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Speech sounds exist in a complex acoustic-phonetic space, and listeners vary in the extent to which 

they are sensitive to variability within the speech sound category (<gradience=) and the degree to 

which they show stable, consistent responses to phonetic stimuli. Here we investigate the hypothesis 

that individual differences in the perception of the sound categories of one9s language may aid 

speech-in-noise performance across the adult lifespan. Declines in speech-in-noise performance are 

well-documented in healthy aging, and are, unsurprisingly, associated with differences in hearing 

ability. Nonetheless, hearing status and age are incomplete predictors of speech-in-noise 

performance, and long-standing research suggests that this ability draws on more complex cognitive 

and perceptual factors. In this study, a group of adults ranging in age from 18 to 67 years performed 

online assessments designed to measure phonetic category sensitivity, questionnaires querying recent 

noise exposure history and demographic factors, and crucially, a test of speech-in-noise perception. 

Results show that individual differences in the perception of two consonant contrasts significantly 

predict speech-in-noise performance, even after accounting for age and recent noise exposure 

history. This finding supports the hypothesis that individual differences in sensitivity to phonetic 

categories mediates speech perception in challenging listening situations. 
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I. INTRODUCTION  1 

Perception of the sounds of speech is a prerequisite for mapping the auditory signal onto 2 

meaning. Listeners need to detect and analyze the fine-grained spectral and temporal qualities of 3 

speech sounds, a process that is complicated by the presence of background noise. Yet, listeners do 4 

not detect and analyze speech sounds in precisely the same way. Individual differences in perception 5 

of phonetic detail have been well-documented and linked to other aspects of language processing 6 

(Fuhrmeister et al., 2023; Kapnoula et al., 2017; Kong & Edwards, 2016). Of interest is how 7 

individual differences in phonetic sensitivity are related to speech perception-in-noise (SPIN) 8 

performance. SPIN declines are well-documented in aging, and crucially, these are not fully 9 

explained by differences in peripheral hearing (e.g. Goossens et al., 2017). This leads to the 10 

possibility that individual differences in sensitivity to the properties of speech categories might 11 

partially account for differences in SPIN, especially those that emerge as a function of aging.  12 

In this study we aimed to answer three questions about individual differences in the perception 13 

of phonetic category structure. First, we asked whether tasks of phonetic category sensitivity 14 

measured by two-alternative forced choice (2AFC), visual analogue scale (VAS), and AX 15 

discrimination (AX) tasks tap individual differences in shared skills in perception and representation 16 

of phonetic categories, and further whether these skills are phonetic contrast-specific or reflect a 17 

general trait of the individual. Second, we evaluated age-related changes to phonetic category 18 

sensitivity. Finally, we asked to what extent individual differences in performance on these tasks 19 

predicts performance on a speech-in-noise task, after accounting for age and recent noise exposure.   20 

A. Individual differences in the perception of phonetic category structure  21 

Classic studies of categorical perception (A. M. Liberman et al., 1957) established that when 22 

listeners are asked to identify sounds drawn from a phonetic continuum, they will typically show a 23 
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sharp boundary between categories, exhibiting a steep psychometric function. More notably, 24 

listeners also show asymmetric patterns of discrimination, with better discrimination of sound 25 

contrasts that span the category boundary than those that fall within the category, leading to the 26 

proposal that listeners are either insensitive to variability within the category, or that this information 27 

is discarded as phonemes and words are identified. These discontinuities, or warping in sensitivity 28 

according to phonetic category structure, led to the description of phonetic perception as 29 

<categorical.= 30 

Nonetheless, researchers have long noted that listeners are quite sensitive to within-category 31 

phonetic detail (McMurray et al., 2002; Myers, 2007; Pisoni & Tash, 1974; Toscano et al., 2010), and 32 

use within-category variability when accessing the lexicon (Andruski et al., 1994; McMurray et al., 33 

2009; Sarrett et al., 2020). Of interest, when performing behavioral tasks assessing sensitivity to 34 

phonetic detail, listeners show individual differences in the gradience or categoricity of phonetic 35 

sensitivity. As discussed thoroughly elsewhere (Apfelbaum et al., 2022; McMurray, 2022), tasks vary 36 

in the extent to which they encourage or afford listeners the option of demonstrating sensitivity to 37 

phonetic gradience. 2AFC tasks (e.g., "do you hear 'da' or 'ta'?") force listeners into a binary decision, 38 

such that perception of variability might be masked. As pointed out by Apfeblaum et al., (2022), a 39 

well-defined boundary between phonetic categories (characterized by a steep slope in the 40 

categorization function) in this task does not necessarily entail that listeners cannot detect variation 41 

within the category. AX discrimination tasks may have more power to detect sensitivity to within-42 

category detail; in these tasks, listeners are asked to decide whether two items from the same 43 

continuum are the same or different, and responses can be made without reference to any specific 44 

category label. Visual analogue scale (VAS) measures of phonetic sensitivity have been argued to 45 

provide some of the attributes of 2AFC and discrimination tasks. In this task, listeners are asked to 46 

rate tokens along a scale in terms of their fit to the category (Kong & Edwards, 2016). Even among 47 
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typical listeners, substantial variability has been found in sensitivity to phonetic category structure 48 

(e.g., Fuhrmeister et al., 2023; Fuhrmeister & Myers, 2021; Kapnoula et al., 2017, 2021; Kapnoula & 49 

McMurray, 2021; Kong & Kang, 2023), with some listeners showing a more graded pattern of 50 

sensitivity, and others showing a more categorical response function. 51 

Individual differences in graded perception (as measured by the VAS) have some functional 52 

consequences for online language comprehension. Gradient listeners tend to use more secondary 53 

cues to phonetic perception (Kapnoula et al., 2017, 2021; Kong & Edwards, 2016), and gradience 54 

may aid online lexical access, particularly recovery from misidentification of words in a "lexical 55 

garden path" paradigm (Kapnoula et al., 2021). Individual differences in gradience can be seen quite 56 

early in the auditory processing stream, such that gradient listeners show correspondingly gradient 57 

patterns of neural responses to voice onset time (VOT) in the N1 EEG component (Kapnoula & 58 

McMurray, 2021). However, it remains unclear if patterns of gradience in the VAS task are 59 

characteristics of the listener, or are particular to the way that listener processes some very specific 60 

acoustic-phonetic cues but not all (e.g., Kapnoula et al., 2017, Kapnoula & McMurray, 2021, 61 

Fuhrmeister et al., 2023). Finally, the notion that gradience per se reflects generally better phonetic 62 

processing has not, of yet, been strongly supported. Gradience has not been shown to correlate well 63 

with speech-in-noise performance (Kapnoula et al., 2017, 2021), nor with perception of non-native 64 

contrasts (Fuhrmeister et al., 2023). 65 

In addition to the dimension of gradience, listeners also differ in the degree to which they show 66 

trial-to-trial consistency in rating phonetic tokens (Fuhrmeister et al., 2023; Fuhrmeister & Myers, 67 

