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1. Introduction and results

1.1. Terminology and known results

A hypergraph H is a family of subsets of a ground set. We refer to these subsets as 
the edges of H and the elements of the ground set as the vertices of H. We use E(H)
and V (H) to denote the set of edges and the set of vertices of H, respectively. We say 
H is r-uniform (an r-graph, for short) if every edge of H contains exactly r vertices. A 
graph is a 2-graph.

The degree dH(v) of a vertex v in a hypergraph H is the number of edges containing 
v. The minimum degree, δ(H), is the minimum over degrees of all vertices of H. The 
circumference, c(G), of a graph G, is the length of a longest cycle in G.

A hamiltonian cycle in a graph is a cycle that visits every vertex. Sufficient conditions 
for existence of hamiltonian cycles in graphs have been well studied. A famous result of 
this type was due to Dirac in the fifties.

Theorem 1.1 (Dirac [4,5]). Let n ≥ 3. If G is an n-vertex graph with δ(G) ≥ n/2, then 
G has a hamiltonian cycle.

Dirac also proved that c(G) ≥ δ(G) + 1 for every graph G. We consider similar 
conditions for Berge cycles in hypergraphs.

Definition 1.2. A Berge cycle of length s in a hypergraph is a list of s distinct vertices and 
s distinct edges v1, e1, v2, . . . , es−1, vs, es, v1 such that {vi, vi+1} ⊆ ei for all 1 ≤ i ≤ s (we 
always take indices of cycles of length s modulo s). We call vertices v1, . . . , vs the defining 
vertices of C and write V (C) = {v1, . . . , vs}, E(C) = {e1, . . . , es} Similarly, a Berge path
of length � is a list of � + 1 distinct vertices and � distinct edges v1, e1, v2, . . . , e�, v�+1

such that {vi, vi+1} ⊆ ei for all 1 ≤ i ≤ �, with defining vertices V (P ) = {v1, . . . , v�+1}
and E(P ) = {e1, . . . , e�}.

An analogue of Dirac’s Theorem for non-uniform hypergraphs was given in [7]. For 
r-graphs, a well-known approximation of Dirac’s bound on circumference and of The-
orem 1.1 was proved by Bermond, Germa, Heydemann and Sotteau [1] more than 40 
years ago:

Theorem 1.3 (Bermond, et al. [1]). Let r ≥ 3 and k ≥ r + 1. If H is an n-vertex r-graph 
with δ(H) ≥

(
k−2
r−1

)
+ r − 1, then H contains a Berge cycle of length k or longer. In 

particular, if δ(H) ≥
(

n−2
r−1

)
+ r − 1, then H contains a hamiltonian Berge cycle.

Recently, there was a series of improvements of the hamiltonian part of Theorem 1.3. 
First, Clemens, Ehrenmüller and Person [2] have proved an asymptotics for n > 2r − 2:
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Theorem 1.4 (Clemens et al. [2]). Let H be an r-graph on n vertices. If n > 2r − 2 and 
δ(H) ≥

(�(n−1)/2�
r−1

)
+ n − 1, then H has a hamiltonian Berge cycle.

Then Coulson and Perarnau [3] proved the exact bound for n much larger than r:

Theorem 1.5 (Coulson and Perarnau [3]). Let H be an r-graph on n vertices such that 
r = o(

√
n). If δ(H) ≥

(�(n−1)/2�
r−1

)
+ 1, then H contains a hamiltonian Berge cycle.

Then Ma, Hou and Gao [9] improved the bound of Theorem 1.4 for n ≥ 2r + 4.

Theorem 1.6 (Ma, Hou and Gao [9]). Let r ≥ 4 and n ≥ 2r + 4, and let H be an r-graph 
on n vertices. If δ(H) ≥

(�(n−1)/2�
r−1

)
+ �(n − 1)/2�, then H contains a hamiltonian Berge 

cycle.

Very recently, Salia [10] proved sharp results of Pósa type for Berge hamiltonian cycles. 
It will be easier to describe his results after we state ours in the next section.

1.2. Our results

In this paper we derive exact bounds for all possible 3 ≤ r < n, improving the 
aforementioned theorems.

Theorem 1.7. Let t = t(n) = �(n − 1)/2	, and suppose 3 ≤ r < n. Let H be an n-vertex 
r-graph. If

(a) r ≤ t and δ(H) ≥
(

t
r−1

)
+ 1 or

(b) r ≥ n/2 and δ(H) ≥ r,

then H contains a hamiltonian Berge cycle.

These bounds are best possible due to the following constructions. We use the notation 
Kr

n to denote the n-vertex r-graph with all 
(

n
r

)
possible edges.

Construction 1. Suppose r ≤ t. If n is odd, let H1 consist of two copies of Kr
(n+1)/2

that share exactly one vertex. If n is even, let H1 consist of two disjoint Kr
n/2 and a 

single edge intersecting both cliques.
Construction 2. Suppose r ≤ t. Let H2 have vertex set X ∪ Y such that |X| = t and 

|Y | = n − t. The edge set of H2 consists of every edge with at most one vertex in Y .
Construction 3. Suppose r ≥ n/2. Let H3 have vertex set V (H3) = {v1, v2, . . . , vn}

and edge set {e1, . . . , en−1} where ei = {vi, vi+1, . . . , vi+r−1} for 1 ≤ i ≤ n − 1 with 
indices taken modulo n.

It is easy to check that both H1 and H2 have minimum degree 
(

t
r−1

)
. Observe that 

neither H1 nor H2 has a hamiltonian Berge cycle: H1 has either a cut vertex or a cut 
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edge, and in H2 a hamiltonian Berge cycle must visit two vertices in Y consecutively, 
but no edge of H2 contains any pair of vertices from Y .

Since r ≥ n/2, δ(H3) = r − 1. Also, H3 does not have a hamiltonian Berge cycle 
because |E(H3)| = n − 1. In fact, removing a single edge from any n-vertex, r-regular, 
r-graph would also yield an extremal example.

Note that the length of the longest cycle in Construction 1 is �n/2�. Thus Theorem 1.7
yields exact bounds on the minimum degree guaranteeing the existence of any cycle of 
length at least k in n-vertex r-graphs for all r ≤ t and all k ≥ 1 + n/2.

We also improve the circumference part of Theorem 1.3. Since the bounds for r ≤ t

and for r > t are different, we state our results as two theorems.

Theorem 1.8. Let n, k, and r be positive integers such that n ≥ k and t ≥ r ≥ 3. Let H
be an n-vertex, r-graph. If

(a) k ≤ r + 2 and δ(H) ≥ k − 1, or
(b) r + 3 ≤ k < t + 2 and δ(H) ≥

(
k−2
r−1

)
+ 1, or

(c) k ≥ t + 2 and δ(H) ≥
(

t
r−1

)
+ 1,

then H contains a Berge cycle of length k or longer.

Theorem 1.9. Let n, k, and r be positive integers such that n ≥ k ≥ r ≥ 3, and r > t. If 
H is an n-vertex r-graph with

δ(H) ≥
⌊

r(k − 1)
n

⌋
+ 1,

then H contains a Berge cycle of length k or longer.

Constructions 1 and 2 give sharpness examples for Theorem 1.8(c). The constructions 
below show that for each k ≥ 3 the bounds of Theorem 1.8(a,b) are sharp for infinitely 
many n.

Construction 4. Let r + 3 ≤ k < t + 2. For n − 1 divisible by k − 2, let H4 consist of 
(n − 1)/(k − 2) copies of Kr

k−1 such that all the cliques share exactly one vertex.
Construction 5. Let k ≤ r + 2 ≤ t + 2. For n − 1 divisible by r, view V (H5) as the 

union of (n − 1)/r sets S1, . . . , S(n−1)/r of (r + 1) vertices, all sharing exactly one vertex. 
The set E(H5) has k − 1 edges contained in each Si.

We have δ(H4) =
(

k−2
r−1

)
and δ(H5) = k − 2. A longest Berge cycle in H4 must be 

contained in a single clique, and hence has length k − 1. Similarly, a longest Berge cycle 
in H5 is contained in some Si, and hence has at most k − 1 edges.

For Theorem 1.9, it is easy to construct an analog of Construction 3: an n-vertex 
r-graph with k − 1 edges whose minimum degree is exactly �r(k − 1)/n	.

As mentioned in Section 1.1, after the first version of this paper appeared on arXiv, 
Salia [10] described the sequences (d1, . . . , dn) with d1 ≤ d2 ≤ . . . ≤ dn of two types: (a) 
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for r < n/2 every n-vertex r-graph with degree sequence (d′
1, . . . , d′

n) such that d′
i > di

for all i has a hamiltonian Berge cycle and also (b) every n-vertex hypergraph with 
degree sequence (d′

1, . . . , d′
n) such that d′

i > di for all i has a hamiltonian Berge cycle. 
The first of these nice results implies Part (a) of Theorem 1.7 for odd n.

1.3. Outline of the proofs

As always, t = t(n) = �(n − 1)/2	. Together, the circumference results, Theorem 1.8
and Theorem 1.9, imply the hamiltonian result Theorem 1.7 by setting k = n.

First we will prove Parts (a) and (b) of Theorem 1.8. Then we handle Part (c): for 
large k, our minimum degree condition guarantees the existence not only of a “long” 
Berge cycle, but rather of a hamiltonian Berge cycle.

Since t + 1 ≥ n/2, if r > t then the inequality δ(H) ≥ �r(k − 1)/n	 + 1 yields δ(H) >
k−1

2 and also 
∑

v∈V (H) d(v) > n r(k−1)
n = r(k−1); thus |E(H)| = 1

r

∑
v∈V (H) d(v) > k−1. 

Hence the following theorem implies Theorem 1.9.

Theorem 1.10. Let n, k, and r be positive integers such that n ≥ k ≥ r > t and r ≥ 3. If 
H is an n-vertex r-graph with at least k edges such that δ(H) ≥ �k/2�, then c(H) ≥ k.

So, we will prove Theorem 1.10.
In Section 2, we prove Theorem 1.8(a,b). In Section 3 we describe the setup of the 

proofs of Theorems 1.8(c) and 1.10. The proofs somewhat differ for r < t, r = t and 
r > t. But in all cases we will use the same structure of proofs, namely, a modification 
of Dirac’s original proof of his theorem.

Also, since we always consider only Berge paths and cycles, from now on we drop the 
word “Berge” and use cycles and paths to exclusively refer to Berge cycles and Berge 
paths.

2. Proof of Theorem 1.8(a,b)

We will use the following results.

Theorem 2.1 (Kostochka and Luo [8]). Let 4 ≤ k ≤ r + 1, and let H be an n-vertex 
r-graph with no Berge cycles of length k or longer. Then e(H) ≤ (k − 1)(n − 1)/r.

Theorem 2.2 (Ergemlidze, Győri, Methuku, Salia, Thompkins, and Zamora [6]). Let n ≥
r ≥ 3, k ∈ {r + 1, r + 2}, and let H be an n-vertex r-graph with no Berge cycles of length 
k or longer. Then e(H) ≤ (k − 1)(n − 1)/r.

Proof of Theorem 1.8(a). Recall that 3 ≤ k ≤ min{r + 2, n} and δ(H) ≥ k − 1.
By Theorems 2.1 and 2.2, if 4 ≤ k ≤ r − 1 or r ≥ 3 and k ∈ {r + 1, r + 2}, then 

e(H) ≤ (k − 1)(n − 1)/r. It follows that the average degree of H is at most
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r

n
· (k − 1)(n − 1)

r
= (k − 1)(n − 1)

n
< k − 1.

This gives that H has a vertex of degree at most k − 2, a contradiction.
Thus to prove the theorem, we need to settle the remaining cases, namely, k = 3 ≤ r

and k = r ≥ 4. In both cases, consider a counter-example H with the most edges. 
Then H contains a path of length at least k − 1. Among all such paths, let P =
v1, e1, v2, . . . , e�−1, v� be a longest one.

If there exists a j ≥ k such that v1 ∈ ej , then v1, e1, v2, . . . , ej−1, vj , ej , v1 is a cycle 
of length at least k. Furthermore, if there exists an edge e ∈ E(H) \ E(P ) and a vertex 
u ∈ V (H) \ {v1, . . . , vk−1} such that {v1, u} ⊂ e, then either u /∈ V (P ) and we can 
extend P to a longer path by adding the vertex u and the edge e, or u ∈ V (P ) and we 
can construct a cycle of length at least k by combining the segment of P from v1 to u
with the edge e. Therefore each edge of H containing v1 either is in {e1, e2, . . . , ek−1} or 
is contained in {v1, . . . , vk−1}. Since k − 1 < r, the latter is impossible. Thus adding the 
fact that d(v1) ≥ k − 1, we have that

all edges e1, . . . , ek−1 contain v1. (1)

Since H has no multiple edges, there is a vertex v′ ∈ e1 \ ek−1. If v′ /∈ {v1, . . . , v�}, then 
we consider path P ′ obtained from P by replacing v1 with v′ and keeping all the edges. 
It has the same length as P , but v′ /∈ ek−1, contradicting (1).

