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Abstract

In recent years, deep learning has significantly reshaped numerous fields and applications, fundamentally altering how we
tackle a variety of challenges. Areas such as natural language processing (NLP), computer vision, healthcare, network
security, wide-area surveillance, and precision agriculture have leveraged the merits of the deep learning era. Particularly,
deep learning has significantly improved the analysis of remote sensing images, with a continuous increase in the number
of researchers and contributions to the field. The high impact of deep learning development is complemented by rapid
advancements and the availability of data from a variety of sensors, including high-resolution RGB, thermal, LiDAR, and
multi-/hyperspectral cameras, as well as emerging sensing platforms such as satellites and aerial vehicles that can be
captured by multi-temporal, multi-sensor, and sensing devices with a wider view. This study aims to present an extensive
survey that encapsulates widely used deep learning strategies for tackling image classification challenges in remote
sensing. It encompasses an exploration of remote sensing imaging platforms, sensor varieties, practical applications, and
prospective developments in the field.
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1 Introduction

Remote sensing (RS) images are valuable resources of data
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surface.

Remote sensing image classification (RSIC), which task
is to automatically assign a semantic label for a given
remote sensing image, has been a fast-growing research
topic in recent years, and it has significant contributions to
monitoring and understanding key environmental pro-
cesses. Thanks to a large volume of remote sensing data
availability, sensor development, and ever-increasing
computing powers, rapid advancement in RSIC has been
witnessed by its real-world applications, such as natural
hazard detection [1, 2], precision agriculture [3, 4], land-
scape mapping [5], urban planning [6], and climate chan-
ges [7]. The enabler of this wide range of applications of
RSIC is also attributed to the ability of RS images to
capture multi-scale, multi-dimensional, and multi-temporal
information. Hence, one of the challenging but important
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tasks in RSIC is to effectively extract valuable information
from the various kinds of RS data to aid further image
analysis and interpretation.

Traditional approaches to exploiting features from RS
images heavily rely on feature extraction and/or feature
selection. The former process produces new features to
describe specific spatial and spectral attributes of RS data
using a transformation matrix or a set of filtering processes.
For instance, knowledge-based approaches depend on
spectral characteristics and supervised and unsupervised
methods such as canonical analysis and principal compo-
nent analysis. The latter identifies a subset of feature can-
didates from a feature pool via selection criteria. Although
feature extraction or selection provides useful information
to improve the accuracy of RSIC, most of those methods
are suboptimal for comprehensively representing original
data for given applications [8]. Particularly, their suitability
can be even degraded when comes to big data with multi-
Sensors, since RS images can vary greatly in terms of time,
geo-location, atmospheric conditions, and imaging plat-
form [9, 10]. Therefore, an effective and unified approach
is needed to automatically extract pertinent features from
diverse RS data.

Deep learning (DL) [11], as a subset of machine learn-
ing, has demonstrated unprecedented performance in fea-
ture representation and is capable of performing end-to-end
learning in various vision tasks, including image classifi-
cation [12], object detection [13], semantic segmentation
[14], and natural language processing [15]. Since the
astonishing accuracy was produced by a deep convolu-
tional neural network (CNN) in the large-scale visual
recognition challenge [12], CNN and its variants prevailed
in many fields [16], along with tremendous successes
including those most important yet unsolved issues of
modern science, such as AlphaFold [17] which can accu-
rately predict 3D models of protein structures.

Over the last few years, researchers have made an effort
to utilize the most advanced techniques in Al for RSIC,
from traditional methods in machine learning, all the way
through deep learning techniques such as the use of CNN
and its variants.

This study aims to fill the gap in the existing literature in
RSIC with the following key contributions:

e An extensive examination of cutting-edge deep learning
models through a systematic review, covering a brief
description of architectures and frameworks for RSIC.
Our review includes concise descriptions of the archi-
tectural nuances and frameworks that have shown
promise in this domain.

e A summary of remote sensing datasets, modalities, as
well as corresponding applications. This comprehensive
resource will serve as a reference for researchers and

@ Springer

practitioners navigating the rich landscape of remote
sensing data.

e Suggestions for promising research direction and
insights around RSIC. These recommendations aim to
catalyze innovation and drive the field forward.

This study serves as evidence of the growing impact of
deep learning within the domain of remote sensing image
analysis. It sheds light on how deep learning can be a
powerful tool for addressing persistent challenges in RSIC
and seeks to stimulate further research in this dynamic and
essential field.

1.1 Review statistics

Deep learning techniques have been actively implemented
for RS-related tasks (i.e., image classification) in the last
lustrum. Statistical analysis was conducted using the latest
Scopus data for a literature search on the most popular
keywords in RS publications: “deep learning” AND “re-
mote sensing” AND “image classification,” ranging the
year from 2017 to 2023 (mid-September). The detailed
research setting can be found in Table 1. The research
results are analyzed from two aspects: (1) the number of
conferences and journals published, as shown in Fig. 1, and
(2) the distribution of publications across subject areas, as
depicted in Fig. 2.

From Fig. 1, it can be clearly seen that the total number of
publications (i.e., conference papers + journal articles) is
consistently increased yearly in the past 5 years and a par-
ticularly significant difference is observed comparing 2021
with 2017, demonstrating fast growth of this research. While
journal articles also exhibit a yearly increase, the number of
conference papers published in 2021 is reduced compared to
the previous year. In addition, it is worth noting that the
number of published journal articles in 2021 greatly excee-
ded the number of conference papers, indicating remarkable
development of the aforementioned topic. In Fig. 2, the
subject of “Earth and planetary science” turns out to be the
most widely applied area of deep learning applications in
RSIC, while the computer science field is ranked second with
a minor margin in terms of publication count.

The remainder of this article is organized as follows. In
Sect. 2, we delve into an overview of existing surveys on
deep learning-based Remote Sensing Image Classification
(RSIC). Section 3 provides a comprehensive summary of
Deep Learning (DL) applications in remote sensing. The
various deep learning models pertinent to RSIC are
reviewed briefly in Sect. 4. Detailed descriptions of remote
sensing datasets and their associated applications are pre-
sented in Sect. 5. Section 6 addresses current challenges
and outlines potential future research directions. Finally,
Sect. 7 offers concluding remarks on this survey.
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Fig. 1 Related conference papers and journal articles published per year from 2017 to 2023 Source: Scopus database accessed on September 15,
2023. The search results obtained by searching on “deep learning” AND “remote sensing” AND “image classification.”
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2 Related work aspects of the field, including the methods used and the
content they focus on.
In the past several years, driven by DL, a great number of In chronological order, starting in Yao et al. [18] con-

RSIC methods sprung up, and consequently, many related  ducted a survey focused on providing data sources for RS
survey or review papers have been published, which are =~ and current deep learning-based classification methods.
summarized in Table 2. These surveys cover various Moving to Li et al. [19] conducted a comprehensive review
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Table 1 Literature research
settings in Scopus database

Search field

Search selections

Search Documents
Document journals
Keyword

Source Type

Year

Search within

“Deep Learning” AND “Remote Sensing” AND “Image Classification”
Article, Conference paper

Remote Sensing, Deep Learning, Image Classification

Journal, Conference Proceeding

2017-2023

Article title, Abstract, Keywords

Table 2 A summary of the number of surveys for deep learning-based remote sensing image classification (RSIC)

References

Title

Year Methods Content

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

A review on image classification of remote sensing
using deep learning

Deep learning for remote sensing image
classification: A survey

Deep learning for hyperspectral image classification:
An overview

Deep learning classifiers for hyperspectral imaging:
A review

A survey of remote sensing image classification
based on CNNs

Remote sensing image scene classification meets
deep learning: Challenges, methods, benchmarks,
and opportunities

Deep learning methods for land-cover and land-use
classification in remote sensing: a review

Deep Learning for Land-Use and Land-Cover
Classification Based on Hyperspectral and
Multispectral Earth Observation Data: A Review

Hyperspectral and Lidar data applied to the urban
land-cover machine learning and neural-network-
based classification: a review

Land-use mapping for high spatial resolution remote
sensing image via deep learning: A review

Remote Sensing Image Classification: A
Comprehensive Review and Applications

2017 CNN SAE  Provides data sources of remote sensing and current
DBN deep learning-based classification methods

2018 CNN SAE A systematic review and comparative analysis of
DBN pixel-wise and scene-wise deep learning approaches
for RS image classification
2019 DBN SAE  Review of deep learning methods in hyperspectral
CNNs image scene classification and provides guideline to
GANs TL improve the classification performance

2019 CNNs Detailed review of deep learning algorithms,
LSTM frameworks, normalization methods for
GRU SSL  hyperspectral image Classification
AL TL

2019 CNNs Summary of CNN-based RS scene classification

methods, and provides challenges and suggestions
for CNN-based RS image classification

2020 SAE CNNs Discusses the main challenges of RS image scene
GANs classification and comprehensively compares
popular deep learning architectures based on CNN,
GAN, and SAE.

2020 CNN TL Comparative analysis of deep CNN models on
diverse RS datasets

2020 CNNs TL Review of deep learning in RS scene classification
and provide a framework from multispectral and
hyperspectral images perspective

2021 CNN Review of hyperspectral and LiDAR data fusion
CRNN approaches for urban land-cover classification

2021 CNN DBN Review of deep learning-based land-use mapping
SAE FCN methods consists of supervised learning, semi-

TL supervised learning, or unsupervised learning, as
well as pixel-based or object-based approaches

2022 CNN SSL  Overview of trending DL models and training
RL techniques for RSIC task. The review maps those
trending with corresponding benchmark datasets
and provides a sense of potential future research
directions in remote sensing image analysis

CNN, Convolutional Neural Network; CRNN, Convolutional Recurrent Neural Network; RL, Reinforcement Learning; DBN, Deep Belief
Network; SAE, Stacked Autoencoder; GAN, Generative Adversarial Network; TL, Transfer Learning; LSTM, Long Short-Term Memory; GRU,
Gated Recurrent Units; SSL, Self-Supervised Learning; AL, Active Learning; and FCN, Fully Convolutional Network

and comparative analysis of deep learning approaches for  related surveys. Li et al. [20] delved into the realm of
RSIC, considering both pixel-wise and scene-wise strate-  hyperspectral image scene classification, revising deep
gies. The year 2019 witnessed the presentation of several  learning methods and offering guidance on how to enhance
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classification performance. Paoletti et al. [21] offered a
detailed review of deep learning algorithms, frameworks,
and normalization methods tailored to hyperspectral image
classification. Additionally, Song et al. [22] summarized
methods based on CNNs for remote sensing scene classi-
fication and highlighted challenges and recommendations
for CNN-based classification. Cheng et al. [23] discussed
the challenges, methods, benchmarks, and opportunities in
remote sensing image scene classification, in addition to
comparing popular deep learning architectures, including
CNN, GAN, and SAE. On the other hand, Alem et al. [24]
conducted a comparative analysis of deep CNN models on
diverse remote sensing datasets, while Vali et al. [25]
reviewed deep learning in remote sensing scene classifi-
cation from the perspective of multispectral and hyper-
spectral images. Kuras et al. [26] conducted a review of
hyperspectral and LiDAR data fusion approaches for urban
land-cover classification, focusing on the use of CNN and
CRNN. Zang et al. [27] reviewed deep learning-based
land-use mapping methods, including supervised, semi-
supervised, and unsupervised learning, as well as pixel-
based and object-based approaches. In [28], an overarching
view of contemporary deep learning models and some
hybrid methodologies for RSIC is presented.

Although the abovementioned surveys have substan-
tially contributed to the literature by reviewing various
methodologies and aspects of RSIC, there remains a
compelling need for a survey that encapsulates the latest
advancements and trends in this rapidly evolving field. The
existing surveys, while thorough, often focus on specific
subdomains or are somewhat dated given the fast pace of
technological progress in deep learning applications for
RSIC. This survey is necessitated by several critical fac-
tors. (1) Since the publication of the last major surveys,
numerous new deep learning architectures have been
developed, each accompanied by innovative applications.
This necessitates an updated review that cohesively syn-
thesizes these advancements. (2) Recent advancements in
publicly available data sources, coupled with their corre-
sponding applications in RSIC, have not been fully
addressed in prior surveys. Our work seeks to fill this gap
by providing a comprehensive review and categorization of
these datasets. (3) Emerging Challenges and Solutions, as
the application areas of RSIC expand, new challenges
arise, including those related to scalability, data hetero-
geneity, and scarcity. Addressing these challenges requires
a fresh look at the state-of-the-art, which our survey pro-
vides. In conclusion, this survey does not merely aggregate
existing knowledge but critically analyzes recent innova-
tions and trends, thereby setting a new benchmark for
research in RSIC. It aims to catalyze further research and
development in a field that is crucial for a wide array of
applications, from environmental monitoring to disaster

response. This work is intended to serve as a cornerstone
for future explorations and technological advancements in
remote sensing image analysis.