2021; Kapnoula et al., 2017). Notably, some listeners show gradient perceptual patterns alongside 68 

highly consistent responses to each token on the continuum, whereas others show the same gradient 69 

function but much more stochastic or inconsistent responses to individual tokens. This notion of 70 

"response consistency" resonates with theories proposing that there are downstream consequences 71 
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for individual differences in the stability of auditory encoding arising early in the auditory processing 72 

stream (Centanni et al., 2018; Hornickel & Kraus, 2013; Neef et al., 2017; Tecoulesco et al., 2020). 73 

Indeed, consistency of brainstem and early cortical responses to repeated auditory tokens differs in 74 

people with a history of language disorder, and may be modulated by auditory expertise (Krizman et 75 

al., 2014; Skoe & Kraus, 2013). Response consistency in the VAS task for both stop and fricative 76 

continua is linked to individual differences in the structure of the bilateral transverse temporal gyri 77 

(Fuhrmeister & Myers, 2021), a structure responsible for early cortical processing of sound. Further, 78 

individuals with higher response consistency on a VAS task were more adept at discriminating an 79 

unfamiliar non-native sound contrast (Fuhrmeister et al., 2023; Honda et al., 2024), suggesting that 80 

stability in the mapping between the auditory input and the perceptual response may allow listeners 81 

to tune into the unfamiliar acoustic details that signal non-native contrasts.  82 

Research thus far corroborates that individual differences in phonetic judgments do reflect 83 

meaningful differences in how they process the speech signal. Nonetheless, several pertinent 84 

questions remain that we address in this study. First, while AX discrimination was classically used to 85 

establish patterns of categorical perception (A. M. Liberman et al., 1957), it has not yet been directly 86 

compared to the VAS task. If gradience in the VAS taps individual differences in fine-grained 87 

sensitivity to acoustic detail, then AX patterns should correspond to VAS  patterns, such that those 88 

with more gradient VAS functions should show better ability to detect differences between tokens, 89 

especially those falling within the phonetic category. 2AFC tasks, while also a popular option for 90 

studies of phonetic category structure, have been argued to underestimate an individual9s ability to 91 

detect within-category differences by forcing a binary response (e.g. Apfelbaum, et al., 2022). Prior 92 

studies comparing slope on the 2AFC task and responses on the VAS task suggest that slope of the 93 

function in 2AFC is more related to response consistency than gradience (e.g. Kapnoula et al., 2017). 94 

Finally, the jury is still out on whether or not gradience and response consistency are a property of 95 
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individuals or specific phonetic contrasts. By understanding the relationships between these 96 

measures, we are able to answer how phonetic sensitivity changes during aging, and how, if at all, 97 

these measures relate to speech-in-noise performance. 98 

B. Changes in sensitivity to phonetic category structure as a function of aging. 99 

During healthy aging, changes in hearing are nearly inevitable (Goman & Lin, 2016), with more 100 

than 25% of adults having mild-to-moderate hearing declines by the age of 70. Even among those 101 

with relatively intact hearing as measured by the pure-tone audiogram, differences in access to the 102 

speech signal can be stark, especially for noise- masked speech (e.g., Goossens et al., 2017). Of 103 

interest, speech-in-noise performance is only moderately predicted by pure-tone hearing assessments 104 

in aging, suggesting that age-related changes extend beyond the auditory periphery to include the 105 

neural systems involved in sound-to-meaning mapping (Anderson et al., 2011; Goossens et al., 2017; 106 

Prendergast et al., 2019). Changes in sensitivity to phonetic category structure have been investigated 107 

during childhood and adolescence (McMurray et al., 2018), with evidence showing increasingly 108 

gradient sensitivity as children gain experience with their native language (see McMurray, 2022 for 109 

review). Comparing older and younger adults in 2AFC tasks, older adults have been reported to 110 

show  shifted boundary locations for stop consonants, a fricative/affricate contrast, and a stop-glide 111 

contrast (Baum, 2003; Dorman et al., 1985; Gordon-Salant et al., 2006). These findings might reflect 112 

changes in sensitivity or resolution of certain types of cues, especially those that rely on temporal 113 

distinctions (Gordon-Salant et al., 2006). Notably, however, the slope of these functions is quite 114 

stable across age (Dorman et al., 1985; Gordon-Salant et al., 2006), suggesting that although older 115 

adults may rely on somewhat different cues, on balance, categorization decisions remain stable 116 

among older adults with hearing within normal limits. Mattys & Scharenborg (2014) also 117 

incorporated an AX discrimination task on a nasal contrast, showing that older adults were 118 

somewhat less sensitive across the continuum, but age-related differences were not stark. To our 119 
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knowledge, no studies have investigated changes in gradient phonetic perception using a VAS task 120 

as a function of age across the adult lifespan.  121 

We can imagine several patterns that might be associated with aging. First, if age-related declines 122 

in peripheral and central auditory function result in less neural stability in the auditory system (Skoe 123 

et al., 2015), we might observe decreased behavioral response consistency in the VAS, poorer 124 

sensitivity to subtle acoustic differences in AX discrimination, and a flattening of the categorization 125 

function in the 2AFC task. Second, age-related hearing threshold changes tend to affect higher 126 

frequencies first, which might lead to less sensitivity to specific contrasts that are distinguished by 127 

high-frequency information, for instance the fricative s-sh contrast used in this study. Notably, 128 

however, language ability is among the best-preserved functions during healthy aging (Ansado et al., 129 

2013; Diaz et al., 2021) and increased experience with a language over one's lifespan might actually 130 

serve to fine-tune and stabilize native phonetic category representations, leading to the opposite 131 

patterns from the ones described above.  132 

C. Consequences of individual differences in phonetic perception for speech-in-noise 133 

processing. 134 

Comprehension of speech in noise is cognitively and perceptually demanding (Peelle, 2018). 135 

Understanding speech in a noisy environment depends not only on the audibility of the signal but 136 

also on attention, working memory, and a host of other capacities that help the listener direct 137 

attention to the most relevant portions of the acoustic signal (Pichora-Fuller et al., 2016). It is less 138 

well-understood how individual differences in sensitivity to phonetic category structure (e.g., 139 

perception of small differences within the category; consistent perceptual responses to speech) 140 

might play out in speech-in-noise processing. In theory, a listener who is sensitive to fine-grained 141 

details of speech may be better equipped to detect these properties when mixed with noise. 142 
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Similarly, a listener with greater consistency in their perceptual response to speech may be able to 143 

calibrate to noise levels more accurately in service of separating the speech signal from noise.  144 

As described above, evidence thus far linking gradient phonetic perception to speech-in-noise 145 

performance has been weak (Kapnoula, et al., 2017) or absent (Kapnoula et al., 2021). However, 146 

perception of speech-in-noise was not the primary goal of previous studies, and the more limited age 147 

range in this prior work might limit variability in speech-in-noise performance to the extent that an 148 

association would be difficult to find. In the current study, we collected data from adult participants 149 

performing 2AFC, VAS, and AX discrimination tasks on two phonetic contrasts, a stop place of 150 

articulation contrast ('ba'--'da'), and a fricative place of articulation continuum ('sign'--'shine'). Our 151 

expanded age range (18-67) also allowed us to tap greater variability in speech-in-noise performance 152 

and we controlled for exposure to environmental noise over the previous 12 month window, given 153 

that experience in noisy environments is linked to speech-in-noise ability (M. C. Liberman, 2017; 154 

