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Abstract
In recent years, deep learning has significantly reshaped numerous fields and applications, fundamentally altering how we

tackle a variety of challenges. Areas such as natural language processing (NLP), computer vision, healthcare, network

security, wide-area surveillance, and precision agriculture have leveraged the merits of the deep learning era. Particularly,

deep learning has significantly improved the analysis of remote sensing images, with a continuous increase in the number

of researchers and contributions to the field. The high impact of deep learning development is complemented by rapid

advancements and the availability of data from a variety of sensors, including high-resolution RGB, thermal, LiDAR, and

multi-/hyperspectral cameras, as well as emerging sensing platforms such as satellites and aerial vehicles that can be

captured by multi-temporal, multi-sensor, and sensing devices with a wider view. This study aims to present an extensive

survey that encapsulates widely used deep learning strategies for tackling image classification challenges in remote

sensing. It encompasses an exploration of remote sensing imaging platforms, sensor varieties, practical applications, and

prospective developments in the field.
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1 Introduction

Remote sensing (RS) images are valuable resources of data

to quantify and observe intricate formations on the Earth’s

surface.

Remote sensing image classification (RSIC), which task

is to automatically assign a semantic label for a given

remote sensing image, has been a fast-growing research

topic in recent years, and it has significant contributions to

monitoring and understanding key environmental pro-

cesses. Thanks to a large volume of remote sensing data

availability, sensor development, and ever-increasing

computing powers, rapid advancement in RSIC has been

witnessed by its real-world applications, such as natural

hazard detection [1, 2], precision agriculture [3, 4], land-

scape mapping [5], urban planning [6], and climate chan-

ges [7]. The enabler of this wide range of applications of

RSIC is also attributed to the ability of RS images to

capture multi-scale, multi-dimensional, and multi-temporal

information. Hence, one of the challenging but important
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tasks in RSIC is to effectively extract valuable information

from the various kinds of RS data to aid further image

analysis and interpretation.

Traditional approaches to exploiting features from RS

images heavily rely on feature extraction and/or feature

selection. The former process produces new features to

describe specific spatial and spectral attributes of RS data

using a transformation matrix or a set of filtering processes.

For instance, knowledge-based approaches depend on

spectral characteristics and supervised and unsupervised

methods such as canonical analysis and principal compo-

nent analysis. The latter identifies a subset of feature can-

didates from a feature pool via selection criteria. Although

feature extraction or selection provides useful information

to improve the accuracy of RSIC, most of those methods

are suboptimal for comprehensively representing original

data for given applications [8]. Particularly, their suitability

can be even degraded when comes to big data with multi-

Sensors, since RS images can vary greatly in terms of time,

geo-location, atmospheric conditions, and imaging plat-

form [9, 10]. Therefore, an effective and unified approach

is needed to automatically extract pertinent features from

diverse RS data.

Deep learning (DL) [11], as a subset of machine learn-

ing, has demonstrated unprecedented performance in fea-

ture representation and is capable of performing end-to-end

learning in various vision tasks, including image classifi-

cation [12], object detection [13], semantic segmentation

[14], and natural language processing [15]. Since the

astonishing accuracy was produced by a deep convolu-

tional neural network (CNN) in the large-scale visual

recognition challenge [12], CNN and its variants prevailed

in many fields [16], along with tremendous successes

including those most important yet unsolved issues of

modern science, such as AlphaFold [17] which can accu-

rately predict 3D models of protein structures.

Over the last few years, researchers have made an effort

to utilize the most advanced techniques in AI for RSIC,

from traditional methods in machine learning, all the way

through deep learning techniques such as the use of CNN

and its variants.

This study aims to fill the gap in the existing literature in

RSIC with the following key contributions:

• An extensive examination of cutting-edge deep learning

models through a systematic review, covering a brief

description of architectures and frameworks for RSIC.

Our review includes concise descriptions of the archi-

tectural nuances and frameworks that have shown

promise in this domain.

• A summary of remote sensing datasets, modalities, as

well as corresponding applications. This comprehensive

resource will serve as a reference for researchers and

practitioners navigating the rich landscape of remote

sensing data.

• Suggestions for promising research direction and

insights around RSIC. These recommendations aim to

catalyze innovation and drive the field forward.

This study serves as evidence of the growing impact of

deep learning within the domain of remote sensing image

analysis. It sheds light on how deep learning can be a

powerful tool for addressing persistent challenges in RSIC

and seeks to stimulate further research in this dynamic and

essential field.

1.1 Review statistics

Deep learning techniques have been actively implemented

for RS-related tasks (i.e., image classification) in the last

lustrum. Statistical analysis was conducted using the latest

Scopus data for a literature search on the most popular

keywords in RS publications: ‘‘deep learning’’ AND ‘‘re-

mote sensing’’ AND ‘‘image classification,’’ ranging the

year from 2017 to 2023 (mid-September). The detailed

research setting can be found in Table 1. The research

results are analyzed from two aspects: (1) the number of

conferences and journals published, as shown in Fig. 1, and

(2) the distribution of publications across subject areas, as

depicted in Fig. 2.

From Fig. 1, it can be clearly seen that the total number of

publications (i.e., conference papers ? journal articles) is

consistently increased yearly in the past 5 years and a par-

ticularly significant difference is observed comparing 2021

with 2017, demonstrating fast growth of this research. While

journal articles also exhibit a yearly increase, the number of

conference papers published in 2021 is reduced compared to

the previous year. In addition, it is worth noting that the

number of published journal articles in 2021 greatly excee-

ded the number of conference papers, indicating remarkable

development of the aforementioned topic. In Fig. 2, the

subject of ‘‘Earth and planetary science’’ turns out to be the

most widely applied area of deep learning applications in

RSIC, while the computer science field is ranked second with

a minor margin in terms of publication count.

The remainder of this article is organized as follows. In

Sect. 2, we delve into an overview of existing surveys on

deep learning-based Remote Sensing Image Classification

(RSIC). Section 3 provides a comprehensive summary of

Deep Learning (DL) applications in remote sensing. The

various deep learning models pertinent to RSIC are

reviewed briefly in Sect. 4. Detailed descriptions of remote

sensing datasets and their associated applications are pre-

sented in Sect. 5. Section 6 addresses current challenges

and outlines potential future research directions. Finally,

Sect. 7 offers concluding remarks on this survey.
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2 Related work

In the past several years, driven by DL, a great number of

RSIC methods sprung up, and consequently, many related

survey or review papers have been published, which are

summarized in Table 2. These surveys cover various

aspects of the field, including the methods used and the

content they focus on.

In chronological order, starting in Yao et al. [18] con-

ducted a survey focused on providing data sources for RS

and current deep learning-based classification methods.

Moving to Li et al. [19] conducted a comprehensive review

Fig. 1 Related conference papers and journal articles published per year from 2017 to 2023 Source: Scopus database accessed on September 15,

2023. The search results obtained by searching on ‘‘deep learning’’ AND ‘‘remote sensing’’ AND ‘‘image classification.’’

Fig. 2 The distribution of relevant papers based on the top 10 subject areas
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and comparative analysis of deep learning approaches for

RSIC, considering both pixel-wise and scene-wise strate-

gies. The year 2019 witnessed the presentation of several

related surveys. Li et al. [20] delved into the realm of

hyperspectral image scene classification, revising deep

learning methods and offering guidance on how to enhance

Table 1 Literature research

settings in Scopus database
Search field Search selections

Search Documents ‘‘Deep Learning’’ AND ‘‘Remote Sensing’’ AND ‘‘Image Classification’’

Document journals Article, Conference paper

Keyword Remote Sensing, Deep Learning, Image Classification

Source Type Journal, Conference Proceeding

Year 2017–2023

Search within Article title, Abstract, Keywords

Table 2 A summary of the number of surveys for deep learning-based remote sensing image classification (RSIC)

References Title Year Methods Content

[18] A review on image classification of remote sensing

using deep learning

2017 CNN SAE

DBN

Provides data sources of remote sensing and current

deep learning-based classification methods

[19] Deep learning for remote sensing image

classification: A survey

2018 CNN SAE

DBN

A systematic review and comparative analysis of

pixel-wise and scene-wise deep learning approaches

for RS image classification

[20] Deep learning for hyperspectral image classification:

An overview

2019 DBN SAE

CNNs

GANs TL

Review of deep learning methods in hyperspectral

image scene classification and provides guideline to

improve the classification performance

[21] Deep learning classifiers for hyperspectral imaging:

A review

2019 CNNs

LSTM

GRU SSL

AL TL

Detailed review of deep learning algorithms,

frameworks, normalization methods for

hyperspectral image Classification

[22] A survey of remote sensing image classification

based on CNNs

2019 CNNs Summary of CNN-based RS scene classification

methods, and provides challenges and suggestions

for CNN-based RS image classification

[23] Remote sensing image scene classification meets

deep learning: Challenges, methods, benchmarks,

and opportunities

2020 SAE CNNs

GANs

Discusses the main challenges of RS image scene

classification and comprehensively compares

popular deep learning architectures based on CNN,

GAN, and SAE.

