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Abstract: Underwater image enhancement is often perceived as a disadvantageous process
to object detection. We propose a novel analysis of the interactions between enhancement
and detection, elaborating on the potential of enhancement to improve detection. In
particular, we evaluate object detection performance for each individual image rather than
across the entire set to allow a direct performance comparison of each image before and
after enhancement. This approach enables the generation of unique queries to identify the
outperforming and underperforming enhanced images compared to the original images.
To accomplish this, we first produce enhanced image sets of the original images using
recent image enhancement models. Each enhanced set is then divided into two groups:
(1) images that outperform or match the performance of the original images and (2) images
that underperform. Subsequently, we create mixed original-enhanced sets by replacing
underperforming enhanced images with their corresponding original images. Next, we
conduct a detailed analysis by evaluating all generated groups for quality and detection
performance attributes. Finally, we perform an overlap analysis between the generated
enhanced sets to identify cases where the enhanced images of different enhancement
algorithms unanimously outperform, equally perform, or underperform the original images.
Our analysis reveals that, when evaluated individually, most enhanced images achieve
equal or superior performance compared to their original counterparts. The proposed
method uncovers variations in detection performance that are not apparent in a whole set
as opposed to a per-image evaluation because the latter reveals that only a small percentage
of enhanced images cause an overall negative impact on detection. We also find that over-
enhancement may lead to deteriorated object detection performance. Lastly, we note that
enhanced images reveal hidden objects that were not annotated due to the low visibility of
the original images.

Keywords: underwater image enhancement; underwater object detection; underwater
dataset
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1. Introduction

Underwater computer vision is a critical area of research with important applica-
tions in many domains ranging from marine biology and environmental monitoring to
underwater exploration and the maintenance of submerged infrastructure [1-5]. Detecting
objects in underwater environments is essential for tasks such as marine life tracking [6],
inspecting underwater pipelines [7], mapping of coral reefs [8], and many other recent
applications [9-11]. However, underwater environments present unique challenges for
computer vision algorithms, primarily due to the way water absorbs and scatters light.
These phenomena cause substantial image degradation, leading to issues such as reduced
contrast and color distortion [12].

To address these challenges, a variety of image enhancement techniques have been
developed over the years. Early methods focused on improving image contrast and
brightness through techniques like histogram equalization and dark channel prior, whereas
more recent approaches [13-17] leverage the power of deep learning using convolutional
neural networks (CNNs) and generative adversarial networks (GANs) to restore and
enhance underwater images [18]. These advancements have been driven by the need to
improve the visibility of underwater scenes, with the assumption that clearer images would
naturally lead to better performance in high-level tasks, such as object detection. However,
contrary to this assumption, numerous studies have found that image enhancement often
translates into similar or degraded detection performance [19-21].

For example, Wang et al. [21] found that in the underwater domain, image enhance-
ment suppresses object detection performance. They hypothesized that this is attributed to
increased interference in the image background in the form of noise, edge blur, texture cor-
ruption, or color introduction. A specialized evaluation toolbox for object detection [22] was
used to be able to obtain the false positive rate and other important parameters, concluding
that enhancement leads to a higher false positive rate mainly due to the objects” edge defor-
mation after enhancement. Similarly, [20] delved deeper into the detection—enhancement
relationship and conducted their experiments using multiple enhancers and detectors on
the large Real-world Underwater Object Detection (RUOD) dataset [20], which is used in
our work as well. The study presented in [20] concluded that cascaded enhancement and
detection lead to slightly deteriorated detection performance regardless of the enhancer or
detector type. This is also extended to Single-Image Super-Resolution (SISR) enhancement
algorithms, where Awad et al. [23] investigated the effect of different SISR algorithms on
the detection performance and concluded that restored high-resolution images cannot
match or exceed the detection performance of the original images.

Based on a synthetic approach, the interactions between image enhancement and
other image tasks have also been studied by synthetically degrading images and then
restoring them. For instance, Pei et al. [19] used a standard set of image effects, including
a simulated ‘'underwater’ effect; they found that restoring the degrading images did not
restore the classification performance on those images. This conclusion could be extended
to object detection, although this is not explicitly stated in the work presented in [19].
Arriving at a similar conclusion, Chen et al. [24] split the Underwater Robotic Picking
Contest (URPC2018) dataset [25] into three domains containing different environments and
analyzed the effects of enhancement on detection on those environments. Although the
researchers in [24] reached the same conclusion about the adversarial effect of enhance-
ment on classification, they conducted further analyses that involved training and testing
with different environments and concluded that enhancement could lead to more reliable
performance rather than higher one. However, this study warrants validation by utilizing
different types of enhancement algorithms.
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Contradicting the already small body of research in this field, Alawode et al. [26] found
that underwater image enhancement improved object tracking performance. They claim a
5% improvement in performance but do not include an analysis of statistical significance
to support this claim. Zhang et al. [27] also found that object detection performance on
an enhanced underwater image dataset improved slightly over an unenhanced one. They
noted that the image quality metrics do not change in a statistically significant way and
were unable to attribute the slight increase in detection performance to any specific factor.