Prendergast et al., 2019; Skoe et al., 2015; but cf. Shehabi et al., 2022). We predicted that individual 155 

differences, especially in response consistency, but potentially also discrimination accuracy, would be 156 

related to differences in speech-in-noise performance after accounting for age and noise exposure.  157 

This dataset allows us to pursue three questions. First, we ask how 2AFC, VAS, and AX 158 

performance relate to each other, specifically testing the hypothesis that discrimination as measured 159 

by AX will correlate with slope in the VAS task, and asking whether individual differences in 160 

phonetic tasks cluster by phonetic contrast. Second, we ask how behavior on phonetic tasks changes 161 

over the course of aging. Finally, we ask whether (and which) phonetic tasks best predict speech-in-162 

noise performance. 163 

 164 
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II. METHODS 165 

A. Participants 166 

Participants were recruited from the online recruitment platform, Prolific, for online testing. The 167 

study was advertised to adult participants who reported being native, monolingual speakers of 168 

English and living in the US. Subjects gave informed consent according to the guidelines of the 169 

UConn Institutional Review Board and were compensated $10 per hour for their participation. 170 

Participants were recruited in five age bands from 18-67 years, and data collection continued 171 

until each age band contained at least 19 usable participants. 143 participants completed all study 172 

procedures. Data quality checks (see below, Phonetic Decision Tasks) led to the elimination of 17 173 

participants. Another 10 participants were excluded for failing the headphone check (see below, 174 

First Steps and Headphone Check) resulting in 116 participants whose data ultimately contributed to 175 

subsequent analyses (female=74, male=42; see Table I for complete participant demographics). 176 

Participants recruited from Prolific often have substantial experience participating in behavioral 177 

studies. Our participants were no exception: data extracted from Prolific indicates that on average, 178 

our subject pool has been approved for completing an average of 457 studies on Prolific, with high 179 

participant ratings.1 180 

TABLE I: Demographic characteristics of the sample that contributed to all subsequent 181 

analyses. Speech-in-noise performance score represents the signal-to-noise ratio (SNR) at 182 

which 50% of the key words are correctly repeated, with lower scores indicating better 183 

performance. Refer to text for descriptions of the noise exposure metrics. 184 

By age bands: 18-27,  

N = 261 

28-37,  

N = 191 

38-47,  

N = 251 

48-57,  

N = 241 

58-67,  

N = 221 

Age (yrs) 23 (21, 25) 30 (29, 33) 42 (39, 44) 52 (50, 55) 62 (60, 64) 

Sex           

    Female 17 (65%) 7 (37%) 13 (52%) 20 (83%) 17 (77%) 
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 185 

    Male 9 (35%) 12 (63%) 12 (48%) 4 (17%) 5 (23%) 

Childhood caregiver 
education, (yrs) 

14 (12, 16) 14 (13, 16) 14 (12, 16) 12 (12, 15) 12 (12, 16) 

Speech-in-noise score   1.13 (0.00, 
2.19) 

0.25 (-0.50, 
1.25) 

1.00 (0.25, 
3.50) 

1.00 (0.75, 
2.44) 

1.50 (0.56, 
3.69) 

Annual Noise 
Exposure (ANE) 
Estimate (dB  
LAeq8760h) 

71.6 (69.6, 
74.6) 

70.6 (68.8, 
77.1) 

70.1 (67.5, 
72.9) 

70.0 (65.7, 
75.8) 

66.1 (64.7, 
70.9) 

Noise Exposure Dose  
(%) 

18 (12, 37) 14 (9, 66) 13 (7, 25) 12 (5, 48) 5 (4, 17) 

1Median (IQR); n (%) 
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 186 

B. Procedure 187 

FIG 1. Task schematic. Participants performed tasks from top to bottom according to the 188 

left-hand column. Phonetic tasks were conducted for both ba-da and sign-shine continua, 189 

using a counterbalanced Latin squares design (see text for details). 190 

1. First Steps and Headphone Check  191 

A schematic of the study procedures can be found in Figure 1. Study participants were required 192 

to use either a laptop or desktop computer (i.e., no mobile devices), and were instructed to wear 193 

headphones. After providing informed consent, participants were directed to the online 194 

experimental software platform, Gorilla (www.gorilla.sc; Anwyl-Irvine et al., 2020). First, 195 

participants were directed to a headphone check described by Woods et al. (2017). Participants were 196 

instructed to initially set their volume to approximately 25%, listen to a burst of white noise, and 197 

then adjust their computer9s volume until it was a comfortable listening level. Participants were then 198 

instructed to listen to three tones of various intensities and select which tone was the softest. This 199 

headphone check uses phase cancellation such that participants would only perceive the softest tone 200 

as being the softest if they were wearing headphones. If a participant passed the headphone check 201 
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(i.e., selected the correct tone in at least four out of six trials), they continued on with the study and 202 

completed a series of questionnaires. If a participant failed the headphone check (i.e., selected the 203 

correct tone in less than four trials), they were reminded that it was important to wear headphones, 204 

and then completed the headphone check a second time. If a participant failed the headphone check 205 

a second time, they were allowed to continue with the experiment, but their data were excluded 206 

from subsequent analyses.  207 

2. Questionnaire Data  208 

Next, participants were directed to a series of questionnaires to collect basic demographic data, 209 

experience with musical training, experience with languages other than English, and the Noise 210 

Exposure Questionnaire (Johnson et al., 2017). Data on musical experience and language 211 

backgrounds are beyond the scope of the current investigation.2  212 

The Noise Exposure Questionnaire (NEQ) is a short survey developed as a low-cost and rapid 213 

way to estimate environmental noise exposure risk. The NEQ estimates annual noise exposure 214 

based on self-reported frequency engaging in noisy activities (e.g., attending events with amplified 215 

music, riding motorized vehicles, using power tools, wearing personal listening devices, and playing a 216 

musical instrument) during the past 12 months. Annual noise exposure (ANE) is estimated using 217 

representative sound levels from the literature for each activity type. ANE is expressed in dB 218 

LAeq8760h, and represents the continuous sound level averaged over 8760 (24 hours x 365 days) 219 

hours using a 3-dB exchange rate and A-weighted sound levels. Refer to Johnson et al., (2017) for 220 

details. From the dB estimate, a noise dose is then derived, with 79 dB LAeq8760h corresponding to 221 

the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit, 222 

i.e., 100% dose. Doses above 100% place the listener at increased risk of noise-induced hearing loss. 223 

For the purposes of interpreting the NEQ data, it is important to note that the online data collection 224 

occurred between November 11, 2020 and February 4, 2021. 225 
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3. Phonetic Decision Tasks  226 