[24] Deep learning methods for land-cover and land-use

classification in remote sensing: a review

2020 CNN TL Comparative analysis of deep CNN models on

diverse RS datasets

[25] Deep Learning for Land-Use and Land-Cover

Classification Based on Hyperspectral and

Multispectral Earth Observation Data: A Review

2020 CNNs TL Review of deep learning in RS scene classification

and provide a framework from multispectral and

hyperspectral images perspective

[26] Hyperspectral and Lidar data applied to the urban

land-cover machine learning and neural-network-

based classification: a review

2021 CNN

CRNN

Review of hyperspectral and LiDAR data fusion

approaches for urban land-cover classification

[27] Land-use mapping for high spatial resolution remote

sensing image via deep learning: A review

2021 CNN DBN

SAE FCN

TL

Review of deep learning-based land-use mapping

methods consists of supervised learning, semi-

supervised learning, or unsupervised learning, as

well as pixel-based or object-based approaches

[28] Remote Sensing Image Classification: A

Comprehensive Review and Applications

2022 CNN SSL

RL

Overview of trending DL models and training

techniques for RSIC task. The review maps those

trending with corresponding benchmark datasets

and provides a sense of potential future research

directions in remote sensing image analysis

CNN, Convolutional Neural Network; CRNN, Convolutional Recurrent Neural Network; RL, Reinforcement Learning; DBN, Deep Belief

Network; SAE, Stacked Autoencoder; GAN, Generative Adversarial Network; TL, Transfer Learning; LSTM, Long Short-Term Memory; GRU,

Gated Recurrent Units; SSL, Self-Supervised Learning; AL, Active Learning; and FCN, Fully Convolutional Network

16730 Neural Computing and Applications (2024) 36:16727–16767

123



classification performance. Paoletti et al. [21] offered a

detailed review of deep learning algorithms, frameworks,

and normalization methods tailored to hyperspectral image

classification. Additionally, Song et al. [22] summarized

methods based on CNNs for remote sensing scene classi-

fication and highlighted challenges and recommendations

for CNN-based classification. Cheng et al. [23] discussed

the challenges, methods, benchmarks, and opportunities in

remote sensing image scene classification, in addition to

comparing popular deep learning architectures, including

CNN, GAN, and SAE. On the other hand, Alem et al. [24]

conducted a comparative analysis of deep CNN models on

diverse remote sensing datasets, while Vali et al. [25]

reviewed deep learning in remote sensing scene classifi-

cation from the perspective of multispectral and hyper-

spectral images. Kuras et al. [26] conducted a review of

hyperspectral and LiDAR data fusion approaches for urban

land-cover classification, focusing on the use of CNN and

CRNN. Zang et al. [27] reviewed deep learning-based

land-use mapping methods, including supervised, semi-

supervised, and unsupervised learning, as well as pixel-

based and object-based approaches. In [28], an overarching

view of contemporary deep learning models and some

hybrid methodologies for RSIC is presented.

Although the abovementioned surveys have substan-

tially contributed to the literature by reviewing various

methodologies and aspects of RSIC, there remains a

compelling need for a survey that encapsulates the latest

advancements and trends in this rapidly evolving field. The

existing surveys, while thorough, often focus on specific

subdomains or are somewhat dated given the fast pace of

technological progress in deep learning applications for

RSIC. This survey is necessitated by several critical fac-

tors. (1) Since the publication of the last major surveys,

numerous new deep learning architectures have been

developed, each accompanied by innovative applications.

This necessitates an updated review that cohesively syn-

thesizes these advancements. (2) Recent advancements in

publicly available data sources, coupled with their corre-

sponding applications in RSIC, have not been fully

addressed in prior surveys. Our work seeks to fill this gap

by providing a comprehensive review and categorization of

these datasets. (3) Emerging Challenges and Solutions, as

the application areas of RSIC expand, new challenges

arise, including those related to scalability, data hetero-

geneity, and scarcity. Addressing these challenges requires

a fresh look at the state-of-the-art, which our survey pro-

vides. In conclusion, this survey does not merely aggregate

existing knowledge but critically analyzes recent innova-

tions and trends, thereby setting a new benchmark for

research in RSIC. It aims to catalyze further research and

development in a field that is crucial for a wide array of

applications, from environmental monitoring to disaster

response. This work is intended to serve as a cornerstone

for future explorations and technological advancements in

remote sensing image analysis.

3 DL in Remote sensing applications

Deep learning methods have been remarkably utilized by

the research community in the recent years in RSIC due to

their important role in a wide range of applications, such as

agriculture, urban and forestry [29–34], environment

monitoring [35–38], land mapping and management

[39–43], disaster response [44–50], ecology [51, 52],

mining [53, 54], oceanography [55, 56], hydrology

[57, 58], archaeology [59, 60], among others. By exploring

the Scopus database, it is found that agriculture and for-

estry are the most RS applications that researchers have

used deep learning methods for data analysis. This is fol-

lowed by environment monitoring, land mapping and

management, and disaster response as shown in Fig. 3.

Based on these initial statistics, we will focus in this survey

paper on the top four RS applications on the list.

3.1 Agriculture and forestry

Countries worldwide are investing billions of dollars in

precision agriculture and forestry in order to increase

production efficiency while reducing environmental

impact.

RS satellite and aerial images are considered very useful

sources of information for many agriculture and forestry

applications such as:

• Crop monitoring: Deep learning and RS technology are

used widely by researchers and the agriculture industry

to provide real-time monitoring of crop growth [61],

plant morphology [62], and plantation monitoring [63].

The main advantage of using real-time intelligent RS

technology for crop monitoring is providing an accurate

understanding of the growth environment that leads to

environment optimization and consequently improved

production efficiency and quality [64]. It also helps in

detecting variations in several parameters of the field

such as biomass, nitrogen status, and yield estimation of

the crop which determine the need for fertilizer or other

actions.

• Diseases detection: crop health monitoring is a crucial

step in avoiding economic loss and low production

quality. Traditionally, disease detection and avoiding its

spread in crops is done manually which takes days or

months of continuous work to inspect the entire crop.

Moreover, these methods lack detection accuracy and

do not provide real-time monitoring, especially in large
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crop areas [65]. RS technology with DL algorithms

provided practitioners with real-time monitoring capa-

bilities for large crops with high detection accuracy,

especially when using UAVs. Further, they improved

the ability to control the spread of diseases at critical

times which led to reduced losses and improved product

quality in precision agriculture. Recent research efforts

have focused on improving existing methods in crop

disease detection [66, 67], Pest identification and

tracking [68, 69], and plant disease classification

[67, 70, 71].

• Weed control: weeds detection and removal is consid-

ered one of the most important factors in improving

product quality and critical to the development of

precision agriculture. Accurate mapping and localiza-

tion of the weeds lead to accurate pesticide spraying of

the weed location without contaminating crops,

humans, and water resources. Researchers have put

great efforts into using RS technology and deep

learning in weed detection [72–76] and weed mapping

[77–80].

• Precision irrigation: One of the most important appli-

cations of modern precision farming where RS tech-

nology and DL algorithms play a crucial role in the

efficient use of water at the right time, location, and

quantity. Aerial and satellite data analysis using

efficient DL algorithms helped in soil moisture estima-

tion [81–85] and prediction [86, 87], mapping of center

pivot irrigation [88–91], and estimation of soil indica-

tors [92, 93].

