based models are critical to addressing
these issues as they provide robust predictive understanding of a coastal system by capturing
nonlinear interactions between hydrological, geological, and climatic processes. These models
form the basis for decision-support systems in coastal environmental management. Despite their
utility, such models are often constrained by high computational cost and significant data stor-
age requirements. To overcome these limitations, data-driven surrogates have emerged as an
effective alternative. Surrogates leverage the insights and outputs of process-based models while
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offering computational efficiency and reduced resource demands (Lucia et al., 2004).

Such surrogates are built using statistical, data-driven, and machine learning (ML) approaches
aimed at reducing the computational burden of solving coupled subsurface flow and transport
equations. Advanced ML models, such as support vector machines, random forests (RFs), artifi-
cial neural networks (ANNS5), and genetic algorithms (GAs), are able to handle high-dimensional
and nonlinear relationships in hydrological systems. These models have been applied to map
groundwater pollution vulnerability, predict contaminant transport, and design groundwater re-
mediation strategies (Zhou and Tartakovsky, 2021; Zhou et al., 2022). However, ML-based ap-
proaches often require substantial computational resources, large training datasets, and param-
eter tuning. RFs, ANNs, and GAs often regarded as black-box models, offering limited inter-
pretability of the underlying physical processes which poses a significant challenge in decision-
making contexts (Aria et al., 2021). These factors increase the complexity of the modeling pro-
cess and heightens the risk of overfitting and suboptimal performance.

In contrast, data-driven ROMs built, e.g., via dynamic mode decomposition (DMD) leverage
process-based models and are known for their ability to balance predictive accuracy and compu-
tational efficiency. DMD approximates complex, high-dimensional nonlinear dynamic systems
by reducing spatial dimension with an optimal low-dimensional linear operator. DMD is espe-
cially useful for identifying patterns and tracking changes over time in complex datasets, making
it applicable to various fields (Hess et al., 2023). Standard DMD is modified in various ways to
address challenges with predictive accuracy, robustness, and efficiency for different process-
based models. One such variant is extended DMD (xDMD); it improves the representation of
physical systems governed by both linear and non-linear PDEs with sources and sinks, for which
standard DMD fails (Lu and Tartakovsky, 2020). We investigate xXDMD’s ability to accurately
reproduce coupled flow and transport phenomena in coastal aquifers, including spatiotemporal
salinity and pressure distributions and total salt mass dynamics. Additionally, its performance in
interpolation and extrapolation, computational efficiency, and ability to capture and differenti-
ate dynamic activity—particularly in distinguishing slower and faster dynamic regions within a
coastal system—require further investigation.

We explore these questions and evaluates the feasibility of xXDMD, building on the previ-
ously validated process-based model for the Beaver Creek site in Washington (Yabusaki et al.,
2020), as a lightweight, efficient, and robust tool for managing coastal groundwater systems.
Additionally, we apply the domain decomposition technique, which enhances the robustness of
xDMD in projecting salinity in a system with different dynamics.

2. METHODOLOGY

2.1 Numerical Experiment

2.1.1 Governing Equation

For flood-type (vertical) seawater intrusion scenarios, the coupled PDE system involves solv-
ing Richards’ equation for flow and advection-dispersion equation for solute transport. General

Darcy’s flux, describing isothermal, single-phase, variable saturated flow (VSF) in porous me-
dia with a saturation-based formulation along with Richards’ equation, employed for solving
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time-dependent water table profiles in the saturation/water content form (Bedient et al., 2013),
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This is coupled with the transport equation, where solute mass conservation in a variably satu-
rated medium is governed by the advection-dispersion equation,
dc
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The system parameters and system states in these equations are defined in Table 1.

TABLE 1: System parameters and system states in the governing equations.

Symbol Quantity Units
q Darcy’s flux L/T
k Intrinsic permeability L?
k-(s) Relative permeability -
s Aqueous phase saturation L33
v Dynamic viscosity of water M/(LT)
P Pore-water pressure M/LT?
P Water density M/L3
g Gravity acceleration L/T?
z Elevation head (positive downward) L
1 Molar water density kmol/L3
[0) Medium porosity -
Quw Source/sink term kmol/L3T
c Solute concentration mol/M
D Diffusion/dispersion tensor LY/T
Q. Source/sink term kmol/L3T
() Porosity -
Sy Residual saturation -
104 Inverse of air-entry value L!
m Pore-shape parameter -