Immediately before completing the phonetic decision tasks, participants were given the 227 

opportunity to adjust their volume. Participants were presented with an audio token at the same 228 

intensity of the phonetic stimuli and were instructed to adjust their volume until it was <comfortably 229 

loud= and they could <hear the sound easily.= Participants completed three different phonetic 230 

decision tasks: a two-alternative forced choice task (2AFC), a discrete version of the visual analogue 231 

scale task (VAS), and an AX discrimination task (AX). Participants heard stimuli drawn from a 232 

voiced stop continuum (<ba= to <da=) as well as a fricative place-of-articulation continuum (<sign= 233 

to <shine=). Tasks were presented in a fixed sequence, with the task schedule rotated using a Latin 234 

squares procedure such that across participants, the task that participants completed first (i.e. the 235 

one that begin the sequence) was counterbalanced. Namely, given the task order represented as 236 

ABCDEF, participants were counterbalanced across orders ABCDEF, BCDEFA, CDEFAB, etc. 237 

The fixed task order was: VAS: ba-da, VAS: sign-shine, 2AFC: ba-da, 2AFC: sign-shine, AX: ba-da, 238 

AX: sign-shine. This ordering meant that participants almost always performed the ba-da version of 239 

the task before the sign-shine version of the task. Below we describe the characteristics of the 240 

phonetic stimuli as well as the specific tasks. 241 

Phonetic continua. A seven-point continuum from /ba/ to /da/ was synthesized at Haskins 242 

Laboratories using a Klatt synthesizer. This continuum manipulates the trajectory of the first and 243 

second formants, and the vowel information after the initial short transition is shared across all 244 

stimuli (see Supplementary Materials for details). A continuum from <sign= to <shine= was created 245 

by modifying naturally-produced tokens of <sign= and <shine.= Stimuli were produced by a female, 246 

native speaker of English, and the initial fricative was excised. Blends of the excised /s/ and /sh/ 247 

tokens were created through waveform averaging using Praat (Boersma & Weenink, 2013) to create 248 

blends from 80% /s/ to 20% /s/ in 10% steps, and fricative blends were re-concatenated onto to 249 
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the original <-ign= file, resulting in a seven-point perceptual continuum extending from <sign= to 250 

<shine.= Stimuli were selected such that no more than two tokens on each end of the continuum 251 

received fairly unambiguous judgements, in order to optimize sampling of the more variable 252 

responses to tokens approaching the category boundary. 253 

 254 

 255 

FIG 2. Behavioral data for phonetic tasks, grouped by age band. Left panel shows data for 256 

the ba-da continuum, right panel shows data for the sign-shine continuum. For 2AFC tasks, 257 

the y axis indicates proportion, for VAS tasks, this axis indicates the rating position between 258 

the two ends of the continuum, and for discrimination, the units displayed are d9 values. 259 

Error bars indicate standard error of the mean. 260 
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Two-alternative forced choice (2AFC). Participants heard 15 instances of each point along the seven-261 

point continuum, presented in random order, for a total of 105 trials per continuum. For each token, 262 

the listener was asked to categorize the token (e.g., <ba= or <da=?) by pressing a corresponding 263 

button on the keyboard. The dependent measure was the participant response for each token. To 264 

ensure that participants perceived the endpoints of the continuum at above-chance levels, only 265 

participants who correctly categorized endpoint tokens at least 60% of the time were included in the 266 

study. This led to the exclusion of nine participants on the basis of the ba-da continuum, and one 267 

additional participant on the basis of the sign-shine continuum. Individual data and mean response 268 

curves by age band are plotted in Figure 2. 269 

Visual analogue scale (VAS). Participants completed a <discretized= version of the visual analogue 270 

scale task (cf. Kapnoula et al., 2017, Fuhrmeister et al., 2023). In the original version of the VAS, 271 

participants are asked to rate each token from <most {ba/sign}-like= to <most {da/shine}-like= 272 

along a continuous scale by moving a slider. In our version of the task, adapted for easier online 273 

administration, participants instead rated tokens along a seven-point numeric scale. Participants 274 

heard 15 examples of each point on the phonetic continuum, presented in random order, for a total 275 

of 105 trials per continuum. Since there was no in-principle <correct= answer for this task, data 276 

quality checks ensured that participants showed some difference in rating tokens across the 277 

continuum. To pass this quality check, a participant had to demonstrate a mean difference of two 278 

points along the rating scale for any two continuum tokens for each continuum. This resulted in the 279 

exclusion of an additional seven participants on the basis of performance on the ba-da continuum 280 

(five additional participants had poor VAS data but had already been excluded on the basis of quality 281 

checks for the 2AFC task). Figure 2 displays individual response curves by continuum as well as 282 

mean response curves aggregated by age band. 283 
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AX discrimination (AX). Participants heard two tokens drawn from the seven-point continuum 284 

per trial, separated by a 1000 msec ISI.3 Stimuli were either identical (<Same= trials, e.g. ba1-ba1, 285 

n=10 per pair), separated by one step on the continuum (e.g., ba1-ba2, <One-step= n=10 per pair) 286 

or two steps on the continuum (e.g., ba1-ba3, <Two-step=, n=10 per pair). Pairs were presented in 287 

both orders (e.g., ba1-ba3 and ba3-ba1) collapsing across orders for analysis purposes. Participants 288 

completed a total of 180 discrimination trials per continuum. Data were transformed into d9 scores 289 

by subtracting z-scored rates of hits for each different trial from z-scored rates of false-alarms for 290 

<same= trials. Figure 2 displays d9 scores for one-step and two-step trials, aggregated by age band, for 291 

each phonetic continuum. 292 

4. Speech-In-Noise Test  293 

Participants were administered a modified version of the Quick Speech-in-Noise test 294 

(QuickSINTM Speech-in-Noise Test, Etymotic Research, Inc.). In this test, participants listened to 24 fixed-295 

level low-context sentences spoken in varying degrees of four-talker babble noise (i.e., signal-to-296 

noise ratio, SNR), ranging from 25 dB (the easiest SNR level) to 0 dB (the hardest SNR level) in 5 297 

dB intervals. When the QuickSIN is used in clinical settings, patients verbally repeat each sentence; 298 

in our modified online version of the test, participants were asked to <repeat= the sentence back 299 

verbatim by typing into a text response field, and then press the enter key once they were finished to 300 

advance to the next sentence. Modeling the clinical protocol, sentences were divided into four lists 301 

with six sentences, and each sentence within a list was presented at a different, descending SNR 302 

level. QuickSIN lists 1-4 were selected. Within each list, trials were presented in a fixed order of 303 

increasing difficulty, such that the first and last sentence within each list had a SNR level of 25 dB 304 

and 0 dB, respectively. Each sentence contained five keywords worth one point each; therefore, 305 

participants could earn a maximum of five points per sentence and a maximum of 30 points per 306 

sentence list, based on each keyword correctly repeated. The total score for each sentence list was 307 
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subtracted from 25.5 to calculate a participant9s SNR loss. The SNR loss represents the SNR at 308 

which 50% of keywords can be accurately repeated. Each participant9s average QuickSIN score was 309 

then calculated by averaging their SNR loss across all four sentence lists, with higher scores 310 

indicating poorer performance. 311 

Participants completed two practice QuickSIN sentences to familiarize themselves with the task 312 