• Forest planning and management: The modern forest

management utilizes RS platforms such as UAVs,

airplanes, and satellites to provide crucial data at

different spatial and spectral band resolutions. This data

is mainly used in creating forest models for monitoring,

conservation, and restoration [94]. In recent years,

researchers focused on creating deep learning models to

analyze data collected from RS platforms in land-cover

and forest mapping [95–99], species classification

[33, 100–102], and forest disaster management

[103–105].

It is evident that RS technology and platforms along with

deep learning methods have recently played an integral role

in enabling precision agriculture.

3.2 Disaster response and recovery

Natural disasters such as floods, earthquakes, landslides,

tsunamis, hurricanes, and wildfires have a devastating

impact on the environment, cities’ infrastructure, and living

beings. The modern disaster management cycle consists of

the following phases: (1) prevention and mitigation, (2)

preparedness, (3) response, and (4) recovery [106]. RS

technology and DL methods are widely applied in disaster

response and recovery. While disaster response aims to

immediately reduce the impact and damages caused by the

disaster through damage mapping and estimation, disaster

recovery is concerned with bringing life back to normal

through reconstruction monitoring and wreckage clearance.

Having said that, AI algorithms are still being used in

disaster detection and forecasting.

Response to sudden-onset disasters requires spatial

information that should be updated in real-time due to their

Fig. 3 Total number of

publications on using DL

methods for RS data analysis in

top remote sensing applications

Source: Scopus database

accessed on Sep 20, 2023. The

search results were obtained by

searching on ‘‘deep learning’’

AND ‘‘application name OR

sub-application category’’
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high dynamics. Thanks to the recent advancements in RS

technologies and platforms that are capable of providing

high levels of spatial and temporal resolution data. Not to

mention the recent developments in DL methods that

provide real-time analysis for RS data. In the last 5 years,

researchers have focused on developing DL methods to

analyze RS data in order to provide governments and the

research community with tools that help in managing

sudden-onset disasters such as floods [48, 107, 108],

earthquakes [109–111], landslides [112–114], tsunamis

[111, 115], hurricanes [116, 117], and wildfires

[50, 118, 119].

3.3 Environment monitoring

The extraordinary level of air, land, and water pollution has

led governments and researchers worldwide to take

immediate action to allocate financial resources and efforts

toward creating technologies that ensure ongoing and

universal surveillance of the environment. Traditionally,

governments use a large number of distributed fixed station

that consists of advanced sensors and instruments to

monitor the environment. With the advancement in the

Internet of Things technology, wireless sensors network

(WSN) with millions of tiny distributed sensors is widely

used to monitor the environment. Recently, crowdsensing

platforms, including vehicles like cars, buses, taxis, bicy-

cles, and trains have been equipped with sensors and

measurement systems that collect, process, and store data

about the environment at practically zero cost. Fascista

[120] stated, based on an in-depth review of the literature,

that although WSNs offer an attractive solution for envi-

ronmental monitoring, they suffer from several technical

drawbacks including poor data quality, low communication

range, reliability, and power limitation. On the other hand,

crowdsensing poses some implementation challenges

including incentive mechanisms, task allocation, workload

balancing, data trustworthiness, and user privacy.

RS technology and platforms offer an attractive solution

to these challenges by providing rich data about the envi-

ronment ranging from RGB images and LiDAR to thermal

and hyperspectral data. DL algorithms have also provided

reliable tools for extracting information about the envi-

ronment from the collected RS data. Looking at the liter-

ature, it is found that recent studies have developed DL

algorithms to analyze RS data for land environment mon-

itoring [121–124], air monitoring [35, 125–127], and

marine and water monitoring [36, 128–130].

3.4 Land-cover/land-use mapping

Urban growth has historically influenced alterations in

regional and global climates by impacting both

biogeochemical and biophysical processes. Therefore,

remote sensing is widely used for land-cover mapping, land

management, and the spatial distribution of landforms to

examine earth surface processes and landscape evolution.

Land-use classification using remote sensing images and

DL methods [131–135] has played a crucial role in effec-

tively identifying diverse land uses, which in turn improved

urban environment monitoring, planning, and designing.

RS and DL have also been used in land-cover mapping and

change detection [136–140] which are employed in natural

resource management, urban planning, and agricultural

management.

4 DL methods for RS image classification

4.1 Learning approach

4.1.1 Convolutional neural networks (CNNs)

Convolutional neural network (CNN) and its variants have

been widely applied to RS applications [22]. The key

component in CNN is convolutional operation which

involves trainable parameters and aims to extract pertinent

features that are associated with specific tasks such as

object recognition, segmentation, and tracking. Figures 4

and 5 depict commonly used CNN modules in RSIC,

including residual connection [141], dense blocks in the

Dense Convolutional Network (DenseNet) [142], inception

module [143], squeeze and excitation inception module

(SE-inception) [144], dilated convolution [145], and depth-

wise separable convolution [146]. Key features of these

learning modules are described as follows:

• Residual connection: The module presented by He et al.

[141] uses skip or residual connections between layers

to facilitate the gradient propagation and thus help to

achieve deeper neural network architectures with better

accuracy. It has been widely used in hyperspectral

image classification [147–149]. This module is illus-

trated in Fig. 4a

• Dense blocks: Introduced by Huang et al. [142] dense

blocks enhance the feature reuse by dense connectivity.

In other words, the information flow between layers is

given by direct connections from an original layer to all

the subsequent layers. Some RS-related works have

implemented this block with promising results

[150, 151]. This block is illustrated in Fig. 4b.

• Inception module: Szegedy et al. [152] proposed this

module, which allows the use of multiple filter sizes in

parallel, instead of a single filter size in a series of

connections. The motivation of this module is that

multi-scale convolutional filters have the potential to
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enrich feature representation as the architectures go

deeper into the number of layers. The illustration of this

module is provided in Fig. 4c. RS-related works have

successfully used this module [153–155].

• SE-inception: The Squeeze-and-Excitation block (SE

block) was introduced by Hu et al. [144] as an

architectural unit that boosts the performance of a

network. This architectural unit block empowers the

architecture with a dynamic channel-wise feature

calibration. The specifics of this architectural unit block

are illustrated in Fig. 5a. The SE block has been

extensively utilized for RS tasks [156–158].

• Dilated convolution: Yu et al. [145] introduced this type

of convolution, which expands receptive fields by

introducing gaps between the values of the filter kernel,

effectively ‘‘dilating’’ the filter. The expansion is

controlled by a dilation factor (l). Figure 5b illustrates

dilated convolution with l ¼ 2. This technique increases

the receptive field without increasing computation. In

RS, several studies have reported the use of dilated

convolutions with promising results [159–162].

• Depth-wise separable convolution: Introduced by Chol-

let [146], depth-wise separable convolution divides

standard convolution operations into two steps. First, a

depth-wise convolution is applied to each input channel

independently. Second, a point-wise convolution is

performed, i.e., a 1 9 1 convolution, mapping the

outputs from the depth-wise convolution onto a new

channel space. Details of this architectural module are

illustrated in Fig. 5c. Experimental results show satis-

factory results with the implementation of this archi-

tectural module for RS-related tasks [163–165].

Many existing works use one or more aforementioned

convolutional network modules with various network

connections or designs for RSIC. Zhong et al. [148] adopts

Fig. 4 CNN modules—I.

a Residual connection, b dense

block in the Dense

Convolutional Network

(DenseNet), c inception module

16734 Neural Computing and Applications (2024) 36:16727–16767

123



residual connections in hyperspectral data cute, aiming to

extract discriminative features from both spectral signa-

tures and spatial contexts in hyperspectral imagery, and

outperformed popular classifiers such as kernel support

vector machine (SVM) [166], stacked autoencoders, and

3D CNN.

4.1.2 Generative adversarial networks

A generative adversarial network (GAN) [167] has been

proposed as semi-supervised and unsupervised DL models

that provide a way to learn deep representations without

extensively annotated training data. Generating fake data is

a key component in GAN, which basically based on the

two main networks that represent the GAN. A Generator

(G) network tries to generate ‘‘realistic’’ samples and a

Discriminator (D) network distinguishes between the real

and generated samples. Figure 6 shows the main concept of

GAN. These semi-supervised and unsupervised DL repre-

sentations have been widely applied to RS applications.