In numerical models, the coupled flow and transport equations are discretized and solved
simultaneously. This concurrent solution approach, crucial for flooding scenarios like seawa-
ter intrusion, enhances efficiency by capturing the interdependence of these processes. We used
PFLOTRAN, an open-source, massively parallel subsurface flow and reactive transport simula-
tor designed for high-performance computing environments (PFLOTRAN Development Team,
2024). It employs a fully implicit backward Euler approach for time integration, combined with a
Newton-Krylov method for solving the nonlinear equations governing flow and transport. Finite-
volume spatial discretization is used to compute pressure and concentration distributions in each
cell throughout the simulation period.
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2.1.2 Numerical Model

The accuracy of data-driven surrogates like DMD depends on data quality and quantity. To gen-
erate a high-quality data set, it is imperative to use a physics-based model that has been vali-
dated and calibrated to the available site/field data and existing site conditions. We utilize a pre-
viously published, validated, and history-matched model developed for floodplain salinization
near Beaver Creek, WA (Yabusaki et al., 2020). The simulation was performed using PFLO-
TRAN to model 2D cross-sectional flow and salinity transport within the existing floodplain,
which has been inundated by tidal river influences for four years. Model goodness-of-fit was
evaluated using a variety of common evaluation statistics, group statistics, and graphical evalu-
ation techniques. The floodplain model successfully captured many characteristics of observed
floodplain well water levels and salinities across the floodplain (Yabusaki et al., 2020), thereby

validating its robustness and accuracy.
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FIG. 1: Two-dimensional (x, z) simulation domain representing a coastal floodplain (Yabusaki et al.,
2020). Top: The vertical bars indicate locations of the wells collecting measurements of water pressure
and salinity. Bottom: The simulation domain is discretized with numerical cells, which are subsequently

subdivided into classes during a domain decomposition.

The floodplain’s (x, z) transect is 84 m by 4 m, and hosts three observational wells (Fig. 1).
The stream serves as the sole source of salinity in the floodplain. Salinity enters the domain
laterally through the surface water-groundwater interface and vertically via infiltration through
the ground surface during inundation events (Fig. 1). The stream, located adjacent to the flood-
plain, is tidally influenced and provides a time-dependent boundary condition that drives the
dynamics of flow and transport in the domain. Observed salinity in the stream was specified as a
concentration accompanying water entering the floodplain, either through lateral flow across the
floodplain-stream interface or infiltration through the ground surface during inundation events.

Field measurements were obtained from these wells and from the creek (water level and
salinity) over the course of one year. The entire model domain was represented by a single, ho-
mogeneous silty clay soil material following the methodology of Yabusaki et al. (2020), which
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adopted a homogeneous domain to simplify the representation of floodplain dynamics while
focusing on the interplay of variably saturated flow and salinity transport with time-dependent
boundary conditions. The material properties were guided by observed soil texture (Carsel and
Parrish, 1988), and the van Genuchten parameters along with the Mualem relative permeabil-
ity function were used to characterize the soil’s hydraulic properties. The dependence of water
density and viscosity on saltwater content and temperature was modeled with the methodology
of Yabusaki et al. (2020), which found the salinity-density effects on simulations to be negli-
gible. This assumption was validated by testing the equations of state formulations (Batzle and
Wang, 1992) against a scenario with constant salinity, and the numerical outputs showed neg-
ligible differences. This negligible impact of salinity-density coupling in the modeled system
was further confirmed through discussions with the original authors. Material properties such as
permeability, porosity, and van Genuchten water retention function parameters are collated in
Table 2.

TABLE 2: Parameter values for the floodplain simulation.

Parameter Value Units
k 4.86-10713 m?
D 1.0-107° m?/s
) 0.45 —
Sy 0.15 —
o 2.0-1074 1/Pa
m 0.45 —
N, x N, 28 x40 —
At 0.25 hr

20 yr

The PFLOTRAN infiltration boundary condition was used on the top surface of the model,
allowing pressure-driven infiltration when the ground surface is inundated and exfiltration when
the water pressure in surface cells exceeds atmospheric pressure. Along the upland boundary,
Dirichlet pressure boundary conditions were imposed to simulate hillslope groundwater con-
tributions. On the stream boundary, tidally driven water level variations were specified, based
on observed stage data collected over one year at the site. At the bottom of the model, no-
flow boundary conditions were applied, as specified in the original numerical model description
(Yabusaki et al., 2020). Initial condition for the flow modeling in the floodplain was established
by cycling one year of water level boundary conditions in the hillslope groundwater and tidally-
driven stream (30 minute resolution) to a repeating dynamic equilibrium in the floodplain. This
hydrologic boundary condition dataset was repeated for two model years to spin up the subsur-
face flow model to a dynamic steady state of a repeating annual cycle of water levels, porewater
saturation, and total water mass in the model domain. After spinning up the model to an initial
flow condition, salinity transport was coupled to the flow simulation.