(one practice sentence at 25 dB, the other at 5 dB) and adjusted their volume prior to completing the 313 

24 main trials. Participants were instructed not to adjust their volume after the practice sentence 314 

trials. The test was scored using automatic routines, then manually checked. Speech-in-noise 315 

responses were scored automatically in R (R Core Team, 2023) to detect if each keyword was 316 

present in a participant9s response, regardless of letter case. Each participants9 response received a 317 

score of <0= if the keyword was not present in their response and a score of <1= if the keyword was 318 

present. After automatic scoring, speech-in-noise data were then manually checked by one of the 319 

authors to validate the automatic scoring and to rescore any unambiguous typos or homophone 320 

substitutions (e.g., typing <wait= instead of <weight= or <steal= instead of <steel=) as correct. 321 

Homophones were marked as correct even when they produced a semantically or syntactically 322 

anomalous sentence, given that our primary interest was in the acoustic access to the signal. We note 323 

also that when the QuickSIN is administered under standard clinical conditions using a verbal 324 

response that the rater would be unaware of homophonic substitutions as they would by definition 325 

sound the same to the rater. After scoring keywords, the average speech-in-noise score was 326 

calculated as described above.  327 

C. Analysis approach 328 

All analyses were carried out using R (R core team).  329 
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1. Summary individual differences measures for each phonetic task.  330 

To characterize individual differences in the perception of stop and fricative continua, we 331 

computed several summary measures for each participant and continuum. For the 2AFC task, we 332 

used a two-parameter logistic regression to estimate the slope of the categorization curve at the 333 

inflection point for each continuum and participant. Following prior work, we estimated two 334 

measures for the VAS task, the slope and response consistency for each participant and continuum (see 335 

Fuhrmeister et al., 2023). The slope was estimated by fitting a four-parameter logistic regression to 336 

estimate the minimum, maximum, inflection point (boundary), and slope of the response function 337 

for each participant and continuum. Response consistency is estimated by taking the mean of the 338 

squared residuals for each response for each subject, and can be thought of as a measure of the fit of 339 

the raw data to the estimated response function. This value is multiplied by -1 so that the lowest 340 

values reflect low consistency and higher values reflect higher consistency. For discrimination data, 341 

for each participant and continuum, we calculated a mean sensitivity score by averaging all d9 values 342 

for both one-step and two-step trials, intended to capture general sensitivity to contrasts across the 343 

entire continuum. We also wished to capture the asymmetry in discrimination of near-boundary 344 

pairs vs. within-category pairs that is a hallmark of categorical perception. Because the precise 345 

estimation of the location of the individual phonetic category boundary (i.e., by using the 346 

psychometric function for the VAS or 2AFC task) can be unreliable if the participant has an atypical 347 

or noisy response function, we opted to calculate this measure by subtracting the d9 value for the 348 

worst-discriminated one-step pair from the best-discriminated one-step pair, wherever that pair fell 349 

along the continuum. We refer to this measure as the categoricity measure. Notably, for the vast 350 

majority of participants, the best-discriminated pair was in the boundary region (involving a token 351 

that falls close to the boundary for that contrast), and the worst-discriminated pair tended to be 352 

distant from the boundary.  Each participant therefore had five distinct phonetic scores for each of 353 
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the two continua (2AFC slope, VAS slope, VAS response consistency, AX sensitivity, AX 354 

categoricity). These data were joined with measures from the demographics and questionnaire data, 355 

namely age in years, caregiver education in years, annual noise exposure (ANE), and the speech-in-356 

noise score (expressed as SNR Loss). 357 

2. Outlier removal and imputation.  358 

Outliers were defined as any score that fell more than 2.5 SD from the group mean. This 359 

resulted in removal of 41 values from the dataset, or 1.7% of the total data. Missing values were 360 

replaced by imputation using the mice package (Buuren & Groothuis-Oudshoorn, 2011) and the 361 

predictive mean mapping (PMM) method to multiply-estimate missing values. 362 

III. RESULTS 363 

A. Relationships between measures of phonetic category sensitivity.  364 

To characterize relationships between phonetic measures, Pearson correlations between all ten 365 

measures (five different measures, two continua) were calculated (Figure 3). Every measure showed 366 

a significant relationship with at least one other measure; notably all measures for the ba-da 367 

continuum were correlated at a level of at least p<0.05 (uncorrected for multiple comparisons, 368 

correlations between measures taken on the same phonetic contrasts are highlighted within the 369 

dashed boxes), but correlations within the sign-shine measures and between phonetic contrasts were 370 

more mixed. Discrimination metrics for ba-da correlated not only with both VAS measures but also 371 

2AFC slope, whereas for sign-shine, discrimination categoricity and mean sensitivity were related to 372 

2AFC slope and mean sensitivity was related to VAS consistency, but no relationships with VAS 373 
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slope were detected.374 

 375 

FIG 3. Correlations between all phonetic decision measures. Upper triangle displays 376 

Pearson correlations, lower triangle displays significance codes for p-values, with p<0.05=*, 377 

p<0.01=**, p<0.001=***, p<0.0001=****, uncorrected for multiple comparisons. 378 

 379 

To address the question of the relationships between these measures in a more principled way, 380 

we performed a confirmatory factor analysis, comparing two models using the lavaan package in R 381 

(Rosseel, 2012). In the One-Factor model, all behavioral measures loaded on one latent variable 382 

which we term <phonetic skill.= This was compared to the Contrast-Specific model where two 383 

separate latent variables were constructed (<ba-da= and <sign-shine=), such that behavioral measures 384 
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for each phonetic contrast load on separate latent variables (see Figure 4). Models that maximize the 385 

comparative fit index (CFI) and minimize Akaike Information Criterion (AIC) and Bayesian 386 

Information Criterion (BIC) are judged to be better-fitting. Model fit estimates suggested that the 387 

Contrast-Specific model was a better fit to the data (One-Factor Model: CFI=0.779, AIC=2724.5, 388 

BIC=2779.6; Contrast-Specific Model: CFI=0.888, AIC=2709.6,  BIC=2767.4).  This was 389 

confirmed by performing a chi-squared test comparing the two models; here the two-factor model 390 

was a significantly better fit to the data (Ç2= 16.95, p<0.001). Significant loadings for the Two-391 

