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1. Introduction and results
1.1. Terminology and known results

A hypergraph H is a family of subsets of a ground set. We refer to these subsets as
the edges of H and the elements of the ground set as the vertices of H. We use E(H)
and V(H) to denote the set of edges and the set of vertices of H, respectively. We say
H is r-uniform (an r-graph, for short) if every edge of H contains exactly r vertices. A
graph is a 2-graph.

The degree dg(v) of a vertex v in a hypergraph H is the number of edges containing
v. The minimum degree, §(H), is the minimum over degrees of all vertices of H. The
circumference, ¢(G), of a graph G, is the length of a longest cycle in G.

A hamiltonian cycle in a graph is a cycle that visits every vertex. Sufficient conditions
for existence of hamiltonian cycles in graphs have been well studied. A famous result of
this type was due to Dirac in the fifties.

Theorem 1.1 (Dirac [4},5]). Let n > 3. If G is an n-vertex graph with §(G) > n/2, then
G has a hamiltonian cycle.

Dirac also proved that ¢(G) > §(G) + 1 for every graph G. We consider similar
conditions for Berge cycles in hypergraphs.

Definition 1.2. A Berge cycle of length s in a hypergraph is a list of s distinct vertices and
s distinct edges v1,e1,va, ..., €51, Vs, €5,v1 such that {v;,v;41} Ce; foralll <i < s (we
always take indices of cycles of length s modulo s). We call vertices vy, ..., vs the defining
vertices of C' and write V(C) = {v1,...,vs}, E(C) = {eq,...,es} Similarly, a Berge path
of length ¢ is a list of ¢ + 1 distinct vertices and ¢ distinct edges v1,e1,vs, ..., €0, Vst
such that {v;,v;11} C e; for all 1 < i < ¢, with defining vertices V(P) = {v1,...,v¢41}
and E(P) ={e1,...,ee}.

An analogue of Dirac’s Theorem for non-uniform hypergraphs was given in [7]. For
r-graphs, a well-known approximation of Dirac’s bound on circumference and of The-
orem 1.1 was proved by Bermond, Germa, Heydemann and Sotteau [1] more than 40
years ago:

Theorem 1.3 (Bermond, et al. [1]). Letr > 3 and k > r+ 1. If H is an n-vertex r-graph
with §(H) > (}::f) 4+ r — 1, then H contains a Berge cycle of length k or longer. In
particular, if 6(H) > (Z:f) +1r —1, then H contains a hamiltonian Berge cycle.

Recently, there was a series of improvements of the hamiltonian part of Theorem 1.3.
First, Clemens, Ehrenmiiller and Person [2] have proved an asymptotics for n > 2r — 2:
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Theorem 1.4 (Clemens et al. [2]). Let H be an r-graph on n vertices. If n > 2r — 2 and
0(H) > (L("T__li/%) +n —1, then H has a hamiltonian Berge cycle.

Then Coulson and Perarnau [3] proved the exact bound for n much larger than r:

Theorem 1.5 (Coulson and Perarnau [3]). Let H be an r-graph on n vertices such that
r=o(yn). If §(H) > (L(";l%/QJ) + 1, then H contains a hamiltonian Berge cycle.

Then Ma, Hou and Gao [9] improved the bound of Theorem 1.4 for n > 2r + 4.

Theorem 1.6 (Ma, Hou and Gao [9]). Let r > 4 and n > 2r+4, and let H be an r-graph
on n vertices. If 6(H) > (L(”;l%/%) +[(n—1)/2], then H contains a hamiltonian Berge
cycle.

Very recently, Salia [10] proved sharp results of Pésa type for Berge hamiltonian cycles.
It will be easier to describe his results after we state ours in the next section.

1.2. Our results

In this paper we derive exact bounds for all possible 3 < r < n, improving the
aforementioned theorems.

Theorem 1.7. Let t = t(n) = |(n —1)/2], and suppose 3 < r < n. Let H be an n-vertex
r-graph. If

(a) r<tand(H)> (') +1 or
(b) r>n/2 and §(H) > r,

then H contains a hamiltonian Berge cycle.

These bounds are best possible due to the following constructions. We use the notation
K] to denote the n-vertex r-graph with all (:f) possible edges.

Construction 1. Suppose r < t. If n is odd, let H; consist of two copies of K (n +1)/2
that share exactly one vertex. If n is even, let H; consist of two disjoint K /2 and a
single edge intersecting both cliques.

Construction 2. Suppose r < ¢. Let Hy have vertex set X UY such that |X| =t and
|Y| = n — t. The edge set of Hs consists of every edge with at most one vertex in Y.

Construction 3. Suppose r > n/2. Let Hjz have vertex set V(Hs) = {v1,v2,...,0n}
and edge set {e1,...,e,—1} where e; = {v;,vi41,...,Vi4pr—1} for 1 < i < n —1 with
indices taken modulo n.

It is easy to check that both H; and Hs have minimum degree (7_51). Observe that

neither H; nor Hs has a hamiltonian Berge cycle: H; has either a cut vertex or a cut
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edge, and in Hs a hamiltonian Berge cycle must visit two vertices in Y consecutively,
but no edge of Hs contains any pair of vertices from Y.

Since r > n/2, §(H3) = r — 1. Also, H3 does not have a hamiltonian Berge cycle
because |E(Hs)| = n — 1. In fact, removing a single edge from any n-vertex, r-regular,
r-graph would also yield an extremal example.

Note that the length of the longest cycle in Construction 1 is [n/2]. Thus Theorem 1.7
yields exact bounds on the minimum degree guaranteeing the existence of any cycle of
length at least k in n-vertex r-graphs for all r <t and all kK > 1+ n/2.

We also improve the circumference part of Theorem 1.3. Since the bounds for r < ¢
and for r» > t are different, we state our results as two theorems.

Theorem 1.8. Let n, k, and r be positive integers such thatn >k andt > r > 3. Let H
be an n-vertex, r-graph. If

(a) k<r+2andd(H) > k-1, or
(b) r+3<k<t+2and §(H) > (f:f)—i—l, or
() k>t+2and §(H) > (.',) +1,

then H contains a Berge cycle of length k or longer.

Theorem 1.9. Let n, k, and r be positive integers such thatn >k >r >3, andr > t. If
H is an n-vertex r-graph with

S(H) > {#J +1,

then H contains a Berge cycle of length k or longer.

Constructions 1 and 2 give sharpness examples for Theorem 1.8(c). The constructions
below show that for each k& > 3 the bounds of Theorem 1.8(a,b) are sharp for infinitely
many n.

Construction 4. Let r + 3 < k < t+ 2. For n — 1 divisible by k& — 2, let H4 consist of
(n—1)/(k —2) copies of K},_, such that all the cliques share exactly one vertex.

Construction 5. Let k < r 4+ 2 < t + 2. For n — 1 divisible by r, view V(Hj) as the
union of (n—1)/r sets St,...,Sm—1)/r of (r+1) vertices, all sharing exactly one vertex.
The set E(Hs) has k — 1 edges contained in each S;.

We have 6(Hy) = (f:f) and 6(Hs) = k — 2. A longest Berge cycle in Hy must be
contained in a single clique, and hence has length k£ — 1. Similarly, a longest Berge cycle
in Hj is contained in some S;, and hence has at most k — 1 edges.

For Theorem 1.9, it is easy to construct an analog of Construction 3: an mn-vertex
r-graph with k& — 1 edges whose minimum degree is exactly [r(k —1)/n].

As mentioned in Section 1.1, after the first version of this paper appeared on arXiv,
Salia [10] described the sequences (dy,...,dy,) with d; < ds < ... <d, of two types: (a)
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for r < n/2 every n-vertex r-graph with degree sequence (di, ..., d,) such that d; > d;
for all ¢ has a hamiltonian Berge cycle and also (b) every n-vertex hypergraph with
degree sequence (di,...,d}) such that d; > d; for all ¢ has a hamiltonian Berge cycle.

The first of these nice results implies Part (a) of Theorem 1.7 for odd n.
1.8. Outline of the proofs

As always, t = t(n) = [(n — 1)/2]. Together, the circumference results, Theorem 1.8
and Theorem 1.9, imply the hamiltonian result Theorem 1.7 by setting k& = n.

First we will prove Parts (a) and (b) of Theorem 1.8. Then we handle Part (c): for
large k, our minimum degree condition guarantees the existence not only of a “long”
Berge cycle, but rather of a hamiltonian Berge cycle.

Since t +1 > n/2, if r > t then the inequality §(H) > |r(k —1)/n] +1 yields 6(H) >
k=L and also > vevim) Av) > n@ =r(k—1); thus |[E(H)| = 1 2 vevim Av) > k—1.
Hence the following theorem implies Theorem 1.9.

Theorem 1.10. Let n, k, and r be positive integers such that n >k >r >t and r > 3. If
H is an n-vertex r-graph with at least k edges such that 6(H) > [k/2], then ¢(H) > k.

So, we will prove Theorem 1.10.

In Section 2, we prove Theorem 1.8(a,b). In Section 3 we describe the setup of the
proofs of Theorems 1.8(c) and 1.10. The proofs somewhat differ for » < ¢, r = ¢ and
r > t. But in all cases we will use the same structure of proofs, namely, a modification
of Dirac’s original proof of his theorem.

Also, since we always consider only Berge paths and cycles, from now on we drop the
word “Berge” and use cycles and paths to exclusively refer to Berge cycles and Berge
paths.

2. Proof of Theorem 1.8(a,b)

We will use the following results.

Theorem 2.1 (Kostochka and Luo [8]). Let 4 < k < r+ 1, and let H be an n-vertex
r-graph with no Berge cycles of length k or longer. Then e(H) < (k—1)(n—1)/r.

Theorem 2.2 (Ergemlidze, Gydri, Methuku, Salia, Thompkins, and Zamora [6]). Let n >
r>3,ke{r+1,r+2}, and let H be an n-vertex r-graph with no Berge cycles of length
k or longer. Then e(H) < (k—1)(n—1)/r.

Proof of Theorem 1.8(a). Recall that 3 <k < min{r 4+ 2,n} and 6(H) > k — 1.
By Theorems 2.1 and 2.2, iff 4 < k <r—1lorr >3 and k € {r+ 1,r + 2}, then
e(H) < (k—1)(n—1)/r. It follows that the average degree of H is at most
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(=Dm-1) _ (k=Dm-1)

r
n r
This gives that H has a vertex of degree at most k — 2, a contradiction.

Thus to prove the theorem, we need to settle the remaining cases, namely, k =3 <r
and £ = r > 4. In both cases, consider a counter-example H with the most edges.
Then H contains a path of length at least k¥ — 1. Among all such paths, let P =
v1,€1,V2,...,€_1,Vp be a longest one.