So, suppose v′ = vj . Since v′ /∈ ek−1 and v1 ∈ ek−1, j /∈ {1, k −1, k}. If j ≥ k +1, then 
we have a cycle C2 = v2, e2, v3, . . . , ej−1, vj , e1, v2 of length j − 1 ≥ k, a contradiction. 
Thus 2 ≤ j ≤ k − 2. Consider path

P ′′ = vj , ej−1, vj−1, . . . , e1, v1, ej , vj+1, ej+1, vj+2, . . . , e�−1, v�.

Similarly to P ′, it has the same length as P , but v′ /∈ ek−1, contradicting (1). �
Proof of Theorem 1.8(b). Recall that k ≥ r + 3 and δ(H) ≥

(
k−2
r−1

)
+ 1. Suppose the 

theorem fails, and let H be an edge-maximal counterexample. Then H contains a path 
of length k − 1 or greater. Among all such paths, let P = v1, e1, v2, . . . , e�−1, v� be a 
longest one. As in the proof of Theorem 1.8(a), each edge of H containing v1 either is in 
{e1, e2, . . . , ek−1} or is a subset of {v1, . . . , vk−1}.

Set X = {v1, . . . , vk−1} and X ′ = X \v1. Let EX = {e /∈ E(P ) : e ⊆ X}. The previous 
paragraph implies that every edge containing v1 belongs to EX ∪ {e1, . . . , ek−1}.

Case 1: There exists some 1 ≤ i ≤ k − 2 such that v1 ∈ ei and ei 
⊆ X.
Let u ∈ ei \ X. If there exists an edge f ∈ EX such that {v1, vi+1} ⊂ f , then

u, ei, vi, ei−1, vi−1, . . . , e1, v1, f, vi+1, ei+1, vi+2, . . . , e�−1, v�

is longer than P , a contradiction to the maximality of P . So, there are no such edges.
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If r = 3, then i = 1, since otherwise {v1, vi, vi+1} ⊂ ei, and there is no room for other 
vertices in ei, contradicting our assumption. Therefore

dH(v1) ≤
(

|X ′ \ {v2}|
r − 1

)
+ |{e1, e2, ek−1}| =

(
k − 3
r − 1

)
+ 3 ≤

(
k − 2
r − 1

)
, (2)

when k ≥ 6, a contradiction to the minimum degree.
Suppose now that r ≥ 4. The number of edges in EX containing v1 is at most (|X′\{vi+1}|

r−1
)

=
(

k−3
r−1

)
. Since k ≥ r + 3, k ≥ 7 and 

(
k−3
r−2

)
≥

(
k−3

2
)

≥ k − 1. So,

dH(v1) ≤
(

k − 3
r − 1

)
+ k − 1 =

(
k − 2
r − 1

)
−

(
k − 3
r − 2

)
+ k − 1 ≤

(
k − 2
r − 1

)
,

a contradiction to the minimum degree.
Case 2: For all 1 ≤ i ≤ k − 2 with v1 ∈ ei, ei ⊂ X. Then the only possible edge 

containing v1 that is not a subset of X is ek−1, and dH(v1) ≤
(|X′|

r−1
)

+ 1 =
(

k−2
r−1

)
+ 1 with 

equality if and only if v1 ∈ ek−1 and every r-subset of X ′ ∪ {v1} containing v1 is an edge 
of H. Hence we may suppose this is the case.

For each 2 ≤ i ≤ k − 1, let gi be the (r − 1)-subset of X ′ containing vi and the r − 2
previous vertices of X ′ (with wrap around). I.e., if i ≥ r, then gi = {vi, vi−1, . . . , vi−(r−2)}
and if i ≤ r − 1, then gi = {vi, vi−1, . . . , v2} ∪ {vk−1, . . . , vk−1−(r−1−i)}. Then set fi =
gi ∪ {v1}. Since k ≥ r + 3 and {v1, vk−1, vk} ⊂ ek−1, there exists some 2 ≤ i ≤ k − 2 such 
that vi /∈ ek−1. Then since fj ∈ E(H) for all 2 ≤ j ≤ k − 1, the path

P2 = vi, fi, vi−1, . . . , f2, v1, fi+1, vi+1, fi+2, vi+2, . . . , fk−1, vk−1, ek−1, vk, . . . , e�−1, v�

is also a longest path. Note that fj ⊆ X for each j. Applying the same argument to P2’s 
first vertex vi as we did to v1 in Case 1 and the beginning of Case 2, we have that either 
dH(vi) ≤

(
k−2
r−1

)
or vi ∈ ek−1. In both cases we obtain a contradiction. �

3. Setup of proofs for Theorems 1.8(c) and 1.10 and general lemmas

The original proof by Dirac of Theorem 1.1 involved two steps. In the first step, by 
looking at a longest path, he greedily found a cycle of length at least 1 + n/2. In the 
second step, he considered a lollipop, i.e. a pair (C, P ) such that C is a cycle, P is a 
path, E(C) ∩ E(P ) = ∅, |V (C) ∩ V (P )| = 1, and the shared vertex of v ∈ V (C) ∩ V (P )
is one of the endpoints of P . Dirac proved that when δ(G) ≥ n/2, the lollipop with the 
largest |C| and modulo this with the largest |P | can be only a hamiltonian cycle.

Our strategy is in the same spirit, only instead of lollipops we will consider pairs of a 
cycle C and a path P with V (C) ∩ V (P ) = E(C) ∩ E(P ) = ∅. We call such a pair (C, P )
a cycle-path pair. We will in addition maximize a couple of more parameters.

A cycle-path pair (C, P ) is better than a cycle-path pair (C ′, P ′) if
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(i) |E(C)| > |E(C ′)|, or
(ii) |E(C)| = |E(C ′)| and |E(P )| > |E(P ′)|, or

(iii) |E(C)| = |E(C ′)|, |E(P )| = |E(P ′)| and the total number of vertices in V (P ) in the 
edges in C (counted with multiplicities) is greater than the total number of vertices 
in V (P ′) in the edges in C ′, or

(iv) all parameters above coincide and the total number of vertices in V (P ) in the edges 
in P (counted with multiplicities) is greater than the total number of vertices in 
V (P ′) in the edges in P ′.

Similarly to Dirac’s proof, we will show that in all cases, a best cycle-path pair is a 
hamiltonian cycle (or contains a cycle of length at least k when we are looking for such 
cycles).

In all cases there will be 3 steps: first we find a cycle of length at least 1 + n/2, then 
prove that if C is not long enough, then in the best cycle-path pair (C, P ), P cannot 
have only one vertex, and finally show that P also cannot have more than one vertex.

3.1. General lemmas

Suppose (C, P ) is a best cycle-path pair with C = v1, e1, . . . , vs, es, v1 and P =
u1, f1, . . . , f�−1, u�.

We consider three subhypergraphs, HC , HP and H ′ of H with the same vertex set 
V (H): E(HC) = {e1, . . . , es}, E(HP ) = {f1, . . . , f�−1} and E(H ′) = E(H) \ (E(HC) ∪
E(HP )). Observe that the edges of these three subhypergraphs form a partition of the 
edges of H. We also consider H −HC with vertex set V (H) and edge set E(H) \E(HC). 
For a hypergraph F and a vertex u, we denote by NF (u) = {v ∈ V (F ) : {u, v} ⊆
e for some e ∈ F}. For i ∈ {1, �}, set Bi = {ej ∈ E(C) : ui ∈ ej}.

The following claim applies to all best cycle-path pairs (C, P ), regardless of the sizes 
of r and k. It will be used in the sections below.

Claim 3.1. In a best cycle-path pair (C, P ), NH′(u1) cannot contain a pair of vertices 
that are consecutive in C.

Proof. Suppose toward a contradiction that vi, vi+1 are contained in edges of H ′ with 
u1. Let e, e′ be edges of H ′ such that u1, vi ∈ e and u1, vi+1 ∈ e′. If e 
= e′, then replacing 
ei with e, u1, e′ gives a longer cycle than C, a contradiction. Thus we may assume e = e′.

If there is 1 ≤ j ≤ � such that uj ∈ ei, then by replacing the path vi, ei, vi+1 in C
with the longer path vi, e, u1, f1, u2, . . . , fj−1, uj , ei, vi+1, we obtain a longer cycle than 
C. Thus ei ∩ V (P ) = ∅. Then replacing ei with e in C gives a cycle C ′ with (C ′, P )
better than (C, P ) by Rule (iii). �

Symmetrically, the claim holds for u� as well.
The following claims hold for C as well as for any other longest cycle in H.
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Claim 3.2. Let C ′ = v′
1, e′

1, . . . , e′
s, v′

1 be a longest cycle in H. For any u /∈ V (C ′), if 
u ∈ e′

i, then v′
i, v

′
i+1 /∈ NH−HC′ (u).

Proof. Suppose v′
i ∈ NH−HC′ (u), and let e ∈ E(H) \ E(HC′) be such that {u, v′

i} ⊆ e. 
Then we can find a longer cycle by replacing e′

i with e, u, e′
i, a contradiction to our choice 

of C. A similar argument holds for v′
i+1. �

Claim 3.3. Let C ′ = v′
1, e′

1, . . . , e′
s, v′

1 be a longest cycle in H. Suppose there exist vertices 
v′

i, v
′
j ∈ V (C ′) and an edge e ∈ E(H − HC′) such that {v′

i, v
′
j} ⊂ e. Then for any 

u ∈ V (H) \ V (C), u cannot be contained in both e′
i and e′

j or in both e′
i−1 and e′

j−1.

Proof. Suppose there exists a vertex u /∈ V (C) such that u ∈ e′
i and u ∈ e′

j where without 
loss of generality i < j. Then v′

1, e′
1, . . . , v′

i, e, v′
j , e′

j−1, . . . , v′
i+1, e′

i, u, e′
j , v′

j+1, . . . , e′
s, v1 is 

a cycle longer than C ′. The proof for e′
i−1, e′

j−1 is symmetric. �
Claim 3.4. Suppose (C ′, P ′) is a cycle-path pair with C ′ = v′

1, e′
1, . . . , e′

s, v′
1, P ′ =

u′
1, f ′

1, . . . , u′
�, |V (C ′)| = |V (C)|, and |V (P ′)| = |V (P )|. For every e′

i containing u′
1

and e′
j containing u′

�, either i = j or |i − j| ≥ �.

Proof. Suppose there exist e′
i, e

′
j containing u′

1 and u′
� respectively such that without loss 

of generality j > i and j − i ≤ � − 1. Then that cycle obtained by replacing the segment 
v′

i, e
′
i, . . . , e′

j , v′
j+1 in C ′ with v′

i, e
′
i, u

′
1, f ′

1, . . . , f ′
�−1, u′

�, e
′
j , v′

j+1 has size |V (C ′)| − (i − j) +
� > |V (C ′)| = |V (C)|, contradicting the fact that C is a longest cycle. �
Claim 3.5. If C = v1, e1, . . . , vs, es, v1 is a graph cycle, and A is any set of c edges 
of C and I is an independent subset of {v1, . . . , vs} disjoint from all edges in A, then 
|I| ≤ �(s − 1 − c)/2�.

Proof. We show the claim by induction on s. If s = 3, then either c = 1, in which case 
any independent set disjoint from the edges of A has at most one vertex, or c ≥ 2, and 
no vertices are disjoint from A. Hence we get |I| ≤ �(2 − c)/2�.

Now let s > 3 and suppose the lemma holds for s − 1. If A = ∅, then |I| ≤ �s/2	 =
�(s − 1)/2�, as desired. So suppose A has at least one edge, say ei. Let C ′ be the cycle 
obtained by contracting ei. Since ei ∈ A, vi, vi+1 /∈ I. Therefore I is still an independent 
set in C ′ and is disjoint from the edges in A \ {ei}. By the induction hypothesis applied 
to C ′, A \ {ei}, and I, |I| ≤ �((s − 1) − 1 − (c − 1))/2� = �(s − 1 − c)/2�. �

Claims 3.1, 3.2 and 3.5 imply the following corollary.

Corollary 3.6. Let A = {ei ∈ E(C) : u1 ∈ ei}. Then |NH′(u1) ∩V (C)| ≤ �(s −1 −|A|)/2�.

The following general lemmas will be used in conjunction with Claim 3.4 later in our 
proof.
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Lemma 3.7. Let C = v1, e1, . . . , vs, es, v1 be a graph cycle. Let A and B be nonempty 
subsets of E(C) such that for any ei ∈ A and ej ∈ B either i = j or |i − j| ≥ q ≥ 2. 
Suppose |B| ≥ |A| = a. Then either

(a) a ≤ s/2 − q + 1, or (b) B = A and a ≤ s/q.

