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We explore the possibility to implement random walks in the manifold of Hartree-Fock-Bogoliubov wave functions.

The goal is to extend state-of-the-art quantum Monte Carlo approaches, in particular the constrained-path auxiliary-field

quantum Monte Carlo technique, to systems where finite pairing order parameters or complex pairing mechanisms,

e.g., Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing or triplet pairing, may be expected. Leveraging the flexibility

to define a vacuum state tailored to the physical problem, we discuss a method to use imaginary-time evolution of

Hartree-Fock-Bogoliubov states to compute ground state correlations, extending beyond situations spanned by current

formalisms. Illustrative examples are provided.

I. INTRODUCTION

Strongly correlated many-body systems underlie a wide va-

riety of exotic physical phenomena, including spin liquids,

high-temperature superconductivity, and other unconventional

pairing states, among other examples. These systems pose a

significant theoretical and computational challenge, due pri-

marily to the high-dimensional nature of the problem and the

lack of reliable approximative techniques. To gain a bet-

ter understanding of these systems and their emergent be-

havior therefore requires the continual development of ro-

bust, high-accuracy numerical tools and methodologies. One

cutting-edge method with proven capabilities in the treatment

of strongly correlated many-body systems is auxiliary-field

quantum Monte Carlo (AFQMC) [1]. The AFQMC technique

has been applied to a broad range of physical systems and

problems, from lattice models in the context of condensed

matter physics [2,3], to ab-initio quantum chemistry calcula-

tions [4,5,6], to fermionic cold atoms [7]. In some cases the

method yields numerically exact results, while in other cases

it provides an excellent balance between high accuracy and

the capability to reach large sizes for realistic systems [8].

The AFQMC algorithm carries out a random walk in the

manifold of independent-fermion wave functions, with the

walkers most commonly in the form of Slater determinants.

This formulation has provided accurate results for various

models [9, 10, 11], chemical systems [12], and real materials

[13,14]. However, for many systems, it is desirable to have

a more flexible form for the walkers in order to capture the

physics of the system more reliably and accurately. In the

context of systems supporting exotic pairing states, a natural

extension is to generalize from Slater determinants to Hartree-

Fock-Bogoliubov (HFB) wave functions, which provides a

larger manifold for the random walk. This generalization en-

ables the sampling of wave functions that contain information

about fermionic pairing, which is essential to achieving more

accurate results for systems where pairing is expected. Im-

portantly, the use of HFB wave functions allows the particle

number to fluctuate, which permits the direct computation of

pairing order parameters. This is a crucial advantage over sim-

ulations with fixed particle number that must instead rely on

correlation functions, which typically have small signals [3,

15], to detect orders.

While some work exists in this direction, each of the previ-

ously developed approaches has limitations that curtail its ap-

plicability. For example, the method devised in [16], that pro-

vided robust evidence of a Fulde-Ferrell-Larkin-Ovchinnikov

(FFLO) state in spin-polarized optical lattice systems [11],

is limited to the case of singlet pairing and U(1) symmetry,

which prevents the direct computation of order parameters.

On the other hand, pairing order parameters have been com-

puted directly, relying on a partial particle-hole transformation

[15], but such a transformation was specifically tailored to the

d-wave problem studied in [15]. The possibility of working

directly with HFB wave functions is explored in [17], but the

main focus and all the applications were on fully paired states.

In the work of Juillet et al. [18], spin-polarized systems are

considered within a similar formalism, still relying on HFB

wave functions. Their work focused however on the study

of d-wave pairing in cuprates through a partial particle-hole

transformation, and the results were primarily energy calcula-

tions within a projection to a state with fixed spin-polarization.

In this work we generalize the approaches pioneered in [17]

and [18]. Taking advantage of the freedom to define differ-

ent vacuum states, we design an algorithm to study imaginary

time dynamics in the manifold of HFB wave functions by ran-

dom walks based on rotations from a special vacuum tailored

to the hamiltonian of the system. We demonstrate that the

algorithm preserves polynomial scaling analogous to state-of-

the-art AFQMC while exploring a larger manifold. We pro-

vide the details of such an extension, test the methodology

to address possible numerical stabilization issues, and show a

comparison with exact diagonalization.

The paper is organized as follows. In Sec. II we briefly

outline some mathematical background. Then in Sec. III we

present the mathematical formalism for our approach includ-

ing all necessary theorems. Additional proofs are provided in

the Appendices. In Sec. IV we outline in concrete terms a
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numerically stable method to perform imaginary time evolu-

tion driven by quadratic hamiltonians in the manifold of HFB

wave functions. Then, in Sec. V we discuss the Monte Carlo

sampling required to treat correlated hamiltonians and show

a comparison with exact diagonalization. Finally, in Sec. VI,

we conclude and discuss potential applications.

II. THE MATHEMATICAL BACKGROUND

A. Notations and Conventions

We build our mathematical description of a collection

of fermions starting from a single-particle complex Hilbert

space, H , with dimension M. Throughout this work, we

will assume M <+∞, which can always be achieved through

suitable regularization techniques, for example focusing on

fermions moving on a finite lattice or a single-particle basis

set. We define an orthonormal basis {|αð}α=1,...,M ¢H and

construct the corresponding algebra of 2M creation and de-

struction operators {ĉ†
α , ĉα}α=1,...,M , satisfying the canonical

anticommutation relations. The many-body theory is formu-

lated in the fermionic Fock space:

F (H ) = H
(0)·H

(1)··· ··H
(N)··· ··H

(M) (1)

where H (0) is a one-dimensional space generated by a vac-

uum state |0ð, annihilated by all the destruction operators

ĉα |0ð= 0, while H (N) is the
(

M
N

)

-dimensional anti-symmetric

N-tensor product space, made of states with a well defined

number of particles, N.

B. The manifold of Hartree-Fock-Bogoliubov Wave
Functions

In this work we focus on the manifold of HFB wave func-

tions, a subset of the Fock space of the system, which we de-

note as MHFB. By definition, |ωð ∈MHFB if there exists a

unitary transformation, commonly referred to as a Bogoliubov

transformation, of the form:

(

γ̂† γ̂
)

=
(

ĉ† ĉ
)

(

U V ⋆

V U⋆

)

(2)

such that |ωð is the vacuum of the new family of operators,

that is, if γ̂α |ωð = 0. In (2), U and V are M×M complex

matrices, satisfying the following conditions that guarantee

that the transformation in (2) is unitary:

UU† +V ⋆V T = I, UV † +V ⋆UT = 0

U†U +V †V = I, U†V ⋆+V †U⋆ = 0
(3)

In the above, I is the M×M identity matrix.