Factor model are displayed in Figure 4.  392 

 393 

 394 

FIG 4. Results of a confirmatory factor analysis, constructed with two latent variables, one 395 

for sign-shine decisions (ssh) and the other for ba-da decisions (bada). Phonetic decision 396 

measures load on phonetic contrast-specific latent variables. Loadings displayed for all 397 

paths, (*)s indicate significance values.  398 

 399 

B. Differences in sensitivity to phonetic category structure as a function of aging 400 

Changes in sensitivity to phonetic category structure as a function of aging were evaluated by 401 

entering all phonetic measures into one model to predict age. Using the lme4 package in R (Bates et 402 

al., 2014), we constructed a linear model in which all ten phonetic measures were entered to predict 403 
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age (in years). Given the mild collinearity between measures (see Fig. 3), we used the step function in 404 

the lmerTest package (Kuznetsova et al., 2017) to iteratively remove predictors from the model that 405 

do not significantly contribute to model fit. The resultant model (Table II) contained three surviving 406 

predictors: 2AFC slope for the ba-da continuum, VAS consistency for the ba-da continuum, and 407 

VAS consistency for the sign-shine continuum. Of these, only VAS consistency for the sign-shine 408 

continuum was significant, with lower consistency associated with advancing age. In general, 409 

phonetic factors accounted for a small proportion of the variance in age (adjusted R2=0.058, 410 

F(3,112=3.39, p=0.021). Results of the full model are displayed in the Supplementary Materials. 411 

TABLE II. Best-fit linear model predicting age from all ten phonetic decision measures. 412 

Predictor ³ 95% CI �	 df �	

Intercept 37.18 [29.17, 45.18] 9.20 112 < .001 

ba-da 2AFC slope 0.51 [-0.01, 1.03] 1.94 112 0.055 

sign-shine VAS consistency -4.43 [-8.65, -0.21] -2.08 112 0.040* 

ba-da VAS consistency 3.67 [-0.99, 8.32] 1.56 112 0.122 

 413 

C. Predictors of speech-in-noise performance 414 

Thus far, analyses show that there are mild associations between phonetic measures, especially 415 

between measures assessed on the same contrast, and that in general, these phonetic measures are 416 

not strongly related to age. Next we asked whether individual differences in phonetic measures 417 

predict speech-in-noise performance, together with other potentially explanatory factors (age, noise 418 

exposure, and childhood caregiver education, a proxy for socio-economic status that has been 419 

suggested to be predictive of language ability, e.g., Calvo & Bialystok, 2014). We approached this 420 

question in two ways, first by entering all measures into the same model, and second by using a PCA 421 

approach to summarize phonetic scores for use in the regression. 422 



 23 

First, we built a model to predict scores on the speech-in-noise test based on all ten of the 423 

phonetic measures, as well as age, annual noise exposure, and childhood caregiver education in 424 

years. As above, we used a backwards-stepping approach in the step function in lmerTest to drop low-425 

performing predictors from the model. The final model results are displayed in Table III (adjusted 426 

R2=0.25, F(7,108)=6.52, p<0.001). Notably, five phonetic measures survive in this model, (VAS 427 

consistency and AX categoricity measures, for both continua, as well as ba-da 2AFC slope), in 428 

addition to age and noise exposure. Model results before model selection are reported in the 429 

Supplementary Materials. 430 

TABLE III. Best-fit linear model predicting speech-in-noise score (expressed as SNR loss), 431 

from age, caregiver education, noise exposure, and all ten phonetic decision measures, best-432 

fit model after backwards-stepping procedure. 433 

Predictor ³ 95% CI �	 df �	

Intercept -7.54 [-13.18, -1.89] -2.65 108 0.009 

Age 0.04 [0.01, 0.06] 2.88 108 0.005* 

Annual Noise Exposure (ANE) 0.07 [0.01, 0.14] 2.27 108 0.025* 

ba-da VAS slope 0.27 [-0.01, 0.56] 1.88 108 0.062 

ba-da VAS consistency -0.78 [-1.51, -0.05] -2.12 108 0.037* 

sign-shine VAS consistency -0.53 [-1.14, 0.09] -1.70 108 0.092 

ba-da AX categoricity -0.69 [-1.10, -0.28] -3.33 108 0.001* 

sign-shine AX categoricity 0.64 [0.10, 1.18] 2.34 108 0.021* 

 434 

Second, acknowledging the degree of overlap between our phonetic measures, we performed a 435 

principal components analysis (PCA) using singular value decomposition on all ten phonetic 436 

measures using the prcomp function as part of the stats package, provided in base R (R Core Team, 437 

2023). Visualizing the top five dimensions (see Supplementary Materials for a table depicting all 438 

loadings, Figure 5 for a visualization of the loadings), we see that dimension 1, accounting for 28.1% 439 

of the variance, contains loadings from nearly all phonetic measures, reflecting a high degree of 440 
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overlap between most measures. First, we constructed a base model to predict speech-in-noise 441 

performance using age, caregiver education in years, and noise exposure only. Model comparison 442 

using the anova function in the base R package (R Core Team, 2023), and showed that adding the top 443 

five phonetic dimensions extracted from the PCA significantly improved model fit (F(5)=5.3939, 444 

p<0.0005). Specifically, PCA dimensions 1, 3, 4, and 5, which have fairly heterogeneous loadings 445 

from most phonetic measures, were all significant predictors of speech-in-noise, even after 446 

accounting for demographic factors. (adjusted R2=0.23, F(8,107)=5.21, p<0.001, Table IV).  447 

 448 

FIG 5. Loadings on each dimension in the PCA analysis of the ten phonetic decision 449 

measures. Overall height of the bar displays the percent variance explained by each 450 

dimension. Colors within the bar show the proportion of each dimension composed of each 451 

corresponding measure. 452 



 25 

 453 

TABLE IV. Linear model predicting speech-in-noise performance score (expressed as SNR 454 

loss) from age, caregiver education, noise exposure, and the top five dimensions identified 455 

by subjecting the ten phonetic decision measures to PCA. 456 

Predictor ³ 95% CI �	 df �	

Intercept -4.66 [-9.97, 0.64] -1.74 107 0.084 

Age (yrs) 0.03 [0.01, 0.06] 2.39 107 0.018* 

Annual Noise Exposure (ANE) 0.09 [0.02, 0.16] 2.68 107 0.008* 

Caregiver education (yrs) -0.10 [-0.25, 0.05] -1.35 107 0.180 

Dimension 1 -0.35 [-0.57, -0.12] -3.08 107 0.003* 

Dimension 2 -0.16 [-0.47, 0.16] -0.99 107 0.326 

Dimension 3 -0.43 [-0.78, -0.08] -2.44 107 0.016* 

Dimension 4 0.40 [0.03, 0.78] 2.16 107 0.033* 

Dimension 5 0.46 [0.06, 0.85] 2.30 107 0.023* 

 457 

IV. DISCUSSION 458 

Adult listeners are known to vary substantially in their patterns of phonetic perception, with 459 

variability in the degree of sensitivity to distinctions across acoustic-phonetic continua, as well as 460 

differences in the sharpness of the boundary between categories. Using three tasks and five 461 

measures of phonetic perception, we found that all extracted measures (with the exception of sign-462 

shine VAS slope) were at least weakly correlated with other phonetic measures, suggesting that at 463 

least some underlying aspects of phonetic decisions rely on shared mechanisms. Coherence between 464 

tasks performed on the same stimulus set was stronger than relationships across continua, 465 

supporting the assertion that, rather than fully gradient or fully categorical, participants may have 466 

idiosyncratic patterns of perception that are fairly specific to certain continua. Counter to 467 

predictions, in this study, performance on phonetic tasks did not differ substantially as a function of 468 

age. Perhaps most importantly, individual differences in phonetic perception individually and 469 

collectively predicted performance on a speech-in-noise task, even after accounting for age and noise 470 
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exposure history, lending support to the hypothesis that differences in sensitivity to phonetic detail 471 

aids in comprehending speech in challenging listening conditions. Below we discuss the 472 

interpretation and implications of these findings.   473 

Although perception of phonetic categories has often been described as <categorical,= implying 474 

an all-or-none access to the phonetic category, recent attention to this issue suggests that listeners 475 

show substantial sensitivity to acoustic variability within the category (Fuhrmeister et al., 2023; 476 