For the transport, the salt concentration in the floodplain was set to 0, reflecting a freshwater
system prior to exposure with tidal river water. At the upland boundary, a freshwater concentra-
tion is prescribed, ¢(x,t) = 0. A time-dependent Dirichlet boundary condition, ¢(x,t) = ¢(¢),
is applied at the top boundary, where ¢,(t) represents a prescribed periodic function that varies
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with time, reflecting cyclic behavior over the simulation period to reflect the salinity in the in-
undated stream. Boundary conditions of this system are illustrated in Figure 1. The Richards
equation governing variably saturated flow was solved using a Newton’s nonlinear solver with
specific parameters, including an infinity norm tolerance of 1 Pa, a maximum of 20 iterations,
and a time step of 15 minutes. Subsurface saline transport was simulated using a global implicit
scheme. Simulated floodplain inflows and outflows were continuously tracked to examine the
water mass balance in the floodplain. The simulation was carried out on Stanford University’s
Sherlock High Performance Cluster, allocating 16 CPU cores for a runtime of 14 hours for 50
years of simulation.

2.1.3 Dynamic Mode Decomposition (DMD)

The initial step of DMD organizes data (pressure and salinity) extracted from the numerical
model. For the 2D computational domain discretized with an N, by /N, mesh, and for M time
steps, these data are arranged into long column 1D vectors,

[ c(ar, 21, t)
C(l' 1522, tk‘)

Il
S

©))

cp = c(z1, 2N, s te)
c(x2, 21, tg)

L C(me y N2> tk) J

The vectors ¢ = c(tg) € RY, where N = N, - N, is the total number of elements in the

numerical mesh, are stacked together to form two sets of data matrices in R™ * (M =1): the original
snapshots C and the shifted-in-time snapshots C’,
C= Ci C ... Cp—q and CIZ C, C3 ... Cyp . (3)

The DMD algorithm finds a linear operator matrix A € RV that minimizes the Frobenius
norm (Kutz et al., 2016),

N M
IC' = AC|lr = | > IC; — (AC);P,
i=1 j=1

which quantifies the overall discrepancy between the actual system dynamics (represented by
C’) and the dynamics predicted by the operator A. The algorithm advances the system by one
time step as

ckr1 =Acp or C' =AC, k=1,...,M—1. 4)

For DMD, A is computed as

A =C'Ct = A =C'VEU*, (5)
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where t represents the Moore-Penrose pseudo-inverse. The pseudo-inverse C' is computed as
ct=ve-'u~

The matrices U € RY*" and V* € R"™(M =1 are orthonormal; and 3 € R"*" is a diagonal
matrix containing the singular values o;, derived from the singular value decomposition (SVD)
of C for a chosen rank truncation r (see Algorithm 1). The singular values in 3 quantify the
energy or importance of each mode and are essential for reducing the rank of the data. Only the
top r singular values, corresponding to the most dominant modes, are retained during truncation
to balance computational efficiency with model accuracy. The reduced rank approximations U,
3, and V correspond to these top 7 singular values. The pseudo-inverse is estimated using SVD
of a given (rectangular) matrix and approximated using a reduced rank approximation, where
rank truncation, 7, is the rank of the matrix (i.e., matrix C) unless otherwise specified. Once the
mapping matrix A is constructed, future state solutions are constructed via Eq. (4) (Step 5 of
Algorithm 1).

Algorithm 1: Dynamic Mode Decomposition (DMD)

Step 1: Compute SVD of C
U,3, V* «+ svd(C)
Step 2: Truncate to rank 7 or tolerance &
U—UGL:r), 2«21 :r1:7), Vi V*(1:r):)
Step 3: Estimate the pseudo-inverse CT
Cl« vE-'U~
Step 4: Compute the mapping matrix A
A+ C'Ct
Step 5: Reconstruct snapshots
Cii1 < Ac;,

2.1.4 Extended Dynamic Mode Decomposition (XDMD)

Extended DMD (xDMD) combines approaches from generalized and residual DMDs. The gen-
eralized DMD (gDMD) introduces enhancements to the time advancement process and incorpo-
rates a learning bias term, represented by the vector b, to address inhomogeneity in both PDEs
and boundary conditions. The gDMD formulation is found as

Cit1 = Agck + b, (6)
where A, € RV*N and b € RY are estimated after extending matrix C to a matrix C €

RWV+DX(M=1) by adding an extra row vector 1 € RM ! at the end of the matrix, such that