3 DL in Remote sensing applications

Deep learning methods have been remarkably utilized by
the research community in the recent years in RSIC due to
their important role in a wide range of applications, such as
agriculture, urban and forestry [29-34], environment
monitoring [35-38], land mapping and management
[39—43], disaster response [44-50], ecology [51, 52],
mining [53, 54], oceanography [55, 56], hydrology
[57, 58], archaeology [59, 60], among others. By exploring
the Scopus database, it is found that agriculture and for-
estry are the most RS applications that researchers have
used deep learning methods for data analysis. This is fol-
lowed by environment monitoring, land mapping and
management, and disaster response as shown in Fig. 3.
Based on these initial statistics, we will focus in this survey
paper on the top four RS applications on the list.

3.1 Agriculture and forestry

Countries worldwide are investing billions of dollars in
precision agriculture and forestry in order to increase
production efficiency while reducing environmental
impact.

RS satellite and aerial images are considered very useful
sources of information for many agriculture and forestry
applications such as:

e Crop monitoring: Deep learning and RS technology are
used widely by researchers and the agriculture industry
to provide real-time monitoring of crop growth [61],
plant morphology [62], and plantation monitoring [63].
The main advantage of using real-time intelligent RS
technology for crop monitoring is providing an accurate
understanding of the growth environment that leads to
environment optimization and consequently improved
production efficiency and quality [64]. It also helps in
detecting variations in several parameters of the field
such as biomass, nitrogen status, and yield estimation of
the crop which determine the need for fertilizer or other
actions.

e Diseases detection: crop health monitoring is a crucial
step in avoiding economic loss and low production
quality. Traditionally, disease detection and avoiding its
spread in crops is done manually which takes days or
months of continuous work to inspect the entire crop.
Moreover, these methods lack detection accuracy and
do not provide real-time monitoring, especially in large

@ Springer



16732

Neural Computing and Applications (2024) 36:16727-16767

Fig. 3 Total number of
publications on using DL
methods for RS data analysis in
top remote sensing applications
Source: Scopus database
accessed on Sep 20, 2023. The
search results were obtained by
searching on “deep learning”
AND *“application name OR
sub-application category”

Agriculture & Forestry

Disasters

Land mapping and management
Mining

Ecology

Oceanography

Hydrology

Archaeology

crop areas [65]. RS technology with DL algorithms
provided practitioners with real-time monitoring capa-
bilities for large crops with high detection accuracy,
especially when using UAVs. Further, they improved
the ability to control the spread of diseases at critical
times which led to reduced losses and improved product
quality in precision agriculture. Recent research efforts
have focused on improving existing methods in crop
disease detection [66, 67], Pest identification and
tracking [68, 69], and plant disease classification
[67, 70, T1].

e Weed control: weeds detection and removal is consid-
ered one of the most important factors in improving
product quality and critical to the development of
precision agriculture. Accurate mapping and localiza-
tion of the weeds lead to accurate pesticide spraying of
the weed location without contaminating crops,
humans, and water resources. Researchers have put
great efforts into using RS technology and deep
learning in weed detection [72-76] and weed mapping
[77-80].

e Precision irrigation: One of the most important appli-
cations of modern precision farming where RS tech-
nology and DL algorithms play a crucial role in the
efficient use of water at the right time, location, and
quantity. Aerial and satellite data analysis using
efficient DL algorithms helped in soil moisture estima-
tion [81-85] and prediction [86, 87], mapping of center
pivot irrigation [88-91], and estimation of soil indica-
tors [92, 93].

e Forest planning and management: The modern forest
management utilizes RS platforms such as UAVs,
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airplanes, and satellites to provide crucial data at
different spatial and spectral band resolutions. This data
is mainly used in creating forest models for monitoring,
conservation, and restoration [94]. In recent years,
researchers focused on creating deep learning models to
analyze data collected from RS platforms in land-cover
and forest mapping [95-99], species classification
[33, 100-102], and forest disaster management
[103-105].

It is evident that RS technology and platforms along with
deep learning methods have recently played an integral role
in enabling precision agriculture.

3.2 Disaster response and recovery

Natural disasters such as floods, earthquakes, landslides,
tsunamis, hurricanes, and wildfires have a devastating
impact on the environment, cities’ infrastructure, and living
beings. The modern disaster management cycle consists of
the following phases: (1) prevention and mitigation, (2)
preparedness, (3) response, and (4) recovery [106]. RS
technology and DL methods are widely applied in disaster
response and recovery. While disaster response aims to
immediately reduce the impact and damages caused by the
disaster through damage mapping and estimation, disaster
recovery is concerned with bringing life back to normal
through reconstruction monitoring and wreckage clearance.
Having said that, Al algorithms are still being used in
disaster detection and forecasting.

Response to sudden-onset disasters requires spatial
information that should be updated in real-time due to their
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high dynamics. Thanks to the recent advancements in RS
technologies and platforms that are capable of providing
high levels of spatial and temporal resolution data. Not to
mention the recent developments in DL methods that
provide real-time analysis for RS data. In the last 5 years,
researchers have focused on developing DL methods to
analyze RS data in order to provide governments and the
research community with tools that help in managing
sudden-onset disasters such as floods [48, 107, 108],
earthquakes [109-111], landslides [112-114], tsunamis
[111, 115], hurricanes [116, 117], and wildfires
[50, 118, 119].

3.3 Environment monitoring

The extraordinary level of air, land, and water pollution has
led governments and researchers worldwide to take
immediate action to allocate financial resources and efforts
toward creating technologies that ensure ongoing and
universal surveillance of the environment. Traditionally,
governments use a large number of distributed fixed station
that consists of advanced sensors and instruments to
monitor the environment. With the advancement in the
Internet of Things technology, wireless sensors network
(WSN) with millions of tiny distributed sensors is widely
used to monitor the environment. Recently, crowdsensing
platforms, including vehicles like cars, buses, taxis, bicy-
cles, and trains have been equipped with sensors and
measurement systems that collect, process, and store data
about the environment at practically zero cost. Fascista
[120] stated, based on an in-depth review of the literature,
that although WSNs offer an attractive solution for envi-
ronmental monitoring, they suffer from several technical
drawbacks including poor data quality, low communication
range, reliability, and power limitation. On the other hand,
crowdsensing poses some implementation challenges
including incentive mechanisms, task allocation, workload
balancing, data trustworthiness, and user privacy.

RS technology and platforms offer an attractive solution
to these challenges by providing rich data about the envi-
ronment ranging from RGB images and LiDAR to thermal
and hyperspectral data. DL algorithms have also provided
reliable tools for extracting information about the envi-
ronment from the collected RS data. Looking at the liter-
ature, it is found that recent studies have developed DL
algorithms to analyze RS data for land environment mon-
itoring [121-124], air monitoring [35, 125-127], and
marine and water monitoring [36, 128-130].

3.4 Land-cover/land-use mapping

Urban growth has historically influenced alterations in
regional and global climates by impacting both

biogeochemical and biophysical processes. Therefore,
remote sensing is widely used for land-cover mapping, land
management, and the spatial distribution of landforms to
examine earth surface processes and landscape evolution.
Land-use classification using remote sensing images and
DL methods [131-135] has played a crucial role in effec-
tively identifying diverse land uses, which in turn improved
urban environment monitoring, planning, and designing.
RS and DL have also been used in land-cover mapping and
change detection [136—140] which are employed in natural
resource management, urban planning, and agricultural
management.

4 DL methods for RS image classification
4.1 Learning approach
4.1.1 Convolutional neural networks (CNNs)

Convolutional neural network (CNN) and its variants have
been widely applied to RS applications [22]. The key
component in CNN is convolutional operation which
involves trainable parameters and aims to extract pertinent
features that are associated with specific tasks such as
object recognition, segmentation, and tracking. Figures 4
and 5 depict commonly used CNN modules in RSIC,
including residual connection [141], dense blocks in the
Dense Convolutional Network (DenseNet) [142], inception
module [143], squeeze and excitation inception module
(SE-inception) [144], dilated convolution [145], and depth-
wise separable convolution [146]. Key features of these
learning modules are described as follows:

e Residual connection: The module presented by He et al.
[141] uses skip or residual connections between layers
to facilitate the gradient propagation and thus help to
achieve deeper neural network architectures with better
accuracy. It has been widely used in hyperspectral
image classification [147-149]. This module is illus-
trated in Fig. 4a

e Dense blocks: Introduced by Huang et al. [142] dense
blocks enhance the feature reuse by dense connectivity.
In other words, the information flow between layers is
given by direct connections from an original layer to all
the subsequent layers. Some RS-related works have
implemented this block with promising results
[150, 151]. This block is illustrated in Fig. 4b.

e Inception module: Szegedy et al. [152] proposed this
module, which allows the use of multiple filter sizes in
parallel, instead of a single filter size in a series of
connections. The motivation of this module is that
multi-scale convolutional filters have the potential to
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Fig. 4 CNN modules—I.
a Residual connection, b dense
block in the Dense

> =) > Y =)
Convolutional Network — é % —> é 9—» =4 —
(DenseNet), ¢ inception module = =
(a)
e Concatenation
k channels k channels k channels

1x1 Conv

enrich feature representation as the architectures go
deeper into the number of layers. The illustration of this
module is provided in Fig. 4c. RS-related works have
successfully used this module [153-155].

e SE-inception: The Squeeze-and-Excitation block (SE
block) was introduced by Hu et al. [144] as an
architectural unit that boosts the performance of a
network. This architectural unit block empowers the
architecture with a dynamic channel-wise feature
calibration. The specifics of this architectural unit block
are illustrated in Fig. 5a. The SE block has been
extensively utilized for RS tasks [156—158].

e Dilated convolution: Yu et al. [145] introduced this type
of convolution, which expands receptive fields by
introducing gaps between the values of the filter kernel,
effectively “dilating” the filter. The expansion is
controlled by a dilation factor (I). Figure 5b illustrates
dilated convolution with I = 2. This technique increases
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the receptive field without increasing computation. In
RS, several studies have reported the use of dilated
convolutions with promising results [159-162].

Depth-wise separable convolution: Introduced by Chol-
let [146], depth-wise separable convolution divides
standard convolution operations into two steps. First, a
depth-wise convolution is applied to each input channel
independently. Second, a point-wise convolution is
performed, i.e., a 1 x 1 convolution, mapping the
outputs from the depth-wise convolution onto a new
channel space. Details of this architectural module are
illustrated in Fig. S5c. Experimental results show satis-
factory results with the implementation of this archi-
tectural module for RS-related tasks [163-165].

Many existing works use one or more aforementioned

convolutional network modules with various network
connections or designs for RSIC. Zhong et al. [148] adopts
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Fig. 5 CNN modules—II.

a Squeeze and excitation
inception module, b dilated
convolution with dilation factor
of 2, b depth-wise separable
convolution
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residual connections in hyperspectral data cute, aiming to
extract discriminative features from both spectral signa-
tures and spatial contexts in hyperspectral imagery, and
outperformed popular classifiers such as kernel support
vector machine (SVM) [166], stacked autoencoders, and
3D CNN.

