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Speech sounds exist in a complex acoustic-phonetic space, and listeners vary in the extent to which
they are sensitive to variability within the speech sound category (“gradience”) and the degree to
which they show stable, consistent responses to phonetic stimuli. Here we investigate the hypothesis
that individual differences in the perception of the sound categories of one’s language may aid
speech-in-noise performance across the adult lifespan. Declines in speech-in-noise performance are
well-documented in healthy aging, and are, unsurprisingly, associated with differences in hearing
ability. Nonetheless, hearing status and age are incomplete predictors of speech-in-noise
performance, and long-standing research suggests that this ability draws on more complex cognitive
and perceptual factors. In this study, a group of adults ranging in age from 18 to 67 years performed
online assessments designed to measure phonetic category sensitivity, questionnaires querying recent
noise exposure history and demographic factors, and crucially, a test of speech-in-noise perception.
Results show that individual differences in the perception of two consonant contrasts significantly
predict speech-in-noise performance, even after accounting for age and recent noise exposure
history. This finding supports the hypothesis that individual differences in sensitivity to phonetic

categories mediates speech perception in challenging listening situations.
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I. INTRODUCTION

Perception of the sounds of speech is a prerequisite for mapping the auditory signal onto
meaning. Listeners need to detect and analyze the fine-grained spectral and temporal qualities of
speech sounds, a process that is complicated by the presence of background noise. Yet, listeners do
not detect and analyze speech sounds in precisely the same way. Individual differences in perception
of phonetic detail have been well-documented and linked to other aspects of language processing
(Fuhrmeister et al., 2023; Kapnoula et al., 2017; Kong & Edwards, 2016). Of interest is how
individual differences in phonetic sensitivity are related to speech perception-in-noise (SPIN)
performance. SPIN declines are well-documented in aging, and crucially, these are not fully
explained by differences in peripheral hearing (e.g. Goossens et al., 2017). This leads to the
possibility that individual differences in sensitivity to the properties of speech categories might
partially account for differences in SPIN, especially those that emerge as a function of aging.

In this study we aimed to answer three questions about individual differences in the perception
of phonetic category structure. First, we asked whether tasks of phonetic category sensitivity
measured by two-alternative forced choice (2AFC), visual analogue scale (VAS), and AX
discrimination (AX) tasks tap individual differences in shared skills in perception and representation
of phonetic categories, and further whether these skills are phonetic contrast-specific or reflect a
general trait of the individual. Second, we evaluated age-related changes to phonetic category
sensitivity. Finally, we asked to what extent individual differences in performance on these tasks
predicts performance on a speech-in-noise task, after accounting for age and recent noise exposure.

A. Individual differences in the perception of phonetic category structure
Classic studies of categorical perception (A. M. Liberman et al., 1957) established that when

listeners are asked to identify sounds drawn from a phonetic continuum, they will typically show a
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sharp boundary between categories, exhibiting a steep psychometric function. More notably,
listeners also show asymmetric patterns of discrimination, with better discrimination of sound
contrasts that span the category boundary than those that fall within the category, leading to the
proposal that listeners are either insensitive to variability within the category, or that this information
is discarded as phonemes and words are identified. These discontinuities, or warping in sensitivity
according to phonetic category structure, led to the description of phonetic perception as
“categorical.”

Nonetheless, researchers have long noted that listeners are quite sensitive to within-category
phonetic detail (McMurray et al., 2002; Myers, 2007; Pisoni & Tash, 1974; Toscano et al., 2010), and
use within-category variability when accessing the lexicon (Andruski et al., 1994; McMurray et al.,
2009; Sarrett et al., 2020). Of interest, when performing behavioral tasks assessing sensitivity to
phonetic detail, listeners show individual differences in the gradience or categoricity of phonetic
sensitivity. As discussed thoroughly elsewhere (Apfelbaum et al., 2022; McMurray, 2022), tasks vary
in the extent to which they encourage or afford listeners the option of demonstrating sensitivity to
phonetic gradience. 2AFC tasks (e.g., "do you hear 'da’ or 'ta"?") force listeners into a binary decision,
such that perception of variability might be masked. As pointed out by Apfeblaum et al., (2022), a
well-defined boundary between phonetic categories (characterized by a steep slope in the
categorization function) in this task does not necessarily entail that listeners cannot detect variation
within the category. AX discrimination tasks may have more power to detect sensitivity to within-
category detail; in these tasks, listeners are asked to decide whether two items from the same
continuum are the same or different, and responses can be made without reference to any specific
category label. Visual analogue scale (VAS) measures of phonetic sensitivity have been argued to
provide some of the attributes of 2AFC and discrimination tasks. In this task, listeners are asked to

rate tokens along a scale in terms of their fit to the category (Kong & Edwards, 2016). Even among
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typical listeners, substantial variability has been found in sensitivity to phonetic category structure
(e.g., Fuhrmeister et al., 2023; Fuhrmeister & Myers, 2021; Kapnoula et al., 2017, 2021; Kapnoula &
McMurray, 2021; Kong & Kang, 2023), with some listeners showing a more graded pattern of
sensitivity, and others showing a more categorical response function.

Individual differences in graded perception (as measured by the VAS) have some functional
consequences for online language comprehension. Gradient listeners tend to use more secondary
cues to phonetic perception (Kapnoula et al., 2017, 2021; Kong & Edwards, 2016), and gradience
may aid online lexical access, particularly recovery from misidentification of words in a "lexical
garden path" paradigm (Kapnoula et al., 2021). Individual differences in gradience can be seen quite
early in the auditory processing stream, such that gradient listeners show correspondingly gradient
patterns of neural responses to voice onset time (VOT) in the N1 EEG component (Kapnoula &
McMurray, 2021). However, it remains unclear if patterns of gradience in the VAS task are
characteristics of the listener, or are particular to the way that listener processes some very specific
acoustic-phonetic cues but not all (e.g., Kapnoula et al., 2017, Kapnoula & McMurray, 2021,
Fuhrmeister et al., 2023). Finally, the notion that gradience per se reflects generally better phonetic
processing has not, of yet, been strongly supported. Gradience has not been shown to correlate well
with speech-in-noise performance (Kapnoula et al., 2017, 2021), nor with perception of non-native
contrasts (Fuhrmeister et al., 2023).