Proof. Suppose first B = A. Then between any two edges of A on C there are at least 
q − 1 other edges. This proves (b).

Suppose now B 
= A. Let A = {ei1 , . . . , eia
} with vertices in clockwise order on C. 

We can view C as the union of a paths P1, . . . , Pa where Pj is the part of C from eij
to 

eij+1 (modulo a). Since |B| ≥ a, there is some f ∈ B \ A, say f ∈ Pa. Then Pa has at 
least 2(q − 1) edges not in A ∪ B (and some vertices in B). Also, if eij

∈ A ∩ B, then 
eij−1, eij+1 /∈ A ∪B. This means |E(C) \ (A ∪B)| ≥ 2(q −1) +(|A ∩B| −1) with equality 
only if every edge in E(C) \ (A ∪ B) is one of exactly 2(q − 1) non-B edges in Pa or 
appears directly after some edge in A ∩ B (which contains eia

). In this case, we must 
have that A ⊂ B as otherwise since A 
= E(C), there will exist some edge ek ∈ A \ B

such that ek+1 ∈ V (C) \ (A ∪ B).
Thus if A 
⊂ B, then since |B| ≥ a,

s ≥ |A| + |B \ A| + 2(q − 1) + |A ∩ B| ≥ 2a + 2(q − 1), (3)

as claimed. Otherwise, in view of f , |B| ≥ a + 1, and instead of (3), we get

s ≥ |A| + |B \ A| + 2(q − 1) + |A ∩ B| − 1 ≥ (2a + 1) + 2(q − 1) − 1 = 2a + 2(q − 1),

again. �
Lemma 3.8. Let C = v1, e1, . . . , vs, es, v1 be a graph cycle. Let A and B be nonempty 
independent subsets in V (C) such that for any vi ∈ A and vj ∈ B \ A, |i − j| ≥ q ≥ 2. 
If B \ A 
= ∅, then |A| ≤ s/2 − q + 1.

Proof. Let A = {vi1 , . . . , via
} with vertices in clockwise order on C. We view C as the 

union of a paths P1, . . . , Pa where Pj is the part of C from vij
to vij+1 (modulo a).

Since B \ A 
= ∅, we may assume there is y ∈ (B \ A) ∩ V (Pa). Then Pa has at least 
2(q −1) vertices not in A ∪B and at least one in B. Since A is independent, we also have 
at least a − 1 vertices in V (C − Pa) \ A. Hence |V (C)| ≥ a + a + 2(q − 1), as claimed. �
4. Existence of a cycle of length at least n/2 + 1

Similarly to Dirac’s proof, we show that under the conditions of Theorems 1.8(c) 
and 1.10 there exists a cycle of length at least t + 2 ≥ n/2 + 1. We do this in two cases: 
r ≤ t and r ≥ t + 1.

Lemma 4.1. If r ≤ t, and H is an n-vertex r-graph with minimum degree δ(H) ≥
(

t
r−1

)
+

1, then H contains a cycle of length at least t + 2 = �(n + 3)/2	.
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Proof. Suppose H has no cycles of length at least t + 2. Let Q be a longest path in 
H, say Q = v1, e1, v2, . . . , es−1, vs. Let q = min{t + 1, s}, V (q) = {v1, . . . , vq} and let 
Q(q) denote the subpath of Q with vertex set V (q) and edge set E(q) = {e1, . . . , eq−1}. 
Among such paths Q, choose one in which

(a) the most edges in E(q) are contained in V (q), and
(b) modulo (a), the fewest edges in E(q) ∪ {eq} contain v1.

(4)

Let H1 = H − E(Q). Since H has no cycles of length at least t + 2 and Q is a longest 
path,

all neighbors of v1 in H1 are in V (q). (5)

Thus dH1(v1) ≤
(

q−1
r−1

)
. By the same reason, the edges ei for q + 1 ≤ i ≤ s − 1 must not 

contain v1. So

dH(v1) ≤ dH1(v1) + min{q, s − 1} ≤
(

q − 1
r − 1

)
+ min{q, s − 1}. (6)

If q = s ≤ t, then since 3 ≤ r ≤ t, this is at most 
(

t−1
r−1

)
+ t − 1 ≤

(
t

r−1
)
, contradicting 

the minimum degree condition. Hence s ≥ t + 1 and q = t + 1. Let E′(q) = E(q) ∪ {eq}
if eq exists, and E′(q) = E(q) otherwise.

Let E0 be the set of edges in E′(q) not containing v1, E1 be the set of edges in 
E′(q) containing v1 and contained in V (q), and E2 = E′(q) \ (E0 ∪ E1). In particular, 
eq ∈ E0 ∪ E2 because vq+1 ∈ eq \ V (q).

Let us show that

|E1 ∪ E2| ≤ max{t − 1, r}. (7)

Indeed, suppose |E1 ∪ E2| = m. For every 2 ≤ i ≤ t + 1 such that v1 ∈ ei, we 
can consider the path Qi from vi to vs obtained from Q by replacing the subpath 
v1, e1, v2, . . . , ei, vi+1 with the subpath vi, ei−1, vi−1, . . . , e1, v1, ei, vi+1. This path uses 
the same edges as Q, so by Rule (a) in (4) it is also a valid choice for a best path, and if 
vi is in fewer than m edges in E′(q), then Qi is better by Rule (b). Hence each of the m
vertices vi such that ei ∈ E1 ∪ E2 is in at least m edges in E′(q). Since there are at most 
q = t + 1 edges in E′(q) each containing r vertices, this gives m2 ≤ r(t + 1). If r ≤ t − 1, 
then m2 ≤ t2 − 1, so m ≤ t − 1. Otherwise if r = t, we get m ≤ t. This proves (7).

Let R = R(v1) be the set of r-tuples contained in V (q) that contain v1 and are not 
edges of H. By (5), the only edges containing v1 and not contained in V (q) are those in 
E2. Therefore

dH(v1) =
(

t
)

+ |E2| − |R|. (8)

r − 1
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So, if E2 = ∅, then dH(v1) ≤
(

t
r−1

)
, a contradiction to the minimum degree condition. 

Hence for some j ∈ [t + 1], ej ∈ E2, i.e., v1 ∈ ej but ej � V (q). Choose the smallest such 
j.

Case 1: j = 1. If there is an edge g ⊂ V (q) in E(H) \ E′(q) containing {v1, v2} (recall 
that g /∈ {eq+1, . . . , es−1}), then by replacing e1 with g we get a contradiction to (4)(a). 
Thus each of the 

(
t−1
r−2

)
r-tuples g ⊂ V (q) containing {v1, v2} is in R ∪ E1.

Case 1.1: r = 3. For any edge ei containing v1, {vi, vi+1, v1} ⊆ ei. Then only e2 may 
contain {v1, v2} and be contained in V (q). Moreover for 2 ≤ i ≤ t, if v1 ∈ ei, then 
ei = {v1, vi, vi+1} ⊆ V (q), so the only possible edge in E2 is eq. Hence

dH(v1) ≤
(

t

2

)
− |R| + |{e2, eq}| ≤

(
t

2

)
−

(
t − 1

1

)
+ 2 ≤

(
t

r − 1

)
,

a contradiction to the minimum degree condition.
Case 1.2: r ≥ 4. Set E′

1 = {ei ∈ E1 : v2 ∈ ei}. It follows from (6) that

dH(v1) ≤ |E2| +
(

t

r − 1

)
−

((
t − 1
r − 2

)
− |E′

1|
)

= |E′
1 ∪ E2| +

(
t

r − 1

)
−

(
t − 1
r − 2

)
.

In order to have dH(v1) ≥ 1 +
(

t
r−1

)
, we need 

(
t−1
r−2

)
≤ |E′

1 ∪ E2| − 1.
If either r ≤ t − 1 (so |E1 ∪ E2| ≤ t − 1 by (7)) or r = t and |E′

1 ∪ E2| ≤ t − 1, then 
since r − 2 ≥ 2, we have 

(
t−1
r−2

)
≥ t − 1 ≥ |E′

1 ∪ E2|.
Therefore we may assume that r = t and by (7), |E′

1 ∪ E2| = |E1 ∪ E2| = t, implying 
E1 = E′

1. Then every ei ∈ E1 contains v2. Suppose first that |E1| ≥ 1, and let ei ∈ E1. 
If f := V (q) \ {v2} is an edge of H, then because E1 = E′

1, f /∈ E(Q). We may replace 
ei in Q with f and e1 with ei because e1 /∈ V (q) to obtain a path that is better than Q
by Rule (a). It follows that f ∈ R and

dH(v1) ≤
(

t

r − 1

)
−

((
t − 1
r − 2

)
+|{f}|

)
+|E1 ∪E2| =

(
t

r − 1

)
−(t−1+1)+t =

(
t

r − 1

)
,

a contradiction to the miminum degree. So we may assume that |E1| = 0, i.e., all edges 
containing v1 in E′(q) contain a vertex outside of V (q). If there exists any edge e ⊆ V (q)
in H such that v1 ∈ e, then some {vi, vi+1} ⊆ e since |e| = t. Then we may replace the 
edge ei with the edge e in Q to obtain a better path by Rule (a). Therefore |R| =

(
t

r−1
)
. 

By (8), dH(v) ≤ |E2| = t, contradicting the minimum degree condition.
Case 2: 2 ≤ j ≤ t. In order for ej to contain v1, vj , vj+1 and a vertex outside of 

V (q), we need r ≥ 4. Similarly to Case 1, if there is an edge g ⊂ V (q) in E(H) \ E′(q)
containing {v1, vj+1}, then the path

vj , ej−1, vj−1, . . . , e1, v1, g, vj+1, ej+1, vj+2, . . . , es−1, vs

contradicts (4)(a). Hence each of the 
(

t−1
r−2

)
r-tuples g ⊂ V (q) containing {v1, vj+1} is in 

R ∪ E1.
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So, now we repeat the argument of Case 1.2 word by word with vj in place of v2.
Case 3: j = t + 1. This means all edges containing v1 apart from et+1 are contained 

in V (q). Then dH(x) ≤
(

t
r−1

)
− |R| + 1, so we may assume |R| = 0. In other words,

all r-tuples contained in V (q) and containing v1 are edges of H. (9)

Since r ≤ t, there is 2 ≤ i ≤ t such that vi /∈ et+1. By (9), we can construct a path on 
the vertices vi, vi−1, . . . , v1, vi+1, vi+2, . . . , vt+1 all edges of which are contained in V (q). 
So, we will have no edges containing vi and not contained in V (q), a contradiction to 
(b). �

Next, we prove the result for r ≥ t + 1.

Lemma 4.2. Let H be an n-vertex r-graph containing at least k edges. If k ≥ r ≥ t + 1
and δ(H) ≥ �k/2�, then H contains a cycle of length at least min{k, t + 2}.

Proof. Suppose that the lemma does not hold for an n-vertex r-graph H, and

the maximum length of a cycle in H is s, where s ≤ min{k − 1, t + 1}. (10)

We start from a series of new notions and auxiliary claims.
For a path P = v1, e1, v2, . . . , e�−1, v� and i ∈ {1, �}, let Vi = Vi(P ) = {vj ∈ V (P ) :

vi ∈ ej}, and set V +
� = V +

� (P ) = {vj+1 : v� ∈ ej}.
For each vi ∈ V1, set P 1

i = vi, ei−1, . . . , e1, v1, ei, vi+1, . . . , e�−1, v�, and for each 
vj ∈ V +

� , set
P �

j = vj , ej , . . . , e�−1, v�, ej , vj−1, . . . , e1, v1.

Claim 4.3. Let P = v1, e1, v2, . . . , e�−1, v� be a longest path in H. Then no edge e /∈ E(P )
intersects V1 ∪ V +

� .

Proof. Suppose that there exists an edge e /∈ E(P ) such that v1 ∈ e. Then by the 
maximality of P , e ⊆ {v1, . . . , v�}. It follows that there exists some vq ∈ e with q ≥ r, 
and hence v1, e1, . . . , eq−1, vq, e is a cycle of length q. Since r ≥ t + 1, (10) implies 
q = r = t + 1. This means e = {v1, . . . , vr}. Swapping e1 with e in P and repeating the 
same reasoning we obtain e1 = {v1, . . . , vr} = e, a contradiction.

For vi ∈ V1 or vj ∈ V +
� , we apply the same argument for the longest paths P 1

i or P �
j

(note E(P 1
i ) = E(P �

j ) = E(P )) and obtain our result again. �
Claim 4.4. The longest path of H contains at least s + 2 vertices.