Jian et al. [168] developed one class classification tech-

nique based on GAN for remote sensing image change

detection aiming to train the network only with the

unchanged data instead of both the changed and unchanged

data. Jiang et al. [169] constructed a GAN-based edge-

enhancement method for satellite imagery super-resolution

reconstruction to ensure the reconstruction of sharp and

clean edges with finely preserved details. Also, Ma

et al. [170] introduced a GAN-based method capable of

acquiring the mapping between low-resolution and high-

resolution remote sensing imageries which aims to restore

sharper details with fewer pseudotextures, and

Fig. 5 CNN modules—II.

a Squeeze and excitation

inception module, b dilated

convolution with dilation factor

of 2, b depth-wise separable

convolution

Neural Computing and Applications (2024) 36:16727–16767 16735

123



outperformed popular single-image super-resolution

methods, including traditional and CNN-based techniques.

4.1.3 Autoencoders and stacked autoencoders

An autoencoder (AE) is a neural network that uses back-

propagation to generate an output almost close to the input

value in an unsupervised learning framework. As it is

shown in Fig. 7a, an AE takes an input and compresses its

representation into a low-dimensional latent space. This

process is done by the encoder component of the AE. On

the other hand, the decoder component of the AE recon-

structs the input, scaling the latent space representation to

the original input dimension.

Also known as deep autoencoder, stacked autoencoders

(SAE) are extensions of the basic AE, consisting of several

layers of encoders and decoders that are stacked on top of

each other, as shown in Fig. 7b. The use of several layers,

in the encoder and decoder portion of the architecture,

allows the model to increasingly abstract the representation

of the original input as it moves deeper into the network.

This makes SAE capable of learning complex features

when compared with basic AE.

AE and SAE have emerged as powerful tools for

enhancing the performance of DL models for RSIC tasks.

For instance, Lv et al. [171] proposed a combination of

SAE with an extreme learning machine (ELM) [172]:

SAE-ELM. This ensemble-based algorithm leverages the

benefit of the two key components to address challenges in

RSIC, including limitation and complexity of the data. The

SAE-ELM creates diverse base classifiers through feature

segmentation and SAE transformations and accelerates the

learning process with the use of ELM. The proposed

method showed evidence of improvement in classification

tasks and adaptability to different types of remote sensing

images. Liang et al. [173] proposed the use of stacked

denoising AE for RSIC. This model was built by stacking

layers of denoising AE, using the noise input to train the

algorithm in an unsupervised approach layer-wise, and

turning the robust expression into characteristics by

supervised learning using back-propagation. The method

outperformed traditional neural networks and SVM per-

formance. On the other hand, Zhou et al. [174] suggested a

condensed and discriminative stacked AR (CDSAE) for

Hyperspectral image (HSI) classification. This method

consisted of two stages: The first stage is a local discrim-

inant, and the second is an effective classifier. The CDSAE

aimed to produce highly discriminative and compact fea-

ture representation from low-dimensional features. Exper-

imental results demonstrate its effectiveness when

compared to traditional methods for HSI classification.

Additionally, Zhang et al. [175] introduced the use of

Fig. 6 Conceptual of generative

adversarial network

Fig. 7 Illustration of a a simple

autoencoder and b a stacked

autoencoder
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recursive autoencoders (RAE) as an unsupervised method

for HSI classification. This method utilizes spatial and

spectral information to learn features from the interaction

of the neighborhood of the targeted pixel in an HSI. This

approach outperformed methods such as SVM, SVM-CK

[176], and SOMP [177]. Similarly, Zhou et al. [178] pre-

sented a semi-supervised method for HSI classification

with stacked autoencoders (Semis-SAE). The SAE used

pre-trained hyperspectral and spatial features, followed by

a fine-tuning stage prior to a classification fusion composed

of the probabilities from the SAEs with a Markov random

field model. The Semis-SAE outperformed state-of-the-art

ML methods, such as CNN, GANs, and SVM.

4.1.4 Recurrent neural networks

Recurrent neural networks (RNNs) are a type of artificial

neural network designed to recognize patterns in sequences

of data that has been widely used in language modeling,

text generation, and speech recognition. In RNNs, hidden

layers act as the network’s memory, which store informa-

tion based on previous inputs, integrating not only the

current input but also the knowledge accumulated from

prior data. Figure 8 shows basic structures of FNN and

RNN, where (x) is the input layer, (h) is the hidden layer/s,

and (y) is the output layer. A, B, and C are the network

parameters that are learned during the training of the

model.

A well-known type of RNN is called long short-term

memory (LSTM) [179] which was first introduced to

overcome the gradient vanishing and exploding problem.

Several variants of LSTM architecture have been proposed

as an effective and scalable model to learn long-term

dependencies [180]. LSTM has been used for the land-

cover classification via multi-temporal spatial data derived

from a time series of satellite images and showed com-

petitive results compared to the state-of-the-art classifiers

with the remarkable advantage of improving the prediction

quality on low-represented and/or highly mixed

classes [181].

The configuration of the input and output determines the

design of the RNN architecture, which can be implemented

in diverse ways. Among the main such architectures: (1)

One-to-one which is known as the vanilla neural network

and has been used for general machine learning problems,

in which a single input is used to generate a single output.

(2) One-to-sequence, in which a single input is employed to

produce a sequence of outputs. (3) Sequence-to-sequence,

which involves taking a series of inputs and producing a

corresponding sequence of outputs. (4) Sequence-to-one

takes sequential data to utilize it as an input to generate a

single output.

RNN and its variants have been used for RSIC. Mou

et al. [182] proposed a deep RNNs architecture with a new

activation function to characterize the sequential property

of a hyperspectral pixel vector for the classification task.

Experimental results showed promise of RNNs in capturing

pertinent information for hyperspectral data analysis. RNN

variant such as a Patch-based recurrent neural network

(PB-RNN) system has been introduced for classifying

multi-temporal remote sensing data [183]. PB-RNN is

considered as a sequence-to-one architecture and used

multi-temporal-spectral-spatial samples to deal with pixels

contaminated by clouds/shadows present in multi-temporal

data series. Recently, a bidirectional long short-term

memory (Bi-LSTM)-based network with an integrated

spatial-spectral attention mechanism was developed for

hyperspectral image (HSI) classification, enhancing clas-

sification performance by emphasizing relevant informa-

tion [184]. Experiments on three popular HSI datasets

Fig. 8 Recurrent neural network

versus standard neural network
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demonstrated its superiority over unidirectional RNN-

based methods.

4.1.5 Vision transformer-based approach

Originally implemented to solve natural language pro-

cessing (NLP) tasks, transformers [185] have crossed the

threshold of a single domain with high success. Trans-

formers-based models are getting popular in the research

community for different fields, including computer vision,

RS, and bio-informatics [186–188]. Transformers utilize

the self-attention mechanism to handle long-range depen-

dencies of a given sequence, providing the model with a

larger ‘‘memory’’ in comparison with traditional recurrent

neural networks. For NLP, transformers can deal with

larger sequences by the use of tokens, which provide the

positional information required to preserve the context of

the input. In vision transformers (ViT) [189], this

methodology is translated to computer vision, in which the

images are divided into patches, as an analogy of tokens

and sequences, and then, each patch is linearly projected

along with the corresponding embedding positional infor-

mation. Self-attention is known as the key component

within a transformers-based framework. This component

helps to capture long-range similarities between a given

sequence of tokens by updating the token with aggregated

global knowledge. This attention mechanism is mathe-

matically described as follows:

AttentionðQ;K;VÞ ¼ softmax
QKT

ffiffiffiffiffi

dk

p
� �

V ð1Þ

where the vectors Q, K, and V represent the queries, keys,

and values, respectively. In this mechanism of attention,

the matrices corresponding to the queries and the keys are

dot multiplied, as an attention filter operation, and then, the

output of this operation is normalized through a division

operation with the
ffiffiffiffiffi

dk

p
(the dimension of K). The softmax

operation provides a probability distribution for the

weights that are being multiplied against the matrix cor-

responding to the values.

For multi-head self-attention, the aforementioned pro-

cedure is repeated in parallel h stands for heads, with dif-

ferent learned linear projections of K, Q, and V

(WQ;WK ;WV ). The outputs from the attention functions

are concatenated and linearly projected with (WO). In

summary, the multi-head self-attention mechanism can be

represented as:

Multihead ðQ;K;VÞ ¼ Concat ðh1; ::; hi; ::; hhÞWO ð2Þ

where

hi ¼ AttentionðQWQ
i ;KWK

i ;VW
V
i Þ ð3Þ

The success of ViT-based models has increased the interest

in this technology within the RS area, and several tech-

niques have been explored in recent years for tasks

involving very-high-resolution Imagery (VHR), hyper-

spectral imagery, and synthetic aperture radar imagery.