In addition to the dimension of gradience, listeners also differ in the degree to which they show
trial-to-trial consistency in rating phonetic tokens (Fuhrmeister et al., 2023; Fuhrmeister & Myers,
2021; Kapnoula et al., 2017). Notably, some listeners show gradient perceptual patterns alongside
highly consistent responses to each token on the continuum, whereas others show the same gradient
function but much more stochastic or inconsistent responses to individual tokens. This notion of

"response consistency" resonates with theories proposing that there are downstream consequences
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for individual differences in the stability of auditory encoding arising early in the auditory processing
stream (Centanni et al., 2018; Hornickel & Kraus, 2013; Neef et al., 2017; Tecoulesco et al., 2020).
Indeed, consistency of brainstem and early cortical responses to repeated auditory tokens differs in
people with a history of language disorder, and may be modulated by auditory expertise (Krizman et
al., 2014; Skoe & Kraus, 2013). Response consistency in the VAS task for both stop and fricative
continua is linked to individual differences in the structure of the bilateral transverse temporal gyri
(Fuhrmeister & Myers, 2021), a structure responsible for early cortical processing of sound. Further,
individuals with higher response consistency on a VAS task were more adept at discriminating an
unfamiliar non-native sound contrast (Fuhrmeister et al., 2023; Honda et al., 2024), suggesting that
stability in the mapping between the auditory input and the perceptual response may allow listeners
to tune into the unfamiliar acoustic details that signal non-native contrasts.

Research thus far corroborates that individual differences in phonetic judgments do reflect
meaningful differences in how they process the speech signal. Nonetheless, several pertinent
questions remain that we address in this study. First, while AX discrimination was classically used to
establish patterns of categorical perception (A. M. Liberman et al., 1957), it has not yet been directly
compared to the VAS task. If gradience in the VAS taps individual differences in fine-grained
sensitivity to acoustic detail, then AX patterns should correspond to VAS patterns, such that those
with more gradient VAS functions should show better ability to detect differences between tokens,
especially those falling within the phonetic category. 2AFC tasks, while also a popular option for
studies of phonetic category structure, have been argued to underestimate an individual’s ability to
detect within-category differences by forcing a binary response (e.g. Apfelbaum, et al., 2022). Prior
studies comparing slope on the 2AFC task and responses on the VAS task suggest that slope of the
function in 2AFC is more related to response consistency than gradience (e.g. Kapnoula et al., 2017).

Finally, the jury is still out on whether or not gradience and response consistency are a property of
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individuals or specific phonetic contrasts. By understanding the relationships between these
measures, we are able to answer how phonetic sensitivity changes during aging, and how, if at all,
these measures relate to speech-in-noise performance.

B. Changes in sensitivity to phonetic category structure as a function of aging.

During healthy aging, changes in hearing are nearly inevitable (Goman & Lin, 2016), with more
than 25% of adults having mild-to-moderate hearing declines by the age of 70. Even among those
with relatively intact hearing as measured by the pure-tone audiogram, differences in access to the
speech signal can be stark, especially for noise- masked speech (e.g., Goossens et al., 2017). Of
interest, speech-in-noise performance is only moderately predicted by pure-tone hearing assessments
in aging, suggesting that age-related changes extend beyond the auditory periphery to include the
neural systems involved in sound-to-meaning mapping (Anderson et al., 2011; Goossens et al., 2017;
Prendergast et al., 2019). Changes in sensitivity to phonetic category structure have been investigated
during childhood and adolescence (McMurray et al., 2018), with evidence showing increasingly
gradient sensitivity as children gain experience with their native language (see McMurray, 2022 for
review). Comparing older and younger adults in 2AFC tasks, older adults have been reported to
show shifted boundary locations for stop consonants, a fricative/affricate contrast, and a stop-glide
contrast (Baum, 2003; Dorman et al., 1985; Gordon-Salant et al., 2000). These findings might reflect
changes in sensitivity or resolution of certain types of cues, especially those that rely on temporal
distinctions (Gordon-Salant et al., 2006). Notably, however, the slope of these functions is quite
stable across age (Dorman et al., 1985; Gordon-Salant et al., 2000), suggesting that although older
adults may rely on somewhat different cues, on balance, categorization decisions remain stable
among older adults with hearing within normal limits. Mattys & Scharenborg (2014) also
incorporated an AX discrimination task on a nasal contrast, showing that older adults were

somewhat less sensitive across the continuum, but age-related differences were not stark. To our
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knowledge, no studies have investigated changes in gradient phonetic perception using a VAS task
as a function of age across the adult lifespan.

We can imagine several patterns that might be associated with aging. First, if age-related declines
in peripheral and central auditory function result in less neural stability in the auditory system (Skoe
et al., 2015), we might observe decreased behavioral response consistency in the VAS, poorer
sensitivity to subtle acoustic differences in AX discrimination, and a flattening of the categorization
function in the 2AFC task. Second, age-related hearing threshold changes tend to affect higher
frequencies first, which might lead to less sensitivity to specific contrasts that are distinguished by
high-frequency information, for instance the fricative s-sh contrast used in this study. Notably,
however, language ability is among the best-preserved functions during healthy aging (Ansado et al.,
2013; Diaz et al., 2021) and increased experience with a language over one's lifespan might actually
serve to fine-tune and stabilize native phonetic category representations, leading to the opposite

patterns from the ones described above.

C. Consequences of individual differences in phonetic perception for speech-in-noise
processing.

Comprehension of speech in noise is cognitively and perceptually demanding (Peelle, 2018).
Understanding speech in a noisy environment depends not only on the audibility of the signal but
also on attention, working memory, and a host of other capacities that help the listener direct
attention to the most relevant portions of the acoustic signal (Pichora-Fuller et al., 2016). It is less
well-understood how individual differences in sensitivity to phonetic category structure (e.g.,
perception of small differences within the category; consistent perceptual responses to speech)
might play out in speech-in-noise processing. In theory, a listener who is sensitive to fine-grained

details of speech may be better equipped to detect these properties when mixed with noise.
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Similarly, a listener with greater consistency in their perceptual response to speech may be able to
calibrate to noise levels more accurately in service of separating the speech signal from noise.

As described above, evidence thus far linking gradient phonetic perception to speech-in-noise
performance has been weak (Kapnoula, et al., 2017) or absent (Kapnoula et al., 2021). However,
perception of speech-in-noise was not the primary goal of previous studies, and the more limited age
range in this prior work might limit variability in speech-in-noise performance to the extent that an
association would be difficult to find. In the current study, we collected data from adult participants
performing 2AFC, VAS, and AX discrimination tasks on two phonetic contrasts, a stop place of
articulation contrast ('ba'--'da'), and a fricative place of articulation continuum (‘sign'--'shine'). Our
expanded age range (18-67) also allowed us to tap greater variability in speech-in-noise performance
and we controlled for exposure to environmental noise over the previous 12 month window, given
that experience in noisy environments is linked to speech-in-noise ability (M. C. Liberman, 2017,
Prendergast et al., 2019; Skoe et al., 2015; but cf. Shehabi et al., 2022). We predicted that individual
differences, especially in response consistency, but potentially also discrimination accuracy, would be
related to differences in speech-in-noise performance after accounting for age and noise exposure.