A special example of an HFB wave function is the vacuum

|0ð itself, the state with zero fermions, corresponding to V =
0 and any choice of unitary matrix U . In addition, any N-

particle Slater determinant of the form |φð= β̂ †
N . . . β̂ †

1 |0ð, with

β̂ †
i = ∑α φi(α)ĉ†

α , belongs to MHFB, as can be seen easily by

defining the operators:

γ̂i =

{

β̂ †
i , i = 1, . . . ,N

β̂i, i = N +1, . . . ,M
(4)

where, for i = N + 1, . . . ,M, the operators β̂i = ∑α φ ⋆
i (α)ĉα

are destruction operators related to orbitals φi that are orthog-

onal to the occupied ones in |φð. Another very important sub-

set of MHFB is the set of fully paired HFB wave functions,

which can be written as:

|ωpairedð= C exp

(

∑
α<β

Zα,β ĉ†
α ĉ

†
β

)

|0ð (5)

where C is a normalization constant, while Z is an anti-

symmetric M×M matrix and |0ð is the vacuum state. Such

wave functions have non-zero components in H (N) if and

only if N is even, and describe collections of Cooper pairs,

generalizing the well-known BCS wave function. The relation

between the matrix Z in (5) and the matrices U,V correspond-

ing to |ωpairedð is Z =
(

VU−1
)⋆

. Note that, if det(U) = 0, then

the HFB wave function cannot be expressed in the form given

in (5). We find it useful to mention the important class of

particle-number projected wave functions, which is often re-

ferred to in quantum chemistry as anti-symmetrized geminal

power (AGP) [19,20]:

|ωAGPð= C
′( ∑

α<β

Zα,β ĉ†
α ĉ

†
β
)N/2 |0ð , (6)

Such wave functions can be obtained from HFB states by sim-

ply projecting them onto H (N).

III. FORMALISM FOR MEAN-FIELD AND CORRELATED
CALCULATIONS

The family of wave functions (5) does not include HFB

wave functions with unpaired fermions, which are important

to include in order to study spin-polarized systems. We ob-

serve that it is possible to directly generalize (5) by replacing

|0ðwith an arbitrary HFB wave function, say |ωvð, playing the

role of a “new vacuum” of the theory (hence the label “v”),

and corresponding to a particular Bogoliubov transformation

matrix:

(

γ̂† γ̂
)

=
(

ĉ† ĉ
)

(

Uv V ⋆
v

Vv U⋆
v

)

(7)

Practically, for example, we can always construct |ωvð by per-

forming an HFB calculation tailored to the physical problem

we are studying.

Our investigation will focus on the subset Sv ¢MHFB of

states that are non-orthogonal to our new vacuum:

Sv = {|ωð ∈MHFB : ïωv |ωð ̸= 0} (8)

Given any HFB wave function |ωð, related to an HFB trans-

formation defined by matrices U and V , we can check whether
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|ωð ∈Sv by using Onishi’s formula [20], which implies that

|ωð ∈ Sv if and only if det
(

U†
v U +V †

v V
)

̸= 0. Every wave

function |ωð ∈ Sv can then be expressed in the following

form, based on Thouless’ theorem [20] and generalizing (5):

|ωð= ïωv |ωð exp
(

Ẑ
)

|ωvð , (9)

where Ẑ = ∑α<β Zα,β γ̂†
α γ̂†

β
with the M×M complex matrix Z

defined as:

Z =
(

(

V T
v U +UT

v V
)(

U†
v U +V †

v V
)−1
)⋆

, (10)

which is anti-symmetric. The above expression provides a

method to construct |ωð by exciting quasiparticles with re-

spect to |ωvð. We observe that the matrices:

V=V T
v U +UT

v V, U=U†
v U +V †

v V (11)

build the transformation between the Bogoliubov operators

defining |ωvð and those defining |ωð, and thus play a role sim-

ilar to (U,V ) when the vacuum is |0ð (instead of |ωvð). For

this reason, they must also satisfy the conditions given in (3).

There are a few natural parametrizations of Sv: the Bogoli-

ubov matrices (U,V ), or the corresponding (U,V) satisfying

the constraints (3), and the anti-symmetic matrix Z in (9):

|ωð ∈Sv ¢MHFB←→ (U,V )←→ (U,V)←→ Z (12)

The ability to transform between these parametrizations is of

convenience in the framework we present below. In particular,

we observe that the choice Z = 0 corresponds to |ωvð itself,

suggesting an interpretation of |ωvð as the “origin” of a “coor-

dinate system”. This matrix Z turns out to be very helpful for

calculations, as it permits the straightforward computation of

overlaps and density matrices. The computation of overlaps

and density matrices is a key component of the method we

develop here. We discuss the details of these calculations in

the following sections.

A. Overlaps

Consider |ω0ð ∈Sv and |ω1ð ∈Sv. We can write:

|ωlð= ïωv |ωlðe
Ẑ(l)
|ωvð, Ẑ(l) = ∑

α<β

Z
(l)
α,β γ̂†

α γ̂†
β

Z(l) =
(

(

V T
v Ul +UT

v Vl

)(

U†
v Ul +V †

v Vl

)−1
)⋆

,

(13)

with l = 0 or 1. The following identity can be proved [21]:

ïω0 |ω1ð= ïω0 |ωvðïωv |ω1ðïωv |e
Ẑ(0)†

e
ˆ̃Z(1)
|ωvð

= ïω0 |ωvðïωv |ω1ð(−1)M(M+1)/2 p f

(

Z(1) −I

I −Z(0)⋆

)

(14)

To avoid computing the normalization factors contained in

(14), we instead consider the unnormalized states:

|φlð= eẐ(l)
|ωvð= exp

(

∑
α<β

Z
(l)
α,β γ̂†

α γ̂†
β

)

|ωvð (15)

The formula for the overlap is then:

ïφ0 |φ1ð= (−1)M(M+1)/2 p f

(

Z(1) −I

I −Z(0)⋆

)

(16)

Note that, by construction, ïωv|φlð= 1 for l = 0,1.