Proof. Let C = v1, e1, . . . , vs, es, v1 be a longest cycle in H. Since r ≥ t + 1, (10) implies 
s ≤ r, and hence at most one edge of H is contained in V (C) (actually, equals V (C)). 
We may assume that if this happens, then such an edge is one of the ei.
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Case 1: For some v1 ∈ V (C), some edge e ∈ E(H) \ E(C) contains v1. By our 
assumption, there is a vertex u ∈ e \ V (C). Also at most one of e1 and es is con-
tained in V (C), so we may assume there is u′ ∈ e1 \ V (C). If u′ = u then we 
have cycle C ′ = v2, e2, . . . , es, v1, e, u, e1, v2 of length s + 1, otherwise we have path 
P = u′, e1, v2, e2, . . . , es, v1, e, u, as claimed.

Case 2: All edges of H incident to V (C) are in E(C). Since H has at least k > s edges, 
there is an edge f fully disjoint from V (C). Since | 

⋃s
i=1 ei| ≥ r + 1 and n < (r + 1) + r, 

there is some ei, say i = 1, that contains a vertex u1 ∈ f . Let u2 be another vertex of f . 
Then path P ′ = v2, e2, . . . , es, v1, e1, u1, f, u2 is as claimed. �
Claim 4.5. The longest path of H contains at least s + 3 vertices.

Proof. Suppose a longest path P = v1, e1, . . . , e�−1, v� has at most s + 2 vertices. By 
Claim 4.4, � = s + 2.

If there exists some vj ∈ V1 ∩ V +
� (i.e., v1 ∈ ej and v� ∈ ej−1), then the cycle

C = v1, e1 . . . , ej−2, vj−1, ej−1, v�, e�−1, . . . , vj+1, ej , v1

contains all vertices of P except for vj . Therefore |V (C)| ≥ � −1 ≥ s +1, a contradiction. 
It follows that

V1 ∩ V +
� = ∅. (11)

By Claim 4.3, |V1| ≥ dH(v1) ≥ �k/2� and |V +
� | ≥ dH(v�) ≥ �k/2�. So, (11) yields 

|V1 ∪ V +
� | ≥ k ≥ s + 1 = � − 1, which means at most one vertex in V (P ) is not contained 

in V1 ∪ V +
� . We now prove that

|E(H)| = s + 1. (12)

Indeed, suppose that H has an edge e /∈ E(P ). By Claim 4.3, e ∩ (V1 ∪ V +
s+2) = ∅, hence 

k + r ≤ n. Since k ≥ r ≥ t + 1 ≥ n/2, this is only possible when k = r = s + 1 = n/2
and e is the unique edge with e = V (H) \ (V1 ∪ V +

s+2). Moreover, this implies that 
E(H) = E(P ) ∪ {e}. So we have V (H) \ V (P ) ⊆ e, and e contains at least r − 1 vertices 
outside of P .

If there exists a vertex v ∈ es+1 \ V (P ), then v ∈ e, and there exists another v′ ∈
e \ (V (P ) ∪ {v}). We get a longer path by replacing the vertex vs+2 with the path v, e, v′

in P . So es+1 ⊆ V (P ). Moreover, if there exists a vertex vi ∈ V1 such that vi ∈ es+1, 
then we obtain the cycle C ′ = v1, e1, . . . , vi, es+1, vs+1, es, . . . , vi+1, ei, v1 of length s + 1. 
Hence V1 ∩ es+1 = ∅. Therefore s + 2 = |V (P )| ≥ |es+1| + |V1| ≥ r + �k/2�, but we 
assumed r = k ≥ 3, a contradiction. This proves (12).

By (12) for every cycle C of length s in H, there is exactly one edge e such that 
e /∈ E(C). Among all such pairs (C, e) suppose we chose one to maximize |e ∩V (C)|. Let 
C = v1, e1, . . . , vs, es, v1.



A. Kostochka et al. / Journal of Combinatorial Theory, Series B 168 (2024) 159–191 173
Since s ≤ r, if e ⊆ V (C), then r = s = n/2, k = n/2 + 1. Let v ∈ V (H) \ V (C). Since 
v /∈ e, it is in at least k/2 edges of C. So there is a pair of consecutive edges, say e1, e2
containing v. Then the cycle

C ′ = v1, e1, v, e2, v2, e, v3, e3, . . . , vs, es, v1

has length s + 1, a contradiction.
Therefore X := e \ V (C) is nonempty. Define EX = {ei ∈ E(C) : ei ∩ X 
= ∅}. We 

now show that

EX cannot contain two consecutive edges in C. (13)

Indeed, suppose e1, e2 ∈ EX . Then there exist v, v′ ∈ X such that v ∈ e1, v′ ∈ e2. If 
v = v′, then let C ′ be the cycle obtained from C by replacing vertex v2 with v. Since 
v ∈ V (C ′) ∩ e and we chose (C, e) to maximize |V (C) ∩ e|, we need v2 ∈ e. Then the 
cycle

v1, e1, v, e, v2, e2, v3, . . . , vs, es, v1

has length s + 1, a contradiction. Therefore we may assume v 
= v′. Then by replacing in 
C the segment v1, e1, v2, e2, v3 with the path v1, e1, v, e, v′, e2, v3 we again obtain a cycle 
of length s + 1. This contradiction proves (13).

Since |EX | ≥ δ(H) − 1 ≥ �(k − 1)/2	 ≥ �s/2	 by (10), we may assume by (13) that 
if s is odd then EX = {e1, e3, e5, . . . , es−2} and if s is even, EX = {e1, e3, e5, . . . , es−1}. 
Moreover, again by (13), |EX | = δ(H) − 1, and therefore for every v ∈ X, the edges 
containing v are exactly EX ∪ {e}. Thus, for every ei ∈ EX , X ∪ {vi, vi+1} ⊆ ei.

Let ei ∈ EX , and suppose vi ∈ e. Then we may replace in C the segment vi, ei, vi+1
with vi, e, v, ei, vi+1 for any v ∈ X to obtain a cycle of length s + 1, a contradiction. 
Similarly, we have vi+1 /∈ e. If s is even, since the edges of C alternate membership and 
non-membership in EX , we have e ∩ V (C) = ∅, i.e., e = X. Otherwise, if s is odd, then 
e ⊆ X ∪ {vs}.

Recall that if ei ∈ EX , then X ∪{vi, vi+1} ⊆ ei. When s is even, we have |X| = |e| = r, 
so |ei| ≥ r + 2. When s is odd, we have |X| ≥ r − 1, and hence |ei| ≥ r − 1 + 2 ≥ r + 1. 
In both cases, a contradiction to the uniformity of H proves the claim. �

Among longest paths in H choose P = v1, e1, . . . , v�−1, e�−1, v� so that e1 has as few 
vertices outside of V (P ) as possible. By Claim 4.5, � ≥ s + 3.

Let J(1) be the maximum j such that vj ∈ e1 and J(� − 1) be the minimum j such 
that vj ∈ e�−1

Then

J(1) ≤ min{r + 1, s + 1} and J(� − 1) ≥ 3. (14)
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Let α(1) (respectively, β(1)) be the second smallest (respectively, the largest) index 
i such that v1 ∈ ei. By Claim 4.3, α(1) and β(1) are well defined. Similarly, let α(�)
(respectively, β(�)) be the smallest (respectively, the second largest) index i such that 
v� ∈ ei.

Since � ≥ s + 3 and H has no cycles with length s + 1 or greater,

β(1) ≤ s, and α(�) ≥ 3. (15)

Claim 4.6. J(1) ≤ β(�).

Proof. Suppose J(1) > β(�). For each i and j such that v� ∈ ei, vj ∈ e1 and j > i, the 
cycle Ci,j = vj , ej , vj+1, . . . , v�, ei, vi, ei−1, vi−1, . . . , v2, e1, vj yields that j ≥ i + 3.

In particular, by (14), β(�) ≤ s − 2. The edge eβ(�) forbids vβ(�)+1 and vβ(�)+2 from 
belonging to e1. By Claim 4.3, v� belongs only to edges of E(P ), and each of the remaining 
d(v�) − 2 edges ei containing v� other than eβ(�) and e�−1 also forbids at least one 
additional vi+1 from belonging to e1. So, by (10) and (14), |e1 ∩ V (P )| ≤ s + 1 − k/2 ≤
(s + 1)/2. Hence |e1 \ V (P )| ≥ r − (s + 1)/2. By the choice of e1, also |e�−1 \ V (P )| ≥
r − (s + 1)/2. Since (e1 \ V (P )) ∩ (e�−1 \ V (P )) = ∅, we conclude that

n ≥ |V (P )|+|e1\V (P )|+|e�−1\V (P )| ≥ �+2
(

r − s + 1
2

)
≥ (s+3)+2r−(s+1) = 2r+2,

a contradiction to r ≥ t + 1. �
Define β′(�) = min{� − 2, β(�) + 1}. If β(�) ≤ � − 3, then let

P ′(�) = v1, e1, . . . , vβ(�), eβ(�), v�, e�−1, v�−1, . . . , eβ(�)+1, vβ(�)+1.

If β(�) = � − 2 and v�−2 ∈ e�−1, then let P ′(�) = v1, e1, . . . , v�−2, e�−1, v�−1, e�−2, v�. In 
both cases,

P ′(�) coincides with P up to vβ(�), has the same vertex set as P ,
and the last edge is eβ′(�).

(16)

Let e−
1 = {vj : vj+1 ∈ e1}. If vj ∈ e�−1 ∩ e−

1 , then the cycle v2, e2, v3, . . . , vj ,

e�−1, v�−1, e�−2, . . . , vj+1, e1, v2 has s + 1 vertices. Thus, e�−1 ∩ e−
1 = ∅. As we men-

tioned above, (e1 \ V (P )) ∩ (e�−1 \ V (P )) = ∅. By (15), v1 and v2 also cannot belong to 
e�−1. So,

e�−1 ∩ M(e1) = ∅ where M(e1) = MP (e1) = e−
1 ∪ (e1 \ V (P )) ∪ {v2}. (17)

Now we consider some cases.
Case 1: v3 /∈ e1. Then v2 /∈ e−

1 , and hence |M(e1)| = r. Since r ≥ n/2, by (17) this 
is possible only if r = n/2 and e�−1 = V (H) \ M(e1). In particular, v�−2 ∈ e�−1. By 
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Claim 4.6, vs, vs+1, . . . , v� ∈ e�−1 and in particular, v�−2 ∈ e�−1. Thus by (16), we can 
apply the same argument to P ′(�) and get that eβ′(�) = V (H) \ M(e1). But these edges 
are distinct, a contradiction.

Case 2: v3 ∈ e1 and there is v ∈ (e2 − V (P )) \ e1. Then v /∈ e�−1 as otherwise 
v, e2, v2, e1, v3, e3, . . . , v�−1, e�−1, v is a cycle with s +3 −2 +1 > s vertices, contradicting 
that C is a longest cycle. Hence e�−1 = V (H) \ (M(e1) ∪ {v}). Now as in Case 1, the 
same holds for eβ′(�) in place of e�−1, contradicting the fact that they are distinct.

Case 3: v3 ∈ e1, e2 −V (P ) ⊂ e1 and v1 ∈ e2. Let P1 = v1, e2, v2, e1, v3, e3, . . . , v�. Note 
that V (P1) = V (P ). By the choice of e1, |e2 \ V (P )| = |e1 \ V (P )|, and hence Claim 4.6
holds for e2 in place of e1 and P1 in place of P . Define M(e2) = MP1(e2) similarly to 
M(e1). In this case, e�−1 ∩ (M(e1) ∪ M(e2)) = ∅, so since |M(e1) ∪ M(e2)| ≥ r (because 
|M(e1)|, |M(e2)| ≥ r − 1 and e1 
= e2), we get e�−1 = V (H) \ (M(e1) ∪ M(e2)), and the 
same holds for eβ′(�), a contradiction again.

Case 4: v3 ∈ e1, e2 − V (P ) ⊂ e1 and v1 /∈ e2. If there is v ∈ e2 \ V (P ), then path 
P2 = v, e2, v2, e1, v3, e3, . . . , v� differs from P1 only in the first vertex. So we can repeat 
the argument of Case 3 word by word.

If e2 contains a vertex vi for some i ≥ r+2, then the cycle v3, e3, v4, . . . , vi, e2, v2, e1, v3
has i − 1 ≥ r + 1 vertices.

The remaining case is e2 = {v2, v3, . . . , vr+1}. If for some 3 ≤ i ≤ r, vi ∈ e�−1, then the 
cycle Ci = vi+1, ei+1, . . . , v�−1, e�−1, vi, ei−1, vi−1, . . . , v3, e1, v2, e2, vi+1 has � − 2 ≥ s + 1
vertices. Thus {v1, . . . , vr} ∩ e�−1 = ∅. It follows that e�−1 = V (H) \ {v1, . . . , vr}, so 
P ′(�) exists. If 3 ≤ β(�) ≤ r, then the cycle

vβ(�)+1, eβ(�)+1, . . . , v�, eβ(�), vβ(�), eβ(�)−1, vβ(�)−1, . . . , v3, e1, v2, e2, vβ(�)+1

has � − 1 ≥ s + 2 vertices. Thus β(�) ≥ r + 1, and hence the defining vertices of the last 
edge eβ′(�) of P ′(�) are not in {v1, . . . , vr}. This is a contradiction. �
5. The path P in a best cycle-path pair (C, P ) is nontrivial

Consider a best cycle-path pair (C, P ) with C = v1, e1, v2, . . . , es−1, vs, es, v1 and 
P = u1, f1, u2, . . . , f�−1, u�. In this section, we rule out the case that P contains only 
one vertex, i.e., � = 1.