If there exists a j > k such that vy € ej, then vy, eq,v2,...,ej-1,v;,¢5,v1 is a cycle
of length at least k. Furthermore, if there exists an edge e € E(H) \ E(P) and a vertex
u € V(H)\ {v1,...,vk_1} such that {v1,u} C e, then either u ¢ V(P) and we can
extend P to a longer path by adding the vertex u and the edge e, or u € V(P) and we
can construct a cycle of length at least £ by combining the segment of P from v to u
with the edge e. Therefore each edge of H containing v; either is in {ej, ea,...,ex_1} or
is contained in {vy,...,vx_1}. Since k — 1 < r, the latter is impossible. Thus adding the
fact that d(vi) > k — 1, we have that

all edges ey, . ..,e,_1 contain vy. (1)

Since H has no multiple edges, there is a vertex v’ € e; \ eg_1. If v/ ¢ {v1,...,vs}, then
we consider path P’ obtained from P by replacing v; with v’ and keeping all the edges.
It has the same length as P, but v’ ¢ ej_1, contradicting (1).

So, suppose v’ = v;. Since v’ ¢ ex_1 and v1 € ex_1, j ¢ {1,k—1,k}. If j > k+1, then
we have a cycle C = v, e2,v3,...,€j_1,v;,€1,v2 of length j —1 > k, a contradiction.
Thus 2 < j < k — 2. Consider path

/!
P =vj,€j_1,0j-1,...,€1,01,€5,Vj41, €41, V42, - - -, €0—1, Ve.
Similarly to P’, it has the same length as P, but v’ ¢ ex_1, contradicting (1). O

Proof of Theorem 1.8(b). Recall that k¥ > r + 3 and §(H) > (ﬁ:f) + 1. Suppose the
theorem fails, and let H be an edge-maximal counterexample. Then H contains a path
of length k — 1 or greater. Among all such paths, let P = vi,e1,v9,...,€s_1,0¢ be a
longest one. As in the proof of Theorem 1.8(a), each edge of H containing v; either is in
{e1,€e2,...,er_1} or is a subset of {vy,...,v5_1}.

Set X = {v1,...,vp—1} and X' = X \v;. Let Ex = {e ¢ E(P) : e C X }. The previous
paragraph implies that every edge containing v; belongs to Ex U {e1,...,ex—1}.

Case 1: There exists some 1 < i < k — 2 such that v; € e; and e; € X.

Let u € e; \ X. If there exists an edge f € Ex such that {vy,v;41} C f, then

Uy €45 Viy €—1,Vim1y -+ -5 €1, V15 fr Uik 1, €41, Vit 2y - - -5 €01, Vg

is longer than P, a contradiction to the maximality of P. So, there are no such edges.
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If r = 3, then ¢ = 1, since otherwise {v1, v;, v;4+1} C e;, and there is no room for other
vertices in e;, contradicting our assumption. Therefore

dp(v1) < ('X;\_{qf}') + e, ea,ex1}] = (k_i’) +3< <k2> 2)

r r—1

when k > 6, a contradiction to the minimum degree.
Suppose now that r > 4. The number of edges in Ex containing v; is at most
(lX \{”"“}‘) = (f:i’) Since k > r + 3, k > 7 and (ﬁ:g’) > (kgg) >k — 1. So,

r—1
dit (1) < (’:_f) TEo1= (jf_f) - (f_g) fk-1< (’:_f)
a contradiction to the minimum degree.

Case 2: For all 1 < ¢ < k — 2 with v; € e;, e, C X. Then the only possible edge
containing vy that is not a subset of X is egx_1, and dg(v1) < (Ir)ill‘) +1= (fj) +1 with
equality if and only if v; € e;_1 and every r-subset of X’ U {v;} containing v; is an edge
of H. Hence we may suppose this is the case.

For each 2 <i <k — 1, let g; be the (r — 1)-subset of X’ containing v; and the r — 2
previous vertices of X' (with wrap around). Le., if i > r, then g; = {v;, vi_1,...,vi—(r—2)}
and if i <7 —1, then g; = {vi,vi—1,..., 02} U{0k_1,...,V—1—(r—1—i)}. Then set f; =
giU{v1}. Since k > r+3 and {vy,vg_1, v} C ex_1, there exists some 2 < i < k— 2 such
that v; ¢ ex_1. Then since f; € E(H) for all 2 < j < k — 1, the path

P2 = ’Ui7fi7/Ui717'"7f27vl7fi+17/v’i+17fi+27v’i+27"'7fk?717’uk7176k717vk7'"76Z717v£

is also a longest path. Note that f; C X for each j. Applying the same argument to P»’s
first vertex v; as we did to v; in Case 1 and the beginning of Case 2, we have that either
dy(v;) < (f:f) or v; € ex_1. In both cases we obtain a contradiction. O

3. Setup of proofs for Theorems 1.8(c) and 1.10 and general lemmas

The original proof by Dirac of Theorem 1.1 involved two steps. In the first step, by
looking at a longest path, he greedily found a cycle of length at least 1 + n/2. In the
second step, he considered a lollipop, i.e. a pair (C, P) such that C is a cycle, P is a
path, E(C)NE(P) =0, [V(C)NV(P)| =1, and the shared vertex of v € V(C) NV (P)
is one of the endpoints of P. Dirac proved that when 6(G) > n/2, the lollipop with the
largest |C| and modulo this with the largest |P| can be only a hamiltonian cycle.

Our strategy is in the same spirit, only instead of lollipops we will consider pairs of a
cycle C' and a path P with V(C)NV(P) = E(C)NE(P) = . We call such a pair (C, P)
a cycle-path pair. We will in addition maximize a couple of more parameters.

A cycle-path pair (C, P) is better than a cycle-path pair (C’, P) if
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(i) [E(C)] > |E(C)], or

(i) [E(C)] = |E(C")] and [E(P)[ > |E(P')], or

(iii) |E(C)| = |E(C")|, |[E(P)| = |E(P’")| and the total number of vertices in V(P) in the
edges in C' (counted with multiplicities) is greater than the total number of vertices
in V(P’) in the edges in C’, or

(iv) all parameters above coincide and the total number of vertices in V(P) in the edges

in P (counted with multiplicities) is greater than the total number of vertices in
V(P') in the edges in P’.

Similarly to Dirac’s proof, we will show that in all cases, a best cycle-path pair is a
hamiltonian cycle (or contains a cycle of length at least k¥ when we are looking for such
cycles).

In all cases there will be 3 steps: first we find a cycle of length at least 1+ n/2, then
prove that if C' is not long enough, then in the best cycle-path pair (C, P), P cannot
have only one vertex, and finally show that P also cannot have more than one vertex.

3.1. General lemmas

Suppose (C, P) is a best cycle-path pair with C = vq,eq,...,vs5,e5,01 and P =
ul,fl,. . .,fg_l,Ug.

We consider three subhypergraphs, Ho, Hp and H' of H with the same vertex set
V(H): E(Hc) ={e1,...,es}t, E(Hp) = {f1,..., fe—1} and E(H') = E(H) \ (E(H¢) U
E(Hp)). Observe that the edges of these three subhypergraphs form a partition of the
edges of H. We also consider H — He with vertex set V(H) and edge set E(H)\ E(Hc).
For a hypergraph F and a vertex u, we denote by Np(u) = {v € V(F) : {u,v} C
e for some e € F'}. For i € {1,¢}, set B; = {e; € E(C) : u; € ¢;}.

The following claim applies to all best cycle-path pairs (C, P), regardless of the sizes
of r and k. It will be used in the sections below.

Claim 3.1. In a best cycle-path pair (C,P), Ng/(u1) cannot contain a pair of vertices
that are consecutive in C'.

Proof. Suppose toward a contradiction that v;,v;11 are contained in edges of H' with
up. Let e, ¢’ be edges of H' such that uy,v; € e and uy,v;41 € €. If e # €/, then replacing
e; with e, u1, €’ gives a longer cycle than C, a contradiction. Thus we may assume e = €’.

If there is 1 < j < £ such that u; € e;, then by replacing the path v;, e;,vi41 in C
with the longer path v;, e, u1, fi,u2,..., fj—1,u;,€;, viy1, we obtain a longer cycle than
C. Thus e; N V(P) = (. Then replacing e; with e in C gives a cycle C' with (C’, P)
better than (C, P) by Rule (ili). O

Symmetrically, the claim holds for u, as well.
The following claims hold for C' as well as for any other longest cycle in H.
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Claim 3.2. Let C' = vi,€},... e, v] be a longest cycle in H. For any u ¢ V(C'), if
u € e}, then vj,vi, 1 ¢ Nu_p_, (u).

Proof. Suppose v; € Ng_p,(u), and let e € E(H) \ E(Hc) be such that {u,v;} C e.
Then we can find a longer cycle by replacing e} with e, u, e}, a contradiction to our choice
of C. A similar argument holds for v; ;. O

Claim 3.3. Let C' = v}, el,... €., v be a longest cycle in H. Suppose there exist vertices

’ sy

v, v; € V(C") and an edge e € E(H — Hcr) such that {vj,v;} C e. Then for any

ue V(H)\V(C), u cannot be contained in both e} and e’ or in both e;_, and ¢€}_,.

;- where without

loss of generality 7 < j. Then v}, €}, ..., v}, e, v}, €;_q,...,vi 1, €;,u,€,0 ... e 01 s

a cycle longer than C’. The proof for €]_;,e_; is symmetric. O

Proof. Suppose there exists a vertex u ¢ V(C) such that u € e} and u € e

Claim 3.4. Suppose (C',P’) is a cycle-path pair with C' = vij,e},... el v}, P =
ul, fi,..uy, [V(C)| = |V(C)|, and |V(P')] = |V(P)|. For every €} containing u}
and € containing uy, either i =j or |i —j| > (.

Proof. Suppose there exist e}, e, containing u} and uj, respectively such that without loss

2]
of generality j > ¢ and j —i < £ — 1. Then that cycle obtained by replacing the segment
Vi€ €, 05 in O with o, el uy, fl, .o fio g, up, €, 0% has size [V(C')| — (i —7) +

> |V(C)| = |V(C)|, contradicting the fact that C' is a longest cycle. O

Claim 3.5. If C = vy,e1,...,vs,65,v1 1S a graph cycle, and A is any set of ¢ edges
of C and I is an independent subset of {v1,...,vs} disjoint from all edges in A, then
] < [(s—1—c)/2].

Proof. We show the claim by induction on s. If s = 3, then either ¢ = 1, in which case
any independent set disjoint from the edges of A has at most one vertex, or ¢ > 2, and
no vertices are disjoint from A. Hence we get |I| < [(2 — ¢)/2].

Now let s > 3 and suppose the lemma holds for s — 1. If A = (), then |I] < |s/2] =
[(s —1)/2], as desired. So suppose A has at least one edge, say e;. Let C’ be the cycle
obtained by contracting e;. Since e; € A, v;,v;41 ¢ I. Therefore I is still an independent
set in C” and is disjoint from the edges in A\ {e;}. By the induction hypothesis applied
to C',A\{e;},and I, [I| < [((s—=1)—=1—=(c—=1))/2]=[(s—1—¢)/2]. O

Claims 3.1, 3.2 and 3.5 imply the following corollary.
Corollary 3.6. Let A ={e; € E(C) : u1 € e;}. Then |Ng: (u1)NV(C)| < [(s—1—|A]|)/2].