An emerging and promising research direction in this field is the simultaneous consid-
eration of both enhancement and detection through a combined architecture. For instance,
Fu et al. [20] have attempted to combine the tasks of enhancement and detection by using a
shared loss function that is fed backward from the detector to the enhancer, encouraging the
latter to produce enhanced images that are favored by the detector rather than the human
eye. In the same direction, Wang et al. [28] developed a reinforcement learning approach to
tune an image enhancement pipeline to minimize object detection loss. This is carried out
by configuring enhanced images as states, enhancement types as actions, and the detector’s
loss as the reward. Such joint learning frameworks in which the enhancer and the detector
are being trained simultaneously have shown promising results. The findings from the
work presented in this paper may will help researchers with the design consideration of
such a joint detection-enhancement architecture.

As presented, the connection between image enhancement and object detection has
been studied by many researchers in the underwater domain. However, despite the grow-
ing body of work, more detailed, generalized, and reliable analyses of the enhancement-
detection relationship are still needed. To the best of our knowledge, previous enhancement-—
detection studies evaluate their results on a per-dataset basis rather than a per-image basis,
which helps only in drawing general conclusions. This underscores the need for a better
understanding of the interaction between image enhancement and object detection.

This study aims to address these gaps by conducting a comprehensive analysis of
the factors that influence the effectiveness of image enhancement in underwater object
detection. Unlike previous works, our study evaluates individual images before and
after enhancement. This helps in identifying the conditions under which enhancement
either supports or hinders detection performance on a granular level. In addition, this
can guide future research in developing enhancement-detection strategies specifically
tailored for improved underwater object detection. This work can help facilitate the way
for the next generation of enhancement models that not only improve visual quality but
also enhance the operational effectiveness of detection systems in challenging underwater
environments [29].

This study makes key contributions to the field of underwater image enhancement and
object detection through a unique approach and observations. Specifically, we introduce
a novel approach to analyze the impact of underwater image enhancement on object
detection by categorizing images based on their detection performance before and after
enhancement. This is conducted by calculating the mean Average Precision (mAP) for
each individual image, allowing us to compare the performance of each image before and
after enhancement. We empower this approach with very detailed analyses highlighting
a negative relationship between over-enhancement and detection and introducing mixed
sets of original and enhanced images that outperform the original set.

The remainder of this paper is organized as follows: Section 2 details our experimental
setup, including the models used for image enhancement and object detection, the datasets
used, the metrics applied, and the evaluation procedures. In Section 3, we present and
discuss the results of our experiments, analyzing the impact of enhancement on detection



Remote Sens. 2025, 17, 185

40f17

performance by providing a quantitative and qualitative evaluation. Section 4 concludes the
paper by summarizing our findings and discussing potential directions for future research.

2. Materials and Methods

In this section, we outline our experimental setup, listing the models used for image
enhancement and object detection, the dataset used, and the metrics applied. In addition,
an outline of our evaluation procedures is presented later in this section.

2.1. Selected Models, Metrics, and Datasets

To comprehensively cover underwater image enhancement, we selected nine state-
of-the-art models that encompass physical, non-physical, and learning-based approaches.
Non-physical methods include ACDC [30], TEBCF [31], and BayesRet [32]. In particular,
the ACDC model compensates for inferior color channels (red and blue in shallow waters
or red and green in deep waters) using attenuation matrices based on superior color chan-
nels. Then, it applies dual-histogram iterative thresholds to enhance global contrast and
Rayleigh-distributed histograms for local contrast. The outputs are fused via multiscale
fusion with weight maps balancing brightness and saliency in CIELAB and HSV spaces.
Finally, a multiscale unsharp masking (MSUM) technique sharpens details and textures.
The TEBCF model uses two input channels: one using RGB for dehazing and sharpness
and the other leveraging CIELAB space for color correction and brightness adjustment.
These are fused adaptively through multi-scale image fusion to recover contrast, satura-
tion, and sharpness. Lastly, the BayesRet model uses Bayesian optimization to enhance
underwater images by separating illumination and reflectance. It incorporates first- and
second-order gradient priors to maintain natural colors and fine details. Physical methods
are represented by the PCDE [33] and ICSP [34] models. Specifically, the PCDE model uses
piecewise color correction to address color casts and applies dual priors for spatial and
texture-based enhancement, improving both contrast and detail preservation in images.
The ICSP model is used to correct non-uniform illumination. It integrates statistical priors
on illumination channels with a variational framework and uses efficient algorithms for
optimizing illumination balance, resulting in consistent and detailed image restoration.
Finally, learning-based methods utilizing CNNs and GANSs include AutoEnh [15], Semi-
UIR [16], USUIR [17], and TUDA [35]. On the one hand, the AutoEnhancer model uses a
Neural Architecture Search (NAS)-optimized U-Net with selectable transformer modules
to enhance underwater images by learning optimal feature representation across RGB
and CIELAB color spaces. On the other hand, the semi-UIR model uses a mean-teacher
framework with a reliable bank for pseudo-labeling and contrastive regularization to uti-
lize unlabeled data effectively. It avoids confirmation bias and ensures consistent image
restoration results. From another perspective, the USUIR model leverages the similarity
between original and degraded versions of underwater images. First, raw underwater
images are used to generate three components, namely, background light, transmission
map, and scene radiance. Then, by simulating re-degraded images and minimizing restora-
tion errors, it performs unsupervised enhancement, balancing real-time processing and
restoration quality. Finally, the TUDA model is designed for domain adaptation, reducing
the gaps between synthetic and real underwater images. It incorporates inter-domain and
intra-domain adaptation techniques and ranks image quality for adaptive enhancement.
This approach balances diverse underwater conditions while maintaining robust quality.
More details about the selected models can be found in [36]. All models were used in their
original form, utilizing the source codes and trained models provided by their respective
authors without any modifications or additional training. In addition, the models were
only used in inference mode using the pre-trained models provided by their respective
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authors. A GitHub link for the source code and pre-trained model of each method can be
found in the corresponding references.