This dataset allows us to pursue three questions. First, we ask how 2AFC, VAS, and AX
performance relate to each other, specifically testing the hypothesis that discrimination as measured
by AX will correlate with slope in the VAS task, and asking whether individual differences in
phonetic tasks cluster by phonetic contrast. Second, we ask how behavior on phonetic tasks changes
over the course of aging. Finally, we ask whether (and which) phonetic tasks best predict speech-in-

noise performance.
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II. METHODS

A. Participants

Participants were recruited from the online recruitment platform, Prolific, for online testing. The
study was advertised to adult participants who reported being native, monolingual speakers of
English and living in the US. Subjects gave informed consent according to the guidelines of the
UConn Institutional Review Board and were compensated $10 per hour for their participation.

Participants were recruited in five age bands from 18-67 years, and data collection continued
until each age band contained at least 19 usable participants. 143 participants completed all study
procedures. Data quality checks (see below, Phonetic Decision Tasks) led to the elimination of 17
participants. Another 10 participants were excluded for failing the headphone check (see below,
First Steps and Headphone Check) resulting in 116 participants whose data ultimately contributed to
subsequent analyses (female=74, male=42; see Table I for complete participant demographics).
Participants recruited from Prolific often have substantial experience participating in behavioral
studies. Our participants were no exception: data extracted from Prolific indicates that on average,
our subject pool has been approved for completing an average of 457 studies on Prolific, with high
participant ratings.'

TABLE I: Demographic characteristics of the sample that contributed to all subsequent
analyses. Speech-in-noise performance score represents the signal-to-noise ratio (SNR) at
which 50% of the key words are correctly repeated, with lower scores indicating better

performance. Refer to text for descriptions of the noise exposure metrics.

By age bands: 18-27, 28-37, 38-47, 48-57, 58-67,
N = 26’ N =19’ N = 25’ N = 24/ N =22’
Age (yrs) 23 (21, 25) 30 (29, 33) 42 (39, 44) 52 (50,55) 62 (60, 64)
Sex
Female 17 (65%) 7 (37%) 13 (52%) 20 (83%) 17 (77%)



185

Male

Childhood caregiver
education, (yrs)

Speech-in-noise score

Annual Noise
Exposure (ANE)
Estimate (dB
LAeq8760h)

Noise Exposure Dose
(7o)
'Median IQR); n (%)

9 (35%)
14 (12, 16)

1.13 (0.00,
2.19)

71.6 (69.6,
74.6)

18 (12, 37)

12 (63%)
14 (13, 16)

0.25 (-0.50
1.25)

70.6 (68.8,
77.1)

b

14 (9, 66)

12 (48%)
14 (12, 16)

1.00 (0.25,
3.50)

70.1 (67.5,
72.9)

13 (7, 25)

4 (17%)
12 (12, 15)

1.00 (0.75,
2.44)

70.0 (65.7,
75.8)

12 (5, 48)

5 (23%)
12 (12, 16)

1.50 (0.56,
3.69)

66.1 (64.7,
70.9)

5(4,17)

10
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B. Procedure

phonetic tasks
(order counterbalanced)

consent
2-Alternative Forced Choice
(2AFC)

F "."' == sign or shine?
i

. music & language Visual Analogue Scale (VAS)

q.s

—F — === -7

sign-like—shine-like?

noise exposure
g.s
Discrimination (AX)

,,.. = SaMe or

different?

phonetic
tasks

FIG 1. Task schematic. Participants performed tasks from top to bottom according to the
left-hand column. Phonetic tasks were conducted for both ba-da and sign-shine continua,

using a counterbalanced Latin squares design (see text for details).

1. First Steps and Headphone Check

A schematic of the study procedures can be found in Figure 1. Study participants were required
to use either a laptop or desktop computer (i.e., no mobile devices), and were instructed to wear
headphones. After providing informed consent, participants were directed to the online
experimental software platform, Gorilla (www.gorilla.sc; Anwyl-Irvine et al., 2020). First,
participants were directed to a headphone check described by Woods et al. (2017). Participants were
instructed to initially set their volume to approximately 25%, listen to a burst of white noise, and
then adjust their computer’s volume until it was a comfortable listening level. Participants were then
instructed to listen to three tones of various intensities and select which tone was the softest. This
headphone check uses phase cancellation such that participants would only perceive the softest tone

as being the softest if they were wearing headphones. If a participant passed the headphone check

11
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(i.e., selected the correct tone in at least four out of six trials), they continued on with the study and
completed a series of questionnaires. If a participant failed the headphone check (i.e., selected the
correct tone in less than four trials), they were reminded that it was important to wear headphones,
and then completed the headphone check a second time. If a participant failed the headphone check
a second time, they were allowed to continue with the experiment, but their data were excluded

from subsequent analyses.

2. Questionnatre Data

Next, participants were directed to a series of questionnaires to collect basic demographic data,
experience with musical training, experience with languages other than English, and the Noise
Exposure Questionnaire (Johnson et al., 2017). Data on musical experience and language
backgrounds are beyond the scope of the current investigation.”

The Noise Exposure Questionnaire (NEQ) is a short survey developed as a low-cost and rapid
way to estimate environmental noise exposure risk. The NEQ estimates annual noise exposure
based on self-reported frequency engaging in noisy activities (e.g., attending events with amplified
music, riding motorized vehicles, using power tools, wearing personal listening devices, and playing a
musical instrument) during the past 12 months. Annual noise exposure (ANE) is estimated using
representative sound levels from the literature for each activity type. ANE is expressed in dB
LAeq8760h, and represents the continuous sound level averaged over 8760 (24 hours x 365 days)
hours using a 3-dB exchange rate and A-weighted sound levels. Refer to Johnson et al., (2017) for
details. From the dB estimate, a noise dose is then derived, with 79 dB LLAeq8760h corresponding to
the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit,
L.e., 100% dose. Doses above 100% place the listener at increased risk of noise-induced hearing loss.
For the purposes of interpreting the NEQ data, it is important to note that the online data collection

occurred between November 11, 2020 and February 4, 2021.
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3. Phonetic Decision Tasks

Immediately before completing the phonetic decision tasks, participants were given the
opportunity to adjust their volume. Participants were presented with an audio token at the same
intensity of the phonetic stimuli and were instructed to adjust their volume until it was “comfortably
loud” and they could “hear the sound easily.” Participants completed three different phonetic
decision tasks: a two-alternative forced choice task (2AFC), a discrete version of the visual analogue
scale task (VAS), and an AX discrimination task (AX). Participants heard stimuli drawn from a
voiced stop continuum (“ba” to “da”) as well as a fricative place-of-articulation continuum (“sign”
to “shine”). Tasks were presented in a fixed sequence, with the task schedule rotated using a Latin
squares procedure such that across participants, the task that participants completed first (i.e. the
one that begin the sequence) was counterbalanced. Namely, given the task order represented as
ABCDEF, participants were counterbalanced across orders ABCDEF, BCDEFA, CDEFAB, etc.
The fixed task order was: VAS: ba-da, VAS: sign-shine, 2AFC: ba-da, 2AFC: sign-shine, AX: ba-da,
AX: sign-shine. This ordering meant that participants almost always performed the ba-da version of
the task before the sign-shine version of the task. Below we describe the characteristics of the
phonetic stimuli as well as the specific tasks.