The following general lemmas will be used in conjunction with Claim 3.4 later in our
proof.
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Lemma 3.7. Let C = vy,e1,...,vs,65,v1 be a graph cycle. Let A and B be nonempty
subsets of E(C') such that for any e; € A and e; € B either i = j or |i —j| > ¢ > 2.
Suppose |B| > |A| = a. Then either

(a) a<s/2—q+1, or (b) B=A anda < s/q.

Proof. Suppose first B = A. Then between any two edges of A on C there are at least
g — 1 other edges. This proves (b).

Suppose now B # A. Let A = {e;,,...,e;, } with vertices in clockwise order on C.
We can view C' as the union of a paths P, ..., P, where P; is the part of C' from e;, to
€i,,, (modulo a). Since |B| > a, there is some f € B\ A, say f € P,. Then P, has at
least 2(q — 1) edges not in AU B (and some vertices in B). Also, if e;;, € AN B, then
€i;—1,¢€i;41 ¢ AUB. This means |[E(C)\ (AUB)| > 2(q—1) + (|JAN B| 1) with equality
only if every edge in E(C) \ (AU B) is one of exactly 2(¢ — 1) non-B edges in P, or
appears directly after some edge in A N B (which contains e; ). In this case, we must
have that A C B as otherwise since A # E(C), there will exist some edge e, € A\ B
such that ex1 € V(C)\ (AU B).

Thus if A ¢ B, then since |B| > a,

s> [Al+[B\Al+2(¢—1)+[ANB[>2a+2(¢—-1), (3)
as claimed. Otherwise, in view of f, |B| > a + 1, and instead of (3), we get
s> |Al+|B\A|+2(¢g—1)+|ANB|—-1>(2a+1)+2(¢—-1)—1=2a+2(q—1),
again. 0O

Lemma 3.8. Let C = vy,e1,...,vs,65,v1 be a graph cycle. Let A and B be nonempty
independent subsets in V(C) such that for any v; € A and v; € B\ A, |i —j| > ¢ > 2.
If B\ A#0, then |A| <s/2—q+ 1.

Proof. Let A = {v;,,...,v;, } with vertices in clockwise order on C. We view C as the
union of a paths Py, ..., P, where P; is the part of C' from v;; to v;;,, (modulo a).
Since B \ A # ), we may assume there is y € (B\ A) NV (P,). Then P, has at least
2(q—1) vertices not in AU B and at least one in B. Since A is independent, we also have
at least a — 1 vertices in V(C — P,) \ A. Hence |V(C)| > a+a+2(¢—1), as claimed. O

4. Existence of a cycle of length at least n/2 4+ 1

Similarly to Dirac’s proof, we show that under the conditions of Theorems 1.8(c)
and 1.10 there exists a cycle of length at least ¢t +2 > n/2 4+ 1. We do this in two cases:
r<tandr>t+1.

Lemma 4.1. Ifr <t, and H is an n-vertex r-graph with minimum degree 6(H) > (Til) +
1, then H contains a cycle of length at least t +2 = [(n + 3)/2].
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Proof. Suppose H has no cycles of length at least ¢t + 2. Let @ be a longest path in
H, say Q = vi,e1,02,...,€s_1,0s. Let ¢ = min{t + 1,s}, V(q) = {v1,...,v4} and let
Q(q) denote the subpath of ) with vertex set V(¢) and edge set E(q) = {e1,...,eq-1}.
Among such paths @, choose one in which

(a) the most edges in E(q) are contained in V(q), and @)
(b) modulo (a), the fewest edges in E(q) U{e,} contain vy.

Let Hy = H — E(Q). Since H has no cycles of length at least t + 2 and @ is a longest

path,

all neighbors of vy in H; are in V(q). (5)

Thus dg, (v1) < (ﬁj) By the same reason, the edges e; for ¢ + 1 < i < s — 1 must not
contain v1. So

di(v1) < dg, (v1) + min{g,s — 1} < (z B 1) + min{q, s — 1}. (6)

If ¢ = s < t, then since 3 < r < ¢, this is at most (;j) +t—-1< (Tfl), contradicting
the minimum degree condition. Hence s >t +1 and ¢ =t + 1. Let E’'(¢) = E(q) U{eq}
if e, exists, and E'(q) = E(q) otherwise.

Let Ey be the set of edges in E’(q) not containing v1, E; be the set of edges in
E’(q) containing v, and contained in V(g), and Ey = E'(q) \ (Eo U E1). In particular,
eq € Eg U Ey because vg11 € ¢4 \ V(q).

Let us show that

|E1 U Es| <max{t —1,7}. (7)

Indeed, suppose |E1 U E3| = m. For every 2 < i < t 4 1 such that v; € e;, we
can consider the path @; from v; to vy obtained from @ by replacing the subpath
v1,€1,V2,...,€;,v;+1 with the subpath v;,e;—1,v;-1,...,e1,v1,€;,v;41. This path uses
the same edges as @, so by Rule (a) in (4) it is also a valid choice for a best path, and if
v; is in fewer than m edges in E’(q), then @Q; is better by Rule (b). Hence each of the m
vertices v; such that e; € F1 U Fs is in at least m edges in E’(q). Since there are at most
q =t+1 edges in E’(q) each containing r vertices, this gives m? < r(t+1). If r <t —1,
then m? <t? — 1, so m < t — 1. Otherwise if = t, we get m < t. This proves (7).

Let R = R(v1) be the set of r-tuples contained in V(g) that contain v; and are not
edges of H. By (5), the only edges containing v; and not contained in V' (g) are those in
FE5. Therefore

duto)= (1) + 152l - IR ®)



170 A. Kostochka et al. / Journal of Combinatorial Theory, Series B 168 (2024) 159—-191

So, if Fy = 0, then dp(v1) < (Tfl), a contradiction to the minimum degree condition.
Hence for some j € [t+1], e; € E, ie., v1 € e but e; € V(g). Choose the smallest such
7.

Case 1: j = 1. If there is an edge g C V(¢) in E(H) \ E'(¢) containing {v1,vs} (recall
that g ¢ {eg41,...,es—1}), then by replacing e; with g we get a contradiction to (4)(a).
Thus each of the (f:;) r-tuples g C V(q) containing {vy,ve} is in RU Ej.

Case 1.1: » = 3. For any edge e; containing vy, {v;,v;+1,v1} C e;. Then only ey may
contain {v1,v2} and be contained in V(q). Moreover for 2 < i < t, if v; € e;, then
e; = {v1,v;,vit1} € V(q), so the only possible edge in Es is e,. Hence

dir(or) < (;) CIRI+ {eae ) < (;) - (tz 1) Lo< (rt1>,

a contradiction to the minimum degree condition.
Case 1.2: r > 4. Set E] = {e; € Ey : vg € e;}. It follows from (6) that

N A () ) R A B

In order to have dg(v1) > 1+ (.",), we need (‘7)) < |E{ U Eo| — 1.

If either 7 <t —1 (so |[Eqy UEy] <t—1Dby (7)) or r =t and |Ef U Es| <t —1, then
since r — 2 > 2, we have (ﬁ:;) >t—1>|E|UEs|.

Therefore we may assume that r = ¢ and by (7), |E] U Es| = |Ey U Es| = ¢, implying
E, = FEY. Then every e; € Fy contains vy. Suppose first that |Eq| > 1, and let e; € F.
If f:=V(q)\ {ve} is an edge of H, then because E1 = E{, f ¢ E(Q). We may replace
e; in @ with f and e; with e; because e; ¢ V(q) to obtain a path that is better than Q
by Rule (a). It follows that f € R and

au < (1) -((125)+1n)+imusl = (1 )-e-1enee=( 1),

a contradiction to the miminum degree. So we may assume that |E;| = 0, i.e., all edges
containing vy in E’(g) contain a vertex outside of V'(g). If there exists any edge e C V(q)
in H such that v; € e, then some {v;,v;11} C e since |e] = ¢t. Then we may replace the
edge e; with the edge e in @ to obtain a better path by Rule (a). Therefore |R| = (,.",).
By (8), dg(v) < |E3| = t, contradicting the minimum degree condition.

Case 2: 2 < j < t. In order for e; to contain vi,v;,v;4+1 and a vertex outside of
V(q), we need r > 4. Similarly to Case 1, if there is an edge ¢ C V(¢) in E(H) \ E'(q)
containing {v1,v;41}, then the path

Vj,€5—1,V5—15-+-,€1,V1,0,Vj41,€5+1,Vj42;,-.-,€5-1,Vs
contradicts (4)(a). Hence each of the (*~}) r-tuples g C V/(g) containing {v1,v;41} is in
RUE;.
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So, now we repeat the argument of Case 1.2 word by word with v; in place of vs.
Case 3: j =t + 1. This means all edges containing vy apart from e;y; are contained
in V(g). Then dy(z) < (.*,) —|R| + 1, so we may assume |R| = 0. In other words,

all r-tuples contained in V(q) and containing v1 are edges of H. (9)

Since r < t, there is 2 < 4 < ¢t such that v; ¢ e;11. By (9), we can construct a path on
the vertices v;, v;—1,...,01, Vi+1, Vit+2,. .., Vs+1 all edges of which are contained in V' (q).
So, we will have no edges containing v; and not contained in V(g), a contradiction to
(b). O

Next, we prove the result for r >t + 1.

Lemma 4.2. Let H be an n-vertex r-graph containing at least k edges. If k > r >t +1
and §(H) > [k/2], then H contains a cycle of length at least min{k,t + 2}.

Proof. Suppose that the lemma does not hold for an n-vertex r-graph H, and
the mazimum length of a cycle in H is s, where s < min{k — 1,¢t+ 1}. (10)
We start from a series of new notions and auxiliary claims.

For a path P = vy,e1,v2,...,e0—1,v¢ and i € {1,¢}, let V; = V;(P) = {v; € V(P) :
v; € ¢;}, and set V,;© = V7 (P) = {v;j41 : v € ¢;}.

For each v; € Vi, set PZ-1 = Vi, €1,y .., €1,V1, €4, Vitl,---,€0-1,0g, and for each
) +
v; € V", set
0 _
Pj =Vj,€5,...,€0-1,V¢,€5,V5_1,...,€1,V1.

Claim 4.3. Let P = vy, e1,v2,...,e4—-1,v¢ be a longest path in H. Then no edge e ¢ E(P)
intersects Vi U Vj.

Proof. Suppose that there exists an edge e ¢ E(P) such that v; € e. Then by the
maximality of P, e C {v1,...,vs}. It follows that there exists some v, € e with ¢ > 7,
and hence vi,e1,...,e4-1,v4,€ is a cycle of length ¢. Since r > ¢ + 1, (10) implies
g =1 =t+ 1. This means e = {vy,...,v,}. Swapping e; with e in P and repeating the
same reasoning we obtain e; = {vy1,...,v,.} = e, a contradiction.