For object detection, using multiple object detectors will be infeasible and will cause
very lengthy experiments and analyses because of the nine image enhancement models uti-
lized. Therefore, we focus our analysis on a single object detection model and ensure select-
ing a superior, recent, and widely used model. Regarding this, the YOLO family has been ex-
tensively utilized in underwater scenarios, demonstrating competitive performance [37-39].
We opted to use YOLO-NAS [40] as a superior variant in the YOLO family, which has been
recently used in [23,41-43], to train a total of 10 object detection models in which the models
are trained and tested on each image set separately. We call the model that was trained
on the original non-enhanced images as the original detector and the models that were
trained on the enhanced images as domain detectors. We unified the input image resolution to
800 x 600 and set the batch size to 16, the optimizer to AdamW, the weight decay to 0.00001, the
model’s architecture to large, and the pre-trained weights to COCO. This is carried out using the
SuperGradients [40] library (version 3.5) and a Linux server (Ubuntu 18.04 LTS) with a Tesla
V100 GPU from Nvidia, Santa Clara, CA, USA. For testing and inference, we use a non-
maximum suppression threshold of 0.7, a confidence threshold of 0.5, and an Intersection
Over Union (IoU) threshold of 0.5. All models trained in this work can be found at https:
/ /github.com/Ali-Awad /Underwater-Image-Enhancement-and-Object-Detection.git, ac-
cessed on 24 December 2024. We implemented our experiments on the publicly available
and recent RUOD dataset [20], comprising 14,000 high-resolution underwater images,
9800 of which are used for training and 4200 of which are used for testing with a total
number of annotated instances of approximately 75,000 of 10 aquatic objects, including
holothurian, echinus, scallops, starfish, fish, corals, divers, cuttlefish, turtles, and jelly-
fish. The use of the RUOD dataset in this study is aimed at facilitating the drawing of
reliable and generalized conclusions because it is one of the largest recently published
comprehensive underwater datasets composed of many smaller underwater datasets and
showcasing different environments, sea objects, and color casts. We use the training—testing
split provided by the authors to train and test the YOLO detector, while we use the entire
dataset for inference using the pre-trained enhancement models.

Finally, we used non-reference evaluation metrics to assess enhancement performance
and standard metrics for detection, as detailed below:

*  The Underwater Image Quality Metric (UIQM) [44], which comprises color, contrast,
and sharpness indices and is given by the following equation:

UIQM = {3 x UICM + {p x UISM + {3 x UIConM, (1)

where (1, {7, and (3 are the weights of the Underwater Image Colorfulness Metric
(UICM), Underwater Image Contrast Metric (UIConM), and Underwater Image Sharp-
ness Metric (UISM), respectively. The UICM is calculated as a linear combination of
the means and variances of two opponent color components in the HSV color space,
namely, RG and YB. The significance of colors in object detection is debatable, with
some studies [45,46] indicating a small to vital role for colors in the detection process.
Secondly, the UISM is generated by applying a Sobel edge detector and Enhancement
Measure Estimation (EME). Finally, the UlconM is directly generated by applying the
log AMEE measure [47]. Higher UIQM, UICM, UIConM, and UISM scores indicate
better image quality.
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CCF [48], which represents a linear regression model of colorfulness, contrast, and fog
density indices and is expressed as follows:

CCF = wy x Color + wy x Contrast + w3 x Fogdensity (2)

where w1, wy, and w3 are the weights of the colorfulness, contrast, and fog density
features, respectively. The colorfulness index is calculated in a similar fashion to
the UICM but through the CIELAB color space. Secondly, the contrast is calculated
by dividing the image into blocks, applying a Sobel edge filter, and summing the
edge values of all blocks after subtracting the total intensity of the image from each
individual pixel. Finally, the fog density is based on the difference in statistical features
of foggy and natural images. These distinct features are fitted into two multivariate
Gaussian models, and the Mahalanobis distance between the two models is then
calculated. A higher CCF score indicates better image quality.
Precision (Pr), which indicates the ratio of the number of correct positive predictions
to the total number of positive predictions made by the model. The Pr is given by the
equation below:
. TP