Kapnoula & McMurray, 2021), challenging the entire notion of <categorical perception= as a 477 

phenomenon (McMurray, 2022). Our data corroborate that listeners show substantial sensitivity to 478 

within-category variation. Note, for instance, the patterns of discrimination (Fig. 2), with most 479 

tokens showing above-chance discrimination, whether the pair straddles the category boundary or 480 

not (a pattern that is particularly evident for the fricative continuum). Using the VAS task, a task 481 

argued to afford listeners the opportunity to demonstrate within-category sensitivity, a wide range of 482 

psychometric functions was observed, with some listeners responding more or less categorically. Yet 483 

others rated tokens gradiently, showing remarkable correspondence to their actual position on the 484 

acoustic-phonetic continuum.  485 

These tasks have been well-described elsewhere, but our dataset contributes to two outstanding 486 

questions regarding the underlying skills that are tapped by these tasks. First, we tested the 487 

hypothesis that gradient responses in the VAS task reflect an ability to discriminate between items 488 

along the phonetic continuum, and thus should converge with AX discrimination tasks. Here, results 489 

diverged between the two continua. We found that mean sensitivity to discrimination across the 490 

continuum (8AX sensitivity9) did not relate to the steepness of the psychometric function in the VAS 491 

task (8VAS slope99) for the fricative, sign-shine continuum, but did correlate with VAS slope3and 492 

indeed with all measures3within the ba-da continuum. Correlations here were relatively weak and 493 

diffuse, making it difficult to firmly argue that these tasks tap distinct aspects of phonetic perception. 494 
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Second, we asked whether individual profiles of phonetic perception are best thought of as a general 495 

trait, or whether these profiles more closely reflect an individual9s response to a specific acoustic-496 

phonetic continuum. Here, evidence was also somewhat intermediate between these two options. 497 

While the strongest correlations were between measures tested on the same acoustic-phonetic 498 

contrast (especially within the ba-da continuum), between-continuum correlations were weaker (Fig 499 

3). In explicit comparisons of these two models using confirmatory factor analysis, a <contrast-500 

specific= model where the tasks loaded on phonetic contrast-specific latent factors was a better fit to 501 

the data than a model where all factors loaded on one latent factor.  502 

The direction of the relationships between phonetic decision measures are quite consistent 503 

across comparisons. Listeners who show greater sensitivity in the discrimination task are also more 504 

likely to show a strong discrimination peak at the category boundary, more likely to show steeper 505 

VAS and 2AFC response functions, and are also more likely to be consistent responders in the VAS 506 

task, particularly within-contrast. These patterns might reflect subtle differences in peripheral or 507 

central aspects of the auditory system, differences in how sound is mapped to phonetic category 508 

representations, or (less compellingly) differences in task strategy that happen to affect multiple 509 

tasks. 510 

During development, children show increasingly gradient patterns of perception as they 511 

transition into adolescence (McMurray et al., 2018). It is unclear whether or how this trajectory 512 

evolves in the adult lifespan. We hypothesized that well-documented age-related declines in the 513 

peripheral and central auditory system would result in changes in performance on phonetic decision 514 

tasks (Slade et al., 2020). Unexpectedly, age was related to only three phonetic measures, and only 515 

one of these, response consistency on the sign-shine continuum, was reliably related to age on its 516 

own, with greater age being associated with lower consistency. Of all the measures related to age, 517 

this one perhaps makes the most sense. First, fricative continua rely more heavily on high-frequency 518 
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spectral information, and accurate perception of high-frequency information tends to decline with 519 

aging (Slade et al., 2020). Second, neural consistency (i.e., the stability of the response upon repeated 520 

measurement) declines with age (Skoe et al., 2015). 521 

Nonetheless, age-related changes in performance on phonetic tasks were not striking in our 522 

sample. This might be due to a protective effect of language experience, or to the fact that our 523 

sample extends to age 67, but does not encompass older ages where sensorineural declines are more 524 

pronounced. Despite there being no striking relationships between age and our phonetic decision 525 

measures, age was nonetheless strongly related to speech-in-noise performance This replicates a 526 

well-established pattern of decreased perceptual acuity in noise with age (Slade et al., 2020; Holder et 527 

al., 2018), suggesting that our older adult sample was not entirely atypical in their perception of 528 

speech-in-noise4. In further support of the typicality of our dataset, for speech-perception-in-noise 529 

performance, we found expected relationship with noise exposure, with more noise exposure 530 

relating to worse performance (Casey et al., 2017; M. C. Liberman, 2017). 531 

If individual differences in performance on phonetic tasks had no consequences for functional 532 

outcomes for comprehension, these differences would be interesting, but entirely academic. Instead, 533 

as reviewed in the introduction, VAS measures have been linked to aspects of native and non-native 534 

processing. However, prior attempts to link the slope of the VAS function to speech-in-noise 535 

perception accuracy showed weak or absent relationships (Kapnoula et al., 2017, 2021). Here we 536 

used two approaches to investigate the relationship between phonetic decisions and speech-in-noise 537 

performance. Using a backwards-stepping linear model selection approach, we showed that five 538 

phonetic decision measures predicted speech-in-noise performance, even after accounting for age 539 

and noise exposure dose. The steepness of the psychometric phonetic decision functions (VAS and 540 

2AFC slopes) were not strong predictors of speech-in-noise (although 2AFC ba-da slope did survive 541 

model selection)3instead, the <categoricity= measure in the AX task (both continua) and response 542 
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consistency in the VAS task (ba-da) were stronger predictors of speech-in-noise performance. In 543 

prior work (Apfelbaum, 2022), 2AFC slope was argued to be more closely related to response 544 

consistency than to gradience as measured by VAS slope4in our data, 2AFC slope was weakly 545 

related to both VAS slope and VAS consistency, suggesting that these measures do not cleanly 546 

dissociate. As in prior work, we find that response consistency is a useful predictor of language tasks 547 