For v; € Vi or v; € V;r, we apply the same argument for the longest paths P! or Pf
(note E(P}') = E(P}) = E(P)) and obtain our result again. O

Claim 4.4. The longest path of H contains at least s + 2 vertices.
Proof. Let C = vy, eq,...,vs,€e5,v1 be alongest cycle in H. Since r > t+ 1, (10) implies

s < r, and hence at most one edge of H is contained in V(C) (actually, equals V(C)).
We may assume that if this happens, then such an edge is one of the e;.
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Case 1: For some v; € V(C), some edge e € E(H) \ E(C) contains v;. By our
assumption, there is a vertex u € e\ V(C). Also at most one of e; and e, is con-

tained in V(C), so we may assume there is v/ € ey \ V(C). If v/ = wu then we
have cycle C' = wvq,e9,...,€e,,v1,€,1u,e1,v3 of length s + 1, otherwise we have path
P=1',e1,v9,€a,...,e5,0V1,€,u, as claimed.

Case 2: All edges of H incident to V(C') are in E(C). Since H has at least k > s edges,
there is an edge f fully disjoint from V(C). Since ||J;_, e;| > r+1land n < (r+1)+r,
there is some e;, say ¢ = 1, that contains a vertex u; € f. Let us be another vertex of f.
Then path P’ = vg,e9,...,€es,v1,€1,u1, f,us is as claimed. O

Claim 4.5. The longest path of H contains at least s + 3 vertices.

Proof. Suppose a longest path P = vy,e1,...,e,_1,v¢ has at most s + 2 vertices. By
Claim 4.4, £ = s+ 2.
If there exists some v; € V1 N Vf (i.e., v1 € ej and vy € €;_1), then the cycle

C=v1,€e1...,€_2,Vj_1,65_1,0V,€0—1,..-,Vj41,€5,01

contains all vertices of P except for v;. Therefore |V(C)| > £—1 > s+1, a contradiction.
It follows that

Vvt =0, (1)

By Claim 4.3, [Vi| > dg(v1) > [k/2] and |V,F| > dg(ve) > [k/2]. So, (11) yields
ViuV,"| > k > s+1=¢—1, which means at most one vertex in V(P) is not contained
in V3 U V;r. We now prove that

\E(H)| = s+ 1. (12)

Indeed, suppose that H has an edge e ¢ E(P). By Claim 4.3, en (V43 U VSJ;Q) = (), hence
k+r <n.Since k > r >t+ 1> n/2, this is only possible when k =r = s+ 1 =mn/2
and e is the unique edge with e = V(H) \ (Vi U V,,). Moreover, this implies that
E(H) = E(P)U{e}. So we have V(H)\ V(P) C e, and e contains at least r — 1 vertices
outside of P.

If there exists a vertex v € es1 \ V(P), then v € e, and there exists another v’ €
e\ (V(P)U{v}). We get a longer path by replacing the vertex v, o with the path v, e, v’
in P. So es11 C V(P). Moreover, if there exists a vertex v; € V4 such that v; € esyq,
then we obtain the cycle C' = vy, e1,...,0;, €511, Vs41,€sy- -+, Vix1, €, v1 Of length s+ 1.
Hence Vi Nesy1 = 0. Therefore s + 2 = |V(P)| > lesy1| + |[Vi| = r + [k/2], but we
assumed r = k > 3, a contradiction. This proves (12).

By (12) for every cycle C of length s in H, there is exactly one edge e such that
e ¢ E(C). Among all such pairs (C, e) suppose we chose one to maximize |eNV (C)|. Let
C=wvy,€1,...,0s,€5,V1.
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Since s <r,if e CV(C), then r =s=n/2,k=n/2+ 1. Let v € V(H) \ V(C). Since
v €& e, it is in at least k/2 edges of C. So there is a pair of consecutive edges, say ej, ea
containing v. Then the cycle

/
C'= v1,€1,0,€2,V2,€,V3,€3,...,Us, €5, V1

has length s + 1, a contradiction.
Therefore X := e\ V(C) is nonempty. Define Ex = {e; € E(C) : e, N X # 0}. We
now show that

Ex cannot contain two consecutive edges in C. (13)

Indeed, suppose e1,e2 € Ex. Then there exist v,v’ € X such that v € e,v’ € ep. If
v = v/, then let C’ be the cycle obtained from C' by replacing vertex vy with v. Since
v € V(C")Ne and we chose (C,e) to maximize |V (C) Ne|, we need va € e. Then the
cycle

v1,€1,0,€,V2,€2,V3,...,Us, €5, V1

has length s+ 1, a contradiction. Therefore we may assume v # v’. Then by replacing in
C the segment vq, e1, v, €3, v3 with the path v, eq,v,e,v’, es, v3 we again obtain a cycle
of length s + 1. This contradiction proves (13).

Since |Ex| > 6(H) — 1 > [(k—1)/2] > |s/2] by (10), we may assume by (13) that
if s is odd then Ex = {e1,e3,€5,...,es—2} and if s is even, Ex = {e1,e3,€5,...,€5_1}.
Moreover, again by (13), |Ex| = 6(H) — 1, and therefore for every v € X, the edges
containing v are exactly Fx U {e}. Thus, for every e; € Ex, X U{v;,v;11} C e;.

Let e; € Ex, and suppose v; € e. Then we may replace in C' the segment v;, e;, v; 41
with v;,e,v,e;,v;41 for any v € X to obtain a cycle of length s + 1, a contradiction.
Similarly, we have v;11 ¢ e. If s is even, since the edges of C' alternate membership and
non-membership in Ex, we have e N V(C) =0, i.e., e = X. Otherwise, if s is odd, then
e C X U{us}.

Recall that if e; € Ex, then XU{v;,v;11} C e;. When s is even, we have | X| = |e| = r,
so |e;| > r + 2. When s is odd, we have | X| > r — 1, and hence |e;| >r—14+2>r+ 1.
In both cases, a contradiction to the uniformity of H proves the claim. O

Among longest paths in H choose P = vy,e1,...,0_1,€p_1,v¢ sO that e; has as few
vertices outside of V(P) as possible. By Claim 4.5, £ > s + 3.

Let J(1) be the maximum j such that v; € e; and J(¢ — 1) be the minimum j such
that v; € ep—1

Then

J(1) <min{r+1,s+ 1} and J({ —1) > 3. (14)
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Let (1) (respectively, 8(1)) be the second smallest (respectively, the largest) index
i such that v; € e;. By Claim 4.3, a(1) and §(1) are well defined. Similarly, let «(¢)
(respectively, 3(¢)) be the smallest (respectively, the second largest) index ¢ such that
Vp € €;.

Since ¢ > s+ 3 and H has no cycles with length s + 1 or greater,

B(1) <s, and a(l) > 3. (15)
Claim 4.6. J(1) < 8().

Proof. Suppose J(1) > B(¢). For each ¢ and j such that vy € €;, v; € e; and j > 4, the
cycle Ci,j =Vj,€5,Vj41y---,Vp,€4,Vi,€;-1,Vj—1,...,V2,€1,V; yields that j >+ 3.

In particular, by (14), 8(f) < s — 2. The edge eg(y) forbids vg(s)+1 and vg(gy42 from
belonging to e;. By Claim 4.3, v, belongs only to edges of E(P), and each of the remaining
d(vg) — 2 edges e; containing vy other than eg(ry and e,_1 also forbids at least one
additional v;11 from belonging to e;. So, by (10) and (14), |es NV (P)| < s+1—-k/2 <
(s +1)/2. Hence |e; \ V(P)| > r — (s + 1)/2. By the choice of ey, also |e,—1 \ V(P)| >
r— (s+1)/2. Since (e; \ V(P)) N (es—1 \ V(P)) = 0, we conclude that

s+1

n > [V(P)|+]en\V(P)|+]ec—1\V(P)| > +2 (7“ - > > (s+3)+2r—(s+1) = 2r+2,

a contradiction tor >t+1. O
Define 3'(¢) = min{¢ — 2, 3(¢) + 1}. If (¢) < ¢ — 3, then let

P'(€) = v1,€1,...,08(0), €8(0)> Vs €4—1,Vi—15 - - - s €3(0)+1> VB(£)+1-

If B(¢) =€ —2 and vy_o € €p_1, then let P'(¢) = vi,e1,...,00—2,€0-1,V¢_1,€p_2,v¢. In
both cases,

P'(£) coincides with P up to vgg), has the same vertex set as P,

16

and the last edge is egi (y)- (16)

Let e = {v; : vj41 € ei}. If v; € eq—1 Ney, then the cycle vy, ez,vs,...,v;5,
€0—1,V¢-1,€0-2,...,Vj+1,€1,V2 has s + 1 vertices. Thus, e;—q1 Ne; = 0. As we men-

tioned above, (e1 \ V(P)) N (ee—1 \ V(P)) = 0. By (15), v; and v also cannot belong to
er_1. So,

er-1NM(er) =0 where M(er) = Mp(er) =e] U(er \ V(P)) U {uva}. (17)

Now we consider some cases.
Case 1: v3 ¢ eq. Then vy ¢ e, and hence |M(eq)| = r. Since r > n/2, by (17) this
is possible only if r = n/2 and ey—y = V(H) \ M(ey1). In particular, vy_o € e;—1. By
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Claim 4.6, vs,vs41,...,0¢ € eg—1 and in particular, vy_o € e;—1. Thus by (16), we can
apply the same argument to P’(£) and get that ez sy = V(H) \ M(e1). But these edges
are distinct, a contradiction.

Case 2: v3 € e; and there is v € (ex — V(P)) \ e1. Then v ¢ ey_1 as otherwise
v, €9,V9,€1,V3,€3,...,V0_1,€4_1,0 is a cycle with s+3 —241 > s vertices, contradicting
that C' is a longest cycle. Hence ep—1 = V(H) \ (M (e1) U{v}). Now as in Case 1, the
same holds for eg(y) in place of e;,—1, contradicting the fact that they are distinct.

Case 3: v3 € e1, ea —V(P) C e and v1 € ea. Let Py = vy, e3,v2,€1,03,€3,...,0s. Note
that V(P1) = V(P). By the choice of e1, |e2 \ V(P)| = |e1 \ V(P)], and hence Claim 4.6
holds for e; in place of e; and P; in place of P. Define M(e3) = Mp, (e2) similarly to
M (eq). In this case, eg—1 N (M(e1) UM (e2)) = 0, so since |M(e1) U M(ez2)| > r (because
|M(e1)|,|M(e2)| > r —1and e1 # e2), we get e,—1 =V (H) \ (M(e1) UM/(ez)), and the
same holds for eg(y), a contradiction again.

Case 4: v3 € e1, e — V(P) C e1 and vy ¢ eq. If there is v € es \ V(P), then path

Py =v,e3,v9,€1,03,€3,...,vp differs from P; only in the first vertex. So we can repeat
the argument of Case 3 word by word.

If e5 contains a vertex v; for some i > r+2, then the cycle vs, e3, vy, ..., v;, €2, V2, €1, V3
has i —1 > r + 1 vertices.