Figure 9 illustrates the ViT architecture used with hyper-

spectral data.

For the remote sensing scene classification task, Deng

et al. [190] presented a vision transformer-based approach

in conjunction with CNN, in which two streams (one ViT

and another CNN) generate concatenated features, within a

joint optimized loss function framework. On the other

hand, Ma et al. [191] explored the use of a transformer-

based framework with a patch generation module, ana-

lyzing the effect promoted by using heterogeneous or

homogeneous patches.

In the task of HSI classification, there are several efforts

have been made to develop either purely transformer-based

architectures or a hybrid approach that combines the merits

of CNN and transformers. For instance, He et al. [192]

presented HSI-BERT, a pure transformer-based architec-

ture, with bidirectional encoders. This architecture captures

the global dependencies of a target pixel, obtaining a

flexible architecture that can be generalized for prediction

over different regions with the pre-trained model. Another

effort in pure transformers-based architecture is provided

by Zhong et al. [193], proposing a spectral-spatial trans-

former network. Spatial attention leverages the local region

feature channels with spatial kernel weights; meanwhile,

spectral association leverages the integration of spatial

locations for each corresponding feature map. Hybrid

efforts, by combining CNN and transformers, have

achieved promising outcomes for hyperspectral pixel-wise

classification. For instance, the work presented by Wang

et al. [194] presented a multi-scale convolutional trans-

former, which aims to capture spatial-spectral information

effectively from a given input. Introduced by Paheding

et al. [195] GAF-NAU utilizes the Gramian angular field

encoder over the hyperspectral signal to produce a 2D

representation for each pixel. This 2D signal is used as

input in a U-Net-like framework that combines the atten-

tion mechanism with multi-level skip connections. The

experimental outcomes from this proposed architecture

outperform traditional approaches for pixel-wise hyper-

spectral classification.

Problems related to the use of SAR image interpretation

have been analyzed using pure transformer-based archi-

tecture. For instance, Dong et al. [196] utilized vision

transformers as a method for PolSAR (Polarimetric SAR)

image classification. Each pixel is represented as a token

within the architecture, and the long-range dependency is

captured by the use of the self-attention mechanism. A

hybrid methodology was proposed by Liu et al.[197], in
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which the merits of CNN and transformers were combined

to capture, both local and global, feature representation, for

the SAR image classification task. On the other hand, the

work presented by Chen et al. [198] addressed the detection

task for aircraft with SAR imagery by using transformers

within a geo-spatial framework composed by image

decomposition, geo-spatial contextual attention in multi-

scale fashion and image re-composition. Zhang et al. [199]

proposed a feature relation enhancement framework, in

which a fusion pyramid structure is adopted to combine

feature representation at different scale levels, in addition

to the use of an attention mechanism for the improvement

of the position context information.

4.2 Learning type

4.2.1 Multi-task learning

The goal of the machine learning paradigm known as

‘‘Multi-task learning’’ (MTL) is to learn several related

tasks simultaneously [200], compared to the one that learns

specific tasks separately as shown in Fig. 10a. The use of

MTL is to ensure that the information in one task may be

used by other tasks, enhancing the generalization perfor-

mance of all the involved tasks. In this context, task refers

to learning an output target from a single input

source [201]. Hence, MTL employs the domain knowledge

in the training signals of related tasks as an inductive bias

for improving the generalization [202]. This is accom-

plished, as shown in Fig. 10b, by learning many tasks

concurrently while utilizing a common representation;

what is learned for one task can aid in learning other tasks.

Multi-task learning in deep learning is often carried out

with either hard or soft parameter sharing of hidden lay-

ers [203]. The method of MTL that uses hard parameter

sharing is the most used one in neural networks. It is often

implemented by preserving several task-specific output

layers while sharing the hidden levels across all activities.

Overfitting is considerably reduced by hard parameter

sharing. On the other hand, with soft parameter sharing,

every task has a unique model with unique parameters. To

encourage the model’s parameters to be similar, the dis-

tance between them is regularized.

The MTL architecture has been used to concurrently

complete the tasks of road identification and road center-

line extraction [204]. Due to its superior capacity to

maintain spatial information, U-Net [205] was chosen as

the MTL’s basic network. The multi-task U-Net design

contains two networks, a road detection network and a

center-line extraction network, which operate simultane-

ously during training. The hierarchical semantic features

obtained from the road detection network are convoluted to

create the road center-line extraction network.

4.2.2 Active learning

Active learning (AL), also referred to as query learning or

optimal experimental design, is a sub-field of machine

learning where the learner makes queries or selects actions

that impact what data is to be added to its training

set [206, 207]. It is instrumental in scenarios where the

labeled data are either scarce or expensive to label the data

(such as speech recognition, information extraction, and

RSIC). In this model, a small training set is used to train

the model initially, and then, an acquisition function

decides to obtain a label for unlabeled data points from an

external oracle (generally a human expert). These labeled

data points are added to the training set, and the model is

now trained on this updated training set. Repetitions of this

process lead to an increase in the size of the training set.

Active learning for RSIC is a logical choice because it

can utilize scarce labeled and abundant unlabeled data. AL

Fig. 9 Illustration of the vision transformer (ViT) [189] architecture.

On the left side, the notion behind ViT is presented, including the

initial embedding layer and the transformer encoder. Meanwhile, on

the right side, details about the transformer encoder with emphasis on

the multi-head self-attention mechanism are provided
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has been used in HSI classification [208], in which

DRDbSSAL (Discovering Representativeness and Dis-

criminativeness by Semi-Supervised Active Learning)

architecture was proposed to extract representative and

discriminative information from unlabeled data. This

architecture employs multiclass level uncertainty (MCLU),

a state-of-the-art approach commonly used in RSIC to

identify the most informative samples [209, 210]. Using

semi-supervised active learning, it tries to identify repre-

sentativeness and discriminativeness from unlabeled data

using a labeling procedure. It is particularly efficient when

there are only a few labeled samples and catches the

overall trends of the unlabeled data while preserving the

data distribution.

In a work by Haut et al. [211], AL was employed by a

B-CNN (Bayesian-Convolutional Neural Network) that

was based on the Bayesian Neural Networks

(BNNs) [212, 213] for HSI classification. The BNN is a

kind of artificial neural network (ANN) that may provide

uncertainty estimates and a probabilistic interpretation of

DL models while being resistant to overfitting. They do so

by inferring distributions across the models’ weights,

learning from small data sets, and avoiding the tendency of

traditional ANNs to generate overconfident predictions in

sparse data areas. Applying the same Bayesian methodol-

ogy to CNNs can help them withstand overfitting on small

data sets while improving their generalization capability.

4.2.3 Transfer learning

In the field of machine learning, transfer learning refers to

the process where a model, initially trained for a specific

task, is repurposed and utilized for a different but related

task. It depicts a situation where knowledge acquired in

one context is employed to improve optimization in a

different context. TL is commonly employed when the new

dataset, intended for training the pre-trained model, is

smaller in size compared to the original dataset. TL can

convey four distinct types of knowledge for target tasks:

relational knowledge, feature representation, parameter

Task 1 Task 2 Task 3Inputs Inputs Inputs Task 4Inputs

Task 1

Inputs

Task 2 Task 3 Task 4

(a)

(b)

Fig. 10 a Traditional methods that use different models for different tasks, b multi-task learning via shared representation
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information, and instance knowledge [214]. Deep learning

frequently transfers representations by reusing models built

on a source model because deep learning automatically

learns and keeps the feature representation on network

layers and weights. Figure 11 depicts the overall TL pro-

cedure. TL typically involves the following three stages:

• Rich source domain data XS is used to train a deep

learning model Y ¼ fA for source domain Task A until

the optimal weights converge and the cost function JA is

minimized.

• The deep learning model Y 0 ¼ fB for Task B is built on

top of this learned model. The new model Y 0 ¼ fB
reuses the first n layers from the original model (n = 3 in

Fig. 11). This ensures that f B creates representations

that adhere to the information discovered in the source

domain.

• Using the sparse, labeled training data XT , the trans-

ferred model Y 0 ¼ fB is trained to minimize JB.