Phonetic continna. A seven-point continuum from /ba/ to /da/ was synthesized at Haskins
Laboratories using a Klatt synthesizer. This continuum manipulates the trajectory of the first and
second formants, and the vowel information after the initial short transition is shared across all
stimuli (see Supplementary Materials for details). A continuum from “sign” to “shine” was created
by modifying naturally-produced tokens of “sign” and “shine.” Stimuli were produced by a female,
native speaker of English, and the initial fricative was excised. Blends of the excised /s/ and /sh/
tokens were created through waveform averaging using Praat (Boersma & Weenink, 2013) to create

blends from 80% /s/ to 20% /s/ in 10% steps, and fricative blends were re-concatenated onto to
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the original “-ign” file, resulting in a seven-point perceptual continuum extending from “sign”

“shine.”

Stimuli were selected such that no more than two tokens on each end of the continuum

received fairly unambiguous judgements, in order to optimize sampling of the more variable

responses to tokens approaching the category boundary.

28-37

38-47 48-57 58-67

18-28
Age Band (in years) D
ba-da continuum
& VAS
X
1.00- =
- T g.
S 0.75- 2 6
=
£
£ 050~ Ia
g =
S 025- T
a 025 = 8o-
0.00- , / ) g < ] )
2 4 6 E 2 4 6
continuum step ba--da continuum step ba--da
Discrimination: one-step trials
18-28 28-37 38-47 58-67
o |
E .
S
! T -
1:2 ) 3:4 ' 5:6 ' 1:2 ' Jj—' ' 5.6 ' 1‘2 ' 3‘4 ! 5‘5 * 1‘2 ' 3.4 ! alE ! 1.2 ' 1:4 ' ‘Slﬁ !
23 45 67 23 45 67 23 45 87 23 45 67 3 45 67
Discrimination: two-step trials
18-28 28-37 38-47 48-57 58-67
5
[
E I
o
a i
° i i i
O-=f i
1.3 3:5 57 |’-3 ' 3' ' 5'; \3 5r |I3 lllllll
24 48 -4 A 2+ 4 vl 2- 475 E 4 d 5
Continuum Pair

12-

08~

®

=

0

00-

04-

20-

15-

10-

05~

00-

sign-shine continuum

2 4 6
continuum step sign--shine

more sign-like--more shine-like

continuum step sign--shine

Discrimination: 0ne~step trials

18-28 28-37 48-57 58-67
R I R B TR TR ' ' '
12 34 586 v2'3% " s’ " 1254 ss 12" 3% "s% ' 1284 s
23 45 67 23 45 67 23 45 67 23 45 67 23 45 &7

Discrimination: two-s‘ep trials

18-28 28-37 48-57 58-67

. ol .III. |II.

A v v VT 1o
57 "3 3-5 51 W? 3-5 57 1? 3-5 St 13 3-5

Contlnuum Palr

FIG 2. Behavioral data for phonetic tasks, grouped by age band. Left panel shows data for

the ba-da continuum, right panel shows data for the sign-shine continuum. For 2AFC tasks,

the y axis indicates proportion, for VAS tasks, this axis indicates the rating position between

the two ends of the continuum, and for discrimination, the units displayed are d’ values.

Error bars indicate standard error of the mean.
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Two-alternative forced choice (2AFC). Participants heard 15 instances of each point along the seven-
point continuum, presented in random order, for a total of 105 trials per continuum. For each token,
the listener was asked to categorize the token (e.g., “ba” or “da”?) by pressing a corresponding
button on the keyboard. The dependent measure was the participant response for each token. To
ensure that participants perceived the endpoints of the continuum at above-chance levels, only
participants who correctly categorized endpoint tokens at least 60% of the time were included in the
study. This led to the exclusion of nine participants on the basis of the ba-da continuum, and one
additional participant on the basis of the sign-shine continuum. Individual data and mean response
curves by age band are plotted in Figure 2.

Visual analogue scale (1VAS). Participants completed a “discretized” version of the visual analogue
scale task (cf. Kapnoula et al., 2017, Fuhrmeister et al., 2023). In the original version of the VAS,
participants are asked to rate each token from “most {ba/sign}-like” to “most {da/shine}-like”
along a continuous scale by moving a slider. In our version of the task, adapted for easier online
administration, participants instead rated tokens along a seven-point numeric scale. Participants
heard 15 examples of each point on the phonetic continuum, presented in random order, for a total
of 105 trials per continuum. Since there was no in-principle “correct” answer for this task, data
quality checks ensured that participants showed some difference in rating tokens across the
continuum. To pass this quality check, a participant had to demonstrate a mean difference of two
points along the rating scale for any two continuum tokens for each continuum. This resulted in the
exclusion of an additional seven participants on the basis of performance on the ba-da continuum
(five additional participants had poor VAS data but had already been excluded on the basis of quality

checks for the 2AFC task). Figure 2 displays individual response curves by continuum as well as

mean response curves aggregated by age band.

15



284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

AX discrimination (AX). Participants heard two tokens drawn from the seven-point continuum
per trial, separated by a 1000 msec ISI.” Stimuli were either identical (“Same” trials, e.g. bal-bal,
n=10 per pair), separated by one step on the continuum (e.g., bal-ba2, “One-step” n=10 per pair)
or two steps on the continuum (e.g., bal-ba3, “Two-step”, n=10 per pair). Pairs were presented in
both orders (e.g., bal-ba3 and ba3-bal) collapsing across orders for analysis purposes. Participants
completed a total of 180 discrimination trials per continuum. Data were transformed into d” scores
by subtracting z-scored rates of hits for each different trial from z-scored rates of false-alarms for
“same” trials. Figure 2 displays d’ scores for one-step and two-step trials, aggregated by age band, for
each phonetic continuum.