Observe that if � = 1 and (C, P ) is a best cycle-path pair, then every edge of H ′

contains at most one vertex outside of V (C), otherwise we find a longer path.

5.1. The case of � = 1 and r > t

In this subsection we prove the following lemma.

Lemma 5.1. Let n, k, and r be positive integers such that n ≥ k and r > t. If H is 
an n-vertex r-graph with at least k edges such that δ(H) ≥ �k/2� and c(H) < k, then 
� = |V (P )| ≥ 2.
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Proof. Suppose � = 1. Since c(H) < k, Lemma 4.2 implies that t +2 ≤ k−1. We consider 
two cases.

Case 1: Some e ∈ E(H ′) contains u1.
By Claim 3.1, no two vertices of e can be consecutive on C. Since e ⊆ V (C) ∪V (P ), e

contains r − 1 vertices of C. Thus r − 1 ≤ �s/2	. We know that r ≥ n/2, so this implies 
that either s = n − 2 and n is even, or s = n − 1. In either case, there are at most two 
vertices in V (C) \ e that are consecutive along C. Thus any edge f ∈ E(H ′) with f 
= e

containing u1 must have the property that vi ∈ e and vi+1 ∈ f for some i. However, 
replacing ei in C with e, u1, f extends C, so such an edge f cannot exist. If u1 ∈ ej , 
then vj , vj+1 /∈ e by Claim 3.2. Thus u1 is contained in at most one edge in E(H ′) and 
at most one edge in E(C). So �k/2� ≤ δ(H) ≤ dH(u1) ≤ 2, which can only be true if 
k ∈ {3, 4}. Since 3 ≤ t + 2 ≤ s ≤ k − 1 ≤ 3, s = 3, and therefore e must contain at least 
2 consecutive vertices in C, contradicting Claim 3.1.

Case 2: Only edges of C contain u1.
Since � = 1, we divide the proof into the following two cases.
Case 2.1: There is some edge e ∈ E(H ′) with e ⊆ V (C).
By Claim 3.3, u1 is contained in at most one edge of {ei : vi ∈ e} and at most one 

edge of {ei−1 : vi ∈ e}.
If the vertices of e are not all consecutive along C, then there are at least r + 2 edges 

in {ei : vi ∈ e} ∪ {ei−1 : vi ∈ e}. Since u1 is contained in at most two such edges, e
prohibits at least r edges of C from containing u1. Since u1 is contained in at least k/2
edges of C, we have

r + k/2 ≤ s ≤ k − 1,

which implies r ≤ k/2 − 1, contradicting that r ≥ n/2 ≥ k/2.
If the vertices of e are consecutive along C, by symmetry say e = {v1, . . . , vr}, then e

prohibits at least r − 1 edges of C from containing u1, so

r − 1 + k/2 ≤ s ≤ k − 1.

This implies r ≤ k/2, which gives a contradiction unless k = n is even, r = n/2, 
s = k−1 = n −1, and u1 is contained in exactly two edges of {ei : vi ∈ e} ∪{ei−1 : vi ∈ e}. 
The only two such edges that u1 can be contained in are er and es because every other 
such edge ei satisfies vi, vi+1 ∈ e. Thus u1 must be contained in er and es. Now consider 
the cycle C ′ formed by replacing er−1 with e in C. Since u1 /∈ er−1, (C ′, u1) is also a best 
cycle-path pair. Since s = n − 1 and u1 /∈ V (C) = V (C ′), we have that er−1 ⊆ V (C ′). 
Let vi ∈ er−1 \ e (so i ∈ {r + 1, . . . , s}). Since u1 ∈ er and vr ∈ er−1, the same argument 
applied to C ′ and er−1 implies that u1 /∈ ei. Thus er−1 prohibits u1 from belonging to 
an additional edge of C. It follows that at least r = k/2 edges of C cannot contain u1
and k/2 edges of C must contain u1, contradicting that s = k − 1.

Case 2.2: Each e ∈ E(H ′) contains exactly one vertex v /∈ V (C). Since C has at most 
k − 1 edges, and |E(H)| ≥ k, E(H ′) 
= ∅. Fix an edge e ∈ E(H ′) and corresponding 
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vertex v /∈ V (C). We must have v 
= u1 because u1 is contained only in edges of C. As 
before, u1 is contained in at most one edge from each set {ei : vi ∈ e} and {ei−1 : vi ∈ e}. 
If the vertices of e ∩ V (C) are not all consecutive along C, then e prohibits at least r − 1
edges of C from containing u1. Since u1 must be contained in at least k/2 edges of C, 
we have

r − 1 + k/2 ≤ s ≤ k − 1, (18)

which implies r ≤ k/2. This gives a contradiction unless k = n is even, r = n/2, and 
s = k −1. However, u1 and v are both outside of C, so s ≤ n −2 = k −2, a contradiction.

If the vertices of e ∩ V (C) are consecutive along C, then e prohibits at least r − 2
edges of C from containing u1, so

r − 2 + k/2 ≤ s ≤ min{k − 1, n − 2}.

This implies r ≤ k/2 + 1, which gives a contradiction when k ≤ n − 3.
If k ≥ n − 2, then we get a contradiction unless s = min{k − 1, n − 2} and r = �n/2�. 

If there exists some f ∈ E(H ′) with v ∈ f and f 
= e, then f prohibits at least one 
additional edge of C from containing u1, using the same arguments as for e. In this case, 
we have r − 1 + k/2 ≤ s, which gives a contradiction similar to (18). Otherwise, v must 
be contained in at least k/2 −1 edges of C. If vi ∈ e then v /∈ ei, ei−1 by Claim 3.2. Thus 
e prohibits at least r edges of C from containing v, so r + k/2 − 1 ≤ s, giving the same 
contradiction as (18). �
5.2. The case of � = 1 and r = t

We first prove a claim that will be used in this subsection and the following.

Claim 5.2. Let n, k, and r be positive integers such that n ≥ k and r ≤ t. If H is an 
n-vertex r-graph with at least k edges such that δ(H) ≥

(
t

r−1
)

+ 1, c(H) < k, and � = 1, 
then u1 is contained in at least 2 edges of C.

Proof. Suppose that u1 is contained in at most one edge of C. By Claim 3.1 no two 
vertices of NH′(u1) are consecutive. Since s ≤ n −1 ≤ 2t +1, this implies that |NH′(u1) ∩
V (C)| ≤ t. But since � = 1, NH′(u1) ⊂ V (C). So, since |NH(u1)| ≥

(
t

r−1
)

+ 1, u1 must 
be contained in an edge of C, say u1 ∈ es−1. Then by Claims 3.2 and 3.1, the 

(
t

r−1
)

edges of H ′ containing u1 must be disjoint from {vs−1, vs} and nonconsecutive along C. 
This is possible only if s = 2t + 1 and |NH′(u1) ∩ V (C)| = t.

We may assume that X := NH′(u1) = {v1, v3, . . . , v2t−1}. Then u1 must be contained 
in the 

(
t

r−1
)

edges of H ′ consisting of u1 and r − 1 vertices of X.
We now will find an edge g 
= e2t such that |g\X| ≥ 2 and |g∩{v2, v4, . . . , v2t−2}| ≥ 1. 

To do so, choose v2j /∈ e2t. Since dH(v2j) >
(

t
r−1

)
, there is an edge g containing v2j and 

at least one additional vertex not in X. Notice that this vertex cannot be u1, so since X
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contains all vertices of odd index other than v2t+1, it must be either v2t+1 or be v2j′ for 
some 1 ≤ j′ ≤ t, j′ 
= j.

We use g to find a hamiltonian cycle. Let f2j−1 be an edge in E(H ′) containing both 
u1 and v2j−1, which must exist because v2j−1 ∈ X. First suppose that g ∈ E(H ′). If 
v2t+1 ∈ g \ X, then we obtain the hamiltonian cycle

C1 = v2j , g, v2t+1, e2t+1, v1, e1, . . . , v2j−1, f2j−1, u1, e2t, v2t, e2t−1, . . . , v2j .

Otherwise, we have v2j′ ∈ g \ X for some 1 ≤ j′ ≤ t, j′ 
= j. Let f2j′−1 
= f2j−1 be an 
edge of H ′ containing both u1 and v2j′−1. Then the cycle

v2j , g, v2j′ , e2j′ , v2j′+1, e2j′+1, . . . , v2j−1, f2j−1, u1, f2j′−1, v2j′−1, e2j′−2, . . . , v2j

is hamiltonian.
Now we may assume that g = ei for some i 
= 2t. If i is even, we may orient C

backwards starting from v2t causing ei to become an odd-indexed edge. Thus we may 
assume i is odd. Let fi 
= f2j−1 be an edge of H ′ containing both u1 and vi. If 2j 
= i +1, 
then we have the hamiltonian cycle

C2 = v2j , g, vi+1, ei+1, vi+2, ei+2, . . . , v2j−1, f2j−1, u1, fi, vi, ei−1, . . . , v2j .

If 2j = i + 1 and v2t+1 ∈ g \ X, then g = e2j−1 and we obtain the cycle C1. Otherwise, 
2j = i + 1 and there is some v2j′ ∈ g \ X with j 
= j′. Swapping the roles of j′ with j in 
the cycle C2 gives a hamiltonian cycle. �
Lemma 5.3. Let n, k, and r be positive integers such that n ≥ k and r = t. If H is 
an n-vertex r-graph with at least k edges such that δ(H) ≥ r + 1 and c(H) < k, then 
� = |V (P )| ≥ 2.

Proof. Suppose � = 1. We consider cases based on the edges containing u1 and the edges 
outside of C. Note that since δ(H) ≥ r + 1, H must have at least n(r + 1)/r ≥ n + 3
edges.

Case 1: Some e ∈ E(H ′) contains u1. Note that no two vertices of e ∩ V (C) can 
be consecutive on C by Claim 3.1. Thus r − 1 ≤ �s/2	, so s ≥ n − 3. Thus we have 
n − 3 ≤ s ≤ n − 1, and there are at most three edges ei in C with vi, vi+1 /∈ e. Observe 
also that by Claim 3.2, if vi ∈ e, then u1 /∈ ei, ei−1.

Case 1.1: There are at most two ei in C with vi, vi+1 /∈ e. Then there are at least 
r + 1 − 2 ≥ 2 edges of E(H ′) containing u1, so consider f ∈ E(H ′) with u1 ∈ f 
= e. If 
for some i, vi ∈ e and vi+1 ∈ f (or vice versa), we replace ei with e, u1, f to obtain a 
longer cycle. If no such i exists, then for all vj ∈ f we have that vj−1, vj+1 /∈ e. Since 
f 
= e, we can fix a j such that vj ∈ f \ e. Then by Claim 3.2 f prohibits ej−1 and ej

from containing u1, which were not prohibited by e. Therefore no edges of C contain u1, 
so there are at least r + 1 edges in E(H ′) containing u1. Then there must exist some 
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such f ′ ∈ E(H ′) and some i (by r + 1 >
(

r
r−1

)
) such that vi ∈ f ′ and vi+1 is in e or f , 

which allows us to replace ei and obtain a longer cycle.
Case 1.2: There are three edges ei in C with vi, vi+1 /∈ e. This case can only occur 

when s = n − 1 and n is even, so we have s = 2t + 1. We first suppose that r ≥ 4
and deal with the case r = 3 separately. Thus we have at least r + 1 − 3 ≥ 2 edges of 
E(H ′) containing u1. As in Case 1.1, we consider f ∈ E(H ′) with u1 ∈ f 
= e, and we 
may assume that for all vj ∈ f we have vj−1, vj+1 /∈ e. We also have some j such that 
vj ∈ f \ e, which gives that u1 /∈ ej−1, ej . Thus at most one edge of C contains u1.

If there is more than one vertex in f ′ \ e for any f ′ ∈ E(H ′) containing u1, then no 
edges of C contain u1 and we can repeat the arguments of Case 1.1 to obtain a longer 
cycle. By symmetry, the same holds for the edge f , so NH′(u1) = e ∪ f . Notice that 
|e ∪f | = r, so there are at most r edges of E(H ′) containing u1. Since d(u1) ≥ r +1, this 
gives that u1 is contained in exactly those r edges along with one edge of C, contradicting 
Claim 5.2.