(c.f. Fuhrmeister, et al., 2023), lending support to the notion that stability in the perceptual response 548 

or acuity in detecting acoustic-phonetic detail may be crucial for efficient mapping of auditory input 549 

onto meaning. A new contribution was the predictive power of the AX <categoricity= measure. This 550 

measure, which assesses the advantage conferred in discrimination when tokens cross the category 551 

boundary, may reflect an exaggeration of perceptual distances near the category boundary, which 552 

may help listeners to tune to critical acoustic-phonetic details in the input. An alternative 553 

interpretation (and perhaps more likely given the one-second ISI in our design) is that this task taps 554 

a listener9s ability to hold auditory detail in memory, a task that will be easier when the tokens map 555 

to distinct phonetic categories. Future research, including investigating relationships between this 556 

task and other measures of auditory memory, will be needed to disambiguate these options.   557 

Since there was mild collinearity among our set of phonetic decision measures, we also 558 

employed a PCA approach to identify common sources of variance within phonetic measures, 559 

essentially creating several phonetic decision <summary scores= for each participant (see 560 

Supplementary Materials). Here, too, addition of these summary dimensions explained speech-in-561 

noise perception better than a model including only age, noise exposure dose, and childhood 562 

caregiver education, with four dimensions (1, 3, 4, and 5) showing significant contributions. 563 

Dimension 1, in particular, has loadings that are fairly evenly distributed across all measures except 564 

VAS slope for sign-shine (whereas the equally well-performing, Dimension 3 primarily loads on 565 
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VAS slope for sign-shine), leading to the conclusion that the cluster of performance identified above 566 

may constitute a general profile of phonetic skill.  567 

Indeed, we cannot rule out the possibility that performance on speech-in-noise and phonetic 568 

tasks emerge from a common underlying trait, perhaps related to differences in auditory acuity, or 569 

more elaborated/stable language ability or working memory3this question awaits further study. 570 

Other limitations of the current dataset include the lack of hearing screening and a lack of precise 571 

control of the auditory testing environment. Although we are confident that our sample does not 572 

include participants with known hearing deficits, age-related hearing deficits often go undiagnosed. 573 

However, we are dubious that hearing declines, writ large, account for our results3notably, 574 

widespread age-related declines in phonetic performance were not obvious. A lack of control of the 575 

listening environment is inevitable for online studies. Results from our labs replicating well-known 576 

phenomena in speech perception (Fuhrmeister et al., 2023; Luthra et al., 2021) using online testing 577 

give us confidence in the quality of online data for speech perception research. We note that the 578 

participants in the current study are primarily Prolific <super-users= who have participated in 579 

hundreds of online studies, and tend to be very technically adept. We also required listeners to wear 580 

headphones, instituted a strict check for the presence of headphones, and allowed listeners to adjust 581 

the volume to a comfortable listening level. Nonetheless, we cannot rule out the possibility that 582 

individual differences in access to the auditory signal (whether because of hearing status, 583 

technological limitations of headphones, or ambient noise in the test environment) might explain 584 

our results. Indeed, allowing the listener to set their listening level, might, if anything, decrease the 585 

effect of aging. Another study limitation is that the noise exposure measurement was based on the 586 

previous 12 months and may for a variety of reasons (including the pandemic conditions under 587 

which the data were collected) not be representative of lifetime noise exposure. Ongoing efforts in 588 

our labs are aimed at these questions. 589 
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V. CONCLUSION 590 

In summary, for both a stop continuum and fricative continuum, we found individual 591 

differences across a range of measurements of phonetic perception. Interestingly, individual 592 

differences in phonetic perception, specifically measures of consistency in the VAS task and a 593 

measure of near-boundary sensitivity in AX discrimination were found to predict speech-in-noise 594 

performance, suggesting that speech communication in noise is mediated by the structure of 595 

listeners9 phonetic category representations. The constellation of findings suggests, however, that  596 

individual differences in phonetic measures are not listener-level traits (that are fixed across stimuli); 597 

instead, for a given listener, perceptual patterns/strategies appear to be specific to the particular 598 

speech continuum. These continuum-specific listener strategies may then aggregate with 599 

demographic factors (age, noise exposure) to influence the perception of naturalistic speech 600 

composed of multiple speech categories (i.e., sentences in background noise). 601 

 602 
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See supplementary material at [URL will be inserted by AIP] for acoustic details of the stimuli and 604 

tables reporting the full regression models before model selection procedures.  605 
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 623 

ENDNOTES 624 

1Prolific tracks participant-level data surrounding study approval (i.e., how many studies 625 

participants have completed providing high quality data) and study rejection (i.e., participants who 626 

did not complete a study in good faith by providing nonsense responses, completing study tasks in 627 

such a short amount of time they would be considered a statistical outlier [e.g., 3 standard deviations 628 

below the mean], etc.). The average number of study rejections per participant was 1.17 Prolific 629 

studies. Overall, our sample had a high study approval rating: of the 53,158 total Prolific studies 630 

completed by our sample, 53,022 were approved by study organizers (99.7%), indicating a high 631 

degree of data quality. See Figure 1 for an overview of the tasks and procedures. 632 

2 Despite the fact that participants reported that they <only know English,= there were some 633 

contradictory responses to other questions. Namely, a fair number of participants reported early 634 

exposure to languages other than English, and some reported high proficiency in non-English 635 

languages. To explore whether these factors affected our analysis, we chose to categorize 636 

participants who reported exposure to a language other than English before the age of 10 and also 637 

reported high proficiency in a non-English language as <bilingual.= 42 participants met this criterion. 638 

For each phonetic measure (described in detail under <Phonetic Decision Tasks=), we performed a 639 

two-tailed t-test comparing <bilingual= to <monolingual= groups. Of the ten phonetic measures, two 640 

showed significant differences between groups. Participants who reported <bilingual= language 641 

experience showed a shallower slope for the VAS task in the ba-da continuum (t(93.54) =-3.04, 642 

p=0.003) and showed a smaller <categoricity= measure for the ba-da continuum (t(82.08)=-2.53, 643 

p=0.013). Further, we added <bilingualism= as a factor to the best-fit model predicting speech-in-644 

noise performance (see Section C. below). This factor did not improve model fit. 645 

3The choice of ISI in discrimination tasks is not a neutral one. Although classic studies 646 

establishing categorical perception (e.g. Liberman, et al., 1957) used a 1000 msec ISI in 647 

discrimination tasks, it has been argued that longer ISIs encourage access to phonetic category 648 

labels, whereas shorter ISIs may come closer to tapping low-level, acoustic processing of stimuli (e.g. 649 
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Van Hessen & Schouten, 1992). Since in the VAS and 2AFC tasks, participants were asked to 650 

explicitly map acoustic information to phonetic category concepts, we chose a longer ISI in order to 651 

encourage similar access to category labels. We acknowledge that this may have the effect of placing 652 

a heavier burden on working memory than had we used a shorter ISI.   653 

4To ensure the comparability of NEQ data collected online to data collected in person, the NEQ 654 

scores from online participants were compared to 312 NEQ collected in person, representing a 655 

similar age range and gender distribution. NEQ dB LAeq8750h did not differ as a function of study 656 

administration medium (Online mean = 71.8, SD = 6.5; Offline mean = 72.9, SD = 5.2; t(116.5) = 657 

1.13, p = .26). 658 
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