Precision (Pr) = TP L FP 3)
where TP is the true positive, i.e., a prediction matching the ground truth; FP is the
false positive, i.e., a background is considered as an object; and FN is the false negative,
i.e., an object is considered as a background.
Recall (Rc), which indicates the ratio of the number of correct positive predictions to
the total number of actual instances. The Rc is given by the equation below:

TP

Recﬂll (RC) == m

(4)
Average Precision (AP), which is the area under the precision-recall curve. There are
multiple ways to calculate the mAP, out of which, the COCO evaluator [49] is adopted
in this work. The mAP is produced here by ordering the predictions from all images
by confidence scores and calculating the accumulative Pr and Rc at each threshold.
This is achieved by dividing the recall axes into 101 equal segments from [0, 101], as
defined in the COCO evaluator [49] and combining the calculated areas under each
segment, expressed as

Average Precision (AP) = 1% Y Pr(Rc;) (5)

RCI'

Practically, the mean Average Precision (mAP) is used, which is the AP average across
all classes based on the set Intersection Over Union (IoU) threshold, where the loU
represents the ratio of the overlap area (intersection) between the predicted bounding
box and the ground truth bounding box to the area of their combined region (union).
The calculation of the mAP in the superGradients library used in this paper is based
on the COCO evaluator [40].

All of the metrics used in this study were applied without any modifications, using

the original weights and parameter values as specified in the original papers. GitHub links
to the source codes of those metrics can be found in their corresponding references.
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2.2. Evaluation Procedures

In this section, we define our evaluation schemes, concepts, and experiments. Before
delving further into this section, we provide a few definitions:

*  Image Sets: The 4200 testing images of the RUOD dataset are enhanced separately
using the nine selected image enhancement models, producing nine enhanced image
sets in addition to the original set.

*  Per-Image mAP: The mAP for each image is calculated separately using only the
inferred bounding boxes of that particular image. This way, we can assess the detec-
tion performance for each enhanced image and compare it with the corresponding
original image.

e Image Groups: A group is a queried subset of an image set based on a condition. We
write the query in a superscript format. For instance, ACDCZ9"8 refers to the subset
of the enhanced ACDC set that achieved a higher mAP than its corresponding original
subset. All image groups generated in this work can be found at https://github.com/
Ali-Awad /Underwater-Image-Enhancement-and-Object-Detection.git, accessed on
24 December 2024.

*  Mixed Image Sets: These sets are generated by combining images from the original set
and one enhanced set. Specifically, the mAP of each enhanced image is compared with
the mAP of its corresponding original image; then, the highest mAP image is selected.
This generates a new, equally sized mixed set but with a higher or equal total mAP
than both initial sets.

*  Change in Metrics: To be able to compare each enhanced group with its corresponding
original group, we present the results based on the change in the metrics instead of
presenting absolute metrics. This is conducted as follows:

AMetric = MetriC(Enh) — Metric(org) (6)

where A refers to the change, Metric refers to any of the selected metrics for this study,
Enh refers to the enhanced image group, and Org refers to the original image group.

Based on the previously declared definitions, we generated the enhanced image sets
using the selected enhancement models and trained a separate YOLO-NAS model on each
image set, including the original set, to produce the domain and original detectors. After
training, the per-image mAP was calculated for each image in each testing set using its
respective domain detector. Then, each set was divided into two groups: (1) images with
a per-image mAP higher or equal to their corresponding original images and (2) images
with a per-image mAP lower than their corresponding original images. For each group, the
standard total mAP for the entire group was calculated in the standard way. Subsequently,
we generated the mixed sets by replacing the groups of lower mAPs of each enhanced set
with the corresponding original groups. The results were then evaluated quantitatively
and qualitatively.

Quantitative Evaluation: An evaluation of quality and detection performance for each
set and group is presented in the quantitative evaluation. For image sets, we presented the
results using absolute metrics values, and for groups, we presented the results using the
change in metrics. This helps us make better comparisons due to the fact that the grouping
is based on comparison with the original set by definition. Because our goal is to assess the
overall enhancement impact on detection (i.e., the change in the TP, FP, and FN), we used
mAPsq for grouping and evaluation because it is not very sensitive to minor changes in the
IoU of the predicted bounding boxes with the ground truth. Furthermore, we conducted
this evaluation based on three comparison levels, including the following:
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1.  Enhanced groups against corresponding original groups.
Enhancement sets produced by each model against each other.
3. Most importantly, per-set group comparison.