The remaining case is eo = {vg, v3, ..., 041} If for some 3 <14 < r,v; € eg_1, then the
cycle Cy = U411, €41, - -+, Vo—1,€0—1,Viy €i—1,Vi—1,y...,U3,€1,V2,€2,V;41 has £ —2 > s+ 1

vertices. Thus {v1,...,v.} Neg_1 = 0. It follows that e,y = V(H) \ {v1,...,v,.}, so
P’(0) exists. If 3 < B(¢) < r, then the cycle

VB(0)+15 EB(0)+15 - -+ VL, €38(0), VB(£), €B(£)—1,VB(£)—1, - - -, U3, €1, V2, €2, Vg (4)+1

has £ — 1 > s + 2 vertices. Thus 3(¢) > r + 1, and hence the defining vertices of the last
edge egr (g of P'(£) are not in {vy,...,v,}. This is a contradiction. O

5. The path P in a best cycle-path pair (C, P) is nontrivial

Consider a best cycle-path pair (C, P) with C = vq,e1,v9,...,€5_1,0s,€s,v1 and
P = uy, f1,u2, ..., fr—1,ue. In this section, we rule out the case that P contains only
one vertex, i.e., £ = 1.

Observe that if £ = 1 and (C, P) is a best cycle-path pair, then every edge of H’
contains at most one vertex outside of V(C'), otherwise we find a longer path.

5.1. The case of £=1 andr >t

In this subsection we prove the following lemma.

Lemma 5.1. Let n, k, and r be positive integers such that n > k and r > t. If H is
an n-vertex r-graph with at least k edges such that 6(H) > [k/2] and c¢(H) < k, then
L= |V(P)| > 2.
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Proof. Suppose £ = 1. Since ¢(H) < k, Lemma 4.2 implies that t+2 < k—1. We consider
two cases.

Case 1: Some e € E(H') contains u;.

By Claim 3.1, no two vertices of e can be consecutive on C. Since e C V(C)UV (P), e
contains r — 1 vertices of C. Thus r — 1 < |s/2]. We know that r > n/2, so this implies
that either s = n — 2 and n is even, or s = n — 1. In either case, there are at most two
vertices in V(C) \ e that are consecutive along C. Thus any edge f € E(H') with f # e
containing w1 must have the property that v; € e and v;11 € f for some i. However,
replacing e; in C with e, uy, f extends C, so such an edge f cannot exist. If u; € ey,
then v;,vj41 ¢ e by Claim 3.2. Thus u; is contained in at most one edge in E(H’) and
at most one edge in E(C). So [k/2] < §(H) < dg(u1) < 2, which can only be true if
ke {3,4}. Since 3<t+2<s<k—1<3,s=3, and therefore e must contain at least
2 consecutive vertices in C', contradicting Claim 3.1.

Case 2: Only edges of C' contain u;.

Since ¢ = 1, we divide the proof into the following two cases.

Case 2.1: There is some edge e € E(H') with e C V(C).

By Claim 3.3, up is contained in at most one edge of {e; : v; € e} and at most one
edge of {e;_1 : v; € e}.

If the vertices of e are not all consecutive along C, then there are at least r + 2 edges
in {e; : v; € e} U{e;_1 : v; € e}. Since uy is contained in at most two such edges, e
prohibits at least r edges of C from containing u;. Since u; is contained in at least k/2
edges of C, we have

r+k/2<s<k-—1,

which implies r < k/2 — 1, contradicting that r > n/2 > k/2.
If the vertices of e are consecutive along C, by symmetry say e = {v1,...,v,}, then e
prohibits at least r — 1 edges of C' from containing u;, so

r—1+k/2<s<k-1

This implies r < k/2, which gives a contradiction unless k = n is even, r = n/2,
s =k—1=mn—1, and u; is contained in exactly two edges of {e; : v; € e}U{e;—1 : v; € e}.
The only two such edges that u; can be contained in are e, and es because every other
such edge e; satisfies v;,v;41 € e. Thus u; must be contained in e, and e;. Now consider
the cycle C' formed by replacing e,._; with e in C. Since u; ¢ e,_1, (C’,u1) is also a best
cycle-path pair. Since s = n — 1 and uy ¢ V(C) = V(C'), we have that e,_; C V(C’).
Let v; €ey—1\e (soi € {r+1,...,s}). Since u; € e, and v, € e,_1, the same argument
applied to C' and e,_; implies that uy ¢ e;. Thus e,_; prohibits u; from belonging to
an additional edge of C. It follows that at least r = k/2 edges of C' cannot contain u;
and k/2 edges of C must contain u;, contradicting that s = k — 1.

Case 2.2: Each e € E(H’) contains exactly one vertex v ¢ V(C'). Since C has at most
k — 1 edges, and |E(H)| > k, E(H') # 0. Fix an edge ¢ € E(H') and corresponding
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vertex v ¢ V(C). We must have v # u; because u; is contained only in edges of C. As
before, u; is contained in at most one edge from each set {e; : v; € e} and {e;_1 : v; € e}.
If the vertices of eNV(C) are not all consecutive along C, then e prohibits at least r — 1
edges of C' from containing ;. Since u; must be contained in at least k/2 edges of C,
we have

r—1+4k/2<s<k—1, (18)

which implies » < k/2. This gives a contradiction unless &k = n is even, r = n/2, and
s = k—1. However, u; and v are both outside of C, so s <n—2 = k—2, a contradiction.

If the vertices of e N V(C) are consecutive along C, then e prohibits at least r — 2
edges of C' from containing u1, so

r—24k/2<s<min{k —1,n — 2}.

This implies r < k/2 + 1, which gives a contradiction when k < n — 3.

If K > n— 2, then we get a contradiction unless s = min{k — 1,n — 2} and r = [n/2].
If there exists some f € E(H') with v € f and f # e, then f prohibits at least one
additional edge of C' from containing u1, using the same arguments as for e. In this case,
we have r — 1 + k/2 < s, which gives a contradiction similar to (18). Otherwise, v must
be contained in at least k/2— 1 edges of C. If v; € e then v ¢ e;, e;_1 by Claim 3.2. Thus
e prohibits at least r edges of C' from containing v, so r + k/2 — 1 < s, giving the same
contradiction as (18). O

5.2. The case of t=1 andr =1

We first prove a claim that will be used in this subsection and the following.

Claim 5.2. Let n, k, and r be positive integers such that n > k and r < t. If H is an
n-vertex r-graph with at least k edges such that 6(H) > (Til) +1,c¢(H) <k, and £ =1,
then wy is contained in at least 2 edges of C'.

Proof. Suppose that u; is contained in at most one edge of C'. By Claim 3.1 no two
vertices of N (u1) are consecutive. Since s < n—1 < 2¢t+1, this implies that | Ny (ug)N
V(C)| < t. But since £ = 1, Ny (uy) C V/(C). So, since |Ng(uy)| > (Tfl) + 1, u; must
be contained in an edge of C, say u; € e,_1. Then by Claims 3.2 and 3.1, the (,”)
edges of H' containing u; must be disjoint from {vs_1, vs} and nonconsecutive along C'.
This is possible only if s =2t + 1 and |Ng/(u1) NV (C)| =t.

We may assume that X := Ng(u1) = {v1,vs,...,v2:—1 }. Then u; must be contained
in the (Tﬁl) edges of H' consisting of u; and r — 1 vertices of X.

We now will find an edge g # es; such that |g\ X| > 2 and |[gN{va,vy,...,v9:—2} > 1.
To do so, choose vy ¢ eg. Since dp(vaj) > (Til), there is an edge g containing vy; and
at least one additional vertex not in X. Notice that this vertex cannot be ui, so since X
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contains all vertices of odd index other than vy.11, it must be either vo; 41 or be vy for
some 1 < j" <t 5 # 4.

We use g to find a hamiltonian cycle. Let fo;_1 be an edge in E(H’) containing both
w1 and wvej_1, which must exist because vo;_1 € X. First suppose that g € E(H’). If
vat+1 € g\ X, then we obtain the hamiltonian cycle

Ci = V25,9, V2t+1,€2t+1,V1,€1,...,VU25—1, f2j—17U17 €2t, V2t, €2t —15 -+ -, V25

Otherwise, we have vy;r € g\ X for some 1 < j' <t, j' # j. Let foj_1 # foj—1 be an
edge of H' containing both uy and vg;,_1. Then the cycle

V25, 3,025/, €25/, V2541, €25/ 41,5 - - - 5 U251, f2j717 Uy, f2ju1, V2j'—1,€25/—2,...,U2j

is hamiltonian.

Now we may assume that g = e; for some ¢ # 2t. If i is even, we may orient C
backwards starting from wve; causing e; to become an odd-indexed edge. Thus we may
assume ¢ is odd. Let f; # fo;j_1 be an edge of H' containing both uy and v;. If 25 # i+1,
then we have the hamiltonian cycle

Co = V25, §, Vit 1, €ig1, Vig2, €42, - -, V251, f25-1, U1, fi, Uiy €51, - - ., V25

If 2j =i+ 1 and vyq1 € g\ X, then g = ey;_1 and we obtain the cycle C;. Otherwise,
2j =i+ 1 and there is some vy, € g\ X with j # j'. Swapping the roles of j” with j in
the cycle Cs gives a hamiltonian cycle. O

Lemma 5.3. Let n, k, and r be positive integers such that n > k and r = t. If H is
an n-vertex r-graph with at least k edges such that 6(H) > r+ 1 and c¢(H) < k, then
= |V(P)| > 2.

Proof. Suppose ¢ = 1. We consider cases based on the edges containing w1 and the edges
outside of C. Note that since §(H) > r + 1, H must have at least n(r +1)/r > n+3
edges.

Case 1: Some e € E(H’) contains u;. Note that no two vertices of e N V(C) can
be consecutive on C' by Claim 3.1. Thus r — 1 < |s/2], so s > n — 3. Thus we have
n—3<s<n-—1,and there are at most three edges e; in C with v;,v;+; ¢ e. Observe
also that by Claim 3.2, if v; € e, then uy ¢ e;,e;_1.

Case 1.1: There are at most two e; in C' with v;,v,11 ¢ e. Then there are at least
r4+1—2> 2 edges of E(H') containing uj, so consider f € E(H') with u; € f #e. If
for some 4, v; € e and v;41 € f (or vice versa), we replace e; with e, uy, f to obtain a
longer cycle. If no such i exists, then for all v; € f we have that v;_1,v;41 ¢ e. Since
f # e, we can fix a j such that v; € f\ e. Then by Claim 3.2 f prohibits e;_; and e;
from containing u;, which were not prohibited by e. Therefore no edges of C' contain uy,
so there are at least r + 1 edges in E(H') containing u;. Then there must exist some
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such f' € E(H') and some i (by 7 +1 > (,.",)) such that v; € f’ and v;4q is in e or f,
which allows us to replace e; and obtain a longer cycle.

Case 1.2: There are three edges e; in C with v;,v;11 ¢ e. This case can only occur
when s = n — 1 and n is even, so we have s = 2t + 1. We first suppose that r > 4
and deal with the case r = 3 separately. Thus we have at least r + 1 — 3 > 2 edges of
E(H') containing u;. As in Case 1.1, we consider f € E(H') with u; € f # e, and we
may assume that for all v; € f we have vj_1,vj41 ¢ e. We also have some j such that
v; € f\ e, which gives that u; ¢ e;j_1,e;. Thus at most one edge of C' contains u;.

If there is more than one vertex in f’\ e for any f’ € E(H') containing uy, then no
edges of C' contain u; and we can repeat the arguments of Case 1.1 to obtain a longer
cycle. By symmetry, the same holds for the edge f, so Ng/(u1) = e U f. Notice that
leU f| = r, so there are at most r edges of E(H') containing u. Since d(u1) > r+1, this
gives that u; is contained in exactly those r edges along with one edge of C, contradicting
Claim 5.2.