4. Speech-In-Nozse Test

Participants were administered a modified version of the Quick Speech-in-Noise test
(OuickSIN™ Speech-in-Noise Test, Etymotic Research, Inc.). In this test, participants listened to 24 fixed-
level low-context sentences spoken in varying degrees of four-talker babble noise (i.e., sighal-to-
noise ratio, SNR), ranging from 25 dB (the easiest SNR level) to 0 dB (the hardest SNR level) in 5
dB intervals. When the QuickSIN is used in clinical settings, patients verbally repeat each sentence;
in our modified online version of the test, participants were asked to “repeat” the sentence back
verbatim by typing into a text response field, and then press the enter key once they were finished to
advance to the next sentence. Modeling the clinical protocol, sentences were divided into four lists
with six sentences, and each sentence within a list was presented at a different, descending SNR
level. QuickSIN lists 1-4 were selected. Within each list, trials were presented in a fixed order of
increasing difficulty, such that the first and last sentence within each list had a SNR level of 25 dB
and 0 dB, respectively. Each sentence contained five keywords worth one point each; therefore,
participants could earn a maximum of five points per sentence and a maximum of 30 points per

sentence list, based on each keyword correctly repeated. The total score for each sentence list was
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subtracted from 25.5 to calculate a participant’s SNR loss. The SNR loss represents the SNR at
which 50% of keywords can be accurately repeated. Each participant’s average QuickSIN score was
then calculated by averaging their SNR loss across all four sentence lists, with higher scores
indicating poorer performance.

Participants completed two practice QuickSIN sentences to familiarize themselves with the task
(one practice sentence at 25 dB, the other at 5 dB) and adjusted their volume prior to completing the
24 main trials. Participants were instructed not to adjust their volume after the practice sentence
trials. The test was scored using automatic routines, then manually checked. Speech-in-noise
responses were scored automatically in R (R Core Team, 2023) to detect if each keyword was
present in a participant’s response, regardless of letter case. Each participants’ response received a
score of “0” if the keyword was not present in their response and a score of “1” if the keyword was
present. After automatic scoring, speech-in-noise data were then manually checked by one of the
authors to validate the automatic scoring and to rescore any unambiguous typos or homophone
substitutions (e.g., typing “wait” instead of “weight” or “steal” instead of “steel”) as correct.
Homophones were marked as correct even when they produced a semantically or syntactically
anomalous sentence, given that our primary interest was in the acoustic access to the signal. We note
also that when the QuickSIN is administered under standard clinical conditions using a verbal
response that the rater would be unaware of homophonic substitutions as they would by definition
sound the same to the rater. After scoring keywords, the average speech-in-noise score was

calculated as described above.

C. Analysis approach

All analyses were carried out using R (R core team).
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1. Summary individual differences measures for each phonetic task.

To characterize individual differences in the perception of stop and fricative continua, we
computed several summary measures for each participant and continuum. For the 2AFC task, we
used a two-parameter logistic regression to estimate the s/gpe of the categorization curve at the
inflection point for each continuum and participant. Following prior work, we estimated two
measures for the VAS task, the slope and response consistency for each participant and continuum (see
Fuhrmeister et al., 2023). The slope was estimated by fitting a four-parameter logistic regression to
estimate the minimum, maximum, inflection point (boundary), and slope of the response function
for each participant and continuum. Response consistency is estimated by taking the mean of the
squared residuals for each response for each subject, and can be thought of as a measure of the fit of
the raw data to the estimated response function. This value is multiplied by -1 so that the lowest
values reflect low consistency and higher values reflect higher consistency. For discrimination data,
for each participant and continuum, we calculated a mean sensitivity score by averaging all d’ values
for both one-step and two-step trials, intended to capture general sensitivity to contrasts across the
entire continuum. We also wished to capture the asymmetry in discrimination of near-boundary
pairs vs. within-category pairs that is a hallmark of categorical perception. Because the precise
estimation of the location of the individual phonetic category boundary (i.e., by using the
psychometric function for the VAS or 2AFC task) can be unreliable if the participant has an atypical
or noisy response function, we opted to calculate this measure by subtracting the d’ value for the
worst-discriminated one-step pair from the best-discriminated one-step pair, wherever that pair fell
along the continuum. We refer to this measure as the cazegoricity measure. Notably, for the vast
majority of participants, the best-discriminated pair was in the boundary region (involving a token
that falls close to the boundary for that contrast), and the worst-discriminated pair tended to be

distant from the boundary. Each participant therefore had five distinct phonetic scores for each of
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the two continua (2AFC slope, VAS slope, VAS response consistency, AX sensitivity, AX
categoricity). These data were joined with measures from the demographics and questionnaire data,
namely age in years, caregiver education in years, annual noise exposure (ANE), and the speech-in-
noise score (expressed as SNR Loss).

2. Outlier removal and imputation.

Outliers were defined as any score that fell more than 2.5 SD from the group mean. This
resulted in removal of 41 values from the dataset, or 1.7% of the total data. Missing values were
replaced by imputation using the mice package (Buuren & Groothuis-Oudshoorn, 2011) and the

predictive mean mapping (PMM) method to multiply-estimate missing values.

III. RESULTS

A. Relationships between measures of phonetic category sensitivity.

To characterize relationships between phonetic measures, Pearson correlations between all ten
measures (five different measures, two continua) were calculated (Figure 3). Every measure showed
a significant relationship with at least one other measure; notably all measures for the ba-da
continuum were correlated at a level of at least p<<0.05 (uncorrected for multiple comparisons,
correlations between measures taken on the same phonetic contrasts are highlighted within the
dashed boxes), but correlations within the sign-shine measures and between phonetic contrasts were
more mixed. Discrimination metrics for ba-da correlated not only with both VAS measures but also
2AFC slope, whereas for sign-shine, discrimination categoricity and mean sensitivity were related to

2AFC slope and mean sensitivity was related to VAS consistency, but no relationships with VAS
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380 To address the question of the relationships between these measures in a more principled way,
381  we performed a confirmatory factor analysis, comparing two models using the Zzwaan package in R
382  (Rosseel, 2012). In the One-Factor model, all behavioral measures loaded on one latent variable
383  which we term “phonetic skill.” This was compared to the Contrast-Specific model where two

384  separate latent variables were constructed (“ba-da” and “sign-shine”), such that behavioral measures
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for each phonetic contrast load on separate latent variables (see Figure 4). Models that maximize the
comparative fit index (CFI) and minimize Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) are judged to be better-fitting. Model fit estimates suggested that the
Contrast-Specific model was a better fit to the data (One-Factor Model: CFI=0.779, AIC=2724.5,
BIC=2779.6; Contrast-Specific Model: CF1=0.888, AIC=2709.6, BIC=2767.4). This was
confirmed by performing a chi-squared test comparing the two models; here the two-factor model
was a significantly better fit to the data (y2= 16.95, p<0.001). Significant loadings for the Two-

Factor model are displayed in Figure 4.
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FIG 4. Results of a confirmatory factor analysis, constructed with two latent variables, one
for sign-shine decisions (ssh) and the other for ba-da decisions (bada). Phonetic decision
measures load on phonetic contrast-specific latent variables. Loadings displayed for all

paths, (*)s indicate significance values.