Qualitative Evaluation: To produce an effective qualitative evaluation, we first con-
ducted an overlap analysis between image sets and produced three unique groups of
images where all domain detectors achieved consistent detection performance, as follows:

e Enhanced images of unanimous superior detection performance (Enh > Org).
*  Enhanced images of unanimous equal detection performance (Enh = Org).
e  Enhanced images of unanimous inferior detection performance (Enh < Org).

Although we present images from the TECBF and ICSP models in the qualitative
evaluation, they are excluded from the overlap analysis because they produce severely
distorted images that might lead to inaccurate conclusions. This is especially true for the
ICSP model, for which we verified its code and parameters and found it to produce over-
exposed images even when other researchers implemented it [50]. All unanimous groups
generated in this work can be found at https://github.com/Ali-Awad /Underwater-Image-
Enhancement-and-Object-Detection.git, accessed on 24 December 2024.

3. Results and Discussion

In this section, we present an extensive quantitative and qualitative evaluation of the
produced enhanced sets and groups. In addition, we discuss the results of the resulting
group overlap study.

3.1. Quantitative Evaluation

This section includes image quality evaluation using the image quality metrics dis-
cussed in Section 2.1 and object detection evaluation using the detection metrics also
described in the same section. In addition, this section includes the results of the mixed set
presented in Section 2.2.

Image Quality Evaluation: After producing the enhanced image sets and dividing
them into groups, as discussed in Section 2, we present the results obtained by the selected
quality metrics, as shown in Table 1. The individual components of the UIQM, namely, the
UICM, UIConM, and UISM representing the color, contrast, and sharpness, respectively,
further show how the selected models performed on a finer level. Furthermore, the change
in metric values is generally positive, indicating that all enhancement models produced
higher-quality images compared to the original images, except for the PCDE and ICSP
models. The ACDC, TEBCF, and BayesRet models achieved the highest positive change in
the UIQM, while learning-based methods, including the AutoEnh, Semi-UIR, USUIR, and
TUDA, achieved, on average, a substantially lower UIQM. More contrasting performances
are shown with the CCF metric, where the TEBCF had the highest value by a large margin
compared to all other models, while the PCDE and TUDA models produced negative
values, indicating a worse quality than the original images. Other models observed a
similar positive trend as in the UIQM. The UICM, UIConM, and UISM models show
how some models are better at enhancing colors, such as BayesRet and PCDE, while
others are better at enhancing contrast, such as ACDC, and, finally, how others are better
at enhancing sharpness, such as the TEBCF model. On the other hand, comparing the
two groups comprising each set demonstrates a remarkable observation; that is, the first
group of each set represented as Enh=©"8 always achieved lower quality compared to the
second group represented as Enh<978. We conclude that the utilized enhancement metrics are
designed to produce visually pleasing images for human perception, not for machine perception. As
a result, ‘high quality” by these metrics does not necessarily translate to improved object detection
performance. This highlights the need to develop new quality metrics that account for both human


https://github.com/Ali-Awad/Underwater-Image-Enhancement-and-Object-Detection.git
https://github.com/Ali-Awad/Underwater-Image-Enhancement-and-Object-Detection.git

Remote Sens. 2025, 17, 185 90f17

and machine vision to bridge this gap. In addition, the high-quality values of the underperforming
group Enh<97"8 could be associated with over-enhancement, thus leading to degraded detection
performance. Although this comparison gives us an indication of the type of enhancement-
detection relationship, it is important to note the size difference between the two groups.
In particular, the size of the Enh=%"$ group at nearly 80% is mostly four times larger than
the Enh <978 group regardless of the utilized enhancement model.

Table 1. Quality evaluation of the generated image groups using the mean of the UIQM [44],
UCIQE [51], CCF [48], UICM [44], UIConM [44], and UISM [44] on the RUOD [20] dataset. A refers to
the change in the metric after enhancement, with higher change values indicating better performance
across all metrics. The query by which each group is generated is shown as a superscript.

Groups Size Change in Quality Metrics
AUIQM ACCF AUICM AUIConM AUISM
ACDC=0r8 78% 241 4.09 41.37 0.20 1.77
ACDC<0r8 22% 2.89 6.42 51.47 0.24 2.01
TEBCF=0r8 80% 2.25 10.06 33.92 0.19 211
TEBCF<0r8 20% 2.54 11.03 39.03 0.21 2.32
BayesRet=©'8 81% 2.42 517 48.73 0.16 1.55
BayesRet<©r8 20% 2.97 7.53 56.92 0.22 1.95
PCDE=©r8 80% 1.11 —6.28 47.34 —0.06 —0.03
PCDE<©r8 20% 1.52 —4.92 58.63 —0.05 0.17
ICSP=0r8 68% —0.16 5.13 —4.70 —0.05 0.46
ICSP<©r8 32% 0.07 4.28 0.56 —0.03 0.58
AutoEnh=0r8 84% 1.37 1.16 34.72 0.07 0.49
AutoEnh<0r8 16% 1.90 2.57 49.39 0.08 0.69
Semi-UIR=08 80% 1.60 6.09 32.67 0.11 0.97
Semi-UIR <8 20% 2.27 6.77 48.51 0.14 1.32
USUIR=©r8 82% 1.25 4.08 27.89 0.08 0.64
USUIR<©r8 18% 1.84 6.44 40.22 0.12 1.00
TUDA=©r8 79% 1.90 —0.65 40.51 0.13 0.95
TUDA<9r8 21% 2.68 2.06 54.27 0.20 1.46