4.1.2 Generative adversarial networks

A generative adversarial network (GAN) [167] has been
proposed as semi-supervised and unsupervised DL models
that provide a way to learn deep representations without
extensively annotated training data. Generating fake data is
a key component in GAN, which basically based on the
two main networks that represent the GAN. A Generator
(G) network tries to generate “realistic” samples and a

filter

] % Pointwise Convolution

) —

1x1 Conv
[EETE N

(©)

Discriminator (D) network distinguishes between the real
and generated samples. Figure 6 shows the main concept of
GAN. These semi-supervised and unsupervised DL repre-
sentations have been widely applied to RS applications.
Jian et al. [168] developed one class classification tech-
nique based on GAN for remote sensing image change
detection aiming to train the network only with the
unchanged data instead of both the changed and unchanged
data. Jiang et al. [169] constructed a GAN-based edge-
enhancement method for satellite imagery super-resolution
reconstruction to ensure the reconstruction of sharp and
clean edges with finely preserved details. Also, Ma
et al. [170] introduced a GAN-based method capable of
acquiring the mapping between low-resolution and high-
resolution remote sensing imageries which aims to restore
sharper details with fewer pseudotextures, and
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Fig. 6 Conceptual of generative
adversarial network
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outperformed popular single-image super-resolution
methods, including traditional and CNN-based techniques.

4.1.3 Autoencoders and stacked autoencoders

An autoencoder (AE) is a neural network that uses back-
propagation to generate an output almost close to the input
value in an unsupervised learning framework. As it is
shown in Fig. 7a, an AE takes an input and compresses its
representation into a low-dimensional latent space. This
process is done by the encoder component of the AE. On
the other hand, the decoder component of the AE recon-
structs the input, scaling the latent space representation to
the original input dimension.

Also known as deep autoencoder, stacked autoencoders
(SAE) are extensions of the basic AE, consisting of several
layers of encoders and decoders that are stacked on top of
each other, as shown in Fig. 7b. The use of several layers,
in the encoder and decoder portion of the architecture,
allows the model to increasingly abstract the representation
of the original input as it moves deeper into the network.
This makes SAE capable of learning complex features
when compared with basic AE.

AE and SAE have emerged as powerful tools for
enhancing the performance of DL models for RSIC tasks.
For instance, Lv et al. [171] proposed a combination of

Fig. 7 Illustration of a a simple
autoencoder and b a stacked
autoencoder

Encoder

(a)

@ Springer

Decoder

SAE with an extreme learning machine (ELM) [172]:
SAE-ELM. This ensemble-based algorithm leverages the
benefit of the two key components to address challenges in
RSIC, including limitation and complexity of the data. The
SAE-ELM creates diverse base classifiers through feature
segmentation and SAE transformations and accelerates the
learning process with the use of ELM. The proposed
method showed evidence of improvement in classification
tasks and adaptability to different types of remote sensing
images. Liang et al. [173] proposed the use of stacked
denoising AE for RSIC. This model was built by stacking
layers of denoising AE, using the noise input to train the
algorithm in an unsupervised approach layer-wise, and
turning the robust expression into characteristics by
supervised learning using back-propagation. The method
outperformed traditional neural networks and SVM per-
formance. On the other hand, Zhou et al. [174] suggested a
condensed and discriminative stacked AR (CDSAE) for
Hyperspectral image (HSI) classification. This method
consisted of two stages: The first stage is a local discrim-
inant, and the second is an effective classifier. The CDSAE
aimed to produce highly discriminative and compact fea-
ture representation from low-dimensional features. Exper-
imental results demonstrate its effectiveness when
compared to traditional methods for HSI classification.
Additionally, Zhang et al. [175] introduced the use of

Encoder Decoder

(b)
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recursive autoencoders (RAE) as an unsupervised method
for HSI classification. This method utilizes spatial and
spectral information to learn features from the interaction
of the neighborhood of the targeted pixel in an HSI. This
approach outperformed methods such as SVM, SVM-CK
[176], and SOMP [177]. Similarly, Zhou et al. [178] pre-
sented a semi-supervised method for HSI classification
with stacked autoencoders (Semis-SAE). The SAE used
pre-trained hyperspectral and spatial features, followed by
a fine-tuning stage prior to a classification fusion composed
of the probabilities from the SAEs with a Markov random
field model. The Semis-SAE outperformed state-of-the-art
ML methods, such as CNN, GANs, and SVM.

4.1.4 Recurrent neural networks

Recurrent neural networks (RNNs) are a type of artificial
neural network designed to recognize patterns in sequences
of data that has been widely used in language modeling,
text generation, and speech recognition. In RNNs, hidden
layers act as the network’s memory, which store informa-
tion based on previous inputs, integrating not only the
current input but also the knowledge accumulated from
prior data. Figure 8 shows basic structures of FNN and
RNN, where (x) is the input layer, (k) is the hidden layer/s,
and (y) is the output layer. A, B, and C are the network
parameters that are learned during the training of the
model.

A well-known type of RNN is called long short-term
memory (LSTM) [179] which was first introduced to
overcome the gradient vanishing and exploding problem.
Several variants of LSTM architecture have been proposed
as an effective and scalable model to learn long-term
dependencies [180]. LSTM has been used for the land-
cover classification via multi-temporal spatial data derived

Fig. 8 Recurrent neural network
versus standard neural network
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from a time series of satellite images and showed com-
petitive results compared to the state-of-the-art classifiers
with the remarkable advantage of improving the prediction
quality on low-represented and/or highly mixed
classes [181].

The configuration of the input and output determines the
design of the RNN architecture, which can be implemented
in diverse ways. Among the main such architectures: (1)
One-to-one which is known as the vanilla neural network
and has been used for general machine learning problems,
in which a single input is used to generate a single output.
(2) One-to-sequence, in which a single input is employed to
produce a sequence of outputs. (3) Sequence-to-sequence,
which involves taking a series of inputs and producing a
corresponding sequence of outputs. (4) Sequence-to-one
takes sequential data to utilize it as an input to generate a
single output.

RNN and its variants have been used for RSIC. Mou
et al. [182] proposed a deep RNNs architecture with a new
activation function to characterize the sequential property
of a hyperspectral pixel vector for the classification task.
Experimental results showed promise of RNNs in capturing
pertinent information for hyperspectral data analysis. RNN
variant such as a Patch-based recurrent neural network
(PB-RNN) system has been introduced for classifying
multi-temporal remote sensing data [183]. PB-RNN is
considered as a sequence-to-one architecture and used
multi-temporal-spectral-spatial samples to deal with pixels
contaminated by clouds/shadows present in multi-temporal
data series. Recently, a bidirectional long short-term
memory (Bi-LSTM)-based network with an integrated
spatial-spectral attention mechanism was developed for
hyperspectral image (HSI) classification, enhancing clas-
sification performance by emphasizing relevant informa-
tion [184]. Experiments on three popular HSI datasets

Output Layer

Hidden Layer/s

Standard FNN RNN
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demonstrated its superiority over unidirectional RNN-
based methods.

4.1.5 Vision transformer-based approach

Originally implemented to solve natural language pro-
cessing (NLP) tasks, transformers [185] have crossed the
threshold of a single domain with high success. Trans-
formers-based models are getting popular in the research
community for different fields, including computer vision,
RS, and bio-informatics [186—188]. Transformers utilize
the self-attention mechanism to handle long-range depen-
dencies of a given sequence, providing the model with a
larger “memory” in comparison with traditional recurrent
neural networks. For NLP, transformers can deal with
larger sequences by the use of tokens, which provide the
positional information required to preserve the context of
the input. In vision transformers (ViT) [189], this
methodology is translated to computer vision, in which the
images are divided into patches, as an analogy of tokens
and sequences, and then, each patch is linearly projected
along with the corresponding embedding positional infor-
mation. Self-attention is known as the key component
within a transformers-based framework. This component
helps to capture long-range similarities between a given
sequence of tokens by updating the token with aggregated
global knowledge. This attention mechanism is mathe-
matically described as follows:
. QK’

Attention(Q, K, V) softmax(\/ch)V (1)
where the vectors Q, K, and V represent the queries, keys,
and values, respectively. In this mechanism of attention,
the matrices corresponding to the queries and the keys are
dot multiplied, as an attention filter operation, and then, the
output of this operation is normalized through a division
operation with the 1/dj (the dimension of K). The softmax
operation provides a probability distribution for the
weights that are being multiplied against the matrix cor-
responding to the values.

For multi-head self-attention, the aforementioned pro-
cedure is repeated in parallel /4 stands for heads, with dif-
ferent learned linear projections of K, Q, and V
(W2, WK WV). The outputs from the attention functions
are concatenated and linearly projected with (W?). In
summary, the multi-head self-attention mechanism can be
represented as:

Multihead (Q, K, V) = Concat (hy, .., h;, .., b ) W° (2)

where

h; = Attention(QWZ, KWX VW) (3)

1
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The success of ViT-based models has increased the interest
in this technology within the RS area, and several tech-
niques have been explored in recent years for tasks
involving very-high-resolution Imagery (VHR), hyper-
spectral imagery, and synthetic aperture radar imagery.
Figure 9 illustrates the ViT architecture used with hyper-
spectral data.

For the remote sensing scene classification task, Deng
et al. [190] presented a vision transformer-based approach
in conjunction with CNN, in which two streams (one ViT
and another CNN) generate concatenated features, within a
joint optimized loss function framework. On the other
hand, Ma et al. [191] explored the use of a transformer-
based framework with a patch generation module, ana-
lyzing the effect promoted by using heterogeneous or
homogeneous patches.

In the task of HSI classification, there are several efforts
have been made to develop either purely transformer-based
architectures or a hybrid approach that combines the merits
of CNN and transformers. For instance, He et al. [192]
presented HSI-BERT, a pure transformer-based architec-
ture, with bidirectional encoders. This architecture captures
the global dependencies of a target pixel, obtaining a
flexible architecture that can be generalized for prediction
over different regions with the pre-trained model. Another
effort in pure transformers-based architecture is provided
by Zhong et al. [193], proposing a spectral-spatial trans-
former network. Spatial attention leverages the local region
feature channels with spatial kernel weights; meanwhile,
spectral association leverages the integration of spatial
locations for each corresponding feature map. Hybrid
efforts, by combining CNN and transformers, have
achieved promising outcomes for hyperspectral pixel-wise
classification. For instance, the work presented by Wang
et al. [194] presented a multi-scale convolutional trans-
former, which aims to capture spatial-spectral information
effectively from a given input. Introduced by Paheding
et al. [195] GAF-NAU utilizes the Gramian angular field
encoder over the hyperspectral signal to produce a 2D
representation for each pixel. This 2D signal is used as
input in a U-Net-like framework that combines the atten-
tion mechanism with multi-level skip connections. The
experimental outcomes from this proposed architecture
outperform traditional approaches for pixel-wise hyper-
spectral classification.

Problems related to the use of SAR image interpretation
have been analyzed using pure transformer-based archi-
tecture. For instance, Dong et al. [196] utilized vision
transformers as a method for PolISAR (Polarimetric SAR)
image classification. Each pixel is represented as a token
within the architecture, and the long-range dependency is
captured by the use of the self-attention mechanism. A
hybrid methodology was proposed by Liu et al.[197], in
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Fig. 9 Illustration of the vision transformer (ViT) [189] architecture.
On the left side, the notion behind ViT is presented, including the
initial embedding layer and the transformer encoder. Meanwhile, on

which the merits of CNN and transformers were combined
to capture, both local and global, feature representation, for
the SAR image classification task. On the other hand, the
work presented by Chen et al. [198] addressed the detection
task for aircraft with SAR imagery by using transformers
within a geo-spatial framework composed by image
decomposition, geo-spatial contextual attention in multi-
scale fashion and image re-composition. Zhang et al. [199]
proposed a feature relation enhancement framework, in
which a fusion pyramid structure is adopted to combine
feature representation at different scale levels, in addition
to the use of an attention mechanism for the improvement
of the position context information.

4.2 Learning type
4.2.1 Multi-task learning

The goal of the machine learning paradigm known as
“Multi-task learning” (MTL) is to learn several related
tasks simultaneously [200], compared to the one that learns
specific tasks separately as shown in Fig. 10a. The use of
MTL is to ensure that the information in one task may be
used by other tasks, enhancing the generalization perfor-
mance of all the involved tasks. In this context, task refers
to learning an output target from a single input
source [201]. Hence, MTL employs the domain knowledge
in the training signals of related tasks as an inductive bias
for improving the generalization [202]. This is accom-
plished, as shown in Fig. 10b, by learning many tasks
concurrently while utilizing a common representation;
what is learned for one task can aid in learning other tasks.