C= m [A,,b] = C'C. (7)

By subtracting the identity matrix from the original matrix A, an approximation to an effective
increment, commonly referred to as the residual increment in the machine learning community,
is obtained.
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Algorithm 2: Extended Dynamic Mode Decomposition (xDMD)
Step 1: Extend C to C

~ C
e-[1]
Step 2: Compute SVD of C
U,3, V* «+ svd(C)
Step 3: Truncate to rank r or tolerance &
U« UGL:r), 21 1:7), Vi VH(1:7,2)
Step 4: Estimate the pseudo-inverse Cf
Cl« vE-'U~
Step 5: Compute the mapping matrix A, and the bias vector b
[A,,b] + (C'—C)Ct
Step 6: Reconstruct snapshots
Cr+1 < ¢ +Azc,+b

The residual DMD (rDMD) involves the computation of the remainder matrix A, € RV*N
from the decomposition A = A, + I, where I € RV*¥ is the identity matrix. The derivation
of A, is obtained from

Cr+1 = Ck + Ascy, (3)
so that
A, =(C' - C)C. ©)
Algorithm 2 implements xDMD by combining gDMD and rDMD such that the time advance is
Crt1 = €k + Agcy + b, (10)
and A, and b are computed as
[A,,b] = (C' - C)C'. (11)

The four DMD variants are summarized in Table 3. We utilize xDMD due to its demonstrated
superior performance in previous studies (Libero et al., 2024; Lu and Tartakovsky, 2021).

TABLE 3: Summary of DMD models

Models Modification Mapping Matrix Reconstruction
DMD - A=cC'ct cri1 = Acy,
rDMD A, =A-1 A, =(C'-C)Ct Crr1 = Arcp +c
gDMD  C=I[C,1]T [A,,b] = C'CT Cri1 = Aycr+b

xDMD  rDMD & gDMD  [A,,b] = (C' — C)C'  cp1 = Aycp +cp+b

The xDMD surrogate represents system dynamics using a linear state-space equation with
constant matrix A and bias vector b. This formulation assumes that the dominant spatiotemporal
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modes of the system evolve approximately linearly over the chosen training window. For highly
nonlinear systems with rapid transitions or strong spatial heterogeneities, the constant nature of
A and b can introduce limitations. Furthermore, unlike Kalman filtering, which iteratively up-
dates state estimates using time-variable gains based on observed data, xDMD is an “offline”
method that relies on a fixed framework derived from past states. This approach provides com-
putational efficiency and interpretability but lacks the flexibility of methods like the Kalman
filter that dynamically condition on real-time data. This limits the ability of xDMD approaches
to reflect possible changes in flow or solute boundary conditions that include hydrometeorogical
conditions at the soil-air interface and flooding scenarios. Nevertheless, there are adaptations of
DMD that update DMD “on the fly” as new data is generated like online DMD (Zhang et al.,
2019) and streaming DMD (Hemati et al., 2014) approaches. However, such methods are outside
the scope of this study.

The DMD and xDMD frameworks yield parameter-free surrogate models designed for fast
forward predictions under predefined conditions. While effective for stable dynamics, they do
not explicitly account for evolving boundary conditions, such as variable hydrometeorological
forcing or changes in flooding magnitude and frequency. Addressing such dynamic scenarios
is outside the scope of this work. Future research will explore integrating DMD with paramet-
ric model order reduction techniques, such as DRIPS (Lu and Tartakovsky, 2023), to handle
varying boundary conditions and external forcing. Such hybrid approaches could enable the sur-
rogate model to interpolate across parameter spaces and dynamically adjust to new conditions,
broadening its applicability for planning and management scenarios.

2.1.5 Accuracy Metric

We use the relative error,
HCk _Ck-,xDMDH2>, (12)

€ =1
XPMP g( loxll2

to measure the accuracy of our xDMD surrogate in capturing pressure and salinity distributions.
Here, ¢, xpmp represents the estimated states from the xDMD surrogate, and ¢, corresponds to
the true state obtained from PFLOTRAN data. This quantification of relative error is crucial for
assessing the accuracy of xDMD compared to the ground truth data from PFLOTRAN.

Three tests are conducted: representation, interpolation, and extrapolation. Representation
shows the the xDMD-surrogate’s ability to capture the dynamics and represent numerical output
for salinity distribution across the entire 50-year simulation period. In the interpolation test,
the xDMD surrogate is trained on weekly salinity snapshot data and tasked with reconstructing
daily snapshots within the training domain by shifting the initial snapshot. In the extrapolation
test, xDMD-surrogate is trained on eight-year salinity output and extrapolated for forty-two-year
period for both pressure and salinity distributions.