We now handle the case r = 3. Notice that in this case, n = 8 and s = 7. If u1 is 
contained in at least two edges of H ′, then we can in fact follow the above arguments. 
Thus we may assume that u1 is contained in exactly one edge of H ′ and three edges of 
C. Up to symmetry, we have two cases.

First, consider the case u1 ∈ e = {u1, v2, v5} and u1 ∈ e3, e6, e7. The cycle C1 =
v1, e1, v2, . . . , v6, e6, u1, e7, v1 has the same edge set as C and misses only the vertex v7. 
If v7 is not contained in an H ′ edge, then (C1, v7) is a better cycle-path pair than (C, u1), 
a contradiction. Then v7 ∈ f ∈ E(H ′), and observe that f cannot contain any vertex in 
{u1, v1, v6} by Claim 3.2 since v7 ∈ e6, e7.

We now consider the possibilities for the edge f . If v3 ∈ f , then we obtain the hamil-
tonian cycle v7, f, v3, e3, . . . , v6, e6, u1, e, v2, e1, v1, e7, v7. A symmetric argument gives a 
hamiltonian cycle when v4 ∈ f . Thus f = {v7, v2, v5}, and f must be the only H ′ edge 
containing v7. Then v7 ∈ f, e6, e7, and some e′ ∈ E(C). By Claim 3.2, e′ 
= e1, e2, e4, e5. 
Thus e′ = e3, but we already have e3 = {u1, v3, v4}.

The second case for r = 3, up to symmetry, has u1 ∈ e = {u1, v2, v4} and u1 ∈
e5, e6, e7. We consider the same cycle C1 as above, and again we have that the edge 
f ∈ E(H ′) containing v7 cannot contain any vertices in {u1, v1, v6}.

If v3 ∈ f , we obtain the hamiltonian cycle v7, f, v3, e2, . . . , v1, e7, u1, e, v4, e4, . . . , e6, v7. 
If v5 ∈ f , we have the hamiltonian cycle v7, f, v5, e5, v6, e6, u1, e, v4, e3, . . . , v1, e7, v7. 
Thus f = {v7, v2, v4}, and f must be the only H ′ edge containing v7. By Claim 3.2, 
e′ 
= e1, e2, e3, e4, so e′ = e5. But we already have e5 = {u1, e5, e6}.

Case 2: Only edges of C contain u1.
Case 2.1: There is some edge e ∈ E(H ′) with e ⊆ V (C).
By Claim 3.3, u1 is contained in at most one edge of {ei : vi ∈ e} and at most one 

edge of {ei−1 : vi ∈ e}.
If the vertices of e are not all consecutive along C, then e prohibits at least r edges 

from containing u1. Since u1 must be contained in at least r + 1 edges of C, we have
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r + r + 1 ≤ s.

Thus we know r ≤ (s − 1)/2, so we reach a contradiction unless k = n and s = n − 1. 
Notice that if the vertices of e are in more than two consecutive strings in C, then e
prohibits at least r + 1 edges and we reach a contradiction. Assume without loss of 
generality that e = {v1, . . . , vi1 , vi2 , . . . , vi3} with i2 ≥ i1 + 2 and i3 ≤ s − 1. We must 
also have that u1 is contained in each edge ei of C such that vi, vi+1 /∈ e, and u1 is 
contained in exactly one of ei1 , ei3 and exactly one of ei2−1, en−1.

Suppose first that u1 is contained in ei1 and ei2−1. Let f ∈ E(H ′) with f 
= e. Since u1
is the only vertex outside of C, f ⊆ V (C). If there is some vi ∈ f such that u1 /∈ ei−1, ei, 
then f prohibits at least one additional edge from containing u1, giving a contradiction. 
Thus f ⊆ e ∪ {vi3+1, vn−1}. Since f 
= e, f must contain at least one of vi3+1, vn−1. 
However, if vi3+1 ∈ f , then vi1 /∈ f by Claim 3.3 and the fact that u1 ∈ ei3+1, ei1 , and 
similarly if vn−1 ∈ f , then vi2 /∈ f . Therefore we have three distinct possibilities for f
(f = e − vi1 + vi3+1, f = e − vi2 + vn−1, and f = e − vi1 − vi2 + vi3+1 + vn−1), and 
there are at least n + 3 − (n − 1) − 1 = 3 edges in E(H ′) distinct from e. Hence each of 
the three possibilities are edges in H ′. Notice also that for any ei such that vi, vi+1 ∈ e, 
we can swap e and ei to get another maximum cycle (this cycle may not be in a best 
cycle-path pair). Since ei 
= e and ei 
= f , f ∈ E(H ′), we must have that ei forbids at 
least one additional edge from containing u1, a contradiction.

Now suppose instead that u1 is contained in ei1 and en−1. Let f ∈ E(H ′) with 
f 
= e. As in the paragraph above, we have f ⊆ e ∪ {vi2−1, vi3+1}, unless i1 = 1, which 
we will handle separately. If i1 
= 1, then by a similar argument to above we reach a 
contradiction. If i1 = 1, notice that u1 must be contained in r + 1 consecutive edges of 
C: ei3+1, ei3+2, . . . , en−1, e1, e2, . . . , ei2−2. In this case, either f = (e −v1) ∪{vi} for some 
vi /∈ e. Similarly, for any ej such that vj , vj+1 ∈ e, we must have ej = (e − v1) ∪ {vi}, 
vi /∈ e, because otherwise we may swap e for ei to see that an additional edge of C

is prohibited from containing u1. This gives that no f ∈ E(H ′), f 
= e and no ej , 
i2 ≤ j ≤ i3 − 1 contains v1.

Consider the cycle C ′ formed by swapping u1 with v1 and e with the central edge 
amongst ei2 , ei2+1, . . . , ei3−1, call it ek. That is,

C ′ = u1, e1, v2, e2, v3, . . . , ek−1, vk, e, vk+1, ek+1, vk+2, . . . , en−1, u1.

Then v1 is contained only in edges of C ′, so (C ′, v1) also is a best cycle-path pair under 
the same conditions as (C, u1). If the edges of C ′ containing v1 are not all consecutive 
in along C ′, then we must be done by a previous argument applied to C ′ instead of C. 
If r ≥ 5, then we immediately see that v1 ∈ e but v1 /∈ ek−1, ek+1, so we are done. If 
r = 3, 4, then we may assume k = i2 and say v1 ∈ ei2−1, ei2−2, ei2−3 in order for the 
edges of C ′ containing v1 to be consecutive. Then any f ∈ E(H ′) with vi2 ∈ f 
= e

must have vi2−1, vi2+1 /∈ f , since if vi, vj ∈ f , then v1 cannot be in both ei, ej and 
cannot be in both ei−1, ej−1 by Claim 3.3. However, there is no such edge f ∈ E(H ′), 
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so no such f contains vi2 . There is exactly one possibility for f not containing vi2 : 
f = (e \{v1, vi2}) ∪{vi2−1, vi3+1}. This contradicts the fact that we have at least 3 edges 
in E(H ′) distinct from e.

The case u1 ∈ ei3 , en−1 is symmetric to the case u1 ∈ ei1 , ei2−1, and the case u1 ∈
ei2−1, ei3 is symmetric to the case u1 ∈ en−1, ei1 , so we omit them.

We may now assume that all edges of E(H ′) contained entirely in V (C) are each 
consecutive in C, and that e = {v1, v2, . . . , vr}. Then e prohibits at least r − 1 edges of 
C from containing u1, so

r − 1 + r + 1 ≤ s

and thus r ≤ s/2. If s ≤ n − 3, we immediately get a contradiction. If s = n − 2, there 
exists a unique v /∈ V (C) with v 
= u1. We must have u1 ∈ er, er+1, . . . , en−1 because 
otherwise e prohibits r edges of C from containing u1 and we reach a contradiction. 
Furthermore, we must have that each edge in E(H ′) contains v, since any additional 
consecutive edge of H ′ contained entirely in V (C) would prohibit at least one additional 
edge from containing u1. Thus v is contained in at least (n + 3) − (n − 2) − 1 = 4 edges 
of E(H ′).

For ev ∈ E(H ′) containing v, we have that if vi, vj ∈ ev ∩ V (C), then by Claim 3.3 u1
cannot be contained in both ei and ej and cannot be contained in both ei−1 and ej−1. 
Thus, any such ev can contain at most one vertex outside e ∪ {v}, and further that if 
ev contains some vertex outside of e ∪ {v}, then v1, vr /∈ ev. Therefore there exist ev, e′

v

containing v and vi, vi+1 ∈ V (C) such that say vi ∈ ev and vi+1 ∈ e′
v. We are able to 

extend the cycle C by replacing ei with ev, v, e′
v, contradicting the maximality of C.

Therefore s = n − 1. Then u1 is the only vertex outside of C, so there are at least 4 
edges of E(H ′), including e, each with their vertices consecutive along C. This prohibits 
at least r − 1 + 3 edges of C from containing u1, giving a contradiction.

Case 2.2: Each e ∈ E(H ′) contains some v /∈ V (C).
Let e be such an edge and v 
= u1 the unique vertex in e \ V (C) (by � = 1). Note that 

as in the previous case, u1 is contained in at most one edge of {ei : vi ∈ e ∩ V (C)} and 
at most one edge of {ei−1 : vi ∈ e ∩ V (C)}.

If the vertices of e ∩ V (C) are not all consecutive along C, then e prohibits at least 
r − 1 edges of C from containing u1. Thus

r − 1 + r + 1 ≤ s,

so r ≤ s/2. If s ≤ n −3, we immediately get a contradiction. Since u1, v /∈ V (C), we must 
have s = n − 2 and thus every edge of H ′ contains v. Hence v is contained in at least 
(n +3) −(n −2) = 5 edges of E(H ′). For e, f ∈ E(H ′), if vi ∈ e, vi+1 ∈ f for some i, then 
we can replace ei with e, v, f to extend C. Since e is not all consecutive, it prohibits at 
least r + 2 vertices of C from being contained in f . However, C has at most 2r vertices 
and f must contain at least r − 1 of them, a contradiction as r + 2 + r − 1 > 2r.
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Thus we may assume the vertices of e ∩ V (C) are all consecutive along C. Then we 
have

r − 2 + r + 1 ≤ s,

and r ≤ (s + 1)/2. If s ≤ n − 4, we get an immediate contradiction. If s = n − 2, then 
similarly to above, e prohibits r+1 vertices of C from being contained in any f ∈ E(H ′). 
Thus there are only r − 1 vertices remaining in V (C) that can be contained in any edge 
of H ′, but there are at least four edges of H ′ distinct from e, a contradiction.

Finally, we have s = n − 3, and there is some v′ /∈ V (C) distinct from u1 and v. In 
this case, there are at least (n + 3) − (n − 3) = 6 edges of H ′, so we may assume without 
loss of generality that v ∈ f ∈ E(H ′) for some f 
= e. However, e prohibits r + 1 of the 
at most 2r − 1 vertices of C from being contained in f , a contradiction. �
5.3. The case of � = 1 and r < t

Lemma 5.4. Let n, k, and r be positive integers such that n ≥ k and r < t. If H is an 
n-vertex r-graph with at least k edges such that δ(H) ≥

(
t

r−1
)

+ 1 and c(H) < k, then 
� = |V (P )| ≥ 2.

Proof. Suppose � = 1. Since every edge in H ′ contains at most one vertex outside of C, 
NH′(u1) ⊆ V (C).

By Claim 3.1, |NH′(u1)| ≤ �s/2	 ≤ t. Let b1 be the number of edges in E(C) contain-
ing u1. By Claim 5.2, we must have b1 ≥ 2.

Corollary 3.6 additionally gives that if 2 ≤ b1 ≤ s −1, then |NH′(u1)| ≤ �(s −1 −b1)/2�, 
and if b1 = s, then |NH′(u1)| = 0.

Notice that
(

t

r − 1

)
−

(
t − 1
r − 1

)
≥

(
t

2

)
−

(
t − 1

2

)
= t − 1

for t ≥ r + 2. Similarly, if t = r + 1, then 
(

t
r−1

)
−

(
t−1
r−1

)
=

(
t
2
)

− (t − 1) ≥ t − 1. Thus if 
b1 ≤ t − 1, we have

d(u1) ≤ b1 +
(

|NH′(u1)|
r − 1

)
≤ t − 1 +

(
t − 1
r − 1

)
≤

(
t

r − 1

)
,

a contradiction to the minimum degree. Therefore we may assume b1 ≥ t. This gives 
that |NH′(u1)| ≤ �(s − t − 1)/2� ≤ �t/2�.