The result is a deep learning model for Task B’s target

domain that incorporates information from the source

domain.

In [215], the TL was conducted at three levels: shallow,

middle, and deep. In the shallow experiment, features were

extracted from the initial blocks of the base models,

incorporating the small classification model. The interme-

diate experiment removes the block from the center of the

base model. On the other hand, the deep experiment

retained the original base model’s blocks, excluding the

last classification layers. Experimenting with two CNN

models on three distinct remote sensing datasets (UC

Merced, AID, and PatternNet) demonstrated that TL,

especially fine-tuning, is a robust approach for classifying

remote sensing images, consistently outperforming a CNN

with randomly initialized weights.

Back-propagation

Back-propagation

Stage 1: Source 

Domain Learning

Stage 2: 

Knowledge 

Transfer

Stage 3: Transferred knowledge 

adapted onto target domain

n = 3

Representation Transfer

Task A: J
AXS

XT
Task B: J

B

Y = fA

Y’ = fB

Fig. 11 A transfer learning framework
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4.2.4 Ensemble learning

Ensemble learning (EL) combines outputs from multiple

models to achieve superior predictive performance [216].

The four primary categories of EL techniques are as

follows:

1. Boosting, as shown in Fig. 12a, is a technique that

creates several classifiers to increase any classifier’s

accuracy. A classifier chooses its training set depend-

ing on how well its last classifier performed. A sample

that a prior classifier has wrongly categorized is chosen

more frequently than one that has been successfully

classified. As a result, boosting creates a new classifier

that can successfully process the new data set.

2. Bagging or bootstrap aggregating, as shown in

Fig. 12b, is an ensemble learning technique in machine

learning designed to improve prediction accuracy by

training separate models with bootstrap samples. It

typically aids in reducing variance and mitigating

overfitting. In classifiers that use bagging, each

Input(X)

melpmaS1elpmaS Sample 2

Tree 1 Tree mTree 2

Combine/Voting

Output
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Fig. 12 Ensemble learning types: a boosting, b bagging, c stacking, and d random forest
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classifier’s training set is generated by drawing N

instances at random with replacement from the original

dataset. This process, known as bootstrap sampling,

creates multiple different training sets. In this case,

many of the original instances might be repeated, while

others might be omitted from the training set. The

learning system from a sample creates a classifier, and

the final classifier is created by combining all of the

classifiers created from the many trials.

3. Stacking, as shown in Fig. 12c, is a technique that uses

a variety set of models as base learners and utilizes

another model or the combiner to aggregate prediction.

Here, the combiner is referred to as a meta-learner. The

base models are trained first, and their predictions are

aggregated as input features for the meta-learner.

4. Random forest, as shown in Fig. 12d, is an ensemble

learning approach that includes training a large number

of decision trees and combining those decision trees’

predictions through voting. Instead of having just one

decision tree, the random forest method uses sample

data from the population to generate several decision

trees. When merged, the many samples (bootstrap

samples) produce many individual trees that make up

the Random Forest.

The EL has been used for the semi-supervised classifica-

tion of RS scenes [217]. The residual convolutional neural

network (ResNet) [141] extracts initial image features. EL

is used to exploit the information included in unlabeled

data in order to generate discriminative picture represen-

tations. Initially, T prototype sets are generated periodi-

cally from all accessible data. Each set consists of

prototype samples that serve as proxy classes for training

supervised classifiers. Afterward, an ensemble feature

extractor (EFE) is produced by combining T-learned clas-

sifiers. The final image representation is created by con-

catenating the classification scores from all T classifiers by

feeding each image’s preliminary ResNet feature into EFE.

The experimental results on the publically available AID

and Sydney datasets demonstrate that the learned features

and semi-supervised technique provide improved

performance.

EL has been also used to categorize multiple sensor data

using a decision-level fusion technique [218]. CNN-SVM

ensemble systems were used to classify Light Detection

and Ranging (LiDAR), HSI, and extremely high-resolution

Visible (VIS) images. A random feature selection is used to

construct two CNN-SVM ensemble systems, one for

LiDAR and VIS data and the other for HSI data. VIS and

LiDAR data are extracted for texture and height informa-

tion first. Together with hyperspectral data, these extracted

features are used in a Random Features Selection technique

to generate various subsets of retrieved features. All feature

spaces are provided as input layers to different deep CNN

ensemble systems. Weighted majority voting (WMV) and

behavior knowledge space (BKS) were applied to each

CNN ensemble as the final classifier fusion approaches.

The result indicated that the suggested technique produces

more precision and outperforms several current methods.

4.2.5 Multi-instance learning

The conventional data description applies to single-in-

stance learning, in which each instance of a learning object

is characterized by several feature values and, perhaps, an

associated output. In contrast, a bag (learning sample or

object) is linked to several instances or descriptions in

multiple instance learning (MIL) [219, 220]. The objective

of a MIL classification is to assign unseen bags to a par-

ticular class driven by the class labels within the training

data or, more precisely, to use an estimation model con-

structed from the labeled training bags. An instance-based

algorithm’s overall design is shown in Fig. 13. It is rep-

resented as a bag, Y 2 NY, holding n instances,

y1; . . .; yn 2 Y .

There are four different options to choose from:

1. K (Set of bag labels): K’s length is the number of

classes.

2. K (Set of instance labels): Bag sub-classes or instance-

level concepts might correlate to instance labels.

3. M (MIL assumption): It requires the construction of an

explicit mapping between the set of instance labels and

the set of bag labels. It is a function M : NK ! K that

links the class label of instances within a bag to the

class label assigned to the bag.

4. A technique for locating the instance classifier m :

Y ! K (utilized for the classification of instances

within each bag).

Since each unique instance requires a class label, single-

instance learners cannot be applied directly to MIL data. (A

Fig. 13 MIL general architecture [219]
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bag classifier is required.) A MIL hypothesis is performed

over instance labels to get the bag label.

For the application of MIL to RS, the input images in an

RS system are broken down into multiple sub-images, each

of which is handled as a different instance of that class. The

learning system will then discover which sub-image is

crucial for correctly predicting the image’s class. The total

accuracy of the algorithm may be increased by constructing

a neural network that can concentrate on the area of the

picture that is more crucial to the categorization.

The MIL has been used for classifying scenes in

RS [221]. Generally, one segment of a scene identifies its

class, while the others are unimportant or belong to another

class. The first stage of the proposed method splits the

picture into five instances (the center image plus the four

corners). Subsequently, a deep neural network is trained to

retrieve intricate convolutional features from individual

instance and ascertain the optimal weights for their fusion

through weighted averaging

Multiple instance learning has been employed as the

end-to-end learning system [221]. Here, two instances

were used: one to characterize the spectral information of

multispectral (MS) photographs and the other to capture

the spatial information of panchromatic (PAN) images. The

relevant spatial information of PAN and the associated

spectral information of MS are extracted using deep CNN

and stacked autoencoders (SAE), respectively. The last

step was joining the features from the two instances toge-

ther using fully connected layers. Four aerial MS and PAN

images were used in classification studies, and the results

showed that the classifier offers a workable and effective

solution.

4.2.6 Reinforcement learning

Reinforcement learning (RL) is a machine learning para-

digm where an agent learns to make decisions by taking

actions in an environment to maximize some notion of

cumulative reward [222]. Unlike supervised learning,

where the model learns from a dataset of input-output

pairs, RL focuses on learning from the consequences of

actions, guided by a reward signal. This framework makes

RL particularly well suited for problems where an agent

interacts with an environment, making it applicable to

various remote sensing tasks.

In remote sensing, RL has been utilized for tasks such as

satellite task scheduling, resource management, and

dynamic path planning for unmanned aerial vehicles

(UAVs). The key advantage of RL in these scenarios is its

ability to handle sequential decision-making problems and

adapt to changing environments.

One application of RL in remote sensing is dynamic

path planning for UAVs. UAVs are increasingly used for

environmental monitoring, disaster response, and agricul-

tural surveillance. RL algorithms, such as Q-learning or

deep Q-networks (DQN) [223], can be employed to opti-

mize the flight paths of UAVs to maximize coverage,

minimize energy consumption, or avoid obstacles [224].

By learning from interactions with the environment, the

UAV can adapt its path in real-time to changes in the

environment, such as moving obstacles or areas of interest.