2.2 Domain Decomposition

Domain decomposition is a family of methods used in numerical simulations and parallel com-
puting to enhance the efficiency and convergence of numerical solvers of discretized partial
differential equations (PDEs). It has also been used in supervised, unsupervised, and scientific
machine learning algorithms to tackle computationally expensive problems, improve condition-
ing, enhance generalization, and accelerate performance (Klawonn et al., 2024). In the context of
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DMD-based surrogates, domain decomposition improves robustness and efficiency. By partition-
ing the simulation domain into regions with distinct dynamics, domain decomposition reduces
the complexity of surrogate modeling tasks, enabling DMD surrogates to focus on capturing
dominant modes and coherent structures within each region. Drawing on advancements in mul-
tiscale modeling and scalable neural network frameworks (Moseley et al., 2023), this approach
enhances predictive accuracy and computational efficiency. It also strengthens the robustness
of DMD surrogates for long-term extrapolations, where variations in system behavior are more
pronounced, offering a promising pathway for addressing complex, time-dependent systems.

x10%(Iraining
| region

no

Salt mass [mol]

Extrapolation
region

) —all cells --cells below threshold
T - cells above threshold --upland (bc) cells
0 20 30 40

non-overlapping subdomains

Time, ¢ [day]

« cells below threshold
s cells above threshold
« upland (bc) cells

[T

Elevation, z [m]

« cells below threshold » cells above threshold
+ overlapping cells « upland (bc) cells
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FIG. 2: Salinity dynamics predicted by the process-based simulations in PFLOTRAN. It exhibits two
distinct behaviors when computed for the cells with salinity below and above threshold of 1 ppt (top).
These cells form overlapping and non-overlapping subdomains (bottom) in alternative implementations of

domain decomposition.
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Figure 1 represents the simulation domain with all active cells from the PFLOTRAN sim-
ulations, hereafter referred to as “All Cells”. The Upland Boundary cells are enforced as non-
contaminated freshwater values (zero-salinity). The cells close to the top boundary exhibit dy-
namics distinct from other cells due to differential salt accumulation rates (Fig. 2). This variation
motivates the use of domain decomposition as a strategy to segment the domain into regions
with distinct dynamics to improve surrogate accuracy and reduce errors caused by extrapolation
across vastly different behaviors. Active cells are split into three non-overlapping regions: “Be-
low Threshold”, “Above Threshold”, and “Inactive Cells”. These regions are defined based on
the results of the initial simulation phase to identify areas of differing salinity dynamics. This
partitioning is utilized solely for computational efficiency in the simulation setup and does not
limit the applicability of the DMD procedure, which analyzes the global system behavior across
the entire domain, independent of this decomposition. The DMD methodology remains appli-
cable to both simulated and field data as it synthesizes a holistic representation of the system
dynamics. The threshold is defined as 3.5 PSU (Practical Salinity Units), a measure of seawa-
ter salinity based on conductivity that is approximately equivalent to 1 part per thousand (ppt)
(UNESCO, 1981). This value was determined based on the floodplain geometry and the salin-
ity accumulation/dynamics observed within the first eight years of the simulation (Fig. 2). The
threshold is determined empirically to ensure clear separation of dynamics, particularly in ar-
eas where salt accumulation dominates. This segmentation ensures that the surrogate can focus
on coherent structures in each region, improving accuracy in the extrapolation region. The ini-
tial eight years of simulation took 0.5 hours of computational time, while the simulation of the
remaining 42 years took 13.5 hours.

To demonstrate the robustness of the domain decomposition method and its insensitivity to
the threshold choice, overlapping domain experiment was conducted. In the overlapping domain
experiment, the threshold for cell separation is lowered for the Cells Above Threshold so that
10% of these cells overlap with the Cells Below Threshold in Fig. 2). The resulting concentra-
tions in these overlapping cells are averaged to construct the salinity distributions. Our results
reported below demonstrate that this strategy removes nonphysical negative salinity values gen-
erated by the xDMD surrogate in the extrapolation regime.

Figure 3 illustrates the proposed domain decomposition scheme for the xDMD surrogate.
The numerical model output is partitioned into three distinct categories, as previously outlined.
Notably, xDMD surrogates are separately trained for cells above and below the threshold. Fol-
lowing training, these surrogates undergo both reconstruction and extrapolation processes. Given
that upland boundary cells maintain constant freshwater concentrations throughout the simula-
tion, their values remain unaltered during extrapolation. Subsequently, the data from these sur-
rogates is amalgamated into a unified output, which is then juxtaposed with the numerical model
output for comparative analysis.