Object Detection Evaluation: First, we evaluated the detection performance over
entire sets using the selected detection metrics, as shown in Table 2. This table provides a
general understanding of the effect of enhancement on the detection performance before
a further detailed group performance analysis, which will be presented later. It is clearly
observable that enhancement did not increase the total number of correctly detected objects
represented by the TP. The only special case is the AutoEnh with approximately 100
more correctly detected objects compared to the original. This could be attributed to the
Neural Architecture Search utilized by the AutoEnhancer, which allows it to optimize its
architecture for underwater conditions. Most other models had a similar close performance
to the original, with ICSP being the exception at 14,713 TPs compared to 16,602 TPs of
the original detector. ICSP heavily relies on sparsity prior to design, which may lead to
suboptimal performance in scenarios of mixed or uniform lighting, such as those of the
RUOD dataset. Moving on to FP, we find that most enhancement models notably increased
FPs, reaching a number as high as 9252 by the TEBCF model compared to only 6309 FPs by
the original detector. The fusion process utilized by the TEBCF model combines features
from multiple scales, which can introduce artifacts if the weighting maps are not accurately
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estimated. This results in a halo effect in the resultant images, destroying the object’s edges
and leading to very high FP. Of note, the two models that previously achieved the worst in
terms of the quality metrics, namely, PCDE and ICSP, here achieved lower FPs than the
original image. This might be attributed to the fact that these two models degrade the
quality of the images, introducing noise, and possibly destroying the edges of potential
objects. The FN results are very similar across all models, except for AutoEnh and TEBCE,
which are the only two models that were able to better avoid detecting false objects by a
small margin of 128 and 72, respectively, compared to the original. Looking at the Pr column,
the highest precision is achieved by PCDE, with a value of 0.73, indicating that this model
has the best performance in minimizing false positives relative to the number of correct
detections. This could be attributed to the use of dual priors in the PCDE architecture,
namely, spatial priors for the base layer and texture priors for the detail layer, thus allowing
for the effective decomposition of images into layers and enabling precise adjustments for
contrast and detail enhancement. This layered processing ensures better preservation of
the fine textures necessary for detection while improving global contrast. The AutoEnh
model and Original have a precision of 0.72, which is the second-highest, indicating strong
but slightly lower performance in terms of precision compared to PCDE. The model with
the lowest precision is TEBCF at 0.64, indicating a higher rate of false positives compared to
other models. Analyzing the Rc column, the highest recall values are achieved by Original,
AutoEnh, and TEBCEF, each with a value of 0.73. This indicates that these models are the
best at capturing the majority of true positives, minimizing missed detections. The lowest
recall is recorded by ICSP at 0.65, indicating that it misses a relatively higher number of
true positives compared to other models. Finally, we notice that the Original detector
achieved the highest mAP at 0.85 along with two other domain detectors, namely, PCDE
and AutoEnh, while all other models had a slightly decreased performance, with ICSP
exhibiting the lowest mAP at 0.8. We conclude that different enhancement algorithms affect
the mAP in different ways, with most models achieving higher FPs than the original images. In
addition, enhancing all images of a set results in decreased detection performance ot, at best, similar
detection performance compared with the original set in terms of the mAP. Furthermore, we notice
that some enhancement models have the ability to achieve a higher TP or lower FP compared with
the original images while achieving the same mAP, indicating a positive impact of enhancement
on detection.

Table 2. Detection evaluation of the generated image sets using the mean of the TP, FP, FN, Pr, Rc,
and mAP on the RUOD [20] dataset. The highest scores are highlighted in bold.

Sets TP FP FN Pr Rc mAP
Original 16,602 6309 6248 0.72 0.73 0.85
ACDC 16,268 7600 6533 0.68 0.71 0.84
TEBCF 16,599 9252 6176 0.64 0.73 0.84
BayesRet 16,284 7291 6525 0.69 0.71 0.84
PCDE 16,404 5916 6440 0.73 0.72 0.85
ICSP 14,713 6256 8064 0.70 0.65 0.80
AutoEnh 16,705 6516 6120 0.72 0.73 0.85
Semi-UIR 16,292 6844 6530 0.70 0.71 0.84
USUIR 16,425 6616 6412 0.71 0.72 0.84
TUDA 16,262 7035 6574 0.70 0.71 0.84

Mixed Sets: Based on the observation that some enhanced images increase detec-
tion performance while others decrease it, we attempted to find the potential of image
enhancement to increase the detection performance by mixing enhanced images with origi-
nal images to comprise new sets. In particular, for each enhanced set, we used the same
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Enh=9"¢ group from Table 1 and replaced the Enh<C"€ group with a new group defined as
OT’g>Enh
sponding original images. The results of the newly generated mixed sets containing both