B. Density matrices

We now introduce the following definitions, relying on

the family of operators {γ̂k, γ̂
†
k }k=1,...,M related to the vacuum

|ωvð, i.e., γ̂k |ωvð= 0. We let:

ρk1k2

de f
=
ïφ0 |γ̂

†
k2

γ̂k1
|φ1ð

ïφ0 |φ1ð
, κk1k2

de f
=
ïφ0 |γ̂k2

γ̂k1
|φ1ð

ïφ0 |φ1ð

κ⋆
k1k2

de f
= −

ïφ0 |γ̂
†
k2

γ̂†
k1
|φ1ð

ïφ0 |φ1ð
, σ⋆

k1k2

de f
= −

ïφ0 |γ̂k2
γ̂†

k1
|φ1ð

ïφ0 |φ1ð
(17)

The following results have been proved in [21]:

ρk1k2
=−

(

Z(1)
(

I−Z(0)⋆Z(1)
)−1

Z(0)⋆

)

k1,k2

(18)

κk1k2
=

(

Z(1)
(

I−Z(0)⋆Z(1)
)−1

)

k1,k2

(19)

κ⋆
k1k2

=

(

(

I−Z(0)⋆Z(1)
)−1

Z(0)⋆

)

k1,k2

(20)

σ⋆
k1k2

=−
(

I−Z(0)⋆Z(1)
)−1

k1,k2

(21)

From the above density matrices, it is straightforward to trans-

form back to the original set of creation and destruction opera-

tors ĉ† and ĉ. For example, the matrix element of the one-body

density matrix becomes:

Gαβ =
ïφ0 |ĉ

†
β

ĉα |φ1ð

ïφ0 |φ1ð

= ∑
ls

(U⋆
v )β l (V

⋆
v )αs (−κ⋆

sl)+∑
ls

(U⋆
v )β l (Uv)αs ρsl

+∑
ls

(Vv)β l (V
⋆
v )αs (−σ⋆

sl)+∑
ls

(Vv)β l (Uv)αs κsl

(22)

For the pairing tensor we get:

ταβ =
ïφ0 |ĉβ ĉα |φ1ð

ïφ0 |φ1ð

= ∑
ls

(V ⋆
v )β l (V

⋆
v )αs (−κ⋆

sl)+∑
ls

(V ⋆
v )β l (Uv)αs ρsl

+∑
ls

(Uv)β l (V
⋆
v )αs (−σ⋆

sl)+∑
ls

(Uv)β l (Uv)αs κsl

(23)

Note that the above transformation formulas, which allow us

to move from the algebra of the new vacuum to the original

algebra of creation and destruction operators (say in the basis

of position and spin), depend only on the matrices Uv and Vv.

These matrices are known and stored at the very beginning

of the calculation, while the states |φlð enter only through the

density matrices.
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C. Exponential of quadratic operators in the manifold of
HFB wave functions

Another essential component of the approach we develop

in this work is the computation of exponentials of quadratic

operators. In this section we provide the details of the con-

struction of such operators for HFB wave functions.

Let us consider a non-normalized state in Sv:

|φð= eẐ |ωvð= exp

(

∑
α<β

Zα,β γ̂†
α γ̂†

β

)

|ωvð . (24)

We would like to study the map:

|φð ∈MHFB→ |φ
′ð

de f
= exp

(

Ô
)

|φð , (25)

where, following Ref. [17], we take Ô to be a general

“quadratic” operator of the form:

Ô =
M

∑
α,β=1

tαβ ĉ†
α ĉβ + ∑

α>β

∆αβ ĉ†
α ĉ

†
β
+ ∑

α>β

∆̃αβ ĉα ĉβ . (26)

The matrix elements in the M×M complex matrices satisfy

∆T = −∆ and ∆̃T = −∆̃ and, for hermitian operators, t = t†

and ∆̃ =−∆⋆.

We know that |φð is a vacuum of a family of operators:

β̂l |φð= 0,
(

β̂ † β̂
)

=
(

ĉ† ĉ
)

(

U V ⋆

V U⋆

)

(27)

or, equivalently:

(

β̂ † β̂
)

=
(

γ̂† γ̂
)

(

U V
⋆

V U
⋆

)

(28)

where the matrices U and V are defined in (11).

Now, if we construct a family of operators β̂ ′ such that:

β̂ ′l exp
(

Ô
)

= exp
(

Ô
)

β̂l (29)

then, by construction, the state |φ ′ð is the vacuum of this new

family of operators since:

β̂ ′l |φ
′ð= β̂ ′l exp

(

Ô
)

|φð= exp
(

Ô
)

β̂l |φð= 0 (30)

As shown in [17], the above considerations imply that the op-

erator exp
(

Ô
)

transforms the operators:

β̂l =
(

ĉ† ĉ
)

(

V ⋆
l

U⋆
l

)

=
(

γ̂† γ̂
)

(

V
⋆
l

U
⋆
l

)

, l = 1, . . . ,M (31)

into the new family of operators:

β̂ ′l =
(

ĉ† ĉ
)

exp

(

t ∆

∆̃ −tT

) (

V ⋆
l

U⋆
l

)

(32)

which shows that (25) maps MHFB into itself. In fact, it is

simple to show that, if Ô is hermitian, the application of the

exponential matrix conserves the conditions (2), thus imply-

ing that (32) is a fully legitimate Bogoliubov transformation.

The transformation (32), when “rotated” into the basis of the

new vacuum gives:

(

V
′⋆

U
′⋆

)

= eO

(

V
⋆

U
⋆

)

(33)

where we introduced the notation:

eO de f
=

(

U†
v V †

v

V T
v UT

v

)

exp

(

t ∆

∆̃ −tT

) (

Uv V ⋆
v

Vv U⋆
v

)

(34)

This allows us to write |φ ′ð explicitly as:

|φ ′ð= α eẐ′ |ωvð, Ẑ′ = ∑
α<β

Z′α,β γ̂†
α γ̂†

β
, Z′ =

(

V
′
U
′−1
)⋆

(35)

provided that the matrix Z′ is well-defined. Notice that, in

(35) we have a normalization constant α ∈ C, which can be

determined by writing:

exp
(

Ô
)

|φð= exp
(

Ô
)

eẐ |ωvð= α eẐ′ |ωvð (36)

The easiest way to calculate α explicitly is to compute the

overlap of both sides of the above expression with |ωvð, yield-

ing,

α = ïωv|exp
(

Ô
)

|φð (37)

As detailed in Appendices A and B, we can compute this ex-

pression given Z and the matrices t and ∆ that define Ô. If we

re-express Eq. (34) more compactly as

eO de f
=

(

K M

L N

)

(38)

then we have:

α =
√

det(N)
〈

ψ̃
∣

∣φ
〉

|ψ̃ð
de f
= e

∑α<β (MN
−1) γ̂†

α γ̂†
β |ωvð

(39)

where the inner product can be computed with (16).

IV. IMAGINARY TIME DYNAMICS IN THE MANIFOLD
OF HARTREE-FOCK-BOGOLIUBOV WAVE FUNCTIONS

Having established the essential mathematical and compu-

tational foundations of our approach, in this section we focus

on the final key ingredient of the method, which is the numer-

ical implementation of imaginary time evolution in the mani-

fold of HFB wave functions.

Consider a general mean-field hamiltonian of the form:

Ĥmf =
1

2

(

ĉ† ĉ
)

Hmf

(

ĉ

ĉ†

)

(40)
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where Hmf is a complex 2M×2M matrix

Hm f =

(

t ∆

−∆⋆ −tT

)

(41)

We denote the ground state of Ĥmf in the Fock space of the

physical system as |ωmfð with corresponding energy E0.