We have that
(

t
)

−
(

� t
2�

)
≥

(
t
)

−
(

� t
2�

)
≥ n − 1 ≥ b1
r − 1 r − 1 2 2
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whenever �t/2� ≥ r + 1 and t ≥ 7. If �t/2� = r, then we instead have 
(

t
r−1

)
−

(�t/2�
r−1

)
≥(

t
2
)

−�t/2� ≥ n −1 when t ≥ 7. If �t/2� ≤ r −1, then we have d(u1) ≤ b1 +1 ≤ n ≤
(

t
r−1

)
whenever t ≥ 6. Hence for t ≥ 7, we have d(u1) ≤ b1 +

(�t/2�
r−1

)
< δ(H), a contradiction.

For the remaining values of t, we consider whether or not |NH′(u1)| = 0. First suppose 
we have |NH′(u1)| ≥ r − 1 and hence �(s − b1 − 1)/2� ≥ r − 1. When t = 4, we need 
s ∈ {8, 9}, b1 ∈ {4, 5} (since b1 ≥ t) to have �(s −b1 −1)/2� ≥ r−1. In every case we have 
|NH′(u1)| = r − 1, but then d(u1) ≤ 5 + 1 < 7 ≤ δ(H). When t = 5, we have s ≤ 11 and 
so we need b1 ≤ 7 to have �(s −b1 −1)/2� ≥ r −1 ≥ 2. Hence d(u1) ≤ 7 +1 < 11 ≤ δ(H). 
When t = 6, we have 6 ≤ b1 ≤ s ≤ 13, so �(s − b1 − 1)/2� ≤ 3 and hence we are 
done if r ≥ 5. If �(s − b1 − 1)/2� = r − 1, then d(u1) ≤ b1 + 1 < 16 ≤ δ(H). If 
�(s − b1 − 1)/2� = r = 3, then we must have b1 ≤ 6, so d(u1) ≤ 6 + 3 < 16 ≤ δ(H), a 
contradiction (the case t = 6, r = 4 is done in the preceding paragraph).

For the final case of |NH′(u1)| = 0, we prove a brief claim.

Claim 5.5. If |NH′(u1)| = 0, then b1 ≤ s − r + 2.

Proof. Suppose that b1 ≥ s − r + 3. Notice that we must have E(H ′) 
= ∅ because there 
are at least k > s edges. Let e ∈ E(H ′), and notice that |e ∩ V (C)| ≥ r − 1 ≥ 2. Thus 
there must exist vi, vj ∈ e such that u1 ∈ ei, ej or u1 ∈ ei−1, ej−1 because u1 is in all 
but at most r − 3 edges of C. However, we can then consider the cycle

v1, e1, v2, . . . , ei−1, vi, e, vj , ej−1, vj−1, . . . , ei+1, vi+1, ei, u1, ej , vj+1, ej+1, . . . ,

es−1, vs, es, v1,

which is longer than C, a contradiction. �
If we do have |NH′(u1)| = 0, then Claim 5.5 gives that b1 ≤ s − r + 2 ≤ n − r + 1. 

Then d(u1) ≤ n − r + 1 < δ(H) except in the case t = 4, r = 3, b1 ≥ 7, which we handle 
separately.

Case 1: s = n − 1 ∈ {8, 9}. Therefore s − b1 ≤ 2. Let e ∈ E(H ′), and notice that 
e ⊆ V (C) because |NH′(u1)| = 0. As in the case of � = 1, r ≥ t, e prohibits some edges 
of C from containing u1. That is, if vi, vj ∈ e, then u1 cannot be contained in both 
ei and ej and cannot be contained in both ei−1 and ej−1. If e is not all consecutive, 
then e prohibits at least 3 edges of C from containing u1. This contradicts the fact that 
s − b1 ≤ 2. If e is all consecutive, say e = {vi, vi+1, vi+2}, notice that if u1 ∈ ei, then by 
Claim 3.3 we must have u1 /∈ ei−1, ei+1, ei+2, reaching the same contradiction. Thus we 
have u1 /∈ ei and similarly u1 /∈ ei+1. Consider the cycle formed by swapping the roles 
of e and ei. Then ei must prohibit at least one additional edge of C from containing u1, 
reaching the same contradiction again.

Case 2: s = 8, n = 10, b1 = 7. If any edge of E(H ′) is contained fully in V (C), 
then we follow the same arguments as Case 1 to reach a contradiction. Thus we may 
assume every edge of E(H ′) contains the unique vertex x 
= u1 outside C. Let ei be 
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the unique edge of C which does not contain u1. For any edge e ∈ E(H ′), we must 
have vi, vi+1 ∈ e, as otherwise by Claim 3.3 e will prohibit at least two edges of C from 
containing u1. However, there are at least two such edges e, e′ ∈ E(H ′), and this gives 
e = e′, a contradiction. �
6. Proof of Theorem 1.8(c)

Proof. Let n, k, and r be positive integers such that n ≥ k and k − 2 ≥ t ≥ r ≥ 3. Recall 
that t = �(n −1)/2	. Let H be an n-vertex, r-graph with δ(H) ≥

(
t

r−1
)
+1. As in previous 

sections, consider a best cycle-path pair (C, P ) with C = v1, e1, v2, . . . , es−1, vs, es, v1 and 
P = u1, f1, u2, . . . , f�−1, u�. We use the same notation of HC , HP , H ′, and additionally 
define the following. For a vertex v of a hypergraph F , F{v} will denote the set of the 
edges of F containing v.

By Lemmas 5.3 and 5.4, � ≥ 2. By Lemma 4.1, s ≥ t + 2. Therefore � ≤ n − s ≤
2t + 2 − (t + 2) = t.

Recall for j ∈ {1, �}, Bj = HC{uj}, and set bj = |Bj |. By symmetry, we may as-
sume b� ≥ b1. By Claim 3.4 and Lemma 3.7 applied to the graph cycle with edges 
v1v2, v2v3, . . . , vsv1, we get that either

b1 ≤ (s + 2)/2 − �, (19)

or

B1 = B� and b1 ≤ s/�. (20)

Recall that by the maximality of V (P ) all edges in H ′ containing u1 or u� are contained 
in V (C) ∪ V (P ).

For j ∈ {1, �}, let Aj = NH′(uj) ∩ V (C) and aj = |Aj |. By Claim 3.1, Aj contains no 
consecutive vertices of C for j ∈ {1, �}.

Case 1: A1 = ∅. Then all edges in H ′ containing u1 are contained in V (P ).
Case 1.1: r = t. Since � ≤ t, the only possibility of an edge g ∈ E(H ′) containing u1

is that � = t and g = V (P ). But then we can switch g with f1, contradicting Part (iv) 
of choosing (C, P ). Thus NH′(u1) = ∅. Then

b1 ≥ δ(H) − |E(P )| ≥ (t + 1) − (� − 1) = t − � + 2. (21)

So, if (19) holds, then since s ≤ n − � ≤ 2t +2 − �, b1 ≤ (2t +2)/2 − �, contradicting (21).
If (20) holds, then comparing with (21) we get t − � + 2 ≤ (2t + 2 − �)/�, which is 

equivalent to �(t − � + 3) ≥ 2t + 2. This can hold only when � = 2 and s = 2t. In this 
case b1 = t and B� = B1. Since an edge in B� cannot be next to an edge in B1 on C by 
Claim 3.4, we may assume that B1 = B� = {e1, e3, . . . , e2t−1}. Since n = s +� = s +2, f1
contains a vertex of C, say v1. But then we get a longer cycle by replacing path v1, e1, v2
in C with path v1, f1, u1, e1, v2, a contradiction.
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Case 1.2: 3 ≤ r ≤ t − 1. The number of edges in H ′ containing u1 and contained in 
V (P ) is at most 

(
�−1
r−1

)
. So,

b1 ≥ 1 +
(

t

r − 1

)
−

(
� − 1
r − 1

)
− (� − 1) ≥ 1 +

(
t

2

)
−

(
� − 1

2

)
− � + 1

= (t + � − 2)(t − � + 1)
2 − � + 2. (22)

If (19) holds, then since s ≤ 2t + 2 − �, we get

(t + � − 2)(t − � + 1)
2 − � + 2 ≤ 2t + 4 − �

2 − �,

which is not true for 2 ≤ � ≤ t as t ≥ 4.
If (20) holds, then we get

(t + � − 2)(t − � + 1)
2 − � + 2 ≤ 2t + 2 − �

�
. (23)

This does not hold in the range 2 ≤ � ≤ t − 1 as t ≥ 4. Suppose now � = t ≥ 4. If all (
�−1
r−1

)
r-subsets of V (P ) containing u1 are in H ′, then we can replace f1 with {u1, . . . , ur}

contradicting Part (iv) of choosing (C, P ). Thus, in this case instead of (22), we have 
b1 ≥ (t + � − 2)(t − � + 1)/2 − � + 3 and so instead of (23), we have

(t + � − 2)(t − � + 1)
2 − � + 3 ≤ 2t + 2 − �

�
,

which is not true for � = t ≥ 4. This finishes Case 1.
Case 2: A1 
= ∅ and B� 
= ∅. If there are vi ∈ A1 and ej ∈ B� such that j ≥ i

and j − i ≤ � − 2, say vi ∈ g ∈ E(H ′{u1}), then by replacing in C the path 
vi, ei, vi+1, . . . , ej , vj+1 with the path vi, g, u1, f1, . . . , f�−1, u�, ej , vj+1 creates a cycle 
longer than C, a contradiction. Thus such vi and ej do not exist. So each interval of 
C \ A1 contains a vertex not covered by B�, and each such interval containing an edge in 
B� has at least 2(� − 1) such vertices. Since the edges in B� cover at least b� + 1 vertices, 
we get

a1 + (a1 − 1 + 2(� − 1)) + (b� + 1) ≤ s ≤ 2t + 2 − �. (24)

Since � ≥ 2 and by the case b� ≥ 1, (24) yields 2a1 + 2� − 1 ≤ 2t, so by integrality

t ≥ a1 + �. (25)

If r = t, (25) yields that H ′{u1} contains only one edge, namely, g = A1 ∪ V (P ), and 
r = t = a1 + �. But then we can switch g with f1 and still have the best cycle-path pair 
(C, P ′) where P ′ is obtained from P by deleting f1 and adding g instead. So, there is a 
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vertex vi ∈ (f1 ∩ V (C)) \ A1. This is one more vertex that is not next to any vj ∈ A1
and is at distance in C at least � from B�. Thus in this case instead of (24) we get 
a1 + (a1 + 1 + 2(� − 1)) + (b� + 1) ≤ s and hence t ≥ a1 + � + 1, a contradiction to 
r = t = a1 + �.

Suppose now 3 ≤ r ≤ t − 1. Then, since b� ≥ b1,

1 +
(

t

r − 1

)
≤ d(u1) = dH′(u1) + b1 + dHP

(u1) ≤
(

a1 + (� − 1)
r − 1

)
+ b� + (� − 1).

So,

t(t − 1) − (a1 + � − 1)(a1 + � − 2)
2 =

(
t

2

)
−

(
a1 + � − 1

2

)
≤

(
t

r − 1

)
−

(
a1 + � − 1

r − 1

)

≤ b� + � − 2.

Plugging in the upper bound on b� + � − 2 from (24) and rewriting (t(t − 1) − (a1 + � −
1)(a1 + � − 2))/2 as ((t + a1 + � − 2)(t − a1 − � + 1))/2, we obtain

(t + a1 + � − 2)(t − a1 − � + 1)
2 ≤ 2(t − a1 − � + 1). (26)

Since by (25), t − a1 − � + 1 > 0, (26) simplifies to t + a1 + � − 2 ≤ 4. Since t ≥ r + 1 ≥ 4, 
a1 ≥ 1 and � ≥ 2, this is impossible.

Case 3: A1 
= ∅, B� = B1 = ∅, and A� 
= A1. By Case 1, a1 > 0 and a� > 0.
If i < i′ ≤ i + �, and there are distinct g1, g� ∈ E(H ′) such that {vi, u1} ⊂ g1 and 

{vi′ , u�} ⊂ g�, then replacing path vi, ei, . . . , vi′ in C with the path vi, g1, u1, f1, . . . , f�−1,

u�, g�, vi′ creates a cycle longer than C, a contradiction.
By Claim 3.1, A1 ∪A� does not contain consecutive vertices of C. We may assume that 

a1 ≤ a�. Then since A� 
= A1, A�−A1 
= ∅. So, applying Lemma 3.8 with A = A1, B = A�, 
and q = � + 1,

a1 ≤ (s + 2)/2 − � − 1 ≤ (2t + 2 − �)/2 − � ≤ t − �. (27)

Also using that B1 = ∅,

dH′(u1) ≥ dH(u1) − b1 − (� − 1) ≥ 1 +
(

t

r − 1

)
− 0 − � + 1 = 2 +

(
t

r − 1

)
− �. (28)

Case 3.1: r = t. Then each edge g ∈ H ′{u1} has at least t − � vertices in V (C) with 
equality only when V (P ) ⊂ g. By (28) and � ≤ t, dH′(u1) ≥ 2. Hence there are at least 
two edges of H ′ containing u1, implying a1 ≥ (t + 1) − �. This contradicts (27).