B. Differences in sensitivity to phonetic category structure as a function of aging
Changes in sensitivity to phonetic category structure as a function of aging were evaluated by
entering all phonetic measures into one model to predict age. Using the /ze4 package in R (Bates et

al., 2014), we constructed a linear model in which all ten phonetic measures were entered to predict
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age (in years). Given the mild collinearity between measures (see Fig. 3), we used the szp function in
the /merTest package (Kuznetsova et al., 2017) to iteratively remove predictors from the model that
do not significantly contribute to model fit. The resultant model (Table II) contained three surviving
predictors: 2AFC slope for the ba-da continuum, VAS consistency for the ba-da continuum, and
VAS consistency for the sign-shine continuum. Of these, only VAS consistency for the sign-shine
continuum was significant, with lower consistency associated with advancing age. In general,
phonetic factors accounted for a small proportion of the variance in age (adjusted R*=0.058,
F(3,112=3.39, p=0.021). Results of the full model are displayed in the Supplementary Materials.

TABLE II. Best-fit linear model predicting age from all ten phonetic decision measures.

Predictor B 95% CI t df p
Intercept 37.18 [29.17, 45.18] 9.20 112 <.001
ba-da 2AFC slope 0.51 [-0.01, 1.03] 1.94 112 0.055
sign-shine VAS consistency -4.43 [-8.65, -0.21] -2.08 112 0.040%*
ba-da VAS consistency 3.67 [-0.99, 8.32] 1.56 112 0.122

C. Predictors of speech-in-noise performance

Thus far, analyses show that there are mild associations between phonetic measures, especially
between measures assessed on the same contrast, and that in general, these phonetic measures are
not strongly related to age. Next we asked whether individual differences in phonetic measures
predict speech-in-noise performance, together with other potentially explanatory factors (age, noise
exposure, and childhood caregiver education, a proxy for socio-economic status that has been
suggested to be predictive of language ability, e.g., Calvo & Bialystok, 2014). We approached this
question in two ways, first by entering all measures into the same model, and second by using a PCA

approach to summarize phonetic scores for use in the regression.
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First, we built a model to predict scores on the speech-in-noise test based on all ten of the
phonetic measures, as well as age, annual noise exposure, and childhood caregiver education in
years. As above, we used a backwards-stepping approach in the s#¢p function in /werlest to drop low-
performing predictors from the model. The final model results are displayed in Table III (adjusted
R’=0.25, F(7,108)=6.52, p<0.001). Notably, five phonetic measures survive in this model, (VAS
consistency and AX categoricity measures, for both continua, as well as ba-da 2AFC slope), in
addition to age and noise exposure. Model results before model selection are reported in the
Supplementary Materials.

TABLE III. Best-fit linear model predicting speech-in-noise score (expressed as SNR loss),
from age, caregiver education, noise exposure, and all ten phonetic decision measures, best-

fit model after backwards-stepping procedure.

Predictor I 95% CI t df p
Intercept -7.54 [-13.18, -1.89] -2.65 108 0.009
Age 0.04 [0.01, 0.06] 2.88 108 0.005*
Annual Noise Exposure (ANE) 0.07 [0.01, 0.14] 2.27 108 0.025*
ba-da VAS slope 0.27 [-0.01, 0.50] 1.88 108 0.062
ba-da VAS consistency -0.78 [-1.51, -0.05] -2.12 108 0.037*
sign-shine VAS consistency -0.53 [-1.14, 0.09] -1.70 108 0.092
ba-da AX categoricity -0.69 [-1.10, -0.28] -3.33 108 0.001*
sign-shine AX categoricity 0.04 [0.10, 1.18] 2.34 108 0.021*

Second, acknowledging the degree of overlap between our phonetic measures, we performed a
principal components analysis (PCA) using singular value decomposition on all ten phonetic
measures using the preomp function as part of the szats package, provided in base R (R Core Team,
2023). Visualizing the top five dimensions (see Supplementary Materials for a table depicting all
loadings, Figure 5 for a visualization of the loadings), we see that dimension 1, accounting for 28.1%

of the variance, contains loadings from neatrly all phonetic measures, reflecting a high degree of
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overlap between most measures. First, we constructed a base model to predict speech-in-noise
performance using age, caregiver education in years, and noise exposure only. Model comparison
using the anova function in the base R package (R Core Team, 2023), and showed that adding the top
five phonetic dimensions extracted from the PCA significantly improved model fit (F(5)=5.3939,
p<0.0005). Specifically, PCA dimensions 1, 3, 4, and 5, which have fairly heterogeneous loadings
from most phonetic measures, were all significant predictors of speech-in-noise, even after

accounting for demographic factors. (adjusted R’=0.23, F(8,107)=5.21, p<0.001, Table IV).
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FIG 5. Loadings on each dimension in the PCA analysis of the ten phonetic decision
measures. Overall height of the bar displays the percent variance explained by each
dimension. Colors within the bar show the proportion of each dimension composed of each

corresponding measure.
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TABLE IV. Linear model predicting speech-in-noise performance score (expressed as SNR
loss) from age, caregiver education, noise exposure, and the top five dimensions identified

by subjecting the ten phonetic decision measures to PCA.