Our purpose in this section is to study the imaginary time

dynamics underlying the projection formula:

|ωmfð ∝ lim
τ→+∞

exp
(

−τ
(

Ĥmf−E0

))

|φT ð (42)

in the special case when |φT ð (an HFB wave function referred

to as the trial state) satisfies ïωmf|φT ð ̸= 0.

The formalism described above is well-suited to treat sys-

tems with spin-polarized ground states, or, more generally,

ground states with unpaired orbitals in |ωmfð. In these cases,

it is convenient to rely on a “new vacuum” of the form:

|ωvð ←→

(

Uv V ⋆
v

Vv U⋆
v

)

(43)

Such an HFB wave function can be straightforwardly de-

signed for a given physical problem and provides a natural

parametrization to follow the path in MHFB, defined by (42).

Now, we choose our trial state |φT ð ∈Sv:

|φT ð ←→

(

UT V ⋆
T

VT U⋆
T

)

←→ (UT ,VT ) (44)

and we express it as an unnormalized “Thouless state”:

|φT ð= e
Ẑ(T ) |ωvð

Ẑ(T ) = ∑
α<β

ZT α,β γ̂†
α γ̂†

β
, ZT =

(

VTU
−1
T

)⋆ (45)

We note that it is always possible to choose |φT ð = |ωvð, in

which case ZT = 0, but we have the additional flexibility to

allow the two wave functions to differ, which can enable very

efficient calculations for correlated hamiltonians when a self-

consistency scheme is implemented, as suggested in [22].

Put simply, we aim to carry out the imaginary time evolu-

tion in (42) by rotations in HFB space, which generate (non-

orthogonal) excitations from the vacuum, |ωvð, that contain

information about the properties of the system, obtained from

mean-field theory. The path (42) defines a family of wave

functions in MHFB:

τ → |φ(τ)ð= exp
(

−τ
(

Ĥm f −E0

))

|φT ð (46)

which can be mapped onto a curve in the manifold of Bogoli-

ubov matrices as follows:
(

V
⋆(τ +δτ)

U
⋆(τ +δτ)

)

= Bδτ

(

V
⋆(τ)

U
⋆(τ)

)

,

(

V
⋆(τ = 0)

U
⋆(τ = 0)

)

=

(

V
⋆
T

U
⋆
T

) (47)

where δτ is a time step. Using Eq. (33) and Eq. (34), we

denote:

Bδτ
de f
=

(

U†
v V †

v

V T
v UT

v

)

exp
(

−δτHm f

)

(

Uv V ⋆
v

Vv U⋆
v

)

(48)

The actual state:

|φ(τ)ð= α(τ) e
∑α<β Zα,β (τ) γ̂†

α γ̂†
β |ωvð (49)

can be constructed explicitly through the anti-symmetric ma-

trix Z(τ) =
(

V(τ)U(τ)−1
)⋆

which allows us to compute all

expectation values of physical observables using (18)-(21). In

addition, as proved in Appendices A and B, the coefficient

α(τ) can be computed using (39). We stress that such a coef-

ficient does not play any role in the imaginary time dynamics

governed by a mean-field hamiltonian (as it cancels when we

compute physical observables). On the other hand, α(τ) will

be crucial when we treat correlated hamiltonians in the fol-

lowing sections.

Along the imaginary-time path, different expectation val-

ues can be conveniently computed. For example, with any

quadratic operators we only need to compute the density ma-

trices in the algebra of the vacuum |ωvð using (18)-(21) and

then transform back into the original basis using (23), as fur-

ther illustrated below in the example.

A final issue concerns the numerical stabilization of these

calculations. Consider the two matrices U(τ) and V(τ). They

form the transformation matrix between the Bogoliubov oper-

ators defining the HFB wave function, |φ(τ)ð, and those defin-

ing the new vacuum, |ωvð. For this reason, they must satisfy

the same conditions we have in (3). In particular, the matrix:

B(τ) = U(τ)T
V(τ) must be anti-symmetric.

When computed numerically the matrices U(τ) and V(τ)
may contain round-off errors, which can result in the ma-

trix B(τ) no longer being anti-symmetric. We can en-

sure that B(τ) is anti-symmetric by imposing the condition,

Bα,β (τ) = −Bβ ,α(τ) if α g β and then redefining: V(τ)→

U(τ)−1,T
B(τ) as U(τ) is invertible by construction within Sv.

At this point, we can perform a Gram-Schmidt procedure (QR

decomposition):
(

U(τ)
V(τ)

)

=

(

Ũ(τ)
Ṽ(τ)

)

R(τ) (50)

where

(

Ũ(τ)
Ṽ(τ)

)

is 2M×M with orthonormal columns, while

R(τ) is an M×M upper triangular matrix. Notice that:

Z(τ) =
(

V(τ)U−1(τ)
)⋆

=
(

Ṽ(τ) Ũ−1(τ)
)⋆

(51)

so that Z(τ) is not affected by the stabilization. Such a stabi-

lization procedure mirrors what is routinely done with Slater

determinants within AFQMC [5].

A. Illustrative examples for mean-field HFB hamiltonians

As a first illustration of the formalism described above,

we focus on two-dimentional lattice models for spin 1/2

fermions, and use the basis |r,σð, where the label r runs over

the L sites of a finite square lattice while σ =↑,³. We choose

a fairly general form for the hermitian matrix in (41):

tr,σ ;r′,σ ′ = δσ ,σ ′(t
hop

r,r′ −µδr,r′)

−λδσ ,−σ ′ t
soc
r,r′ −δσ ,σ ′δr,r′hσ (r)

(52)
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FIG. 1. Imaginary time dependence of the on-site pairing order pa-

rameter τr,³;r,↑(τ) defined in (54) on a 4× 32 lattice. The blue cir-

cles show the expectation value over |ωmfð in (42) chosen to be the

ground state of Ĥmf with t = 1, µ = 0, λ = 0, hσ (r) = h0 (−1)σ ,

h0 = 0.1 and η(r = (x,y)) = η0 cos(πy/16), with η0 = 1 ((52) and

(53)). The trial state |φT ð is obtained by changing the value of η0

to 10, and the corresponding pairing order parameter is shown as or-

ange squares. The dotted lines are the results for finite imaginary

time τ .

where thop is the usual Hubbard model nearest-neighbor hop-

ping matrix, with amplitude −t if r and r′ are nearest neigh-

bors and zero otherwise, and the Rashba spin-orbit coupling

term, controlled by an overall strength λ , is defined by the

same matrix tsoc
r,r′ given in [10]. In addition, µ is a chemi-

cal potential, while the function hσ (r) models external fields

coupled to the density and/or the spin-density, for example a

magnetic field favoring a spin-polarization. We also choose

the simplest form of the anti-symmetric matrix ∆, specifically

a singlet on-site pairing term:

∆r,σ ;r′,σ ′ = δr,r′η(r)
1

2

(

δσ ,↑δσ ′,³−δσ ,³δσ ′,↑

)

. (53)

In Fig. 1 we consider a 4× 32 lattice with periodic boundary

conditions. We choose |ωmfð in (42) (referred to as “Ground

State” in the figure) as the ground state of (40) with t = 1,

µ = 0, λ = 0 and a magnetic field imposing a spin polar-

ization hσ (r) = h0 (−1)σ , with h0 = 0.1. In addition, we

use a modulated pairing field of the form η(r = (x,y)) =
η0 cos(πy/16), with η0 = 1, in order to model a Fulde-Ferrell-

Larkin-Ovchinnikov phase. The hamiltonian Ĥmf with this

choice of parameters is also used to drive the imaginary time

dynamics in (42).

In our calculations, we choose the new vacuum |ωvð as the

ground state of an hamiltonian of the same form as Ĥmf, but

with a different value of the amplitude of the pairing term, in

this case η0 = 10. In this first example, we choose the trial

state to be the vacuum itself |φT ð= |ωvð.

In order to test our methodology we implement the imag-

inary time dynamics in the HFB manifold as defined in (46)

and compute the on-site terms of the pairing tensor:

τr,↑;r,³(τ) =
ïφ(τ) |ĉr,³ ĉr,↑|φ(τ)ð

ïφ(τ) |φ(τ)ð
, (54)

as functions of the imaginary time τ . The value at τ = 0 (or-

ange squares in the figure) is the expectation value over |φT ð,
while the expectation value over |ωm f ð is plotted as blue cir-

cles. The dotted lines show the results for (54) at finite τ . The

figure convincingly shows the convergence to the ground state

expectation value with no evidence of significant round-off er-

rors.

As a second illustrative example, we consider fully self-

consistent Hartree-Fock-Bogoliubov calculations, applying a

mean-field break-up of the interaction term of the form:

V̂ =U ∑
r

ĉ
†
r,↑ĉr,↑ĉ

†
r,³ĉr,³⇒

U ∑
r

ïĉ†
r,↑ĉr,↑ðĉ

†
r,³ĉr,³+U ∑

r

ĉ
†
r,↑ĉr,↑ïĉ

†
r,³ĉr,³ð

+U ∑
r

ïĉ†
r,↑ĉ

†
r,³ðĉr,³ĉr,↑+U ∑

r

ĉ
†
r,↑ĉ

†
r,³ïĉr,³ĉr,↑ð .

(55)

We consider again a 4× 32 lattice with cylindrical boundary

conditions, we still choose t = 1, but now consider a finite

spin-orbit coupling strength λ = 0.05. We choose |ωmfð (and

Ĥmf) by letting U = −2.75 in (55), while µ , hσ (r) and η(r)
in (52) and (53) are determined self-consistently using (55)

by choosing average particle density ïnð = 0.95 and average

spin polarization p = 1
2
(ïn↑ð− ïn³ð) = 0.03125. For the pur-

pose of illustration, we choose the new vacuum |ωvð by re-

peating the procedure only changing U to U =−2, while |φT ð
corresponds to U = −4. This is a challenging test since, as

is evident from Fig. 2, which shows that the trial state has a

constant pairing order parameter, while the ground state has a

modulated one. As seen, the projection leads to convergence

to the ground state expectation value with no sign of signifi-

cant round-off errors, even for large values of the imaginary

time.

V. CORRELATED HAMILTONIANS

The results in the previous section verify the feasibility and

numerical efficiency of our framework to carry out imaginary

time evolution in the manifold of HFB wave functions, even

in the most general situation involving unpaired fermions, i.e.

situations in which the structure of the pairing cannot be con-

strained as in [16]. With respect to the usual implementations

relying on Slater determinants with N particles, where the cen-

tral object is an M×N matrix of spin orbitals, in the HFB

manifold we need to manipulate two M×M matrices, U and V

and the corresponding matrix Z(τ). All of the operations used

in the previous section to compute the pairing tensor involve

matrix multiplications and inversions, leading to a computa-

tional complexity O(M3), equivalent (although likely with a

larger prefactor) to finite temperature determinantal calcula-

tions. The most computationally expensive operation, which

is relevant only for correlated hamiltonians, is the calculation
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of the pfaffian of a 2M× 2M anti-symmetric matrix in (16).

Efficient techniques have been developed to compute the pfaf-

fian [23–25] with a cubic scaling in M, but it remains an im-

portant question whether the advantage of working with HFB

wave functions that contain information about pairing physics

is outweighed by the additional computational cost of com-

puting pfaffians as opposed to determinants. In addition, we

note that, since p f (A)2 = det(A) for any anti-symmetric ma-

trix, only the sign of the overlap needs to be determined in

(16), while the absolute value can be determined by simply

computing a determinant.

We have now all the ingredients to explore the possibil-

ity of treating general quartic hamiltonians, as in electronic

problems with Coulomb interactions. For simplicity, we use a

Hubbard interaction in our illustration below:

Ĥ = Ĥmf +V̂ , V̂ =U ∑
r

ĉ
†
r,↑ĉr,↑ĉ

†
r,³ĉr,³ . (56)

We consider a Hubbard interaction with U < 0 to highlight

the utility of HFB, while Ĥmf has the structure described in

the previous section. We would like to use the same projec-

tion formula (42) with the correlated hamiltonian, to find the

ground state:

|Ψ0ð ∝ lim
τ→+∞

exp
(

−τ
(

Ĥ−E0

))

|φT ð (57)

where, as before, we choose |φT ð ∈MHFB. The well-known

charge decomposition Hubbard Stratonovich transformation:

e
−δτU ĉ

†
r,↑ ĉr,↑ ĉ

†
r,³ ĉr,³ = e

−δτU
(

ĉ
†
r,↑ ĉr,↑+ĉ

†
r,³ ĉr,³−1

)

/2

∑
x=±1

1

2
e

γx
(

ĉ
†
r,↑ ĉr,↑+ĉ

†
r,³ ĉr,³−1

) (58)

can be expressed in the following form, more suitable for our

formalism:

e
−δτU ĉ

†
r,↑ ĉr,↑ ĉ

†
r,³ ĉr,³ = ∑

x=±1

1

2
e

1
2 (ĉ

†
ĉ)OV (r,x)

(

ĉ

ĉ
†

)

(59)

In the above expression we have introduced the 2M×2M di-

agonal matrix:

OV (r,x) =











O
↑↑
V (r,x) 0 0 0

0 O
³³
V (r,x) 0 0

0 0 −O
↑↑
V (r,x) 0

0 0 0 −O
³³
V (r,x)











(60)

with:

O
↑↑
V (r,x)r1,r2

= O
³³
V (r,x)r1,r2

= δr1,r2
δr1,r

(

−

(

δτU

2
− γx

))

(61)

Now, if we introduce a Trotter decomposition, we can ex-

press:

e−δτĤ = e

1
2 (ĉ

†
ĉ)(−δτHm f )

(

ĉ

ĉ
†

)

∏
r

∑
x(r)

e

1
2 (ĉ

†
ĉ)OV (r,x(r))

(

ĉ

ĉ
†

)

+O(δτ) .