2.3 Data Sampling and Pre-Processing

From the PFLOTRAN simulation pressure and salinity distribution outputs were sampled on
a daily basis (At = 1 day) over a fifty-years of simulation period (I'" = 50 years). For the
salinity in the numerical model output below 102 Practical Salinity Unit (PSU), were adjusted
by 1072 PSU, since values below 102 PSU are indicative of freshwater (Yabusaki et al., 2020).
This adjustment is necessary because freshwater in the PELOTRAN simulations is defined and
handled as having salinity near 10~!° PSU. For DMD purposes, values below 1 x 10~ PSU
are effectively set to 0.01 PSU to avoid numerical instabilities and ensure consistency in the
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FIG. 3: Domain decomposition for xDMD. Numerical model output is segregated into three categories: up-
land boundary cells (circles), cells with below-threshold salinity (squares), and cells with above-threshold
salinity (triangles).

reduced-order modeling process. 0.01 PSU is equivalent to 0.01 ppt or 10 ppm, classifying it as
freshwater. This threshold simplifies the handling of very small salinity values while maintain-
ing meaningful distinctions for the analysis. Furthermore, the pressure values (in kPa) obtained
from the PELOTRAN simulation were normalized to the interval [0, 1]. In the machine learning
community, this process is commonly referred to as normalization, and it ensures that all fea-
tures contribute equally to the model. In addition, these steps were taken to enhance numerical
stability and mitigate the propagation of floating-point errors associated with small values of
salinity and large values of pressure during the training of the xXDMD surrogate.

3. RESULTS AND DISCUSSION
3.1 Representation

Representation refers to the xDMD-surrogate’s ability to accurately capture and reproduce the
dynamics of the system, matching the numerical output for salinity distribution across the entire
50-year simulation period. The figures below provide a comprehensive overview of the represen-
tation experiment (Fig. 4). The xXDMD surrogate captures both salinity distribution and total salt
mass dynamics from the physics-based numerical model with remarkable accuracy. Employing
a singular value tolerance of 1073 resulted in a truncation rank of 333, effectively discarding
singular values smaller than 1073 to simplify the model while retaining crucial features. Re-
markably, only the mapping matrix A, residual vector b, and the initial snapshot vector c,
which serves as the starting point for reconstructing the system dynamics, need to be stored for
the xDMD surrogate model. This streamlined approach necessitates a mere 25 times less storage
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space compared to the full physics-based PELOTRAN model. Consequently, the xDMD surro-
gate emerges as a pivotal tool for significantly reducing storage costs associated with physics-
based models, particularly during uncertainty quantification and parameter estimation in both
forward and inverse modeling representations.
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FIG. 4: DMD predictions of total salt mass (left) and relative error in prediction of salinity distribution,
expmp in (12), (right) in the representation regime.

3.2 Interpolation

The xXDMD surrogate was trained on a set of weekly snapshot data (e.g., 1,8, 15, ..., 18249). By
shifting the initial snapshot by one or several days, sequences such as 3,10, 17, ..., 18245 were
generated, enabling the reconstruction of all missing snapshots within the training region. Fig-
ure 5 exhibits the xDMD surrogate’s performance on shifting the initial snapshot from the first
to the third or fourth day, representing time points furthest from the training regime. Employ-
ing a singular value tolerance of 1073 yielded a truncation rank of 298. The xXDMD surrogate
achieved comprehensive and highly accurate reconstruction of all missing snapshots within the
designated training region. Furthermore, interpolation experiments demonstrate that the xDMD
surrogate can significantly reduce storage requirements for numerical model output by over 2000
times. These results underscore the xXDMD surrogate’s robustness in navigating temporal gaps,
thus indicating its potential for precise data interpolation across varying timeframes.
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FIG. 5: Interpolation error of xXDMD predictions of salinity distribution, expmp in (12), with the initial
snapshot available at day 3 (left) or day 4 (right).
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3.3 Extrapolation
3.3.1 Pressure

The matrix of fluid pressure has a rank of 239, whereas the matrix of salinity exhibits a con-
siderably higher rank of 664. This discrepancy arises because salinity accumulates over time,
whereas pressure remains non-cumulative and displays periodic behavior. The rapid decay of
singular values (Fig. 6) underscores the low-rank nature of the pressure matrix. By applying
a singular value tolerance of 1073, we achieve a truncation rank of 97. This reduced-rank ap-
proximation via the xXDMD surrogate demonstrates its ability to capture the pressure dynamics,
enabling accurate reconstruction of the pressure solution in previously unseen extrapolation re-
gions with minimal error (Fig. 6). Such precise extrapolation is crucial for reliable modeling
and prediction in complex systems such as seawater intrusion where pressure dynamics plays a
pivotal role.