Multi-task learning in deep learning is often carried out
with either hard or soft parameter sharing of hidden lay-
ers [203]. The method of MTL that uses hard parameter
sharing is the most used one in neural networks. It is often

> |

the right side, details about the transformer encoder with emphasis on
the multi-head self-attention mechanism are provided

implemented by preserving several task-specific output
layers while sharing the hidden levels across all activities.
Overfitting is considerably reduced by hard parameter
sharing. On the other hand, with soft parameter sharing,
every task has a unique model with unique parameters. To
encourage the model’s parameters to be similar, the dis-
tance between them is regularized.

The MTL architecture has been used to concurrently
complete the tasks of road identification and road center-
line extraction [204]. Due to its superior capacity to
maintain spatial information, U-Net [205] was chosen as
the MTL’s basic network. The multi-task U-Net design
contains two networks, a road detection network and a
center-line extraction network, which operate simultane-
ously during training. The hierarchical semantic features
obtained from the road detection network are convoluted to
create the road center-line extraction network.

4.2.2 Active learning

Active learning (AL), also referred to as query learning or
optimal experimental design, is a sub-field of machine
learning where the learner makes queries or selects actions
that impact what data is to be added to its training
set [206, 207]. It is instrumental in scenarios where the
labeled data are either scarce or expensive to label the data
(such as speech recognition, information extraction, and
RSIC). In this model, a small training set is used to train
the model initially, and then, an acquisition function
decides to obtain a label for unlabeled data points from an
external oracle (generally a human expert). These labeled
data points are added to the training set, and the model is
now trained on this updated training set. Repetitions of this
process lead to an increase in the size of the training set.
Active learning for RSIC is a logical choice because it
can utilize scarce labeled and abundant unlabeled data. AL
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Fig. 10 a Traditional methods that use different models for different tasks, b multi-task learning via shared representation

has been used in HSI classification [208], in which
DRDbSSAL (Discovering Representativeness and Dis-
criminativeness by Semi-Supervised Active Learning)
architecture was proposed to extract representative and
discriminative information from unlabeled data. This
architecture employs multiclass level uncertainty (MCLU),
a state-of-the-art approach commonly used in RSIC to
identify the most informative samples [209, 210]. Using
semi-supervised active learning, it tries to identify repre-
sentativeness and discriminativeness from unlabeled data
using a labeling procedure. It is particularly efficient when
there are only a few labeled samples and catches the
overall trends of the unlabeled data while preserving the
data distribution.

In a work by Haut et al. [211], AL was employed by a
B-CNN (Bayesian-Convolutional Neural Network) that
was based on the Bayesian Neural Networks
(BNNs) [212, 213] for HSI classification. The BNN is a
kind of artificial neural network (ANN) that may provide
uncertainty estimates and a probabilistic interpretation of

@ Springer

DL models while being resistant to overfitting. They do so
by inferring distributions across the models’ weights,
learning from small data sets, and avoiding the tendency of
traditional ANNs to generate overconfident predictions in
sparse data areas. Applying the same Bayesian methodol-
ogy to CNNs can help them withstand overfitting on small
data sets while improving their generalization capability.

4.2.3 Transfer learning

In the field of machine learning, transfer learning refers to
the process where a model, initially trained for a specific
task, is repurposed and utilized for a different but related
task. It depicts a situation where knowledge acquired in
one context is employed to improve optimization in a
different context. TL is commonly employed when the new
dataset, intended for training the pre-trained model, is
smaller in size compared to the original dataset. TL can
convey four distinct types of knowledge for target tasks:
relational knowledge, feature representation, parameter
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information, and instance knowledge [214]. Deep learning
frequently transfers representations by reusing models built
on a source model because deep learning automatically
learns and keeps the feature representation on network
layers and weights. Figure 11 depicts the overall TL pro-
cedure. TL typically involves the following three stages:

e Rich source domain data Xg is used to train a deep
learning model Y = f, for source domain Task A until
the optimal weights converge and the cost function Jy4 is
minimized.

e The deep learning model Y’ = fp for Task B is built on
top of this learned model. The new model Y’ = f3
reuses the first n layers from the original model (n =3 in
Fig. 11). This ensures that f creates representations
that adhere to the information discovered in the source
domain.

e Using the sparse, labeled training data X7, the trans-
ferred model Y’ = f3 is trained to minimize Jp.

The result is a deep learning model for Task B’s target
domain that incorporates information from the source
domain.

In [215], the TL was conducted at three levels: shallow,
middle, and deep. In the shallow experiment, features were
extracted from the initial blocks of the base models,
incorporating the small classification model. The interme-
diate experiment removes the block from the center of the
base model. On the other hand, the deep experiment
retained the original base model’s blocks, excluding the
last classification layers. Experimenting with two CNN
models on three distinct remote sensing datasets (UC
Merced, AID, and PatternNet) demonstrated that TL,
especially fine-tuning, is a robust approach for classifying
remote sensing images, consistently outperforming a CNN
with randomly initialized weights.
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Fig. 11 A transfer learning framework
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4.2.4 Ensemble learning

Ensemble learning (EL) combines outputs from multiple
models to achieve superior predictive performance [216].
The four primary categories of EL techniques are as
follows:

1. Boosting, as shown in Fig. 12a, is a technique that
creates several classifiers to increase any classifier’s
accuracy. A classifier chooses its training set depend-
ing on how well its last classifier performed. A sample
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that a prior classifier has wrongly categorized is chosen
more frequently than one that has been successfully
classified. As a result, boosting creates a new classifier
that can successfully process the new data set.

Bagging or bootstrap aggregating, as shown in
Fig. 12b, is an ensemble learning technique in machine
learning designed to improve prediction accuracy by
training separate models with bootstrap samples. It
typically aids in reducing variance and mitigating
overfitting. In classifiers that use bagging, each
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Fig. 12 Ensemble learning types: a boosting, b bagging, ¢ stacking, and d random forest
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classifier’s training set is generated by drawing N
instances at random with replacement from the original
dataset. This process, known as bootstrap sampling,
creates multiple different training sets. In this case,
many of the original instances might be repeated, while
others might be omitted from the training set. The
learning system from a sample creates a classifier, and
the final classifier is created by combining all of the
classifiers created from the many trials.

3. Stacking, as shown in Fig. 12c, is a technique that uses
a variety set of models as base learners and utilizes
another model or the combiner to aggregate prediction.
Here, the combiner is referred to as a meta-learner. The
base models are trained first, and their predictions are
aggregated as input features for the meta-learner.

4. Random forest, as shown in Fig. 12d, is an ensemble
learning approach that includes training a large number
of decision trees and combining those decision trees’
predictions through voting. Instead of having just one
decision tree, the random forest method uses sample
data from the population to generate several decision
trees. When merged, the many samples (bootstrap
samples) produce many individual trees that make up
the Random Forest.

The EL has been used for the semi-supervised classifica-
tion of RS scenes [217]. The residual convolutional neural
network (ResNet) [141] extracts initial image features. EL
is used to exploit the information included in unlabeled
data in order to generate discriminative picture represen-
tations. Initially, T prototype sets are generated periodi-
cally from all accessible data. Each set consists of
prototype samples that serve as proxy classes for training
supervised classifiers. Afterward, an ensemble feature
extractor (EFE) is produced by combining T-learned clas-
sifiers. The final image representation is created by con-
catenating the classification scores from all T classifiers by
feeding each image’s preliminary ResNet feature into EFE.
The experimental results on the publically available AID
and Sydney datasets demonstrate that the learned features
and semi-supervised technique provide improved
performance.

EL has been also used to categorize multiple sensor data
using a decision-level fusion technique [218]. CNN-SVM
ensemble systems were used to classify Light Detection
and Ranging (LiDAR), HSI, and extremely high-resolution
Visible (VIS) images. A random feature selection is used to
construct two CNN-SVM ensemble systems, one for
LiDAR and VIS data and the other for HSI data. VIS and
LiDAR data are extracted for texture and height informa-
tion first. Together with hyperspectral data, these extracted
features are used in a Random Features Selection technique
to generate various subsets of retrieved features. All feature

spaces are provided as input layers to different deep CNN
ensemble systems. Weighted majority voting (WMV) and
behavior knowledge space (BKS) were applied to each
CNN ensemble as the final classifier fusion approaches.
The result indicated that the suggested technique produces
more precision and outperforms several current methods.

4.2.5 Multi-instance learning

The conventional data description applies to single-in-
stance learning, in which each instance of a learning object
is characterized by several feature values and, perhaps, an
associated output. In contrast, a bag (learning sample or
object) is linked to several instances or descriptions in
multiple instance learning (MIL) [219, 220]. The objective
of a MIL classification is to assign unseen bags to a par-
ticular class driven by the class labels within the training
data or, more precisely, to use an estimation model con-
structed from the labeled training bags. An instance-based
algorithm’s overall design is shown in Fig. 13. It is rep-
resented as a bag, Y € NY, holding n instances,

Yiy-os¥n € Y.
There are four different options to choose from:

1. K (Set of bag labels): K’s length is the number of
classes.

2. A (Set of instance labels): Bag sub-classes or instance-
level concepts might correlate to instance labels.

3. M (MIL assumption): It requires the construction of an
explicit mapping between the set of instance labels and
the set of bag labels. It is a function M : N* — [ that
links the class label of instances within a bag to the
class label assigned to the bag.

4. A technique for locating the instance classifier m :
Y — A (utilized for the classification of instances
within each bag).

Since each unique instance requires a class label, single-
instance learners cannot be applied directly to MIL data. (A

v

N Y A K
AR )
yl —'),— > /1/

yn = y”-—>

Fig. 13 MIL general architecture [219]
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bag classifier is required.) A MIL hypothesis is performed
over instance labels to get the bag label.

For the application of MIL to RS, the input images in an
RS system are broken down into multiple sub-images, each
of which is handled as a different instance of that class. The
learning system will then discover which sub-image is
crucial for correctly predicting the image’s class. The total
accuracy of the algorithm may be increased by constructing
a neural network that can concentrate on the area of the
picture that is more crucial to the categorization.

The MIL has been used for classifying scenes in
RS [221]. Generally, one segment of a scene identifies its
class, while the others are unimportant or belong to another
class. The first stage of the proposed method splits the
picture into five instances (the center image plus the four
corners). Subsequently, a deep neural network is trained to
retrieve intricate convolutional features from individual
instance and ascertain the optimal weights for their fusion
through weighted averaging

Multiple instance learning has been employed as the
end-to-end learning system [221]. Here, two instances
were used: one to characterize the spectral information of
multispectral (MS) photographs and the other to capture
the spatial information of panchromatic (PAN) images. The
relevant spatial information of PAN and the associated
spectral information of MS are extracted using deep CNN
and stacked autoencoders (SAE), respectively. The last
step was joining the features from the two instances toge-
ther using fully connected layers. Four aerial MS and PAN
images were used in classification studies, and the results
showed that the classifier offers a workable and effective
solution.

4.2.6 Reinforcement learning

Reinforcement learning (RL) is a machine learning para-
digm where an agent learns to make decisions by taking
actions in an environment to maximize some notion of
cumulative reward [222]. Unlike supervised learning,
where the model learns from a dataset of input-output
pairs, RL focuses on learning from the consequences of
actions, guided by a reward signal. This framework makes
RL particularly well suited for problems where an agent
interacts with an environment, making it applicable to
various remote sensing tasks.

In remote sensing, RL has been utilized for tasks such as
satellite task scheduling, resource management, and
dynamic path planning for unmanned aerial vehicles
(UAVs). The key advantage of RL in these scenarios is its
ability to handle sequential decision-making problems and
adapt to changing environments.

One application of RL in remote sensing is dynamic
path planning for UAVs. UAVs are increasingly used for
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environmental monitoring, disaster response, and agricul-
tural surveillance. RL algorithms, such as Q-learning or
deep Q-networks (DQN) [223], can be employed to opti-
mize the flight paths of UAVs to maximize coverage,
minimize energy consumption, or avoid obstacles [224].
By learning from interactions with the environment, the
UAV can adapt its path in real-time to changes in the
environment, such as moving obstacles or areas of interest.