(62)

All the operators are now in forms which can act within MHFB

following the same procedure discussed in the previous sec-

tion. We stress that the above expression is perfectly anal-

ogous to the imaginary time evolution in the manifold of

N-particle Slater determinants that underlies the well known

auxiliary-field quantum Monte Carlo method [1,4]. Formula

(62) “promotes” AFQMC to the manifold MHFB. In the pre-

vious section we developed the formalism needed to imple-

ment the new random walk within MHFB. In the language

of open-ended random walks in AFQMC, we consider a col-

lection of walkers, which are now elements of MHFB. Each

walker is parametrized by two M×M matrices, U and V (and

the corresponding matrix Z), and by a coefficient α as in (39),

which is now crucial as it depends on the auxiliary-field con-

figuration. All of the calculations possible within determinan-

tal AFQMC can be performed with this approach, using the

density matrices (18)-(21) for one-body operators and lever-

aging Wick’s theorem (which holds within MHFB) for two-

body operators. The major advantage with this formalism is

that we can study hamiltonians that do not conserve particle

number, and we can compute pairing order parameters, which

are crucial to characterize superfluids and superconductors. In

fact, the ability to introduce into the hamiltonian a term that

does not conserve the number of particles allows us to study

the response to a pairing field, which provides a way to di-

rectly compute pairing order parameters. When the order pa-

rameters are small, this provides a significant advantage over

the usual approach of computing two-body correlation func-

tions, which yield the square of the (often tiny) order parame-

ter.

We also comment that, as in AFQMC, we need to im-

plement a constrained-path approximation by allowing only

walkers non-orthogonal to |ωvð [1], and it seems natural to

expect that the flexibility in the choice of the new vacuum can

be a huge asset to minimize any bias.

A. Comparison with exact diagonalization

As a test of robustness of the methodology, we consider a

2× 2 lattice, which can be treated using exact diagonaliza-

tion of (56) in the 256-dimensional Fock space. We focus on

three values of the interaction strength U =−2.8t, U =−6.0t

and U = −10.0t. We choose Ĥm f by letting t = 1, µ = U/2,

hσ (r) = h0(−1)σ with h0 = 1.5, and η(r) = η0 =−0.5.

The value U =−2.8t, with our choice of magnetic field and

pairing term, corresponds to the largest value of interaction

strength such that the overlap between the correlated ground

state and the non-interacting ground state does not vanish. In

such a case, we can use as a new vacuum and trial state the

ground state |ωm f ð of (56) with U = 0, and implement an

open-ended random walk sampling the imaginary time dy-

namics governed by (62) as described above. In the upper

panel of Fig. 3 we show the result for the mixed estimator of

the on-site pairing order parameter:

ïφ(τ = 0)|ĉr,³ĉr,↑ |φ(τ)ð

ïφ(τ = 0)|φ(τ)ð
(63)
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FIG. 2. Imaginary time dependence of the on-site pairing order pa-

rameter τr,³;r,↑(τ) defined in (54) on a 4×32 lattice. The blue circles

show the expectation value over |ωmfð in (42) chosen to be the fully

self-consistent HFB solution with U =−2.75 in (55), while µ , hσ (r)
and η(r) in (52) and (53) are determined self-consistently using (55)

by choosing average particle density ïnð = 0.95 and average spin

polarization p = 1
2 (ïn↑ð − ïn³ð) = 0.03125. The trial state |φT ð is

obtained by changing only the value of U to−4, and the correspond-

ing pairing order parameter is shown as orange squares. The dotted

lines are the results for finite imaginary time τ .

The dotted lines are obtained using exact diagonalization,

while the blue circles with error-bars are obtained with

AFQMC in the manifold of HFB wave functions. The pure

estimators can be obtained as well by using techniques anal-

ogous to those used in standard AFQMC, for example back

propagation [26] or dynamical evolution of operators, as dis-

cussed in [16]. We obtain excellent agreement with exact di-

agonalization, which indicates the promise of our approach.

For larger values of the interaction strength, |ωm f ð is or-

thogonal to the correlated ground state, and so it not pos-

sible to use it as a vacuum or trial state. For the problem

we consider here, this orthogonality is due to the fact that

the non-interacting state is spin-polarized, whereas the corre-

lated state, despite the presence of a magnetic field, is spin-

balanced, due to the attractive interaction energy. In such

cases, we can leverage the flexibility to choose a new vacuum

state, which we construct by diagonalizing Ĥm f with B0 = 0

and η0 = −1.5 for U = −6t and B0 = 0 and η0 = −0.5 for

U = −10t. We comment that the value of η0 can be used to

fine tune the starting point of the imaginary time dynamics,

as can be seen from the middle and bottom panels of Fig. 3

at τ = 0. The comparison with exact diagonalization again

shows excellent agreement, even at U =−6.0t (middle panel)

and U =−10.0t (lower panel), where there are larger fluctua-

tions due to dominant contribution of the interaction term. We

also comment that self-consistency loops can be used to sys-

tematically optimize the choice of the vacuum state by lever-

aging the technique proposed in [22].

0.0 0.2 0.4 0.6 0.80.06

0.07 U= 2.8t
Exact many-body
HFB QMC

0.0 0.1 0.2 0.3 0.4
0.400
0.425
0.450

(
=

0)
|

(r
=

0)
|

(
)

U= 6.0t

0.0 0.1 0.2 0.3 0.40.3

0.4 U= 10.0t

FIG. 3. Imaginary time dependence of the mixed estimator

of the on-site pairing order parameter τr=0,³;r=0,↑(τ) = ïφ(τ =
0)|ĉ0,³ĉ0,↑|φ(τ)ð for the hamiltonian (56) with B(r) = B = 1.5 t,

η(r) = η =−0.5, and three different values of U : U =−2.8 t (upper

panel), U =−6.0 t (middle panel), U =−10.0 t (lower panel). In all

cases we set µ =U/2. Blue circles are results from our method (er-

ror bars, where not evident, are smaller than the symbol size), dotted

line is obtained with exact diagonalization.