10° 0

-0.5
10" Extrapolation

o =107 tolerance

lar value, o;
=

ingu

B 10
S10° 1

Relative error, expmp
\ \

10°1% -3
0 200 400 600 800 0 10 20 30 40 50

Index, i Time, ¢ [years]

FIG. 6: xDMD prediction of pressure distribution in the extrapolation regime. Rapid decay of singular
values o; (left) enables one to approximate the fluid-pressure matrix of rank 239 with its counterpart of
rank 97, if the singular value tolerance is set to 1073, Relative error, expmp in (12), remains stable in the
extrapolation regime over a long time horizon (right).

3.3.2 Salinity (without Domain Decomposition)

The extrapolation tests for salinity distributions across all cells, without employing domain de-
composition, reveal that the salinity distribution snapshots exhibit relatively small errors in the
extrapolated region, albeit the error increases with time (Fig. 7). However, a concerning increase
in the number of cells with negative salinity is observed in the extrapolation regime (Fig. 7).
This issue highlights a fundamental challenge: long-term extrapolation is inherently difficult to
capture with DMD surrogates. The observed surge in negative salinity cells leads to a significant
disruption in the salt mass dynamics within the system. Several factors contribute to this phe-
nomenon. First, the presence of zero-salinity cells, enforced by the Upland Boundary Condition,
distorts the overall distribution. Second, the dynamics differ markedly between cells that are
above and below certain thresholds, adding complexity to the modeling process. Third, the time-
dependent Top Boundary Condition introduces seasonal variations that further complicate the
salt dynamics. Collectively, these factors present substantial challenges for the DMD-surrogate
in accurately capturing and predicting the underlying dynamics of salinity transport.

These observations demonstrate that in certain extrapolation regimes, DMD surrogates may
produce nonphysical results, such as negative salinity. Importantly, rather than a discouragement,
this finding represents a critical insight into the limitations of DMD surrogates and the need for
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further refinement. This study is among the first to showcase these limitations and to propose
domain decomposition as an innovative solution.
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FIG. 7: xDMD predictions of salinity distribution in the extrapolation regime. Relative error, expmp in (12),
increases rapidly with time (left), as does the fraction of the elements at which xDMD predicts unphysical
negative salinity (right).
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FIG. 8: Non-overlapping domain decomposition strategy for xDMD predictions of salinity distribution in
the extrapolation regime. Left column: Salt accumulation, predicted with the process-based model and
its xXDMD surrogate, in the subdomains composed of the “below threshold” (top) and “above threshold”
(bottom) cells. Right column: In both subdomains, relative error, expmp in (12), is an order of magnitude
smaller than that of the xDMD surrogate without domain decomposition (Fig. 7).

3.3.3 Salinity (Non-Overlapping Domain Decomposition)

By introducing domain decomposition, we mitigate the occurrence of unphysical salinity values
in the extrapolation region. In the non-overlapping domains, negative salinity is no longer ob-
served in both below and above threshold cells. Additionally, the snapshot-to-snapshot salinity
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distribution and the overall salt dynamics within the domain are accurately captured (Fig. 8).
The extrapolation error for xDMD in the above-threshold cells is more stable than in the below-
threshold cells, demonstrating that xDMD performs better in regions with more dynamics. This
improvement underscores the effectiveness of domain decomposition in enhancing the accuracy
and reliability of salinity extrapolation, providing a robust solution to the challenges previously
encountered in the single domain approach.

3.3.4 Salinity (Overlapping Domain Decomposition)

In the overlapping-domains approach, we lowered the threshold for the above-threshold cells,
while keeping the cells below threshold unchanged. Figure 9 shows that this adjustment—
comparing 300 cells in the non-overlapping domain to 336 cells in the overlapping domain—has
only a minor effect on the system. Both the salinity distribution and salt accumulation are ac-
curately maintained despite the threshold change. This indicates that the overlapping domains
method is robust, preserving the integrity of salinity dynamics and ensuring reliable extrapola-
tion results even with slight variations in threshold parameters.
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FIG. 9: Overlapping domain decomposition strategy for XDMD predictions of salinity distribution in the
extrapolation regime, for cells above threshold. Left: Salt accumulation in the above-threshold subdomain,
predicted with the process-based model and its xDMD surrogate. Right: Relative error, expmp in (12), is
an order of magnitude smaller than that of the xDMD surrogate without domain decomposition (Fig. 7),
and is similar to that of the xXDMD surrogate with non-overlapping domain decomposition (Fig. 8).