Another significant application 1is satellite task
scheduling, where multiple satellites need to be coordi-
nated to maximize the overall mission objectives, such as
maximizing data collection or minimizing observation
gaps. RL techniques can be used to optimize the scheduling
of satellite observations, taking into account various con-
straints like limited satellite resources, orbital dynamics,
and conflicting observation requests [225]. This can result
in more efficient use of satellite resources and improved
data acquisition strategies.

RL has also been applied to the problem of data fusion
in remote sensing, where information from multiple sen-
sors needs to be integrated to produce a comprehensive
understanding of the observed environment. By treating the
fusion process as a sequential decision-making problem,
RL algorithms can learn optimal strategies for combining
data from different sources to enhance the accuracy and
reliability of the resulting information [226].

Despite its potential, the application of RL in remote
sensing comes with challenges, such as the need for large
amounts of data to train the models and the complexity of
accurately modeling the environment. However, ongoing
research is addressing these challenges [227], making RL a
promising tool for advancing remote sensing technologies.

5 Sensor types and remote sensing datasets

A wide variety of datasets has been collected using an array
of sensors. In this section, we will examine different types
of sensors and describe different categories of remote
sensing datasets.

5.1 Sensor types

In RS, sensors can be described as mechatronic instruments
that comprise electrical, mechanical, and computing ele-
ments. Carried on board satellites, airborne vehicles, or
installed (in situ) on the ground, they record electromag-
netic signals as digital data to study Earth processes or
atmospheric phenomena.

Satellite-mounted sensors can cover large areas of the
Earth’s surface, but are limited to the satellite’s orbital path
and are obstructed by clouds [228]. Example applications
for satellite RS include monitoring forest fires [229],
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drought [230], atmospheric particulate matter concentra-
tions [231], and sea ice thickness [232].

Airplane, helicopter, and unmanned aerial vehicle
(UAV) mounted sensors have the advantage of high to
very-high spatial resolution, custom flight paths, and Light
Detection and Ranging (LiDAR) capabilities; however,
they require flight operation efforts and have relatively
small area coverage. Example applications include crop
monitoring and vegetation mapping (Table 3), disaster
response (Table 4), and environmental monitoring
(Table 5).

Ground-based remote sensing systems (GRSS) are
installed on the Earth’s surface, where several sensors are
spatially distributed and accessed collectively. Example
applications include: in situ real-time monitoring of algae
blooms and water quality inland and in oceans [233];
landslide mapping and early warning [234]; distributed
surface temperature; and wind speed profile measurement
[235].

Sensors can be passive or active. An example of a
passive sensor is a satellite-mounted infrared (IR) camera.
It captures the thermal radiation emitted or reflected by
objects on the Earth’s surface. In this case, the heat radi-
ation originates from the Sun and reflects into the IR
camera aperture. An active sensor, such as radio detection
and ranging (Radar), produces radiation energy to expose
the objects it is sensing by capturing the reflected electro-
magnetic radiation.

Sensor resolution is an important characterization of the
imaging sensor modality. Three types of resolution are
meaningful in RS, namely spatial, spectral, and temporal
resolution [236]. The composition of these types of reso-
lution can affect the feasibility of RS applications as shown
in Fig. 14. Spatial resolution refers to the sensor’s ability to
resolve small details. For example, a satellite image might
have a resolution of 1 pixel per meter, whereas a UAV
sensor may have twice the spatial resolution at 1 pixel per
0.5 meter, i.e., 2 pixels per meter. Spectral resolution refers
to the number of discrete electromagnetic radiation bands
the sensor can process, i.e., record the average power from.
A high spectral resolution sensor is sensitive to narrower,
and more, spectral bands. For a given spectral sensing
range, a low spectral resolution sensor will have fewer, and
wider, spectral bands, than a high spectral resolution sen-
sor. For example, a color camera with red, green, and blue
(RGB) channels (3 bands between 450 and 650 nm), has
higher spectral resolution than a bandpass (1 band between
1150 and 1300 nm) short-wave infrared (SWIR) camera.
Finally, temporal resolution in RS refers to the sensor’s
ability to repeat sensing the same area. For example, a
UAV-mounted sensor has a much higher temporal resolu-
tion than a satellite sensor, which requires a long time to

complete the Earth orbit and return to the designated area
for repeated sensing [237].

Earth’s atmosphere blocks some electromagnetic
wavelengths due to the presence of Ozone, water, carbon
dioxide, and other particles. This protects the surface from
dangerous radiation such as X-rays and high-energy
ultraviolet (UV) wavelengths. RS sensors are developed to
measure the radiation that is not blocked by the atmo-
sphere, i.e., that passes through the “atmospheric
window.”

Ultraviolet (UV) sensors are sensitive in the range
between 10 and 400 nm. RS applications that utilize UV
sensors include Ozone layer detection, ocean color, and oil
spill detection [238, 239].

Red-green-blue (RGB) sensors are essentially color
cameras sensitive to the visible spectrum color bands
380 nm (shortest blue) to 850 nm (longest red). This is the
range of wavelengths the human eye is sensitive to. The
Landsat-8 satellite, for example, includes RGB sensors as
follows: red (640-670 nm); green (530-590 nm); and blue
(450-510 nm) [240]. Some examples of RGB use in RS
include urban sprawl and drought mapping [241, 242].

Near infrared (NIR) sensors are sensitive to the elec-
tromagnetic band between 850 and 900 nm. In addition,
short-wave infrared (SWIR) are sensitive between 900 and
2500 nm. These two bands measure reflected infrared
radiation, as opposed to thermal radiation, which requires
medium and long infrared red (MWIR, LWIR) sensors, to
detect. These span the wavelengths between 3000 to
5000 nm, and 8000 to 12000 nm, respectively. RS appli-
cations utilizing infrared sensors include: NIR and SWIR
in the estimation of soil carbon content [243]; vegetation
canopy studies using near-infrared imaging [244]; and
thermal imaging for urban climate and environmental
studies [245].

The passive microwave electromagnetic range is
between 1 and 200 GHz (1.5 and 300 mm). Like thermal
sensors, passive microwave sensors collect radiation
emitted by objects. Water and oxygen molecules in Earth’s
atmosphere absorb some of the shorter wavelengths. RS
applications include monitoring the spatial distribution of
permafrost [246] and land surface temperature [247].
Beyond the passive microwave radio are the higher-fre-
quency detection and ranging (RADAR) waves. Synthetic
aperture radar (SAR) sensors are active and send micro-
wave pulses that reflect off of objects such as the Earth’s
surface back to the transmitter, usually on a satellite. An
example application is the estimation of vegetation thick-
ness for forest fire studies [248], the study of sea surface
winds and waves from spaceborne SAR [249], arctic ice
thickness monitoring [250].

Multispectral imagery refers to the utilization of
between 3 and 10 bands in the electromagnetic spectrum.
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Table 3 Public aerial datasets for precision agriculture and forestry

References Dataset name/  Year Sensors Application Content
website
[267] Global Wheat 2021 RGB Crop The dataset is composed of more than 6000 images of 1024 x 1024
Head Dataset monitoring pixels containing 300k+ unique wheat heads, with the
2021 corresponding bounding boxes
[268] RiceSeedling 2021 RGB Crop An image dataset of rice paddy for data sharing by making labeled
Datasets classification  and unlabeled data findable and accessible through domain-
specific repositories
[269] Sick Fir Tree 2021 RGB Disease A dataset for the identification and categorization of individual
dataset detection diseased fir trees, comprising Orthomosaics, DSM, nDSM, ROI,
annotations for sick firs, healthy firs, deciduous trees, and treetops.
The dataset encompasses data from nine aerial missions conducted
across four locations on Zao Mountain
[270] MOPAD 2021 RGB Plant The dataset contains 363,877 oil palms images of five categories:
classification ~ healthy palms, dead palms, mismanaged palms, smallish palms
and yellowish palms
[254] UAV-ARSP 2020 Multispectral Crop The 588 multispectral aerial images portray an agricultural area of
monitoring one square kilometer in a rural zone in Kllosa—Tanzania. Crops:
sesame, pigeon pea, banana, maize, mango, beans, cowpea rice
and sunflower
[259] WHU-Hi 2020 Hyperspectral Crop Contains 3 datasets: WHUHi-LongKou, WHU-Hi-HanChuan, and
classification =~ WHU-Hi-HongHu. WHU-Hi-LongK: consists of aerial images of
six types of crops. WHU-HiHanChuan dataset consists of seven
crop types. WHU-Hi-HongHu, consists of seventeen different
cultivars of three main crop types, which are cotton, rape, and
cabbage
[271] Forest Dataset 2020 RGB Forest Tree ‘We have seven winter mosaics capturing a blend of mountain forest
classification  and a mosaic featuring a pine tree plantation interspersed with
broadleaf trees. The data has been annotated and is now accessible
to the public
[272] Northern Leaf 2019 RGB Disease The resultant annotated dataset comprised a total of 3000 resized
Blight dataset detection aerial images and corresponding ground truth masks containing
5234 lesion instances
[255] Cactus Aerial 2019 RGB Plant This dataset presents more than 16,000 examples of a columnar
classification  cacti (Neobuxbaumia tetetzo) for plant recognition or
classification
[256] weedNet 2018 Multispectral Weed control ~ The dataset contains /32,243, and 90 annotated multispectral
images of crops, weeds, and crop-weed mixtures. Each training
image/test image consisted of near-infrared (NIR, 790 nm), Red
channel (660 nm), and NDVI imagery
[256] WeedMap 2018 Multispectral Weed control ~ The datasets consist of 129 directories and 18,746 image files.
datasets from sugar beet fields in Eschikon, Switzerland, and
Rheinbach, Germany, with a time interval of 5 months
[273] Joint stem 2018 Multispectral + Weed control ~ The datasets contain 921 RGB + NIR and 400 RGB-only images as
detection RGB well as their corresponding annotations for the semantic
segmentation and the stem detection task. Classes: (1) soil, (2)
sugar beet, (3) dicot-weed, and (4) grass-weed
[274] NLB Disease 2018 RGB Disease The dataset contains /8,222 images, all taken in the field, and
dataset detection 105,735 annotations by one of two human experts. This is the
largest publicly available collection of classified images of any
single plant disease
[275] Grass- 2017 RGB Weed control ~ This image dataset has /15336 segments, being 3249 of soil, 7376 of
Broadleaf soybean, 3520 grass, and 1191 of broadleaf weeds. Images were

segmented and the segments were annotated manually with their
respective class
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Table 4 List of the publicly available datasets for disaster response categorized based on the type of natural disaster

References Dataset Year Sensors Application  Content
name/
website
[251] Change 2022 Multispectral ~ All/common The dataset comprises uniform cases with both multispectral (MS) and
detection and SAR synthetic aperture radar (SAR) images. Additionally, it includes diverse
dataset cases encompassing MS/SAR images, covering 14 instances of natural
disasters, farming, and construction
[277] FLAME 2021 RGB Wildfire The dataset includes 5814 fire images captured by drones during a
Dataset controlled burning of piled debris in an Arizona pine forest. Both the
recorded videos and images are annotated and labeled on a frame-by-
frame basis
[278] EU Flood 2019 RGB Flood Dataset comprises 3710 flood images that have been annotated by domain
Dataset experts to assess their relevance for three tasks: identifying the flooded
area, determining inundation depth, and assessing water pollution
[252] Corsican 2017 Multispectral ~ Wildfire The database contains visible spectrum and near-infrared (NIR) images and
Fire provides a large number of images captured in this spectrum. It contains
Database video sequences captured simultaneously in color and NIR spectrums
[279] VisiFire 2015 RGB Wildfire The dataset is composed of two main parts: the first 14 videos characterized
by the presence of fire and the last 17 videos that do not contain fires
[280] wildfire 2014 RGB Wildfire The dataset comprises 2977 images distributed across 23 video sequences,
smoke with 16 of them featuring smoke. Smoke is discernible in various forms in
database 1,839 images, while the remaining images (1138) are essential for quality

evaluation and encompass phenomena that might lead to false alarms

Table 5 List of the publicly available datasets for environment monitoring categorized based on the application

References Dataset name/ Year Sensors Application Content
website
[283] FRACTURES 2021 RGB Rock outcrops  The dataset includes filtered 500 x 500 .png tiles specifically featuring
scenes with fracture data. Additionally, it provides .png binary
masks for semantic segmentation and original geo-referenced
shapefile annotations
[284] IndustrialEstate 2021 RGB and Temperature A collection of data from a light industrial estate in Switzerland was
Thermal = Monitoring gathered using an eBee X fixed-wing drone equipped with a
senseFly Duet T thermal mapping camera. The thermal data were
processed to create a thermal 3D mesh and a temperature index map
[285] RIVER ICE 2020 RGB Ice This dataset offers digital images and videos capturing surface ice
SEGMENTATION segmentation conditions, collected during the winter seasons of 2016-2017 from
two rivers in Alberta: the North Saskatchewan River and Peace
River
[286] LeConte Glacier 2019 RGB Ice monitoring The dataset contains field measurements at LeConte Glacier, Alaska,
Dataset to study the impacts of subglacial discharge on plume dynamics and
submarine melting. The aerial images are used to measure ice
elevation and velocity at the LeConte terminus
[287] Bottle Detection 2018 RGB Waste plastic ~ This dataset contains 25,407 UAV images of bottles with various
Detection kinds of backgrounds. An oriented bounding box was used to
accurately and compactly annotate the bottles. The fully annotated
images contain 34,791 bottles
[288] Dune Dataset 2016 RGB Dune Investigating the influence of vegetation and dune size on the initial
monitoring stages of dune development through the utilization of unmanned

aerial vehicle (UAV) imaging
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RGB, for example, can be considered multispectral imag-
ing as it collects information from three color bands. Also,
the Landsat-8 satellite can measure 11 bands from indigo to
Thermal IR, in roughly 40 nm steps, i.e., bands [240].
Example applications are in: disaster response with multi-
spectral SAR [251], and multispectral RGB and NIR [252];
land mapping using multispectral LiDAR [253]; and agri-
culture and forestry [254-256].