VI. CONCLUSIONS AND PERSPECTIVES

We propose a general quantum Monte Carlo methodology

designed to treat a broad range of physical systems, especially

ones in which paring is present, including spin-imblalanced

fermions subject to spin-orbit coupling. The framework we

develop carries out a random walk in the manifold of Hartree-

Fock-Bogoliubov wave functions, which extends the state-of-

the-art AFQMC method that is typically realized as a random

walk in the manifold of Slater determinants. By leveraging

the flexibility to choose a vacuum state already containing im-

portant information about the pairing mechanisms of the sys-

tem, we design an approach that can treat correlations beyond

the level of mean field theory. As we demonstrate, this can

be achieved by stochastically exciting quasi-particles via ro-

tations in HFB space, in such a way that statistical averages

yield ground state correlations. We showcase the possibil-

ity to implement imaginary time dynamics of HFB states in

a numerically efficient and stable way. Having established

the feasibility of our method, we plan to test the approach for

larger systems and explore different potential applications, in-

cluding a study of the two-dimensional Hubbard model with

spin-orbit coupling and Zeeman fields, a model that can be re-

alized in cold atom systems and is expected to support exotic

phases with topological features. Another potential direction

for future work is to extend the formalism to treat systems at

finite temperature, which will enable direct comparison with

cold atom experiments.
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Appendix A: Vacuum expectation value of exponentials of
hermitian quadratic operators

In this Appendix, we consider an hermitian operator of the

form:

Ô =
1

2

(

γ̂† γ̂
)

(O)

(

γ̂

γ̂†

)

(A1)

defined by a 2M×2M matrix with the usual redundant form:

O
de f
=

(

T A

−A ⋆ −T T

)

(A2)

where T is an hermitian M×M matrix and A is an anti-

symmetric M×M matrix. As we did in the main text, we

focus on a vacuum |ωvð with its algebra γ̂ , γ̂†. It will be useful

to introduce the notation:

exp(O)
de f
=

(

K M

L N

)

(A3)

where all the blocks are M×M complex matrices. We are

going to show that:
〈

ωv | exp(Ô) |ωv

〉

=
√

det(N) (A4)

In order to prove this important theorem, following Hara

and Iwasaki27, we go back to the transformation formula:

β̂ ′l = exp
(

Ô
)

β̂l exp
(

−Ô
)

(A5)

where we consider a set of quasi-particle operators:

β̂l =
(

γ̂† γ̂
)

(

V
⋆
l

U
⋆
l

)

, l = 1, . . . ,M (A6)

Now, using the well known expansion for the conjugation:

exp
(

Ô
)

γ̂ exp
(

−Ô
)

= γ̂ +
[

Ô , γ̂
]

+
1

2!

[

Ô ,
[

Ô , γ̂
]]

+ . . .

(A7)

it is straightforward to get to the formula:

exp
(

Ô
) (

γ̂† γ̂
)

exp
(

−Ô
)

(

V
⋆
l

U
⋆
l

)

=
(

γ̂† γ̂
)

exp(O)

(

V
⋆
l

U
⋆
l

)

(A8)

Now, let us consider the special case:

β̂l = γ̂l ,

(

V
⋆
l

U
⋆
l

)

=































0

. . .
0

0

. . .
0

1

0

. . .
0































(A9)

We find:

exp
(

Ô
)

γ̂l exp
(

−Ô
)

=
M

∑
j=1

γ̂†
j M jl +

M

∑
j=1

γ̂ j N jl (A10)

An analogous calculation leads to:

exp
(

Ô
)

γ̂†
l exp

(

−Ô
)

=
M

∑
j=1

γ̂†
j K jl +

M

∑
j=1

γ̂ j L jl (A11)

Introducing a parameter θ ∈ R, and denoting:

W (θ)
de f
= exp(θO)

de f
=

(

K(θ) M(θ)
L(θ) N(θ)

)

(A12)

we can write:

exp
(

θ Ô
)

γ̂l exp
(

−θ Ô
)

=
M

∑
j=1

γ̂†
j M jl(θ)+

M

∑
j=1

γ̂ j N jl(θ)

exp
(

θ Ô
)

γ̂†
l exp

(

−θ Ô
)

=
M

∑
j=1

γ̂†
j K jl(θ)+

M

∑
j=1

γ̂ j L jl(θ)

(A13)

Now, let us introduce two operators Ô1 and Ô2, and denote

ï. . .ð
de f
= ïωv| . . . |ωvð; the relations (A13) imply immediately:

〈

Ô1eθ Ô γ̂l Ô2

〉

=

〈

Ô1 ∑
j

(

γ̂†
j M jl(θ)+ γ̂ j N jl(θ)

)

eθ Ô Ô2

〉

(A14)

and:

〈

Ô1eθ Ô γ̂†
l Ô2

〉

=

〈

Ô1 ∑
j

(

γ̂†
j K jl(θ)+ γ̂ j L jl(θ)

)

eθ Ô Ô2

〉

(A15)

We need a bit of algebraic manipulations now. Let us multiply

both sides of (A14) on the right by N
−1
L:

∑
l

〈

Ô1eθ Ô γ̂l Ô2

〉

(

N
−1
L
)

l,s

= ∑
l

〈

Ô1 ∑
j

(

γ̂†
j M jl(θ)

)

eθ Ô Ô2

〉

(

N
−1
L
)

l,s

+

〈

Ô1 ∑
j

(

γ̂ j

)

eθ Ô Ô2

〉

L j,s

(A16)

If we use this relation to replace the last term in (A15) we find

the useful equality:

〈

Ô1eθ Ô γ̂†
s Ô2

〉

=

〈

Ô1 ∑
j

(

γ̂†
j K js(θ)

)

eθ Ô Ô2

〉

+∑
l

〈

Ô1eθ Ô γ̂l Ô2

〉

(

N
−1
L
)

l,s

−∑
l

〈

Ô1 ∑
j

(

γ̂†
j M jl(θ)

)

eθ Ô Ô2

〉

(

N
−1
L
)

l,s

(A17)
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Now, we consider the special case Ô1 = 1 and Ô1 = γ̂†
s′

, and

use the fact that all the creators acting on the vacuum on the

right side give zero. Using the canonical anti-commutation

relations we get:

〈

eθ Ô γ̂†
s γ̂†

s′

〉

=
〈

eθ Ô
〉

(

N
−1
L
)

s′,s
(A18)

Now, it is interesting to find an expression for
〈

eθ Ô
〉

. Let us

compute:

d

dθ

〈

eθ Ô
〉

=
〈

eθ Ô Ô
〉

(A19)