The computational benefits of xXDMD surrogates for both overlapping and non-overlapping
domains are highlighted in Table 4. The xXDMD surrogate offers a significant computational
speedup, being 1780 times faster in simulation run time compared to the physics-based (PFLO-
TRAN) model. Additionally, it provides an element storage efficiency advantage of 891 times.
The Frobenius norm, which measures the approximation error, is slightly lower for the overlap-
ping domain compared to the non-overlapping domain, indicating better accuracy in the over-
lapping configuration which complements findings in the cumulative sum plot for domain de-
composition.

3.4 xDMD Surrogate Eigenvalue Analysis

Both DMD and xDMD provide interpretability by associating eigenvalues with the dynamics of
the system, offering insights into the temporal evolution of dominant modes. Eigenvalue analysis
assesses the stability and dynamic behavior of an xXDMD surrogate, particularly in differentiating
between regions with varying levels of activity.
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TABLE 4: Comparison of two domain-decomposition strategies for the construction of xXDMD
surrogates of the physics-based numerical model (NM).

Model

Run time [hr]

Storage cost [elm]

|Cxm — Cxomp ||F

Physics-based model
xDMD non-overlapping
xDMD overlapping

13.5
7.58 1073
8.47-1073

2.24 - 10°
2.49 - 10°
2.51-10°

1.76 - 103
1.65- 103

In comparison to the standard DMD surrogate, unit circle and eigenvalues of xXDMD surro-
gate are shifted left (Fig. 10). This is due the fact that extended DMD matrix, A, is shifted by
the decomposition A, = A — T : det(Ax — A x I) =det(A — (A+1) x I) = 0 (Section 2.1.4).
Eigenvalues clustered near the origin represent slow dynamics with negligible activity, while
eigenvalues spread farther from the origin indicate faster, more dynamic behavior. In the xXDMD
surrogate, eigenvalues of cells below the threshold are tightly clustered, indicating regions with
slower dynamics and less temporal variability. Conversely, eigenvalues of cells above the thresh-
old are more spread out, representing regions with higher activity and greater dynamic variabil-
ity. Figure 10 illustrates these differences in the extrapolation regime by comparing the overall
eigenvalue spectrum of the xXDMD surrogate to the eigenvalue spectra for cells below and above
the threshold. This analysis highlights the ability of xXDMD to capture and differentiate dynamic
regions within the domain, providing interpretability into how different regions contribute to the
system’s overall behavior.
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FIG. 10: Eigenvalue analysis of the xDMD surrogate in the extrapolation regime.

4. CONCLUSION

We demonstrated xXDMD to be a cheap, efficient, and robust surrogate of process-based models
of coastal groundwater systems, addressing the pressing challenges posed by rising sea levels and
intensified storm surges. By building on the validated PELOTRAN model for the Beaver Creek
site in Washington, we examined xXDMD’s ability to overcome the computational and operational
limitations of traditional process-based models. Our findings demonstrate that xDMD surrogates
can accurately reproduce salinity distributions and total salt mass dynamics.

We found xDMD to be robust in handling problems with repeated and low rank dynamics,
such as extrapolating pressure distribution across both temporal and spatial domains, with reli-
able accuracy. However, xDMD performed poorly with long-term salinity extrapolation where it
accumulates, yielding nonphysical results such as negative concentrations. To address this issue,
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we implemented domain decomposition, which successfully improved xDMD'’s accuracy, stabil-
ity and robustness. Given xDMD interpretability, we effectively differentiated slower and faster
dynamic regions through eigenvalue analysis. Our analysis revealed that the overlapping domain
approach outperforms the non-overlapping method, offering superior stability and a better fit for
learning salt accumulation in the floodplain.

In our experiments, xDMD significantly accelerated simulations (1780 times faster) and re-
duced storage requirements. The xDMD surrogate requires 800 times less storage for salinity
and pressure modeling and over 2000 times less storage when reconstructing missing snapshots,
making it highly efficient for long-term modeling, such as 42-year period. These features of
xDMD make them a scalable and efficient alternative for real-world scenarios.

Although xXDMD shows significant promise for modeling coastal groundwater systems, it
is not well-suited for handling highly non-linear or long-term dynamic systems. Future work
will focus on advancing domain decomposition techniques to incorporate dynamic boundary
conditions and enhance the stability and reliability of xDMD surrogates for effective coastal
groundwater management. Another direction is to explore surrogates that encompass a broader
parameter space, which will complement the current xDMD surrogate and enhance its applica-
bility for scenario development such as sea level rise and climate change.
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