Hyperspectral imaging has a much higher spectral res-
olution than multispectral, with narrower bands between 10
and 20 nm, as well as the measurement of from hundreds to
thousands of bands [257]. The Hyperion (EO-1 satellite)
[258], for example, measures 220 spectral bands between
400nm (violet) and 2500nm (SWIR). Example applications
utilizing hyperspectral imaging are: land mapping [253];
agriculture and forestry [255, 259]; and reservoir water
quality monitoring [260].

5.2 Aerial datasets

Unmanned aerial vehicles (UAVs) are commonly used
nowadays as a remote sensing platform that holds different
types of imaging devices ranging from RGB, and thermal
cameras to hyperspectral and miniaturized SAR devices.
Despite the fact that UAVs have limited power sources and
can only cover relatively limited areas compared to their
satellite counterpart, UAVs offer an attractive solution
when on-demand images from low altitudes are required in
time-sensitive applications. Further, with their availability,
low cost, easy-to-use, and high operational capability to
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capture images at high temporal and spatial resolutions,
UAVs market has grown dramatically over the last decade
and they are now used widely in different RS applications.

We used the data published in [261] to show the dif-
ference between using UAV and satellite platforms in
terms of temporal, spatial, and spectral resolutions as well
as swath. In [261], the researchers categorized the types of
satellites into three categories as follows:

e Global monitoring satellites (GM) such as MODIS
Terra work in high orbit and provide high temporal
resolution and relatively high swarth but offer a
moderate spatial and spectral resolution.

e FEnvironmental monitoring satellites such as Landsat
and Sentinel-2 provide moderate temporal, spatial, and
spectral resolutions and high swath.

e (Civilian satellites such as Pleiades or Ikonos provide
high spatial resolution but low temporal and spectral
resolution as these satellites are at low orbit.

While different types of satellites provide different levels
of resolutions, all UAV types guarantee high temporal and
spatial resolution; however, they provide low swath. Nev-
ertheless, UAVs offer an attractive solution for RS appli-
cations that require high temporal and spatial resolutions
such as agriculture and disaster response. On the other
hand, UAVs are not used widely in land-cover/land-use
mapping due to the need for a high swath. Figure 14
illustrates the required resolution and swath in different RS
applications and what resolution is offered by different RS
platforms as indicated in [261].
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With this big interest and growth in using UAVs as a
remote sensing platform by governments and the RS
research community, we present, in this section, a summary
of up-to-date public UAV (aerial) datasets that were col-
lected or synthesized over the last decade. In contrast to the
very few existing review papers [262-266], we summarize
the most popular and recent UAV datasets that cover the
RS applications presented in section 4.2 (i.e., agriculture
and forestry, environment monitoring, disaster response,
land mapping). This summary of the available UAV
datasets should greatly help the research community in its
efforts to develop DL algorithms for aerial data analysis.

5.2.1 Datasets in agriculture and forestry

Developing reliable and robust DL methods for crop
monitoring, disease detection, weed control, plant classi-
fication, and other precision agriculture and applications
requires a high-quality, large-scale dataset. Practically, it is
hard to build such datasets due to the cost and efforts that
are needed for image acquisition, classification, and
annotation. Therefore, datasets that are publicly available
play an integral role in fostering remote sensing scientific
progress and significantly reducing the cost and time nee-
ded for dataset preparation. In this subsection, we present a
tabulated summary (Table 3) of recent publicly available
datasets in the field of RS in agriculture and forestry.

The datasets are classified based on the application
within precision agriculture. The table also provides the
reader with a link to the dataset website as well as a brief
description of the contents of the dataset. Our search was
limited to aerial images that are acquired by UAVs, drones,
airplanes, or any flying device. We also provide the sensor
type in each dataset which is entirely dependent on the type
of application [65], as indicated in Fig. 15. For example,

Fig. 15 Data modality used in
different precision agriculture
applications

Disease detection

Crop monitoring

Weed mapping and control

m RGB

Precision irrigation

multispectral images are used mainly in precision irrigation
and disease detection while RGB is mainly used for weed
control.

5.2.2 Aerial datasets for disaster response

Unlike agriculture and forestry, finding public datasets of
aerial images for disaster response can be challenging. As
shown in Fig. 16, 53% of the data sources for damage
assessment as a result of natural disasters are acquired by
satellites and only 21% are acquired by UAVs [276].
However, with the increased interest in using UAVs for
disaster response and damage assessment over the last 5
years, it is expected that UAVs will gain more volume as a
source of data than satellites due to their high temporal and
spatial resolution. Therefore, we are presenting in this
section the publicly available aerial image datasets which
are categorized by the type of disaster and ordered by the
date of the last update of the dataset as shown in Table 4. A
brief description of the dataset (based on the publishing
source) is also provided.

5.2.3 Aerial datasets for environment monitoring

Due to the advantages of UAVs mentioned earlier in this
section, they have been increasingly used for environ-
mental monitoring, especially in hard-to-reach areas. UAV
remote sensing technology is capable of operating at dif-
ferent spatial resolutions while keeping a high temporal
resolution. Furthermore, with the recent advancements in
the miniaturized multispectral and LiDAR sensors, UAVs
have become the best choice for distinguishing between
natural and pollutant materials and building precise 2D/3D
maps of the land surfaces [120]. In recent times, unmanned
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Fig. 16 Damage assessment data sources in response to different
natural disaster

aerial vehicles (UAVs) have emerged as a significant
transformative factor in marine monitoring. They play a
crucial role in addressing biological and environmental
issues, encompassing tasks such as monitoring invasive
species, conducting surveys and mapping, observing mar-
ine animal activities, and monitoring marine disasters
[281, 282]. Imagery data acquired by UAVs are normally
analyzed using DL which requires datasets of real images
collected by UAVs. In this subsection, we present the
recent publicly available datasets based on our review of
the literature. Table 5 provides a list of the dataset cate-
gorized based on the application as well as a description of
the dataset contents.

5.2.4 Aerial datasets for land mapping

UAVs have become valuable tools for land mapping and
surveying due to their ability to capture high-resolution
aerial images and data efficiently. Moreover, UAVs pro-
vide rapid cover for large areas which is important for
time-sensitive projects, and can access hard-to-reach or
hazardous areas, making them suitable for mapping terrain,
forests, cliffs, and other challenging landscapes. UAVs can
also capture images from multiple angles and altitudes,
enabling the creation of 3D models of the land. These
models are valuable for urban planning, archaeological site
preservation, and environmental assessment. Repeated
UAYV flights over time can be used to monitor land chan-
ges, such as urban expansion, deforestation, or erosion. For
land mapping, deep learning techniques are employed in
various ways to extract valuable information from aerial.
Deep learning models can be used to detect changes in land
cover and land use over time by comparing historical and
current imagery. It can be also applied to identify and
extract building footprints from high-resolution aerial
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imagery and extract road networks, enabling the creation of
detailed road maps. This information is essential for urban
planning, disaster response, and infrastructure develop-
ment. Deep learning algorithms proficiently classify land
parcels or areas into different land-use types, such as res-
idential, commercial, agricultural, or industrial, and can
process LiDAR data to create accurate digital elevation
models, which are essential for terrain analysis, and flood
modeling. To implement deep learning in land mapping,
large labeled datasets are required for model training, and
specialized neural network architectures. Consequently, we
present a compilation of recently accessible datasets, as per
our comprehensive literature review. Table 6 illustrates a
categorized list of datasets, detailing their respective
applications and dataset contents.

5.3 Satellites datasets

There is a large number of active remote sensing satellites
and databases, which are accessible through freely avail-
able and commercial interfacing software programs. Some
of the common sources of remote sensing data are the
United States Geological Survey; National Oceanic and
Atmospheric Administration; National Aeronautics and
Space Administration Earthdata; NASA Earth Observa-
tions; European Space Agency; Japan Aerospace Explo-
ration Agency; AirBus Defense and Space; MAXAR
Company; Planet Labs; Satellite Imaging Corporation;
Apollo Mapping. We present a selection of popular and
recently cited datasets of overhead imagery, mostly from
remote sensing Earth satellites. The available satellite data
is vast. Most datasets combine satellite imagery from
multiple satellites with ground-based measurements to
train artificial intelligence models to create algorithms that
can be used to process new data. For example, a local 2011
study of mangrove forests in the coastal region of West
Africa was used to develop a general model for mangrove
detection globally [297].

We present a partial list of interesting satellite-based
datasets in the four most popular applications. Agriculture
and forestry datasets are included in Table 7. Such datasets
commonly reply to RGB color imagery, as well as infrared
to detect the extent of vegetation on the surface. Often data
products for analysis via machine learning are created to
include urban sprawl, human development, and water
levels. The results are often global maps useful for
assessment and planning.

Furthermore, disaster response satellite datasets are lis-
ted in Table 8; common sensor modalities include infrared,
radar, RGB, and multispectral imagery. Applications
include the study of global storms, floods, and landslide
patterns, as well as volcano activity, temperature extremes,
wildfires, and building damage mapping.
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Table 6 List of the publicly available datasets for land mapping based on the application

References Dataset name/ Year Sensors Application Content
website
[289] UC Merced Land 2010 RGB Land-use Overhead images of 21 urban structure classes. 100 images
Use Dataset classification  per class. 256256 pixels with 30 cm spatial resolution.
[290] DynamicEarthNet 2022 RGB, IR Land-use The dataset contains daily observations of 75 separate areas
classification  of interest around the globe, with 7 land-use and land-
cover (LULC) semantic classes
[291] SinkholeNet 2022 RGB Land-use The dataset comprises 467 high-resolution UAV images.
classification ~ The alignment of these spatially overlapped images was
achieved using the Visual Structure from Motion system
(VisualSfM) algorithm to produce an orthomosaic image
and a Digital Elevation Model (DEM) for the study area
[292] UAVid 2020 RGB Land-cover This dataset has 300 images and each of size e 4096 x 2160
classification or 3840 x 2160. In total, 30 small UAV video sequences
are captured in 30 different places to bring variance to the
dataset.
Data collection takes place under favorable weather
conditions with ample illumination
[293] UNCD 2018 RGB Land use The UMCD Dataset (about 3.50 GB) is composed of two
main sets (geo-referenced and not geo-reference) of
challenging video sequences acquired at very low-altitude.
This dataset can be used for land-use classification
[253] IEEE GRSS 2018 Fusion of multispectral Land The provided data encompasses Multispectral-LiDAR point
DATA LiDAR and management cloud information at wavelengths 1550 nm, 1064 nm, and
FUSION hyperspectral data 532 nm; Hyperspectral data spanning a spectral range of
380-1050 nm with 48 bands at a 1-m Ground Sample
Distance (GSD), along with high-resolution RGB imagery
at a S5-centimeter GSD
[294] LandCover 2017 RGB, LiDAR and Land-cover The dataset comprises aerial images with ground control
ALS classification ~ points and direct geo-referencing data. The data cover
various areas of interest for research, such as buildings
with diverse sizes and roof materials, roads, and
vegetation
[295] Pavia University 2022 Hyper spectral Land-cover Contains 42,776 aerial images of 9 classes of land-cover
Scene (430-960 nm) classification types such as asphalt, meadow, gravel, trees, shadows,
painted metal, etc.
[296] Indian Pines 2022 Hyper spectral with Vegetation Contains 10,249 aerial images of 16 classes of vegetation
224 classification and agricultural fields, including Alfalfa, Corn, Grass,

bands(400-2500 nm)

Oats, Wheat, woods, etc.