, meaning that we replaced underperforming enhanced images with their corre-

enhanced and original images are shown in Table 3. We first noticed that around 80% of
each mixed set is composed of enhanced images, while original images comprise only 20%
of images, indicating the positive role of enhancement in the majority of cases. The mix
ratio slightly varies from one set to another based on how the images of each enhancement
model performed. The AutoEnh images were able to achieve a contribution as high as
84%, while ICSP achieved a contribution as low as 68%, aligning with its low quality
images and detection performance. All new mixed sets had slightly increased TPs, slightly
reduced FPs, and substantially reduced FNs compared to the non-mixed sets in Table 2. In
addition, all new mixed sets had a slight increase in Pr and a relatively greater increase in
Rc. PCDE achieved the highest precision in both tables at 0.73, indicating its effectiveness
in decreasing FPs while maintaining good TPs. Most importantly, an mAP improvement
was achieved by most mixed sets. Different mixed sets excel in distinct areas of detection
performance. For example, AutoEnh achieved a higher number of True Positives (ITPs),
while PCDE and TEBCF are more effective in minimizing False Positives (FPs) and False
Negatives (FNs), respectively. We conclude that enhancement has the potential to improve
object detection quantitatively, especially since all enhancement models improved detection, which
reduces the possibility that these improvements stem from statistical errors. In addition, mixing
enhanced images with originals can increase the mAP in different ways, i.e., by increasing TP or
decreasing FP or FN, depending on the utilized enhancement algorithm. Finally, we believe that
some enhancement processes may have altered the characteristics of the objects, making them harder
to detect. This is evidenced by a reduction in false negatives (FNs) when the enhanced images were
replaced with their original counterparts.

Table 3. Detection evaluation of the generated mixed image sets using the mean of the TP, FP, FN, Pr,
Rc, and mAP on the RUOD [20] dataset. The mix ratio represents the size distribution of the groups
comprising each set. This ratio is based on the detection performance of each set of enhanced images.
The highest scores are highlighted in bold. The query by which each group is generated is shown as
a superscript.

Mixed Groups Mix Ratio Detection Metrics
Enh. Org TP FP FN Pr Rc mAP
Original (Org) - 100% 16,602 6309 6248 0.72 0.73 0.85
ACDC=0"8 4+ Org> ACDC 78% 22% 17,043 7219 5792 0.70 0.75 0.87
TEBCF=©"8 + Org> TEBCF 80% 20% 17,121 8463 5695 0.67 0.75 0.86
BayesRet=©™8 + Org> BayesRet  g19; 19% 16,999 7124 5847 0.70 0.74 0.86
PCDE=9"8 + QOrg> PCDE 80% 20% 16,993 6159 5865 0.73 0.74 0.87
ICSP=0"¢ + Org> ISP 68% 32% 16,584 6544 6248 0.72 0.73 0.86
AutoEnh=0"8 4+ Qrg> Autofinh 84% 16% 17,127 6522 5710 0.72 0.75 0.87
Semi-UIR=O"8 + Org> Semi-UIR — g(yo;, 20% 16,927 6820 5920 0.71 0.74 0.87
USUIR=O™8 + Org>USURR 82% 18% 17,005 6617 5849 0.72 0.74 0.87
TUDAZC18 4+ QOrg>TUDPA 79% 21% 17,000 6857 5850 0.71 0.74 0.87