As the operator Ô is acting on the vacuum, only the terms con-

taining creation operators on the right give a non-zero contri-

bution:

d

dθ

〈

eθ Ô
〉

=
〈

eθ Ô Ô
〉

=
1

2
∑
s,s′

〈

eθ Ô
As,s′ γ̂

†
s γ̂†

s′

〉

+
1

2
∑
s,s′

〈

eθ Ô
(

−T
T
)

s,s′
γ̂s γ̂†

s′

〉

=
1

2
∑
s,s′

As,s′

〈

eθ Ô
〉

(

N
−1
L
)

s′,s
−

1

2
Tr (T )

〈

eθ Ô
〉

=
〈

eθ Ô
〉 1

2

(

Tr
(

A N
−1
L
)

−Tr (T )
)

(A20)

where A and T are the M×M off-diagonal sub-blocks of the

matrix:

O
de f
=

(

T A

−A ⋆ −T T

)

(A21)

and we have used (A18). Now, going back to (A12), we can

write:

W (θ +ϕ) = e(θ+ϕ)Ô = W (θ)W (ϕ) (A22)

We can differentiate both sides of this equality with respect to

ϕ in the point ϕ = 0:

W
′(θ) = W (θ)W ′(0) (A23)

Considering the lower right M×M sub-block of this matrix

equation we find:

N
′(θ) = L(θ)M′(0)+N(θ)N′(0) (A24)

We can use the simple result:

W
′(0) =

d

dϕ
eϕO |ϕ=0 = O (A25)

implying M
′(0) = A and N

′(0) =−T T . If we multiply both

sides of (A24) by N(θ)−1 we find:

N(θ)−1
N
′(θ) = N(θ)−1

L(θ)A −T
T (A26)

Now, we can take the trace of both sides of the above relation.

Using the cyclic property of the trace we obtain:

Tr
(

A N(θ)−1
L(θ)

)

= Tr
(

N(θ)−1
N
′(θ)

)

+Tr (T ) (A27)

If we use the fact that:

Tr
(

N(θ)−1
N
′(θ)

)

=
d

dθ
Tr (logN(θ)) (A28)

and combine with (A20) we obtain the very interesting result:

d

dθ

〈

eθ Ô
〉

=
〈

eθ Ô
〉 1

2

(

d

dθ
Tr (logN(θ))

)

(A29)

or:

d

dθ
log
(〈

eθ Ô
〉)

=
1

2

(

d

dθ
Tr (logN(θ))

)

(A30)

Integrating both sides with respect to θ between 0 and θ , ob-

serving that N(θ = 0) = I, we find the very interesting result:

〈

eθ Ô
〉

= exp

(

1

2
Tr (logN(θ))

)

(A31)

This completes the proof of (A4) if we set θ = 1 and use the

relation Tr (logN) = log(det(N)).

Appendix B: Factorization of exponentials of hermitian
quadratic operators

Using the notations in the previous Appendix, we will now

prove the relation:

exp(Ô) |ωvð=
√

det(N) exp

(

1

2
∑
s,s′

(

MN
−1
)

s,s′
γ̂†

s γ̂†
s′

)

|ωvð

(B1)

In order to prove this result we observe that the operators

γ̂†γ̂†, γ̂†γ̂ and γ̂ γ̂ form an algebra which is closed under com-

mutation, which implies that we are allowed to write:

exp

(

1

2

(

γ̂† γ̂
)

(O)

(

γ̂

γ̂†

))

= α e
1
2 ∑s,s′ Zs,s′ γ̂

†
s γ̂†

s′ e∑s,s′ Xs,s′ γ̂
†
s γ̂

s′ e∑s,s′ Ys,s′ γ̂s γ̂
s′

(B2)

where the coefficients are to be determined. By taking the

expectation value with respect to the vacuum and using (A4)

we immediately find:

α =
〈

eÔ
〉

=
√

det(N) (B3)

Applying both sides to the vacuum we find:

eÔ |ωvð= α e
1
2 ∑s,s′ Zs,s′ γ̂

†
s γ̂†

s′ |ωvð (B4)

which implies that, for our purposes, we just need to find the

coefficients Zs,s′ . Returning to the relation (A14), in the par-

ticular case Ô1 = γ̂
s′

and Ô2 = 1:

〈

γ̂s′ e
θ Ô γ̂l

〉

=

〈

γ̂s′ ∑
j

(

γ̂†
j M jl(θ)+ γ̂ j N jl(θ)

)

eθ Ô

〉

(B5)
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The left-hand-side vanishes as a destructor is acting on the

vacuum, so we have:

〈

γ̂s′ ∑
j

(

γ̂†
j M jl(θ)

)

eθ Ô

〉

=−

〈

γ̂s′ ∑
j

(

γ̂ j N jl(θ)
)

eθ Ô

〉

(B6)

We can multiply both sides by N
−1
ls (θ) and sum over l, getting:

〈

γ̂s′ γ̂s eθ Ô
〉

=−

〈

γ̂s′ ∑
j

(

γ̂†
j

(

M(θ)N−1(θ)
)

js

)

eθ Ô

〉

=−
(

M(θ)N−1(θ)
)

s′,s

〈

eθ Ô
〉

(B7)

where in the last step we used canonical anti-commutation re-

lations. Incidentally, the formula above implies that the matrix

M(θ)N−1(θ) must be anti-symmetric. Now, we can combine

with (B4), remembering that α =
〈

eθ Ô
〉

, to write:

−
(

M(θ)N−1(θ)
)

s′,s
=

〈

γ̂
s′

γ̂s eθ Ô
〉

〈

eθ Ô
〉 =

〈

γ̂s′ γ̂s e
1
2 ∑Zl,l′ γ̂

†
l

γ̂†

l′

〉

(B8)

If we expand the exponential in the last term and use the

canonical anti-commutation relations, we easily conclude that

only the term with two destructors will give a non-zero result.

In particular, we get:

〈

γ̂s′ γ̂s e
1
2 ∑Zl,l′ γ̂

†
l

γ̂†

l′

〉

=

〈

γ̂s′ γ̂s

1

2
∑
l,l′

Zl,l′ γ̂
†
l γ̂†

l′

〉

=
1

2
∑
l,l′

Zl,l′
(

δs,lδs′,l′ −δs′,lδs,l′
)

=
1

2

(

Zs,s′ −Zs′,s

)

(B9)

We observe that in an expansion of the form ∑l,l′ Zl,l′ γ̂
†
l γ̂†

l′
=

1
2

(

Zl,l′ γ̂
†
l γ̂†

l′
−Zl,l′ γ̂

†
l′

γ̂†
l

)

we can always choose Z to be anti-

symmetric. We thus find Zs′,s =
(

M(θ)N−1(θ)
)

s′,s
, which

completes the proof of (B1).
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