In addition, environmental monitoring satellite datasets
are listed in Table 9. Applications include monitoring
wildlife habitats, ice sheet monitoring, climate predictions,
atmospheric gas concentrations, freshwater reservoir
assessment, ocean flux, and plastic pollution monitoring.
Sensor modalities include combinations of multispectral,
radar, GPS, ground data, infrared, and RGB.

Finally, satellite datasets for scene classification and
object segmentation detection are listed in Table 10.
Applications include semantic segmentation of overhead
scene pixels into categories of land use, as well as road,
car, and ship detection. Sensor modalities include RGB,
infrared, radar, and multispectral imagery.

6 Discussion and future direction
6.1 Perspective from imaging and sensing

The combination of UAV and satellite imagery with deep
learning algorithms in remote sensing is anticipated to
persist in transforming our capacity to observe and com-
prehend the Earth’s surface and its dynamic processes. This
advancement is poised to contribute to progress in fields
such as agriculture, environmental conservation, disaster
management, and urban planning, among others. Drawing
from our expertise and comprehensive review of this field,
we present key trends and areas of development as follows:
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https://ieee-dataport.org/open-access/2018-ieee-grss-data-fusion-challenge-%E2%80%93-fusion-multispectral-lidar-and-hyperspectral-data
https://ieee-dataport.org/open-access/2018-ieee-grss-data-fusion-challenge-%E2%80%93-fusion-multispectral-lidar-and-hyperspectral-data
https://ieee-dataport.org/open-access/2018-ieee-grss-data-fusion-challenge-%E2%80%93-fusion-multispectral-lidar-and-hyperspectral-data
https://ieee-dataport.org/documents/dataset-containing-frame-images-and-dense-airborne-laser-scanning-point-clouds
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Pavia_Centre_and_University
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Indian_Pines
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Table 7 Selected satellite-based datasets used in forestry and agriculture

References Dataset name/ Year Modalities Applications Content
Website
[297] Mangrove Forests 2000 RGB, NIR, SWIR Study West African mangrove A map of “true mangroves” based on
Distribution forests subject to sea level training data from 200 km of African
Polygon, v1 (2000) rise threat coastline mangrove areas. 30 m
resolution.
[297] Global Mangrove 2000 RGB, NIR, SWIR Global mangrove forest A global map of “true mangroves” based
Forests distribution modeling, land- on training data from 137,760 km? in
Distribution, 2000 cover change analysis, 118 countries and territories
global carbon accounting
[298] Deforestation, v1 2012 RGB, NIR, SWIR Study global tree cover extent, A time-series analysis of 654,178 Landsat
(2000-2012) loss, and gain images. 30 m resolution
[299] MA Biodiversity, vl 2001 Moderate Resolution Global biodiversity studies Data spanning 50 years, including disease
(1950-2001) Imaging agents, animal and fish populations,
Spectroradiometer pollution, and loss of natural land cover
and Data
[300] Gravity Recovery 2016 Gravity sensor Global freshwater availability A global gridded data set at a spatial
and Climate trends resolution of 0.5° that represents trends
Experiment in between 2022 and 2016
(GRACE), vl
(2002-2016)
[301] Croplands, vl (2000) 2000 Moderate Resolution Human-environment Global maps for agricultural land
Imaging interaction: agriculture distribution in 2000
Spectroradiometer
[301] Pastures, v1 (2000) 2000 Moderate Resolution Human-environment Global maps for animal grazing in 2000
Imaging interaction: pastureland
Spectroradiometer
[302] HANPP Collection 2004 Radiometer Human appropriation of net Global map of the annual amount of
primary productivity (NPP) Earth’s terrestrial net primary production
studies humans require for food, fiber (including
fabrication) and fuel, as well as the
amount of NPP required
[303] Food Insecurity 2019 Data product Food security studies Maps (250 m resolution) for intensity and

Hotspots Data Set,
vl (2009-2019)

frequency of food insecurity (2009-2019)
and effects

Enhancing the spatial and temporal resolution of
satellite and UAV imagery is imperative. This enhance-
ment will facilitate more frequent and detailed moni-
toring of landscapes, ecosystems, and urban areas.

Multi-sensor integration is a critical requirement within
the field of remote sensing data analysis and remote
sensing, where data from a variety of sensors such as
optical, thermal, LiDAR, and hyperspectral sensors
must be effectively combined. This integration offers
the potential for a more comprehensive understanding
of the environment. However, it also presents a new
challenge in the implementation of novel deep learning
architectures, as they need to be capable of handling the
fusion of multi-modal data for enhanced analysis.
Standardize data and calibration procedures across
different sensors and the development of DL architec-
tures designed for multi-sensor integration with the

@ Springer

collaboration of the sensor manufacturers, could help to
mitigate the aforementioned challenges

In dynamic scenarios applications, such as disaster
response and precision agriculture, real-time and on-
device processing of UAV imagery is an immediate
need. However, this also requires efficient algorithms
and hardware capable of handling large volumes of data
with low latency. The development of lightweight DL
models optimized for on-device processing could be
needed for this scenario, in which edge computing and
distributed processing systems are used to reduce
latency problems.

There will be an increasing trend toward tailoring deep
learning models with satellite/UAV platforms to speci-
fic applications, whether it is precision agriculture,
forestry management, environment monitoring, or dis-
aster management. This requires a deep understanding


https://doi.org/10.7927/H4RJ4GCJ
https://doi.org/10.7927/H4RJ4GCJ
https://doi.org/10.7927/H4RJ4GCJ
https://doi.org/10.7927/H4J67DW8
https://doi.org/10.7927/H4J67DW8
https://doi.org/10.7927/H4J67DW8
https://doi.org/10.7927/H4SJ1HHX
https://doi.org/10.7927/H4SJ1HHX
https://doi.org/10.7927/H4V9860B
https://doi.org/10.7927/H4V9860B
https://doi.org/10.7927/H4TT4P2C
https://doi.org/10.7927/H4TT4P2C
https://doi.org/10.7927/H4TT4P2C
https://doi.org/10.7927/H4TT4P2C
https://doi.org/10.7927/H4TT4P2C
https://doi.org/10.7927/H47H1GGR
https://doi.org/10.7927/H47H1GGR
https://doi.org/10.7927/H4W66HPJ
https://doi.org/10.7927/cx02-2587
https://doi.org/10.7927/cx02-2587
https://doi.org/10.7927/cx02-2587
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Table 8 Selected satellite-based datasets used in disaster response

References Dataset name/ Year Modalities Applications Content
Website
[304] Geocoded 2021 Geocoded Data Coded data for global disaster analysis: 39,953 locations geocoded for 9,924 disasters
Disasters floods; storms; landslides; droughts; that occurred worldwide in the years
(GDIS) volcanoes; extreme temperatures 1960-2018
[305] Hephaestus 2022 Interferometric ~ Volcano state classification, semantic ~ Contains 19,919 manually annotated Sentinel-
Dataset SAR (InSAR) segmentation, ground deformation, 1 satellite SAR interferograms of 44
the atmospheric signal in InSAR different volcanoes globally
imagery
[306] WildFires 2019 RGB, NIR, Predict the occurrence of wildfires 804 rows vectors of data (386 “fire,” 418 “no
MIR, and using machine learning and data fire”) collected from 2 million hectares in
Thermal IR, mining Canada in the period 2013-2014
and data
[307] VIIRS 2013 NIR, SWIR Detect fires and combustion sources on Infrared data recorded at night. Bands M 10,
NightFire Earth’s surface at night M11, M12, and M13 bands are used to
(VNF) detect combustion sources
[308] Global Fire 2013 Radiometer, Global area burning assessment Data product of global green area loss
Emissions RGB, IR, between 1995 and 2013
Database Rainfall/Fire
(GFED4)) Maps
[309] xBD 2019 multi-band Assessment of building damage after ~ Labeled pre and post-damage top view
RBG wildfires, earthquakes, tsunamis, imagery of buildings with bounding boxes
wind damage, etc. and labels of damage caused. Images of
700,000 buildings from 15 countries
covering 5,000 square kilometers
[310] Harmonized 2018 Multispectral Flood, mudslide, and urban destruction A Virtual Constellation of surface reflectance
Landsat monitoring after weather-related data acquired by the Operational Land
Sentinel-2 disasters Imager and Multi-Spectral Instrument on
(HLS) Landsat-8 and Sentinel-2. 2-3 day and 30 m
resolutions
[311] NASA 2021 True Color Maps and data to monitor hurricane Near real-time Geographic Information
Disasters RGB, SAR and flooding development and Systems (GIS) format producer from
Program aftermath multiple satellites. 3-4 m resolution

of the domain and the ability to adapt to changing
requirements.

e As the use of UAV/satellite and deep learning in remote
sensing grows, there will be a greater focus on ethical
and regulatory issues, including privacy concerns, data
security, and compliance with local and international
regulations. Methods such as strong data encryption and
access control measures to protect sensitive data could
be implemented to mitigate privacy concerns. Addi-
tionally, educate stakeholders about the importance of
data privacy and security.

6.2 Perspective from learning algorithms

Supervised classification algorithms need labeled data to
classify RS images correctly. However, collecting labeled
samples for learning is time-consuming and costly. Accu-
rate classification maps need sufficient and high-quality
training data. One of the major limitations of these

supervised approaches is the scarcity of a dataset superior
in quantity and quality for training the classifier. In remote
sensing image classification, data labeling can be tricky
and time-consuming. Thus, semi-supervised learning (SSL)
approaches have been used to train the classifier using
labeled and unlabeled data to enrich the input to the
supervised learning algorithm and increase classification
accuracy. This is especially beneficial in remote sensing,
where gathering and classifying vast training data may be
time-consuming and costly. However, SSL approach poses
some challenges. It requires carefully selecting the labeled
and unlabeled data and an appropriate semi-supervised
learning algorithm. Different SSL algorithms may perform
variably depending on the dataset characteristics and
classification tasks, where there is a need for algorithms
that can adapt to the specific properties of remote sensing
data, such as high dimensionality and spectral variability.
To address this issue, some advanced data selection
methods could be an option, such as developing

@ Springer


https://sedac.ciesin.columbia.edu/data/set/pend-gdis-1960-2018
https://sedac.ciesin.columbia.edu/data/set/pend-gdis-1960-2018
https://sedac.ciesin.columbia.edu/data/set/pend-gdis-1960-2018
https://doi.org/10.48550/arXiv.2204.09435
https://doi.org/10.48550/arXiv.2204.09435
https://github.com/ouladsayadyounes/Wildfires
https://eogdata.mines.edu/products/vnf/
https://eogdata.mines.edu/products/vnf/
https://eogdata.mines.edu/products/vnf/
https://eogdata.mines.edu/products/vnf/
https://eogdata.mines.edu/products/vnf/
https://eogdata.mines.edu/products/vnf/
https://eogdata.mines.edu/products/vnf/
https://xview2.org/dataset
https://hls.gsfc.nasa.gov/
https://hls.gsfc.nasa.gov/
https://hls.gsfc.nasa.gov/
https://hls.gsfc.nasa.gov/
https://disasters-nasa.hub.arcgis.com/
https://disasters-nasa.hub.arcgis.com/
https://disasters-nasa.hub.arcgis.com/
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Table 9 Selected satellite-based datasets used in environmental monitoring

References Dataset name/ Year Modalities Applications Content
Website
[310] Harmonized 2018 Multispectral Monitoring of phenomena such  Surface reflectance data acquired by the OLI and
Landsat as natural disasters, cyclical Multi-Spectral Instrument on Landsat-8 and
Sentinel-2 crop yields, and wildlife Sentinel-2
(HLS) habitats

[312] MERRA-2 2017 Hyperspectral, climate prediction, aerosols, and Timestamped ozone, wind, rain, temperature, and
microwave, ice sheet monitoring other data between 1980 and 2012
GPS

[313] MODIS 2018 Data Earth climate monitoring, land-  Temporal and spatial surface air temperature

MYDI11C3 transformations climate interactions records (2003-2016)

[314] CT2019B 2022 Satellite and Study concentrations of Global carbon dioxide surface flux, with a focus
ground data atmospheric carbon dioxide on North America (2000-2018)

[315] GRBD 2020 Multi-satellite Global water reservoir studies 30 m resolution data for 347 global reservoirs,
imagery and and bathymetry representing half of the global water reservoir
altimetry capacity

[316] CMORPH 2023 Passive MW, IR Global precipitation estimation  Precipitation rates from 1998 to the present in mm

per hour with 8§ km by 8 km spatial, and 30 to 60
minute temporal resolution.