3.2. Qualitative Evaluation

In this section, we visually inspect the inference results and quality of three unique
groups of images. In particular, we check for overlap between the generated enhanced
sets to group images of unanimous superior, equal, and inferior detection performance
compared to the original images, as previously described in Section 2.2. Unanimous here
means that an enhanced image exclusively belongs to one of the groups, regardless of the
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enhancement model. The qualitative analysis is illustrated in Figure 1, where two samples
are presented from each group. Furthermore, the quantitative results of the overlap analysis
are presented in Table 4, showing statistics about the three unanimous groups found in the
RUQOD dataset containing images of matching detection performance across all enhancers.
Through this analysis, we noticed that there are some images that have consistent detection
performance across all domain detectors compared to the original detector. Although the
extreme outperforming and underperforming groups are small, at an average of 2.7%, the
fact that there are two groups where enhanced images always result in higher or lower mAP
compared to non-enhanced images regardless of the enhancement algorithm is very notable.
Moreover, having enhanced and original images performing equally for almost half of the
testing dataset tells us that enhancement, for a reasonable amount of cases, does not affect the
mAP regardless of the enhancement model being used. This is even more true if the conditions
for generating those groups are more flexible, e.g., generating those groups if only three or
more enhancement algorithms achieved unanimous performance. Visually analyzing and
understanding the detection performance of every image produced by each enhancement
algorithm in each unanimous group is an unfeasible task because every domain detector is
trained on the enhanced images produced by its corresponding enhancement algorithm.
Nonetheless, by thoroughly visually inspecting those groups and presenting representative
samples in Figure 1, we noticed that in most of the cases where there are too many objects in
an image, the detection performance of those images is highly likely to increase or decrease
after enhancement. We hardly noticed any difference between the three unanimous groups
when visually inspecting the images, as scenes, objects, and casts overlap. Furthermore,
we hardly noticed any difference in quality between the unanimous groups as the colors,
contrast, and sharpness of the images appear to be similar. We observed how the mAP is
affected in each group and noticed an increase in the IoU threshold and TP and a decrease
in the FN in the Enh > Org group, which was expected. However, this group still has a
high false positive rate. This means that enhancement still introduces false positives even when
improving the detection performance. One example of this is the falsely detected scallop object
by the ACDC version of Sample #2. Furthermore, some of these FPs are actually correctly
detected objects but were miss-annotated by human annotators due to the low visibility of
the original images. Sharing the same trend, the Enh < Org group also has a high number
of objects in each image. This could be explained by the type of background present in
an image. For example, most enhanced versions of Sample #2 of this group made fish
look like the shadow of a rock in a rocky background. We also noticed that vague objects
are more likely to blend with the background after enhancement, as shown in Sample
#1 of the Enh < Org group. Finally, we noticed a relatively smaller number of objects in
the Enh = Org group, with the enhancement almost achieving similar true positives all
the time. Another observation about the images of this group is that they mostly contain
clear, distinct, and non-occluded objects, resulting in consistent performance between
original and enhanced images. We conclude that, firstly, images with complex backgrounds
or a high number of objects are more likely to have diverging detection performance when using or
omitting enhancement. Secondly, image quality does not have a direct relationship with detection
performance because images of similar qualities belong to different unanimous groups. Lastly, we
noticed very low annotation accuracy where many real objects are missed in all groups due to
severely degraded original images, which hinders researchers from drawing reliable conclusions and
reveals a promising role for enhancement earlier in the enhancement—detection pipeline, i.e., during
the annotation process.
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Enh > Org | Enh = Org Enh < Org

Sample #1 Sample #2

Sample #1 Sample #2 | Sample #1 Sample #2
& LSRG

USUIR Semi-UIR AutoEnh ICSP PCDE BayesRet TEBCF ACDC Original

TUDA

Figure 1. Samples of visualized groups where enhanced images (Enh) achieved higher, equal,
and lower mAP compared to the original images (Org) regardless of the enhancement algorithm
being used.

Table 4. Statistics for three groups where enhanced images achieved higher, equal, or lower mAP
compared to the original images, using any domain detector. Percentages are calculated based on the
total 4200 images in the RUOD test set.

Unanimous Groups Total Images % of RUOD Test Set
Enh (by any model) > ©'8 109 2.60%
Enh (by any model) = ©'8 1880 44.76%
Enh (by any model) <©'8 118 2.81%

4. Conclusions

In this paper, we conducted a detailed analysis of the enhancement—detection relation-
ship using a per-image detection evaluation rather than a per-dataset detection evaluation.
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This type of evaluation allowed for several types of analysis presented in this work, includ-
ing categorizing images into groups based on their detection performance and evaluating
the quality of the resultant groups, generating mixed sets of enhanced and original im-
ages that outperform the original image set, and generating unique groups of images of
featured significance through specialized queries. Moreover, we checked for images that
have identical detection performance across different enhancement models to rule out
conclusions that are dependent on the enhancement algorithm and draw conclusions about
enhancement in general. Furthermore, two small groups of enhanced images were found
to consistently perform better or worse in terms of detection compared with the original
images, regardless of the enhancement model. Those groups could grow much larger if the
criteria for the number of enhancement algorithms utilized in this analysis are loosened.
Based on the conducted experiments, we present the following findings:

*  The image groups of lower detection performance achieved higher quality in terms of
the utilized quality metrics. This indicates that those metrics are developed for human
perception, not for machine perception. Higher values for those metrics could also
indicate over-enhancement, which negatively impacts detection.

¢  Different enhancement algorithms impact the overall detection performance in differ-
ent ways, e.g., lower TP or higher FP and FN.

*  Image enhancement has a neutral or positive detection effect on the majority of images
and a negative effect on a small percentage of images. This relatively small percentage
of underperforming enhanced images is what causes the overall detection performance
of enhanced sets to be lower than the original set.

*  Enhancement, for nearly half the time, does not affect the mAP regardless of the
enhancement model.

*  Enhancement reveals hidden objects that are missed by human annotators due to the
severely degraded original images.

Based on those conclusions, being able to predict such cases where enhancement will
increase the detection performance could play a vital role in the development of future
enhancement-detection algorithms. In addition, we think that enhancement may be used
as early as during the annotation process to produce more reliable datasets. Further studies
could confirm the positive impact of enhancement on detection when mixing enhanced and
original images, particularly in scenarios with more robust annotations, diverse datasets,
and different detectors.
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