Predictor p 95% CI t df p
Intercept -4.66 [-9.97, 0.64] -1.74 107 0.084
Age (yrs) 0.03 [0.01, 0.06] 2.39 107 0.018*
Annual Noise Exposure (ANE) 0.09 [0.02, 0.16] 2.68 107 0.008*
Caregiver education (yrs) -0.10 [-0.25, 0.05] -1.35 107 0.180
Dimension 1 -0.35 [-0.57, -0.12] -3.08 107 0.003*
Dimension 2 -0.16 [-0.47,0.10] -0.99 107 0.326
Dimension 3 -0.43 [-0.78, -0.08] -2.44 107 0.016*
Dimension 4 0.40 [0.03, 0.78] 2.16 107 0.033*
Dimension 5 0.46 [0.06, 0.85] 2.30 107 0.023*

IV.  DISCUSSION

Adult listeners are known to vary substantially in their patterns of phonetic perception, with
variability in the degree of sensitivity to distinctions across acoustic-phonetic continua, as well as
differences in the sharpness of the boundary between categories. Using three tasks and five
measures of phonetic perception, we found that all extracted measures (with the exception of sign-
shine VAS slope) were at least weakly correlated with other phonetic measures, suggesting that at
least some underlying aspects of phonetic decisions rely on shared mechanisms. Coherence between
tasks performed on the same stimulus set was stronger than relationships across continua,
supporting the assertion that, rather than fully gradient or fully categorical, participants may have
idiosyncratic patterns of perception that are fairly specific to certain continua. Counter to
predictions, in this study, performance on phonetic tasks did not differ substantially as a function of
age. Perhaps most importantly, individual differences in phonetic perception individually and

collectively predicted performance on a speech-in-noise task, even after accounting for age and noise
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exposure history, lending support to the hypothesis that differences in sensitivity to phonetic detail
aids in comprehending speech in challenging listening conditions. Below we discuss the
interpretation and implications of these findings.

Although perception of phonetic categories has often been described as “categorical,” implying
an all-or-none access to the phonetic category, recent attention to this issue suggests that listeners
show substantial sensitivity to acoustic variability within the category (Fuhrmeister et al., 2023;
Kapnoula & McMurray, 2021), challenging the entire notion of “categorical perception” as a
phenomenon (McMurray, 2022). Our data corroborate that listeners show substantial sensitivity to
within-category variation. Note, for instance, the patterns of discrimination (Fig. 2), with most
tokens showing above-chance discrimination, whether the pair straddles the category boundary or
not (a pattern that is particularly evident for the fricative continuum). Using the VAS task, a task
argued to afford listeners the opportunity to demonstrate within-category sensitivity, a wide range of
psychometric functions was observed, with some listeners responding more or less categorically. Yet
others rated tokens gradiently, showing remarkable correspondence to their actual position on the
acoustic-phonetic continuum.

These tasks have been well-described elsewhere, but our dataset contributes to two outstanding
questions regarding the underlying skills that are tapped by these tasks. First, we tested the
hypothesis that gradient responses in the VAS task reflect an ability to discriminate between items
along the phonetic continuum, and thus should converge with AX discrimination tasks. Here, results
diverged between the two continua. We found that mean sensitivity to discrimination across the
continuum (‘AX sensitivity’) did not relate to the steepness of the psychometric function in the VAS
task ("VAS slope”) for the fricative, sign-shine continuum, but did correlate with VAS slope—and
indeed with all measures—within the ba-da continuum. Correlations here were relatively weak and

diffuse, making it difficult to firmly argue that these tasks tap distinct aspects of phonetic perception.
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Second, we asked whether individual profiles of phonetic perception are best thought of as a general
trait, or whether these profiles more closely reflect an individual’s response to a specific acoustic-
phonetic continuum. Here, evidence was also somewhat intermediate between these two options.
While the strongest correlations were between measures tested on the same acoustic-phonetic
contrast (especially within the ba-da continuum), between-continuum correlations were weaker (Fig
3). In explicit comparisons of these two models using confirmatory factor analysis, a “contrast-
specific” model where the tasks loaded on phonetic contrast-specific latent factors was a better fit to
the data than a model where all factors loaded on one latent factor.

The direction of the relationships between phonetic decision measures are quite consistent
across comparisons. Listeners who show greater sensitivity in the discrimination task are also more
likely to show a strong discrimination peak at the category boundary, more likely to show steeper
VAS and 2AFC response functions, and are also more likely to be consistent responders in the VAS
task, particularly within-contrast. These patterns might reflect subtle differences in peripheral or
central aspects of the auditory system, differences in how sound is mapped to phonetic category
representations, or (less compellingly) differences in task strategy that happen to affect multiple
tasks.

During development, children show increasingly gradient patterns of perception as they
transition into adolescence (McMurray et al., 2018). It is unclear whether or how this trajectory
evolves in the adult lifespan. We hypothesized that well-documented age-related declines in the
peripheral and central auditory system would result in changes in performance on phonetic decision
tasks (Slade et al., 2020). Unexpectedly, age was related to only three phonetic measures, and only
one of these, response consistency on the sign-shine continuum, was reliably related to age on its
own, with greater age being associated with lower consistency. Of all the measures related to age,

this one perhaps makes the most sense. First, fricative continua rely more heavily on high-frequency
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spectral information, and accurate perception of high-frequency information tends to decline with
aging (Slade et al., 2020). Second, neural consistency (i.e., the stability of the response upon repeated
measurement) declines with age (Skoe et al., 2015).

Nonetheless, age-related changes in performance on phonetic tasks were not striking in our
sample. This might be due to a protective effect of language experience, or to the fact that our
sample extends to age 67, but does not encompass older ages where sensorineural declines are more
pronounced. Despite there being no striking relationships between age and our phonetic decision
measures, age was nonetheless strongly related to speech-in-noise performance This replicates a
well-established pattern of decreased perceptual acuity in noise with age (Slade et al., 2020; Holder et
al., 2018), suggesting that our older adult sample was not entirely atypical in their perception of
speech-in-noise”. In further support of the typicality of our dataset, for speech-perception-in-noise
performance, we found expected relationship with noise exposure, with more noise exposure
relating to worse performance (Casey et al., 2017; M. C. Liberman, 2017).

If individual differences in performance on phonetic tasks had no consequences for functional
outcomes for comprehension, these differences would be interesting, but entirely academic. Instead,
as reviewed in the introduction, VAS measures have been linked to aspects of native and non-native
processing. However, prior attempts to link the slope of the VAS function to speech-in-noise
perception accuracy showed weak or absent relationships (Kapnoula et al., 2017, 2021). Here we
used two approaches to investigate the relationship between phonetic decisions and speech-in-noise
performance. Using a backwards-stepping linear model selection approach, we showed that five
phonetic decision measures predicted speech-in-noise performance, even after accounting for age
and noise exposure dose. The steepness of the psychometric phonetic decision functions (VAS and
2AFC slopes) were not strong predictors of speech-in-noise (although 2AFC ba-da slope did survive

model selection)—instead, the “categoricity” measure in the AX task (both continua) and response
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consistency in the VAS task (ba-da) were stronger predictors of speech-in-noise performance. In
prior work (Apfelbaum, 2022), 2AFC slope was argued to be more closely related to response
consistency than to gradience as measured by VAS slope—in our data, 2AFC slope was weakly
related to both VAS slope and VAS consistency, suggesting that these measures do not cleanly
dissociate. As in prior work, we find that response consistency is a useful predictor of language tasks
(c.f. Fuhrmeister, et al., 2023), lending support to the notion that stability in the perceptual response
or acuity in detecting acoustic-phonetic detail may be crucial for efficient mapping of auditory input
onto meaning. A new contribution was the predictive power of the AX “categoricity” measure. This
measure, which assesses the advantage conferred in discrimination when tokens cross the category
boundary, may reflect an exaggeration of perceptual distances near the category boundary, which
may help listeners to tune to critical acoustic-phonetic details in the input. An alternative
interpretation (and perhaps more likely given the one-second ISI in our design) is that this task taps
a listener’s ability to hold auditory detail in memory, a task that will be easier when the tokens map
to distinct phonetic categories. Future research, including investigating relationships between this
task and other measures of auditory memory, will be needed to disambiguate these options.