Another significant application is satellite task

scheduling, where multiple satellites need to be coordi-

nated to maximize the overall mission objectives, such as

maximizing data collection or minimizing observation

gaps. RL techniques can be used to optimize the scheduling

of satellite observations, taking into account various con-

straints like limited satellite resources, orbital dynamics,

and conflicting observation requests [225]. This can result

in more efficient use of satellite resources and improved

data acquisition strategies.

RL has also been applied to the problem of data fusion

in remote sensing, where information from multiple sen-

sors needs to be integrated to produce a comprehensive

understanding of the observed environment. By treating the

fusion process as a sequential decision-making problem,

RL algorithms can learn optimal strategies for combining

data from different sources to enhance the accuracy and

reliability of the resulting information [226].

Despite its potential, the application of RL in remote

sensing comes with challenges, such as the need for large

amounts of data to train the models and the complexity of

accurately modeling the environment. However, ongoing

research is addressing these challenges [227], making RL a

promising tool for advancing remote sensing technologies.

5 Sensor types and remote sensing datasets

A wide variety of datasets has been collected using an array

of sensors. In this section, we will examine different types

of sensors and describe different categories of remote

sensing datasets.

5.1 Sensor types

In RS, sensors can be described as mechatronic instruments

that comprise electrical, mechanical, and computing ele-

ments. Carried on board satellites, airborne vehicles, or

installed (in situ) on the ground, they record electromag-

netic signals as digital data to study Earth processes or

atmospheric phenomena.

Satellite-mounted sensors can cover large areas of the

Earth’s surface, but are limited to the satellite’s orbital path

and are obstructed by clouds [228]. Example applications

for satellite RS include monitoring forest fires [229],
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drought [230], atmospheric particulate matter concentra-

tions [231], and sea ice thickness [232].

Airplane, helicopter, and unmanned aerial vehicle

(UAV) mounted sensors have the advantage of high to

very-high spatial resolution, custom flight paths, and Light

Detection and Ranging (LiDAR) capabilities; however,

they require flight operation efforts and have relatively

small area coverage. Example applications include crop

monitoring and vegetation mapping (Table 3), disaster

response (Table 4), and environmental monitoring

(Table 5).

Ground-based remote sensing systems (GRSS) are

installed on the Earth’s surface, where several sensors are

spatially distributed and accessed collectively. Example

applications include: in situ real-time monitoring of algae

blooms and water quality inland and in oceans [233];

landslide mapping and early warning [234]; distributed

surface temperature; and wind speed profile measurement

[235].

Sensors can be passive or active. An example of a

passive sensor is a satellite-mounted infrared (IR) camera.

It captures the thermal radiation emitted or reflected by

objects on the Earth’s surface. In this case, the heat radi-

ation originates from the Sun and reflects into the IR

camera aperture. An active sensor, such as radio detection

and ranging (Radar), produces radiation energy to expose

the objects it is sensing by capturing the reflected electro-

magnetic radiation.

Sensor resolution is an important characterization of the

imaging sensor modality. Three types of resolution are

meaningful in RS, namely spatial, spectral, and temporal

resolution [236]. The composition of these types of reso-

lution can affect the feasibility of RS applications as shown

in Fig. 14. Spatial resolution refers to the sensor’s ability to

resolve small details. For example, a satellite image might

have a resolution of 1 pixel per meter, whereas a UAV

sensor may have twice the spatial resolution at 1 pixel per

0.5 meter, i.e., 2 pixels per meter. Spectral resolution refers

to the number of discrete electromagnetic radiation bands

the sensor can process, i.e., record the average power from.

A high spectral resolution sensor is sensitive to narrower,

and more, spectral bands. For a given spectral sensing

range, a low spectral resolution sensor will have fewer, and

wider, spectral bands, than a high spectral resolution sen-

sor. For example, a color camera with red, green, and blue

(RGB) channels (3 bands between 450 and 650 nm), has

higher spectral resolution than a bandpass (1 band between

1150 and 1300 nm) short-wave infrared (SWIR) camera.

Finally, temporal resolution in RS refers to the sensor’s

ability to repeat sensing the same area. For example, a

UAV-mounted sensor has a much higher temporal resolu-

tion than a satellite sensor, which requires a long time to

complete the Earth orbit and return to the designated area

for repeated sensing [237].

Earth’s atmosphere blocks some electromagnetic

wavelengths due to the presence of Ozone, water, carbon

dioxide, and other particles. This protects the surface from

dangerous radiation such as X-rays and high-energy

ultraviolet (UV) wavelengths. RS sensors are developed to

measure the radiation that is not blocked by the atmo-

sphere, i.e., that passes through the ‘‘atmospheric

window.’’

Ultraviolet (UV) sensors are sensitive in the range

between 10 and 400 nm. RS applications that utilize UV

sensors include Ozone layer detection, ocean color, and oil

spill detection [238, 239].

Red–green–blue (RGB) sensors are essentially color

cameras sensitive to the visible spectrum color bands

380 nm (shortest blue) to 850 nm (longest red). This is the

range of wavelengths the human eye is sensitive to. The

Landsat-8 satellite, for example, includes RGB sensors as

follows: red (640–670 nm); green (530–590 nm); and blue

(450–510 nm) [240]. Some examples of RGB use in RS

include urban sprawl and drought mapping [241, 242].

Near infrared (NIR) sensors are sensitive to the elec-

tromagnetic band between 850 and 900 nm. In addition,

short-wave infrared (SWIR) are sensitive between 900 and

2500 nm. These two bands measure reflected infrared

radiation, as opposed to thermal radiation, which requires

medium and long infrared red (MWIR, LWIR) sensors, to

detect. These span the wavelengths between 3000 to

5000 nm, and 8000 to 12000 nm, respectively. RS appli-

cations utilizing infrared sensors include: NIR and SWIR

in the estimation of soil carbon content [243]; vegetation

canopy studies using near-infrared imaging [244]; and

thermal imaging for urban climate and environmental

studies [245].

The passive microwave electromagnetic range is

between 1 and 200 GHz (1.5 and 300 mm). Like thermal

sensors, passive microwave sensors collect radiation

emitted by objects. Water and oxygen molecules in Earth’s

atmosphere absorb some of the shorter wavelengths. RS

applications include monitoring the spatial distribution of

permafrost [246] and land surface temperature [247].

Beyond the passive microwave radio are the higher-fre-

quency detection and ranging (RADAR) waves. Synthetic

aperture radar (SAR) sensors are active and send micro-

wave pulses that reflect off of objects such as the Earth’s

surface back to the transmitter, usually on a satellite. An

example application is the estimation of vegetation thick-

ness for forest fire studies [248], the study of sea surface

winds and waves from spaceborne SAR [249], arctic ice

thickness monitoring [250].

Multispectral imagery refers to the utilization of

between 3 and 10 bands in the electromagnetic spectrum.
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Table 3 Public aerial datasets for precision agriculture and forestry

References Dataset name/

website

Year Sensors Application Content

[267] Global Wheat

Head Dataset

2021

2021 RGB Crop

monitoring

The dataset is composed of more than 6000 images of 1024 9 1024

pixels containing 300k? unique wheat heads, with the

corresponding bounding boxes

[268] RiceSeedling

Datasets

2021 RGB Crop

classification

An image dataset of rice paddy for data sharing by making labeled

and unlabeled data findable and accessible through domain-

specific repositories

[269] Sick Fir Tree

dataset

2021 RGB Disease

detection

A dataset for the identification and categorization of individual

diseased fir trees, comprising Orthomosaics, DSM, nDSM, ROI,

annotations for sick firs, healthy firs, deciduous trees, and treetops.