We now handle the case r = 3. Notice that in this case, n = 8 and s = 7. If u; is
contained in at least two edges of H’, then we can in fact follow the above arguments.
Thus we may assume that u; is contained in exactly one edge of H' and three edges of
C. Up to symmetry, we have two cases.

First, consider the case u; € e = {uj,vs,v5} and u; € es,eg, er. The cycle C; =
v1,€1,V2,...,06, €6, U1, €7, V1 has the same edge set as C' and misses only the vertex vy.
If v7 is not contained in an H' edge, then (C1, v7) is a better cycle-path pair than (C,uy),
a contradiction. Then v; € f € E(H'), and observe that f cannot contain any vertex in
{u1,v1,v6} by Claim 3.2 since vy € eg, e7.

We now consider the possibilities for the edge f. If v3 € f, then we obtain the hamil-
tonian cycle v, f,vs3,es, ..., vq, €6, U1, €, V2, €1, V1, €7, V7. A symmetric argument gives a
hamiltonian cycle when vy € f. Thus f = {v7,v2,v5}, and f must be the only H' edge
containing v7. Then vy € f, eg, 7, and some ¢’ € E(C). By Claim 3.2, ¢/ # e1, ea, €4, €5.
Thus e’ = e, but we already have e3 = {u1,v3,v4}.

The second case for r = 3, up to symmetry, has u; € e = {u1,v9,v4} and u; €
es, eg, e7. We consider the same cycle C; as above, and again we have that the edge
f € E(H') containing v7; cannot contain any vertices in {u1, vy, vg}.

If v3 € f, we obtain the hamiltonian cycle vy, f,v3,ea,...,v1,€7,u1,€,04, €4, ..., €5, V7.
If v5 € f, we have the hamiltonian cycle vy, f,vs, e5,vg, €6, U1, €, V4, €3, . .., V1, €7, V7.
Thus f = {v7,vs,v4}, and f must be the only H' edge containing v7;. By Claim 3.2,
e’ # ey, eq,€e3,eq, 50 € = e5. But we already have e5 = {uq, €5, e}

Case 2: Only edges of C' contain u;.

Case 2.1: There is some edge e € E(H') with e C V/(C).

By Claim 3.3, u; is contained in at most one edge of {e; : v; € e} and at most one
edge of {e;—1 : v; € e}.

If the vertices of e are not all consecutive along C, then e prohibits at least r edges
from containing w,. Since u; must be contained in at least r + 1 edges of C, we have
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r+r+1<s.

Thus we know r < (s — 1)/2, so we reach a contradiction unless k = n and s = n — 1.
Notice that if the vertices of e are in more than two consecutive strings in C, then e
prohibits at least r + 1 edges and we reach a contradiction. Assume without loss of
generality that e = {v1,...,v;,Viy,...,0i5} With 43 > 43 + 2 and i3 < s — 1. We must
also have that w; is contained in each edge e; of C such that v;,v;41 ¢ e, and uy is
contained in exactly one of e;,,e;, and exactly one of €;,_1,€,_1.

Suppose first that u; is contained in e;, and e;,_1. Let f € E(H') with f # e. Since u;
is the only vertex outside of C, f C V(C). If there is some v; € f such that u; ¢ e;_1, e;,
then f prohibits at least one additional edge from containing u;, giving a contradiction.
Thus f C e U {vi41,0n—1}. Since f # e, f must contain at least one of v 41, vp_1.
However, if v;, 1 € f, then v;, ¢ f by Claim 3.3 and the fact that u; € e;,41,€;,, and
similarly if v,_1 € f, then v;, ¢ f. Therefore we have three distinct possibilities for f
(f=e—vy +vigq1, f =€ —viy, +0p_1, and f = € —v;; — Vi, + Viy11 + Vp_1), and
there are at least n +3 — (n — 1) — 1 = 3 edges in E(H') distinct from e. Hence each of
the three possibilities are edges in H'. Notice also that for any e; such that v;,v;11 € €,
we can swap e and e; to get another maximum cycle (this cycle may not be in a best
cycle-path pair). Since e; # e and e; # f, f € E(H'), we must have that e; forbids at
least one additional edge from containing ui, a contradiction.

Now suppose instead that u; is contained in e;, and e,_;. Let f € E(H') with
f # e. As in the paragraph above, we have f C e U {v;,_1, Viz4+1}, unless iy = 1, which
we will handle separately. If ¢ # 1, then by a similar argument to above we reach a
contradiction. If 4; = 1, notice that u; must be contained in r + 1 consecutive edges of
C: €541, €igt2y- -+ €n—1,€1,€2,...,€1,_2. In this case, either f = (e—wv1)U{v;} for some
v; ¢ e. Similarly, for any e; such that v;,v;11 € e, we must have e¢; = (e — v1) U {v;},
v; ¢ e, because otherwise we may swap e for e; to see that an additional edge of C
is prohibited from containing w;. This gives that no f € E(H'), f # e and no ej,
1o < j <13 — 1 contains v;.

Consider the cycle C' formed by swapping u; with v; and e with the central edge
amongst €;,, €i,41,...,€i;—1, call it eg. That is,

!
C" = u1,e1,V2,€2,U3, ..., €k—1, Uk, € Ukt 1, Cht1, Vk425 - -+ En—1, U1-

Then vy is contained only in edges of C’, so (C’,v1) also is a best cycle-path pair under
the same conditions as (C,uq). If the edges of C’ containing v are not all consecutive
in along C’, then we must be done by a previous argument applied to C’ instead of C.
If » > 5, then we immediately see that v; € e but v; ¢ ex_1,€ex11, so we are done. If
r = 3,4, then we may assume k = iy and say v1 € €;,-1, €i,—2, €;,—3 in order for the
edges of C’ containing v; to be consecutive. Then any f € E(H') with v;, € f # e
must have v;,_1,v;,41 ¢ f, since if v;,v; € f, then v; cannot be in both e;,e; and
cannot be in both e;_1,e;_1 by Claim 3.3. However, there is no such edge f € E(H’),
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so no such f contains w;,. There is exactly one possibility for f not containing v;,:
f=(e\{v1,vi, }) U{viy—1,vis+1}. This contradicts the fact that we have at least 3 edges
in E(H') distinct from e.

The case u; € e;,,en—1 is symmetric to the case u; € e;,,€;,_1, and the case u; €
€i,—1, €i, 18 symmetric to the case u; € e,_1,€;,, S0 we omit them.

We may now assume that all edges of F(H’) contained entirely in V(C) are each
consecutive in C, and that e = {v1,vs,...,v,}. Then e prohibits at least r — 1 edges of
C from containing uy, so

r—14+r+1<s

and thus r < s/2. If s < n — 3, we immediately get a contradiction. If s = n — 2, there
exists a unique v ¢ V(C) with v # u;. We must have u; € e,,e,41,...,e,—1 because
otherwise e prohibits r edges of C' from containing u; and we reach a contradiction.
Furthermore, we must have that each edge in E(H') contains v, since any additional
consecutive edge of H' contained entirely in V(C') would prohibit at least one additional
edge from containing u;. Thus v is contained in at least (n +3) — (n —2) — 1 = 4 edges
of E(H").

For e, € E(H') containing v, we have that if v;,v; € e, NV(C), then by Claim 3.3 u,
cannot be contained in both e; and e; and cannot be contained in both e;_; and e;_;.
Thus, any such e, can contain at most one vertex outside e U {v}, and further that if
e, contains some vertex outside of e U {v}, then vy, v, ¢ e,. Therefore there exist e,, €],
containing v and v;, v;41 € V(C) such that say v; € e, and v; 1 € €. We are able to
extend the cycle C' by replacing e; with e,, v, e}, contradicting the maximality of C.

Therefore s = n — 1. Then w; is the only vertex outside of C, so there are at least 4
edges of E(H’), including e, each with their vertices consecutive along C'. This prohibits
at least 7 — 1 + 3 edges of C' from containing w1, giving a contradiction.

Case 2.2: Each e € E(H’) contains some v ¢ V(C).

Let e be such an edge and v # wu; the unique vertex in e \ V(C) (by £ = 1). Note that
as in the previous case, u; is contained in at most one edge of {e; : v; € eNV(C)} and
at most one edge of {e;_1 :v; €eNV(C)}.

If the vertices of e N V(C) are not all consecutive along C, then e prohibits at least
r — 1 edges of C' from containing u;. Thus

r—14+r+1<s,

sor < /2. If s < n—3, we immediately get a contradiction. Since uy,v ¢ V(C'), we must
have s = n — 2 and thus every edge of H' contains v. Hence v is contained in at least
(n+3)—(n—2) =5edgesof E(H'). Fore, f € E(H'),ifv; € e, v;41 € f for some %, then
we can replace e; with e, v, f to extend C. Since e is not all consecutive, it prohibits at
least 7 + 2 vertices of C' from being contained in f. However, C' has at most 2r vertices
and f must contain at least » — 1 of them, a contradiction as r+2 47 —1 > 2r.
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Thus we may assume the vertices of e N V(C) are all consecutive along C. Then we
have

r—24+r+4+1<s,

and r < (s +1)/2. If s < n — 4, we get an immediate contradiction. If s = n — 2, then
similarly to above, e prohibits r+1 vertices of C from being contained in any f € E(H').
Thus there are only r — 1 vertices remaining in V' (C) that can be contained in any edge
of H', but there are at least four edges of H' distinct from e, a contradiction.

Finally, we have s = n — 3, and there is some v’ ¢ V(C) distinct from u; and v. In
this case, there are at least (n+3) — (n — 3) = 6 edges of H’, so we may assume without
loss of generality that v € f € E(H’) for some f # e. However, e prohibits 7 + 1 of the
at most 2r — 1 vertices of C from being contained in f, a contradiction. O

5.83. The case of £ =1 andr <t

Lemma 5.4. Let n, k, and r be positive integers such that n > k and r < t. If H is an
n-vertez r-graph with at least k edges such that §(H) > (") + 1 and c¢(H) < k, then
L=|V(P)| > 2.

Proof. Suppose £ = 1. Since every edge in H' contains at most one vertex outside of C,
By Claim 3.1, [Ny (u1)| < [s/2] < t. Let by be the number of edges in E(C') contain-
ing u;. By Claim 5.2, we must have b; > 2.
Corollary 3.6 additionally gives that if 2 < by < s—1, then |[Ng/(u1)| < [(s—1—b1)/2],
and if by = s, then |Ng/(u1)| = 0.

Notice that
t t—1 t t—1
- > — =t-1
(1)-(20)=6)- (%)

for t > r + 2. Similarly, if ¢t = r + 1, then (Tfl) — (f,j) = (;) —(t—1)>t—1. Thus if
b1 <t —1, we have

d(uy) < by + <|Nf’_(7“f)|> <t-1+ (i:i) < (Til),

a contradiction to the minimum degree. Therefore we may assume b; > ¢. This gives
that |Ng(u1)] < [(s—t—1)/2] < [t/2].