Since there was mild collinearity among our set of phonetic decision measures, we also
employed a PCA approach to identify common sources of variance within phonetic measures,
essentially creating several phonetic decision “summary scores” for each participant (see
Supplementary Materials). Here, too, addition of these summary dimensions explained speech-in-
noise perception better than a model including only age, noise exposure dose, and childhood
caregiver education, with four dimensions (1, 3, 4, and 5) showing significant contributions.
Dimension 1, in particular, has loadings that are fairly evenly distributed across all measures except

VAS slope for sign-shine (whereas the equally well-performing, Dimension 3 primarily loads on
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VAS slope for sign-shine), leading to the conclusion that the cluster of performance identified above
may constitute a general profile of phonetic skill.

Indeed, we cannot rule out the possibility that performance on speech-in-noise and phonetic
tasks emerge from a common underlying trait, perhaps related to differences in auditory acuity, or
more elaborated/stable language ability or working memory—this question awaits further study.
Other limitations of the current dataset include the lack of hearing screening and a lack of precise
control of the auditory testing environment. Although we are confident that our sample does not
include participants with known hearing deficits, age-related hearing deficits often go undiagnosed.
However, we are dubious that hearing declines, writ large, account for our results—notably,
widespread age-related declines in phonetic performance were not obvious. A lack of control of the
listening environment is inevitable for online studies. Results from our labs replicating well-known
phenomena in speech perception (Fuhrmeister et al., 2023; Luthra et al., 2021) using online testing
give us confidence in the quality of online data for speech perception research. We note that the
participants in the current study are primarily Prolific “super-users” who have participated in
hundreds of online studies, and tend to be very technically adept. We also required listeners to wear
headphones, instituted a strict check for the presence of headphones, and allowed listeners to adjust
the volume to a comfortable listening level. Nonetheless, we cannot rule out the possibility that
individual differences in access to the auditory signal (whether because of hearing status,
technological limitations of headphones, or ambient noise in the test environment) might explain
our results. Indeed, allowing the listener to set their listening level, might, if anything, decrease the
effect of aging. Another study limitation is that the noise exposure measurement was based on the
previous 12 months and may for a variety of reasons (including the pandemic conditions under
which the data were collected) not be representative of lifetime noise exposure. Ongoing efforts in

our labs are aimed at these questions.
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V. CONCLUSION

In summary, for both a stop continuum and fricative continuum, we found individual
differences across a range of measurements of phonetic perception. Interestingly, individual
differences in phonetic perception, specifically measures of consistency in the VAS task and a
measure of near-boundary sensitivity in AX discrimination were found to predict speech-in-noise
performance, suggesting that speech communication in noise is mediated by the structure of
listeners’ phonetic category representations. The constellation of findings suggests, however, that
individual differences in phonetic measures are not listener-level traits (that are fixed across stimuli);
instead, for a given listener, perceptual patterns/strategies appeat to be specific to the particular
speech continuum. These continuum-specific listener strategies may then aggregate with
demographic factors (age, noise exposure) to influence the perception of naturalistic speech

composed of multiple speech categories (i.e., sentences in background noise).

SUPPLEMENTARY MATERIAL
See supplementary material at [URL will be inserted by AIP] for acoustic details of the stimuli and

tables reporting the full regression models before model selection procedures.
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ENDNOTES

"Prolific tracks participant-level data surrounding study approval (i.e., how many studies
participants have completed providing high quality data) and study rejection (i.e., participants who
did not complete a study in good faith by providing nonsense responses, completing study tasks in
such a short amount of time they would be considered a statistical outlier [e.g., 3 standard deviations
below the mean], etc.). The average number of study rejections per participant was 1.17 Prolific
studies. Overall, our sample had a high study approval rating: of the 53,158 total Prolific studies
completed by our sample, 53,022 were approved by study organizers (99.7%), indicating a high
degree of data quality. See Figure 1 for an overview of the tasks and procedures.

* Despite the fact that participants reported that they “only know English,” there were some
contradictory responses to other questions. Namely, a fair number of participants reported early
exposure to languages other than English, and some reported high proficiency in non-English
languages. To explore whether these factors affected our analysis, we chose to categorize
participants who reported exposure to a language other than English before the age of 10 and also
reported high proficiency in a non-English language as “bilingual.” 42 participants met this criterion.
For each phonetic measure (described in detail under “Phonetic Decision Tasks”), we performed a
two-tailed t-test comparing “bilingual” to “monolingual” groups. Of the ten phonetic measures, two
showed significant differences between groups. Participants who reported “bilingual” language
experience showed a shallower slope for the VAS task in the ba-da continuum (#93.54) =-3.04,
$»=0.003) and showed a smaller “categoricity” measure for the ba-da continuum (482.08)=-2.53,
»=0.013). Further, we added “bilingualism” as a factor to the best-fit model predicting speech-in-
noise performance (see Section C. below). This factor did not improve model fit.

*The choice of ISI in discrimination tasks is not a neutral one. Although classic studies
establishing categorical perception (e.g. Liberman, et al., 1957) used a 1000 msec ISI in
discrimination tasks, it has been argued that longer ISIs encourage access to phonetic category
labels, whereas shorter ISIs may come closer to tapping low-level, acoustic processing of stimuli (e.g.
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Van Hessen & Schouten, 1992). Since in the VAS and 2AFC tasks, participants were asked to
explicitly map acoustic information to phonetic category concepts, we chose a longer ISI in order to
encourage similar access to category labels. We acknowledge that this may have the effect of placing
a heavier burden on working memory than had we used a shorter ISI.

“To ensure the comparability of NEQ data collected online to data collected in person, the NEQ
scores from online participants were compared to 312 NEQ collected in person, representing a
similar age range and gender distribution. NEQ dB LLAeq8750h did not differ as a function of study
administration medium (Online mean = 71.8, SD = 6.5; Oftline mean = 72.9, SD = 5.2; ¢(116.5) =
1.13, p = .26).
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