Case 3.2: 3 ≤ r ≤ t − 1. Then dH′(u1) ≤
(

a1+�−1
r−1

)
. So, by (27), dH′(u1) ≤

(
t−1
r−1

)
, and 

together with (28), we get
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2 +
(

t

r − 1

)
− � ≤

(
t − 1
r − 1

)
,

which is not true as 2 ≤ r − 1 ≤ t − 2 and � ≤ t.
Case 4: A1 
= ∅, B� = B1 = ∅, and A� = A1. Let A1 = {x1, . . . , xa1} with vertices in 

clockwise order on C.
Case 4.1: Between any xj and xj+1 there are at least � vertices. Then (� + 1)a1 ≤ s. If 

a1 ≥ 2, then (27) holds by 2 ≤ � ≤ t and some calculations, and we repeat the argument 
of Case 3. Suppose (27) does not hold, so a1 = 1 and A� = A1 = {v1}. Since

dH′(u1) ≥ 1 +
(

t

r − 1

)
− (� − 1) ≥ 1 +

(
t − 1
r − 1

)
(29)

and each edge in H ′{u1} is contained in V (P ) + v1, � = t and some edge g ∈ H ′{u1}
contains u�. Also, by degree condition, some edge f ∈ H{u1} is not contained in V (P ) +
v1. By the case, this is some fj. By the symmetry between u1 and u�, we may assume 
j ≤ �/2. Since H contains path Pj = uj+1, fj+1, . . . , u�, g, u1, f1, . . . , uj , the edge fj is 
contained in V (C) ∪ C(P ), and hence fj contains some vi for i 
= 1. By symmetry, we 
may assume i ≤ s/2 + 1 = t/2 + 2.

We will show that there is an edge g1 ∈ H ′{u1} \ g not contained in V (P ) and 
hence containing v1. Indeed, if all other edges of H ′{u1} are subsets of V (P ), then 
dH′(u1) ≤ 1 +

(
t−1
r−1

)
. In particular by (29), all 

(
t−1
r−1

)
r-element subsets of V (P ) containing 

u1 are edges in H ′ (and not edges of P ). This violates Rule (iv) of the choice of (C, P )
as we could replace some fi ∈ E(P ) with an edge of H ′ to obtain a better cycle-path 
pair. So suppose such an edge g1 exists.

When we replace path v1, e1, v2, . . . , vi in C with path

v1, g1, u1, g, u�, f�−1, u�−1, . . . , uj+1, fj , vi,

we first delete the i −2 internal vertices of the former path and then add t −j +1 vertices 
of the latter. So, the length of the cycle will be at least

s − (i − 2) + (t − j + 1) ≥ s − t/2 + t/2 + 1 > s,

a contradiction.
Case 4.2: There are indices j such that between xj and xj+1 there are at most � − 1

vertices. Since A� = A1, for each such j there is an edge g ∈ E(H ′{u1}) ∩ E(H ′{u�})
containing xj and xj+1 and no other edge in E(H ′{u1}) ∪ E(H ′{u�}) contains any of 
xj and xj+1, as otherwise there is a longer cycle. In this case, we call g a private edge 
of u1 and xj and xj+1 – g-private neighbors of u1, or simply private neighbors. Suppose 
that the set of private edges of u1 is {g1, . . . , gm} and that A is the set of non-private 
neighbors of u1 in C. Let a = |A|. By these definitions and remembering that A1 is 
independent, a1 ≥ a + 2m and
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dH′(u1) ≤ m +
(

|V (P ) ∪ A| − 1
r − 1

)
≤ m +

(
� + a − 1

r − 1

)
≤

(
� + a + m − 1

r − 1

)
. (30)

Recall that our case is that m ≥ 1. If a = 0 and m = 1, then only one edge, say g1
in H ′{u1} intersects V (C). By (28), H ′{u1} contains another edge, say g that must be 
contained in V (P ). This yields � = t and g = V (P ). But then we can switch g with f1
contradicting Rule (iv) of the choice of (C, P ). Thus a + m ≥ 2.

We may rename the vertices of C in such a way that x1 = v1 and the vertices x1 and 
xa1 are g1-private neighbors of u1. Then each interval Ij = [xj , xj+1] on C with xj+1 ∈ A

has length at least � + 1, and for each private edge g and the minimum j with xj+1 ∈ g, 
the interval Ij also has length at least � + 1. Thus at least a + m intervals Ij have length 
at least � + 1, and since a1 ≥ a + 2m,

2t ≥ n − � ≥ s ≥ (� + 1)(a + m) + m. (31)

Since m ≥ 1 and a + m ≥ 2, (31) yields 2t ≥ 2(a + m) + (� − 1)(a + m) + m ≥
2(a + m) + (� − 1)2 + 1, and so t > a + m + � − 1. This means

t ≥ a + m + �. (32)

Plugging (32) into (30) and comparing with (28), we get
(

t

r − 1

)
−

(
t − 1
r − 1

)
≤ � − 2,

which does not hold for � ≤ t when r ≤ t. �
7. Proof of Theorem 1.10

Proof. Let k ≥ r > t be the smallest integer at least n/2 for which the theorem does not 
hold. Let H be an n-vertex r-graph with at least k edges and δ(H) ≥ �k/2� such that 
H has no cycle of length k or longer.

Choose a best cycle-path pair (C, P ) with notation as in the previous two sections. 
By Lemma 4.2, k > t + 2. Moreover, by Lemma 5.1, � ≥ 2.

Since the theorem holds for k′ < k, s = k − 1. Also by the maximality of �, each edge 
in H ′ containing u1 or u� is contained in V (C) ∪ V (P ) and cannot have two consecutive 
vertices of C by Claim 3.1.

Case 1: � ≥ (1 + k)/2.
Case 1.1: There are distinct vi and vj in V (C) such that vi ∈ f1 and vj ∈ f�−1. By 

symmetry, we may assume that i = 1 and j ≤ (s + 1)/2. By the maximality of s, the 
path v1, f1, u2, f2, . . . , u�−1, f�−1, vj is not longer than the path v1, e1, . . . , ej−1, vj . This 
means � − 2 ≤ j − 2. Plugging in the inequalities for � and j, we get

(1 + k)/2 ≤ (s + 1)/2 ≤ k/2,
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a contradiction.

Case 1.2: Case 1.1 does not hold.
Then either f1 or f�−1 contains at most one vertex in C. Since they overlap in at most 

one vertex, and |f1 ∪ V (C)|, |f�−1 ∪ V (C)| ≤ n, this gives s + r ≤ n + 1. By Lemma 4.2, 
this is only possible when r = n/2 and s = 1 + n/2. Since r + s > n, each of f1 and 
f�−1 has exactly one vertex in C. Since Case 1.1 does not hold, this is the same vertex, 
say v1. Moreover, each of f1 and f�−1 must contain V (G) \ V (C). But then f1 = f�−1
and so � = 2. By the case, 2 ≥ (k + 1)/2, i.e., k ≤ 3, so 3 > (n + 1)/2, thus n ≤ 4, and 
r ≤ n/2 ≤ 2, a contradiction to r ≥ 3.

Case 2: 2 ≤ � ≤ k/2. Since s ≥ (n + 1)/2, � ≤ n − s < n/2 ≤ r. So, r − � ≥ 1.
Case 2.1: There is an edge g ∈ E(H ′) containing u1. By the maximality of |V (P )|, 

g ⊂ V (C) ∪ V (P ). So |g ∩ V (C)| ≥ r − �. Since no vertices of g are consecutive on C, the 
number of vertices in the largest interval of C between vertices of g is at most

s − 2(r − �) + 1 ≤ (n − �) − 2r + 2� + 1 ≤ � + 1. (33)

This means, the distance on C from any of its vertices to g is at most 1 + �/2.
Case 2.1.1: Some ei contains u�, say i = 1. If some vj ∈ g and j ≤ � + 1, then we can 

replace the path v1, e1, v2, . . . , vj in C with the path v1, e1, u�, f�−1, u�−1, . . . , u1, g, vj , 
and get a longer cycle. Thus the interval of C between two vertices of g that contains e1
has at least 2 + 2(� − 1) = 2� vertices, contradicting (33).

Case 2.1.2: None of ei contains u�. Since d(u�) ≥ k/2 ≥ � and P has only � − 1 edges, 
there is an edge g′ ∈ E(H ′) containing u�. So, by symmetry we may assume that none 
of ei contains u1.

Suppose first g′ 
= g. Since the distance on C between any vertex of g ∩ V (C) and any 
vertex of g′ ∩ V (C) is either 0 or at least 1 + �, all vertices of g′ ∩ V (C) must belong 
to g by (33), and the distance on C between any two vertices of g′ is at least 1 + �. By 
symmetry, we get g ∩ V (C) = g′ ∩ V (C). Since g 
= g′, the edges must differ in V (P ). In 
particular, |g ∩ V (P )| ≤ � − 1, and hence |g ∩ V (C)| ≥ r − � + 1. But then

n ≥ s + � ≥ (1 + �)(r − � + 1) + �. (34)

The minimum of the polynomial F (�) = −�2 + (r + 1)� + r + 1 in the right hand side 
of (34) is attained when � is extremal. We have F (2) = F (r − 1) = −1 + 3r, which is 
greater than n when r ≥ max{3, n/2}.

Suppose now only g is an edge in H ′ containing u�. Since r − � ≥ 1, we have 
H{u1} = H{u�} = E(P ) ∪ {g} =: L. Moreover, for any ui ∈ V (P ), the path 
P 1

i = ui, fi−1, . . . , f1, u1, fi, ui+1, . . . , f�−1, u� has the same length, vertices, and edges as 
P . We conclude that (C, P 1

i ) is also best cycle-path pair, and so we may assume that 
H{ui} = L for all 1 ≤ i ≤ �. Therefore V (P ) ⊂ g and � = r − 1.

Moreover, for every 1 ≤ j ≤ � − 1, the path P (j) = uj+1, fj+1, . . . , u�, g, u1, f1, . . . , uj

has the same vertex set as P , and its ends, uj and uj+1 belong to edge fj not used 
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in P (j). The cycle-path pair (C, P (j)) is also a best pair since V (P ) ⊂ g. As above we 
conclude that fj ⊃ V (P ). In particular, � = |L| = �k/2�. Also, each edge in L has exactly 
one vertex on C and these vertices are distinct. Since � ≥ k/2 > s/2, some vertices of 
edges in L are consecutive on C. By symmetry, we may assume vs ∈ g and v1 ∈ f1. Then 
replacing edge es in C by path vs, g, u1, f1, v1, we get a cycle longer than C.

A symmetric argument applies when there is an edge of H ′ containing u�.
Case 2.2: No edge in E(H ′) contains u1 or u�. Recall B1 (respectively, B�) is the set of 

edges ei that contain u1 (respectively, u�). Then for j ∈ {1, �}, |Bj | ≥ δ(H) − |E(P )| ≥
�k/2� − � + 1. If B1 or B� has size greater than �k/2� − � + 1, then we can delete some 
edges to make both have exactly �k/2� − � + 1 edges and be different from each other.

By Claim 3.4, for any distinct ei ∈ B1 and ej ∈ B�, |i − j| ≥ �. So, if B1 
= B�, then 
we apply Lemma 3.7 to B1, B� and q = � to obtain s ≥ 2(�k/2� − � + 1) + 2(� − 1) ≥ k, 
a contradiction. Thus B1 = B� and |B1| = �k/2� − � + 1. For this, we need {u1, u�} ⊂ fi

for all 1 ≤ i ≤ � − 1 and hence for u ∈ {u1, u�},

the set of edges containing u is B1 ∪ {f1, . . . , f�−1}. (35)

If f1 contains a vertex u ∈ V (G) \ (V (C) ∪ V (P )), then u can play the role of u1, 
and hence (35) holds, as well. Also, for each 1 ≤ j < �, since u1 ∈ fj , the path P 1

j =
uj , fj−1, uj−1, . . . , u1, fj , uj+1, fj+1, . . . , u� can play role of P . It follows that (35) holds 
for u = uj and hence for all u ∈ fj−1.

By symmetry, let e1 ∈ B1. By the above, e1 contains {u1, . . . , u�}, all vertices in 
f1 \ (V (C) ∪V (P )), and v1, v2. Since |e1| = r = |f1|, the edge f1 has at least two vertices 
in C. These vertices must be at distance in C at least � −1 from any edge in B�. Recalling 
that B� is a set of �k/2� −� +1 edges that are distance at least � apart from one another, 
it follows that

s ≥ �(k/2 − � + 1) + (� − 2) + 2 = �(k/2 − �) + 2�.

For 2 ≤ � ≤ k/2, the right hand side of the above inequality is at least k, a contradic-
tion. �
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