We have that
<r i 1) - (J?J 2 (;) - (%1) >n—1>b
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whenever [¢/2] > r+ 1 and ¢ > 7. If [t/2] = r, then we instead have (,°) — (“/21) >
(!)—T[t/2] > n—1whent > 7.1If [t/2] <r—1, then we have d(u;) < b;+1 < n < (, ‘)
whenever ¢ > 6. Hence for ¢t > 7, we have d(u1) < by + (Wﬂ) < 0(H), a contradiction.

For the remaining values of ¢, we consider whether or not | Ng (u1)| = 0. First suppose
we have |[Ng:(u1)] > r — 1 and hence [(s — by — 1)/2] > r — 1. When t = 4, we need
s € {8,9}, by € {4,5} (since by > t) to have [(s—b; —1)/2] > r—1. In every case we have
|Npo(ui)| =r—1, but then d(u1) <5+1< 7 < §(H). When t =5, we have s < 11 and
so we need by < 7 to have [(s—b;—1)/2] > r—12> 2. Hence d(u1) < 7+1 < 11 < §(H).
When ¢t = 6, we have 6 < b < s < 13, s0 [(s —b; — 1)/2] < 3 and hence we are
done if r > 5. If [(s — by —1)/2] = r — 1, then d(u;) < by +1 < 16 < §(H). If
[(s —b; —1)/2] = r = 3, then we must have b; < 6, so d(u1) < 6+3 < 16 < 4(H), a
contradiction (the case t = 6,7 = 4 is done in the preceding paragraph).

For the final case of [Ny (u1)| = 0, we prove a brief claim.

Claim 5.5. If [Ny (uy)| =0, then by < s —r + 2.

Proof. Suppose that b; > s —r + 3. Notice that we must have E(H') # () because there
are at least k > s edges. Let e € E(H'), and notice that |eNV(C)| > r — 1 > 2. Thus
there must exist v;,v; € e such that u; € e;,e; or uy € e;_1,e;-1 because u; is in all
but at most r — 3 edges of C'. However, we can then consider the cycle

V1,€1,V2,...,€;-1,Vi,€6,V5,€5_1,Vj—-15--+,€i4+1,Vi4+1,€4,U1,€5,Vj4r1,€541,---,
€5—1,Vs, €5, V1,

which is longer than C, a contradiction. O

If we do have |Ng/(u1)| = 0, then Claim 5.5 gives that by < s—r+2<n—r+ 1.
Then d(u;) <n —1r+1 < d(H) except in the case t = 4,r = 3,b; > 7, which we handle
separately.

Case 1: s = n — 1 € {8,9}. Therefore s — by < 2. Let e € E(H'), and notice that
e C V(C) because |[Np/(u1)| = 0. As in the case of £ = 1, r > t, e prohibits some edges
of C' from containing u;. That is, if v;,v; € e, then u; cannot be contained in both
e; and e; and cannot be contained in both e;—; and e;_;. If e is not all consecutive,
then e prohibits at least 3 edges of C from containing u;. This contradicts the fact that
s — by < 2. If e is all consecutive, say e = {v;, V11, v;1+2}, notice that if u; € e;, then by
Claim 3.3 we must have u; ¢ e;_1,€;41, €12, reaching the same contradiction. Thus we
have u; ¢ e; and similarly u; ¢ e;11. Consider the cycle formed by swapping the roles
of e and e;. Then e; must prohibit at least one additional edge of C' from containing u,
reaching the same contradiction again.

Case 2: s = 8, n = 10, by = 7. If any edge of E(H') is contained fully in V(C),
then we follow the same arguments as Case 1 to reach a contradiction. Thus we may
assume every edge of E(H') contains the unique vertex x # uy outside C. Let e; be
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the unique edge of C' which does not contain u;. For any edge e € E(H'), we must
have v;, v;41 € e, as otherwise by Claim 3.3 e will prohibit at least two edges of C' from
containing u;. However, there are at least two such edges e, e’ € E(H'), and this gives
e = €/, a contradiction. O

6. Proof of Theorem 1.8(c)

Proof. Let n, k, and r be positive integers such that n > k and k—2 > ¢ > r > 3. Recall
that t = [(n—1)/2]. Let H be an n-vertex, r-graph with 6(H) > (,.*,)+1. As in previous
sections, consider a best cycle-path pair (C, P) with C' = vy, eq, v, ..., es_1, Vs, €5, v1 and
P = uq, fi,us,..., fo_1,us. We use the same notation of He, Hp, H', and additionally
define the following. For a vertex v of a hypergraph F', F'{v} will denote the set of the
edges of F' containing v.

By Lemmas 5.3 and 5.4, £ > 2. By Lemma 4.1, s > t + 2. Therefore £ < n — s <
2U+2— (t42) =t

Recall for j € {1,¢}, B; = Hc{u;}, and set b; = |B;|. By symmetry, we may as-
sume by, > b;. By Claim 3.4 and Lemma 3.7 applied to the graph cycle with edges

V1V, Va3, . .., VU1, We get that either
by < (s+2)/2-1¢, (19)
or
B; = By and b < s/t. (20)

Recall that by the maximality of V(P) all edges in H' containing u; or ug are contained
in V(C)UV(P).

For j € {1,¢},1et A; = Ng/(uj) NV(C) and a; = |A;|. By Claim 3.1, A; contains no
consecutive vertices of C for j € {1, ¢}.

Case 1: A; = (). Then all edges in H’' containing u; are contained in V(P).

Case 1.1: r = t. Since ¢ < t, the only possibility of an edge g € E(H') containing 4
is that £ = ¢t and g = V(P). But then we can switch g with fi, contradicting Part (iv)
of choosing (C, P). Thus Ng/(uy) = 0. Then

by > 8(H) — |[E(P)| > (t+1)— (0 —1) =t — L +2. (21)

So, if (19) holds, then since s <n—¢ < 2t+2—¢, by < (2t+2)/2 -4, contradicting (21).

If (20) holds, then comparing with (21) we get t — £+ 2 < (2t + 2 — £)/¢, which is
equivalent to £(t — ¢ + 3) > 2t + 2. This can hold only when ¢ = 2 and s = 2¢. In this
case by =t and By = Bj. Since an edge in By cannot be next to an edge in B; on C' by
Claim 3.4, we may assume that B; = By = {e1,e3,...,e2:_1}. Sincen = s+ =s+2, fi
contains a vertex of C', say v1. But then we get a longer cycle by replacing path vy, eq, vo
in C with path vy, f1,u1,€e1,v2, a contradiction.
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Case 1.2: 3 < r <t — 1. The number of edges in H’ containing u; and contained in
V(P) is at most (fj) So,

b121+(ri1>_(f:i>_(€_1)>1+<;>_(651)_€+1

:(t+€—2)2(t—£+1)_€+2_ (22)

If (19) holds, then since s < 2t 4+ 2 — ¢, we get

t+0—-2)(t—¢+1 2t +4 — /¢
(t+ )( +)7€+2§+—7€’
2 2
which is not true for 2 < /¢ <t ast > 4.
If (20) holds, then we get
t4+0—-2)(t—L(+1 2t+2—/

l

This does not hold in the range 2 < ¢ <t —1 as ¢t > 4. Suppose now ¢ =t > 4. If all
(fj) r-subsets of V(P) containing u; are in H’, then we can replace f1 with {uq,...,u,}
contradicting Part (iv) of choosing (C, P). Thus, in this case instead of (22), we have
by > (t+€—2)(t—¢+1)/2— £+ 3 and so instead of (23), we have

— 43S T

(t+0—2)(t—L+1) 2 +2—/
2 ¢

which is not true for £ = ¢ > 4. This finishes Case 1.

Case 2: Ay # () and By # (. If there are v; € Ay and e; € B, such that j > 4
and j —i < £ — 2, say v; € g € FE(H'{u1}), then by replacing in C the path
Vi, €3, Vit1, -+ -, €5, Vi1 With the path v, g,u1, fi,..., fo—1,ue, €5,vj41 creates a cycle
longer than C, a contradiction. Thus such v; and e; do not exist. So each interval of
C'\ A; contains a vertex not covered by By, and each such interval containing an edge in
By has at least 2(¢ — 1) such vertices. Since the edges in By cover at least by + 1 vertices,
we get

a1+ (@ —142(0—-1))+(be+1) <s<2t+2-—1 (24)

Since £ > 2 and by the case by > 1, (24) yields 2a; + 2¢ — 1 < 2¢, so by integrality
t>a+ 4. (25)
If r = t, (25) yields that H'{u;} contains only one edge, namely, g = 4; UV (P), and

r =1t =ay + ¢. But then we can switch g with f; and still have the best cycle-path pair
(C, P') where P’ is obtained from P by deleting f; and adding g instead. So, there is a
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vertex v; € (fi NV(C)) \ A;. This is one more vertex that is not next to any v; € A;
and is at distance in C at least ¢ from B,. Thus in this case instead of (24) we get
a; + (ap +1+2(f —1))+ (bg +1) < s and hence t > a; + £ + 1, a contradiction to
r=t=a +V<.

Suppose now 3 < r <t — 1. Then, since by > by,

1+ (rfl) <d(ur) =dg(u1) + b1 +dup(ug) < <a14;(_€1 U) +bo+ (£ —1).
So,
t(t—l)—(a1+l;—l)(a1+€—2) _ (;) - <a1+2€—1) . (Tt1> - (a1:€1—1>

<bg+L¢—2.

Plugging in the upper bound on by 4+ £ — 2 from (24) and rewriting (¢(t — 1) — (ay + £ —
)(as +£—2))/2as ((t+a1 +£€—2)(t —ay —£+1))/2, we obtain

(t+ar+0—2)(t—ai—L+1)
2

<t —ay —(+1). (26)

Since by (25), t —a; —£+1 > 0, (26) simplifies tot +a1+£—2 < 4. Since t > r+1 > 4,
a1 > 1 and £ > 2, this is impossible.

Case 3: Ay # 0, By = B; =0, and Ay # A;. By Case 1, a; > 0 and a; > 0.

If i <4’ < i+ ¢ and there are distinct g1,g, € E(H') such that {v;,u1} C ¢1 and
{vir,up} C ge, then replacing path v;, e;, ..., vy in C with the path v;, g1, u1, f1,..., fo—1,
g, ge, Vi creates a cycle longer than C, a contradiction.

By Claim 3.1, A; U A, does not contain consecutive vertices of C. We may assume that
a1 < ag. Then since Ay # A1, Ap— A1 # (. So, applying Lemma 3.8 with A = A;, B = Ay,
and g =041,

a1 <(s+2)/2-0-1<(2t+2-0)/2—L<t—1. (27)
Also using that B; = 00,

dH/(ul)de(ul)—bl—(€—1)21+(Til> —o—£+1:2+(rf1) _0(28)

Case 3.1: r = t. Then each edge g € H'{u;} has at least t — ¢ vertices in V(C) with
equality only when V(P) C ¢. By (28) and ¢ < ¢, dg/(u1) > 2. Hence there are at least
two edges of H' containing uy, implying a; > (¢t + 1) — £. This contradicts (27).