[317] HydroSat 2022 Satellite Global surface water storage Hydrological time series (2016 to 2018), based on:
altimetry, studies water level; river width estimation; water storage
imagery, and anomalies; river discharge
gravimetry

[318] J-OFURO3 2019 Data product Global ocean flux studies Ocean surface heat, momentum, freshwater fluxes,

and related parameters globally between 1988
and 2013
[319] Global 2021 Multispectral Surface water levels studies. Pixel level classified Landsat images (3 million):
Surface water; land; non-valid. 30-m resolution
Water (1984-2021)
[320] Hyperspectral 2021 Hyperspectral Ocean plastic pollution detection Images from 30 test sites. 13 pixel-level classes
Plastics over water and land, including plastics. Plastics
Dataset sub-classes: tires; plastic; greenhouse; waste cite

reinforcement learning-based strategies for dynamically
selecting the most informative labeled and unlabeled
samples during training. In addition, future research can
focus on enhancing domain adaptation techniques [330]
within SSL frameworks to handle variations in data dis-
tributions across different regions and sensor types. We
also suggest exploring other types of machine learning
techniques like curriculum learning [331], where the model
is trained on easier tasks or samples first, gradually
increasing the complexity to improve learning efficiency
and performance.

In addition, multi-task learning (MTL) can be helpful in
RSIC when multiple related land-cover classification tasks
need to be performed. It allows the model to learn shared
features that may be useful for multiple tasks. One of the
main advantages of MTL is that it allows a model to learn
shared features that may be useful for multiple tasks, which
can help improve the model’s performance on each task.
For example, an MTL model could be used to classify

@ Springer

vegetation and water bodies in a satellite image, and the
model could learn useful features for both tasks. Thus,
MTL is a helpful tool for RSIC, mainly when multiple
related tasks need to be performed, and can help improve
accuracy and efficiency. In terms of future trends in MTL
development, we envision that research will continue
developing robust techniques for learning the degree of
relatedness between tasks in a context-aware manner,
potentially using attention mechanisms or graph-based
representations. Besides, as loss function is an important
task of MTL, innovative approaches to enhance the func-
tionality of task-specific layers with adaptive loss weight-
ing strategies would be beneficial. This ensures the
importance of each task’s loss is dynamically adjusted
based on task performance and difficulty.

Furthermore, active learning (AL) can be particularly
useful when labeled data are scarce and it is not feasible to
label the entire dataset. One of the main advantages of
active learning is that it can help improve a model’s


https://hls.gsfc.nasa.gov/
https://hls.gsfc.nasa.gov/
https://hls.gsfc.nasa.gov/
https://hls.gsfc.nasa.gov/
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://gml.noaa.gov/ccgg/carbontracker/
https://dataverse.tdl.org/dataverse/tamu
https://doi.org/10.25921/w9va-q159
http://hydrosat.gis.uni-stuttgart.de/php/index.php
https://www.j-ofuro.com/en/
https://global-surface-water.appspot.com
https://global-surface-water.appspot.com
https://global-surface-water.appspot.com
https://www.narcis.nl/dataset/RecordID/
https://www.narcis.nl/dataset/RecordID/
https://www.narcis.nl/dataset/RecordID/
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Table 10 Selected satellite-based datasets used in scene classification, object segmentation, and detection

References Dataset name/ Year Modalities Applications Content
Website
[321] SEN12MS 2019 Dual Polarity Image classification, semantic 180,748 image triplets holding dual-polarity
SAR, segmentation, and data fusion. Land- SAR (Sentinel-1), multispectral images
multispectral cover maps of all inhabited continents (Sentinel-2), and land-cover maps
images. overall meteorological seasons (MODIS)
[322] Massachusetts 2013 RGB Road segmentation from overhead 1171 images 1500 x 1500 pixels of a 2600
Roads imagery square kilometer area with urban,
Dataset suburban, and rural areas with 1 pixel per
square meter
[323] SpaceNet 6 2020 Quad- Semantic segmentation of city buildings in 48,000 unique building rooftops in the city
polarity SAR,  all types of weather conditions of Rotterdam, with height information
RGB labels.
[324, 325] RSD46-WHU 2017 RGB Overhead scene classification: airplane, 117,000 images of 46 classes. Between 500
building, bridge, oil tank, playground, and 3000 images per class
etc.
[326] Cars Overhead 2016 RGB, Deep learning-based car detection in Overhead images from 6 cities: Toronto;
with Context Grayscale overhead images Selwyn; Potsdam; Vaihingen; and
(COWO) Columbus. Also, 32,716 annotated car
objects with 58247 unique negative
examples and 15 cm per pixel resolution
[327] SAR-Ship- 2019 SAR Object (ship) detection in images with 43,819 SAR images of ships, from the
Dataset complex backgrounds. Scene Gaofen-3 and Sentinel-1 satellites
classification
[328] HRSC2016 2017 RGB Object (ship) recognition in high- 1061 sea and sea-land images with 3786
resolution color satellite images annotated ship samples
[329] NEPUOWOD 2021 RGB Oil Well detection 1192 oil wells in 432 images from Daqing
V1.0 City, China

performance by focusing on labeling the most informative
samples. This can be particularly useful in RS image
classification, where labeling the entire dataset may not be
practical due to the size and complexity of the images. The
future trends in active learning are likely to focus on
integration with other learning methods such as meta-
learning algorithms to allow the active learning system to
adapt its querying behavior dynamically.

Besides, in RS image classification, transfer learning
(TL) can be beneficial when there is a lack of labeled data
for the specific land-cover classification task, but there is a
related task for which labeled data are available. This is
because the model can leverage the knowledge it has
learned from the source task to better classify the data for
the target task. We anticipate the development of TL will
be emphasized from the following aspects: (1) Unsuper-
vised domain adaptation, which allows models to adapt to
new domains without requiring labeled data in the target
domain. (2) Multi-view multi-source transfer learning.
With ever-increasing remote sensing data availability,
sensor and methodology advancement, ongoing research in
TL is most likely to leverage multi-source remote sensing
data from multiple views or perspectives to better

generalize to a target domain and thus improve perfor-
mance. (3) Parameter-efficiency models or lightweight
models. This makes it easier to fine-tune and deploy in
resource-constrained environments. (4) Privacy-preserving
and efficient transfer learning, such as developing transfer
learning models in federated learning settings that are
robust to adversarial attacks and compatible with varying
computational resources.

Finally, ensemble learning (EL) can be used to improve
the accuracy and robustness of a model’s classification
tasks by using the strengths of multiple models. For
example, if different models are trained on different subsets
of the data or with different algorithms, the EL model can
use the complementary strengths of each model to achieve
better results. Another advantage of EL is that it can help
reduce the risk of overfitting, as it can use the predictions
of multiple models rather than just one. Ongoing work is
suggested in the area of adaptive ensemble methods that
can dynamically adjust model aggregation based on data
characteristics and tasks. Another interesting area of
research is designing ensembles that work efficiently in
resource-constrained environments, such as edge comput-
ing and mobile devices.

@ Springer


https://mediatum.ub.tum.de/1474000
https://www.kaggle.com/datasets/balraj98/massachusetts-roads-dataset
https://www.kaggle.com/datasets/balraj98/massachusetts-roads-dataset
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https://spacenet.ai/sn6-challenge/
https://github.com/RSIA-LIESMARS-WHU/RSD46-WHU
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://gdo152.llnl.gov/cowc/
https://github.com/CAESAR-Radi/SAR-Ship-Dataset
https://github.com/CAESAR-Radi/SAR-Ship-Dataset
https://www.kaggle.com/datasets/guofeng/hrsc2016
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https://drive.google.com/drive/folders/1bGOAcASCPGKKkyrBDLXK9rx_cekd7a2u
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6.3 Perspective from foundation models

The rapid advancement of large language models (LLMs)
has significantly impacted various natural language tasks.
This progression heralds an era where visual foundation
models (VFM) will become integral to numerous RS
applications. We anticipate the use of VFMs in tasks like
remote sensing image classification, segmentation, and
captioning. Furthermore, there is potential for the devel-
opment of domain-specific VFMs tailored to particular RS
applications. These applications could include precision
agriculture, disaster monitoring and response, and climate
change analysis, among others. This trend reflects a
growing synergy between advanced machine learning
techniques and practical, real-world applications in remote
sensing and environmental monitoring. However, the
development of VFM for RS applications requires over-
coming challenges related to model complexity, scalability,
and interoperability. To this end, future development in this
area will focus on scalable VFM methods capable of
handling large volumes of RS data. Additionally, we
envision that domain-specific or data-specific VFMs will
become more prevalent for managing various types of
optical and radar RS data. For instance, models like
Spectral GPT [332] can provide deeper insights into
advancing spectral RS big data applications.

6.4 Perspective from the ethical aspect
of remote sensing with deep learning
systems

Remote sensing technologies, when combined with deep
learning systems, offer remarkable capabilities for moni-
toring and understanding the Earth’s surface. However, the
integration of these technologies raises ethical concerns
that must be carefully addressed to ensure their responsible
and ethical use.

One of the primary ethical considerations in remote
sensing with deep learning systems is privacy. These sys-
tems can capture highly detailed information about indi-
viduals and their activities, raising concerns about
unauthorized surveillance and data misuse. To address
these concerns, privacy-preserving techniques should be
employed [333, 334]. In addition, given the sensitivity of
remote sensing data, ensuring its security is paramount.
This involves implementing robust data encryption tech-
niques to enable the efficient encryption of remote sensing
data [335, 336].

Another critical issue is the potential for bias and
unfairness in deep learning models used for remote sens-
ing. If these models are trained on biased data, they may
produce unfair outcomes. To mitigate these risks, it is

@ Springer

essential to use diverse and representative datasets and
implement bias detection and mitigation techniques in the
model development process [337].

Compliance with regulations and standards, as well as
establishing accountability for decisions made using
remote sensing data, is crucial. This includes establishing
clear policies and procedures for data collection, process-
ing, and use, providing transparency about data sources and
analysis algorithms, and implementing mechanisms for
accountability and oversight [338, 339].

Addressing these ethical concerns is essential for the
responsible and sustainable deployment of remote sensing
technologies with deep learning systems. It enables us to
harness the potential of these technologies for positive
impact while mitigating potential harm to individuals,
society, and the environment.

7 Conclusions

This review offers a thorough examination of diverse deep
learning models and frameworks, along with their archi-
tectural designs, tailored for remote sensing image classi-
fication tasks. It also delves into various sensor modalities
and imaging platforms pertinent to RS image analysis.
Additionally, the review encompasses both existing and
potential applications in this domain. Further, it analyzes
current trends in the application of deep learning within the
remote sensing field and proposes predictions for ongoing
and future developments. Our aim is to inspire increased
interest and engagement within the vision and remote
sensing community, encouraging the use of various deep
learning models not only for RS image classification
challenges but also for broader applications in the field.
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