Case 3.2: 3 <r <t— 1. Then dy(uy) < (alj_él_l). So, by (27), dg(uy) < (fj), and
together with (28), we get
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t t—1
2 — <
Jr<7“—1) _<r—1)7

which is not trueas 2 <r—-1<t—2and ¢ <t.

Case 4: A) #0, B, = By =), and A; = A;. Let A1 = {x1,...,2,, } with vertices in
clockwise order on C'.

Case 4.1: Between any x; and x4 there are at least ¢ vertices. Then (¢ +1)a; < s. If
ay > 2, then (27) holds by 2 < ¢ < t and some calculations, and we repeat the argument
of Case 3. Suppose (27) does not hold, so a; =1 and Ay = A; = {v1}. Since

t t—1

dH,(U1)>1+(T—1>_(E_l)>1+<7“—1) (29)
and each edge in H'{u1} is contained in V(P) 4 v1, £ = ¢t and some edge g € H'{u1}
contains ug. Also, by degree condition, some edge f € H{u;} is not contained in V(P) +
v1. By the case, this is some f;. By the symmetry between u; and u,, we may assume
j < {€/2. Since H contains path P; = w;t1, fj+1,.-.,Ue g, U1, f1,-..,u;, the edge f; is
contained in V(C) U C(P), and hence f; contains some v; for i # 1. By symmetry, we
may assume i < s/24+1=1/24 2.

We will show that there is an edge g1 € H'{u1} \ ¢ not contained in V(P) and
hence containing v;. Indeed, if all other edges of H'{u;} are subsets of V(P), then
d(u1) < 14 (“7}). In particular by (29), all (1~}) r-element subsets of V(P) containing
uy are edges in H' (and not edges of P). This violates Rule (iv) of the choice of (C, P)
as we could replace some f; € E(P) with an edge of H' to obtain a better cycle-path
pair. So suppose such an edge g; exists.

When we replace path v, eq,vs,...,v; in C' with path

Ulaglaulagaué7f€—1au€—1a ceey Ujt1, fj7via

we first delete the ¢ — 2 internal vertices of the former path and then add ¢t — j +1 vertices
of the latter. So, the length of the cycle will be at least

s—(@E—2)+t—g+1) >s—t/2+1/2+1> s,

a contradiction.

Case 4.2: There are indices j such that between x; and x;,1 there are at most £ — 1
vertices. Since Ay = Aj, for each such j there is an edge g € E(H'{u1}) N E(H {us})
containing z; and ;41 and no other edge in E(H'{u1})U E(H'{u¢}) contains any of
x; and 741, as otherwise there is a longer cycle. In this case, we call g a private edge
of w1 and z; and x;41 — g-private neighbors of u,, or simply private neighbors. Suppose
that the set of private edges of uy is {¢1,...,9m} and that A is the set of non-private
neighbors of u; in C. Let a = |A|. By these definitions and remembering that A; is
independent, a; > a + 2m and
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dH/(u1)§m+(|V(P)UA|1) §m+<€+a1> < <€+a+m1)' (30)

r—1 r—1 r—1

Recall that our case is that m > 1. If a = 0 and m = 1, then only one edge, say ¢1
in H'{u;} intersects V(C). By (28), H'{u;} contains another edge, say g that must be
contained in V(P). This yields £ =t and g = V(P). But then we can switch g with f;
contradicting Rule (iv) of the choice of (C, P). Thus a + m > 2.

We may rename the vertices of C' in such a way that z; = v; and the vertices z; and
Zq, are gi-private neighbors of u;. Then each interval I; = [x;,2;41] on C with z;1; € A
has length at least £+ 1, and for each private edge g and the minimum j with z;41 € g,
the interval I; also has length at least £+ 1. Thus at least a +m intervals I; have length
at least £ 4 1, and since ay > a + 2m,

2>n—L>s>{+1)(a+m)+m. (31)

Since m > 1 and a +m > 2, (31) yields 2t > 2(a+m) + (£ — 1)(a + m) + m >
2(a+m)+ (L —1)2+1, and so t > a +m + ¢ — 1. This means

t>a+m+4. (32)

Plugging (32) into (30) and comparing with (28), we get

(L)-(2) =2

which does not hold for ¢ < ¢ when r <t¢t. 0O
7. Proof of Theorem 1.10

Proof. Let k > r > ¢t be the smallest integer at least n/2 for which the theorem does not
hold. Let H be an n-vertex r-graph with at least k edges and 6(H) > [k/2] such that
H has no cycle of length k or longer.

Choose a best cycle-path pair (C, P) with notation as in the previous two sections.
By Lemma 4.2, k > t + 2. Moreover, by Lemma 5.1, ¢ > 2.

Since the theorem holds for &’ < k, s = k — 1. Also by the maximality of ¢, each edge
in H' containing u; or uy is contained in V/(C) UV (P) and cannot have two consecutive
vertices of C' by Claim 3.1.

Case 1: £ > (1+ k)/2.

Case 1.1: There are distinct v; and v; in V(C') such that v; € fi and v; € fo_1. By
symmetry, we may assume that ¢ = 1 and j < (s 4+ 1)/2. By the maximality of s, the
path vy, fi,us, f2,...,U¢—1, fe—1,v; is not longer than the path vy,e1,...,e;-1,v;. This
means ¢ — 2 < j — 2. Plugging in the inequalities for ¢ and j, we get

(L+8)/2< (s+1)/2 < k/2,
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a contradiction.

Case 1.2: Case 1.1 does not hold.

Then either f1 or f,—; contains at most one vertex in C'. Since they overlap in at most
one vertex, and | f1 UV (C)]|, |fe—1 UV (C)| < n, this gives s +r < n+ 1. By Lemma 4.2,
this is only possible when » = n/2 and s = 1+ n/2. Since r + s > n, each of f; and
fe—1 has exactly one vertex in C. Since Case 1.1 does not hold, this is the same vertex,
say vi. Moreover, each of fi and fy,—; must contain V(G) \ V(C). But then f; = fo_1
and so ¢ = 2. By the case, 2 > (k+1)/2,i.e., k <3,80 3> (n+1)/2, thus n <4, and
r <mn/2 <2 a contradiction to r > 3.

Case 2: 2 < /¢ <k/2. Since s> (n+1)/2,{<n—s<n/2<r.So,r—¥¢>1.

Case 2.1: There is an edge g € F(H') containing u;. By the maximality of |V (P)],
g CV(C)UV(P). So |[gnV(C)| > r—£. Since no vertices of g are consecutive on C, the
number of vertices in the largest interval of C' between vertices of g is at most

s=2(r—=0)+1<(n—4) —-2r+204+1</(+1. (33)

This means, the distance on C from any of its vertices to g is at most 1 + £/2.

Case 2.1.1: Some ¢; contains uy, say ¢+ = 1. If some v; € g and j < ¢+ 1, then we can
replace the path vi,e1,v2,...,v; in C' with the path vi, e, ue, fo—1,u—1,...,u1, 9,0,
and get a longer cycle. Thus the interval of C' between two vertices of g that contains e;
has at least 2 + 2(¢ — 1) = 2¢ vertices, contradicting (33).

Case 2.1.2: None of e; contains u,. Since d(ug) > k/2 > £ and P has only £ — 1 edges,
there is an edge ¢’ € F(H') containing u,. So, by symmetry we may assume that none
of e; contains wu;.

Suppose first ¢’ # g. Since the distance on C' between any vertex of gNV (C) and any
vertex of ¢’ N V(C) is either 0 or at least 1 + ¢, all vertices of ¢’ N V(C) must belong
to g by (33), and the distance on C between any two vertices of ¢’ is at least 1+ £. By
symmetry, we get gNV(C) = ¢’ NV(C). Since g # ¢', the edges must differ in V(P). In
particular, | N V(P)| < ¢ —1, and hence [NV (C)| > r — £+ 1. But then

n>s+4>1+0)(r—0+1)+4¢. (34)

The minimum of the polynomial F(¢) = —¢? + (r + 1)/ + r + 1 in the right hand side
of (34) is attained when ¢ is extremal. We have F(2) = F(r — 1) = —1 + 3r, which is
greater than n when r > max{3,n/2}.

Suppose now only ¢ is an edge in H' containing u,. Since r — £ > 1, we have
H{w} = H{uw/} = E(P)U {g} =: L. Moreover, for any w; € V(P), the path
Pl =, fio1, ..., fi,u1, fi,Wit1,- - -, fo—1,ue has the same length, vertices, and edges as
P. We conclude that (C, P}) is also best cycle-path pair, and so we may assume that
H{u;} = L for all 1 < ¢ < {. Therefore V(P) C gand { =71 — 1.

Moreover, for every 1 < j < ¢ —1, the path P(j) = w41, fj+1,---,Ue, G, U1, 1, -, U;
has the same vertex set as P, and its ends, u; and u;4+; belong to edge f; not used
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in P(j). The cycle-path pair (C, P(j)) is also a best pair since V(P) C g. As above we
conclude that f; D V(P). In particular, £ = |L| = [k/2]. Also, each edge in L has exactly
one vertex on C' and these vertices are distinct. Since ¢ > k/2 > s/2, some vertices of
edges in L are consecutive on C. By symmetry, we may assume vgs € g and v1 € f;. Then
replacing edge es in C' by path v, g, u1, f1,v1, we get a cycle longer than C.

A symmetric argument applies when there is an edge of H’ containing .

Case 2.2: No edge in E(H') contains u; or ug. Recall By (respectively, By) is the set of
edges e; that contain u; (respectively, ug). Then for j € {1,¢}, |B;| > §(H) — |E(P)| >
[k/2] — €+ 1. If By or By has size greater than [k/2] — ¢+ 1, then we can delete some
edges to make both have exactly [k/2] — £+ 1 edges and be different from each other.

By Claim 3.4, for any distinct e; € By and ej € By, |i — j| > £. So, if By # By, then
we apply Lemma 3.7 to By, By and g = £ to obtain s > 2([k/2] — £+ 1) +2(£ —1) > k,
a contradiction. Thus By = By and |By| = [k/2] — £+ 1. For this, we need {uj,u,} C f;
for all 1 <4 < ¢ —1 and hence for u € {uy,us},

the set of edges containing u is By U{f1,..., fe—1}. (35)

If f1 contains a vertex u € V(G) \ (V(C) U V(P)), then u can play the role of uq,
and hence (35) holds, as well. Also, for each 1 < j < ¢, since u; € f;, the path le =
Wi, fj—1,Uj—1, ..., 1, [, W41, fi+1,- ., ue can play role of P. It follows that (35) holds
for w = u; and hence for all u € f;_1.

By symmetry, let e; € Bj. By the above, e; contains {uq,...,us}, all vertices in
L\ (V(C)UV(P)), and vy, ve. Since |e1| = r = | f1], the edge f1 has at least two vertices
in C. These vertices must be at distance in C at least £—1 from any edge in By. Recalling
that By is a set of [k/2] — £+ 1 edges that are distance at least £ apart from one another,
it follows that

s>U(k/2—04+1)+ (L —2)+2=40FKk/2—10)+ 20

For 2 < ¢ < k/2, the right hand side of the above inequality is at least k, a contradic-
tion. 0O
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