The dataset encompasses data from nine aerial missions conducted

across four locations on Zao Mountain

[270] MOPAD 2021 RGB Plant

classification

The dataset contains 363,877 oil palms images of five categories:

healthy palms, dead palms, mismanaged palms, smallish palms

and yellowish palms

[254] UAV-ARSP 2020 Multispectral Crop

monitoring

The 588 multispectral aerial images portray an agricultural area of

one square kilometer in a rural zone in KIlosa—Tanzania. Crops:

sesame, pigeon pea, banana, maize, mango, beans, cowpea rice
and sunflower

[259] WHU-Hi 2020 Hyperspectral Crop

classification

Contains 3 datasets: WHUHi-LongKou, WHU-Hi-HanChuan, and

WHU-Hi-HongHu. WHU-Hi-LongK: consists of aerial images of

six types of crops. WHU-HiHanChuan dataset consists of seven

crop types. WHU-Hi-HongHu, consists of seventeen different

cultivars of three main crop types, which are cotton, rape, and

cabbage

[271] Forest Dataset 2020 RGB Forest Tree

classification

We have seven winter mosaics capturing a blend of mountain forest

and a mosaic featuring a pine tree plantation interspersed with

broadleaf trees. The data has been annotated and is now accessible

to the public

[272] Northern Leaf

Blight dataset

2019 RGB Disease

detection

The resultant annotated dataset comprised a total of 3000 resized
aerial images and corresponding ground truth masks containing

5234 lesion instances

[255] Cactus Aerial 2019 RGB Plant

classification

This dataset presents more than 16,000 examples of a columnar

cacti (Neobuxbaumia tetetzo) for plant recognition or

classification

[256] weedNet 2018 Multispectral Weed control The dataset contains 132,243, and 90 annotated multispectral

images of crops, weeds, and crop-weed mixtures. Each training

image/test image consisted of near-infrared (NIR, 790 nm), Red

channel (660 nm), and NDVI imagery

[256] WeedMap 2018 Multispectral Weed control The datasets consist of 129 directories and 18,746 image files.
datasets from sugar beet fields in Eschikon, Switzerland, and

Rheinbach, Germany, with a time interval of 5 months

[273] Joint stem

detection

2018 Multispectral ?

RGB

Weed control The datasets contain 921 RGB ? NIR and 400 RGB-only images as

well as their corresponding annotations for the semantic

segmentation and the stem detection task. Classes: (1) soil, (2)
sugar beet, (3) dicot-weed, and (4) grass-weed

[274] NLB Disease

dataset

2018 RGB Disease

detection

The dataset contains 18,222 images, all taken in the field, and

105,735 annotations by one of two human experts. This is the

largest publicly available collection of classified images of any

single plant disease

[275] Grass-

Broadleaf

2017 RGB Weed control This image dataset has 15336 segments, being 3249 of soil, 7376 of

soybean, 3520 grass, and 1191 of broadleaf weeds. Images were

segmented and the segments were annotated manually with their

respective class
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Table 4 List of the publicly available datasets for disaster response categorized based on the type of natural disaster

References Dataset

name/

website

Year Sensors Application Content

[251] Change

detection

dataset

2022 Multispectral

and SAR

All/common The dataset comprises uniform cases with both multispectral (MS) and

synthetic aperture radar (SAR) images. Additionally, it includes diverse

cases encompassing MS/SAR images, covering 14 instances of natural

disasters, farming, and construction

[277] FLAME

Dataset

2021 RGB Wildfire The dataset includes 5814 fire images captured by drones during a

controlled burning of piled debris in an Arizona pine forest. Both the

recorded videos and images are annotated and labeled on a frame-by-

frame basis

[278] EU Flood

Dataset

2019 RGB Flood Dataset comprises 3710 flood images that have been annotated by domain

experts to assess their relevance for three tasks: identifying the flooded

area, determining inundation depth, and assessing water pollution

[252] Corsican

Fire

Database

2017 Multispectral Wildfire The database contains visible spectrum and near-infrared (NIR) images and

provides a large number of images captured in this spectrum. It contains

video sequences captured simultaneously in color and NIR spectrums

[279] VisiFire 2015 RGB Wildfire The dataset is composed of two main parts: the first 14 videos characterized

by the presence of fire and the last 17 videos that do not contain fires

[280] wildfire

smoke

database

2014 RGB Wildfire The dataset comprises 2977 images distributed across 23 video sequences,

with 16 of them featuring smoke. Smoke is discernible in various forms in

1,839 images, while the remaining images (1138) are essential for quality

evaluation and encompass phenomena that might lead to false alarms

Table 5 List of the publicly available datasets for environment monitoring categorized based on the application

References Dataset name/

website

Year Sensors Application Content

[283] FRACTURES 2021 RGB Rock outcrops The dataset includes filtered 500 x 500 .png tiles specifically featuring

scenes with fracture data. Additionally, it provides .png binary

masks for semantic segmentation and original geo-referenced

shapefile annotations

[284] IndustrialEstate 2021 RGB and

Thermal

Temperature

Monitoring

A collection of data from a light industrial estate in Switzerland was

gathered using an eBee X fixed-wing drone equipped with a

senseFly Duet T thermal mapping camera. The thermal data were

processed to create a thermal 3D mesh and a temperature index map

[285] RIVER ICE

SEGMENTATION

2020 RGB Ice

segmentation

This dataset offers digital images and videos capturing surface ice

conditions, collected during the winter seasons of 2016–2017 from

two rivers in Alberta: the North Saskatchewan River and Peace

River

[286] LeConte Glacier

Dataset

2019 RGB Ice monitoring The dataset contains field measurements at LeConte Glacier, Alaska,

to study the impacts of subglacial discharge on plume dynamics and

submarine melting. The aerial images are used to measure ice

elevation and velocity at the LeConte terminus

[287] Bottle Detection 2018 RGB Waste plastic

Detection

This dataset contains 25,407 UAV images of bottles with various

kinds of backgrounds. An oriented bounding box was used to

accurately and compactly annotate the bottles. The fully annotated

images contain 34,791 bottles

[288] Dune Dataset 2016 RGB Dune

monitoring

Investigating the influence of vegetation and dune size on the initial

stages of dune development through the utilization of unmanned

aerial vehicle (UAV) imaging
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RGB, for example, can be considered multispectral imag-

ing as it collects information from three color bands. Also,

the Landsat-8 satellite can measure 11 bands from indigo to

Thermal IR, in roughly 40 nm steps, i.e., bands [240].

Example applications are in: disaster response with multi-

spectral SAR [251], and multispectral RGB and NIR [252];

land mapping using multispectral LiDAR [253]; and agri-

culture and forestry [254–256].

Hyperspectral imaging has a much higher spectral res-

olution than multispectral, with narrower bands between 10

and 20 nm, as well as the measurement of from hundreds to

thousands of bands [257]. The Hyperion (EO-1 satellite)

[258], for example, measures 220 spectral bands between

400nm (violet) and 2500nm (SWIR). Example applications

utilizing hyperspectral imaging are: land mapping [253];

agriculture and forestry [255, 259]; and reservoir water

quality monitoring [260].

5.2 Aerial datasets

Unmanned aerial vehicles (UAVs) are commonly used

nowadays as a remote sensing platform that holds different

types of imaging devices ranging from RGB, and thermal

cameras to hyperspectral and miniaturized SAR devices.

Despite the fact that UAVs have limited power sources and

can only cover relatively limited areas compared to their

satellite counterpart, UAVs offer an attractive solution

when on-demand images from low altitudes are required in

time-sensitive applications. Further, with their availability,

low cost, easy-to-use, and high operational capability to

capture images at high temporal and spatial resolutions,

UAVs market has grown dramatically over the last decade

and they are now used widely in different RS applications.

We used the data published in [261] to show the dif-

ference between using UAV and satellite platforms in

terms of temporal, spatial, and spectral resolutions as well

as swath. In [261], the researchers categorized the types of

satellites into three categories as follows:

• Global monitoring satellites (GM) such as MODIS

Terra work in high orbit and provide high temporal

resolution and relatively high swarth but offer a

moderate spatial and spectral resolution.

• Environmental monitoring satellites such as Landsat

and Sentinel-2 provide moderate temporal, spatial, and

spectral resolutions and high swath.

• Civilian satellites such as Pleiades or Ikonos provide

high spatial resolution but low temporal and spectral

resolution as these satellites are at low orbit.

While different types of satellites provide different levels

of resolutions, all UAV types guarantee high temporal and

spatial resolution; however, they provide low swath. Nev-

ertheless, UAVs offer an attractive solution for RS appli-

cations that require high temporal and spatial resolutions

such as agriculture and disaster response. On the other

hand, UAVs are not used widely in land-cover/land-use

mapping due to the need for a high swath. Figure 14

illustrates the required resolution and swath in different RS

applications and what resolution is offered by different RS

platforms as indicated in [261].

Fig. 14 Applications/RS platforms resolution matrix
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With this big interest and growth in using UAVs as a

remote sensing platform by governments and the RS

research community, we present, in this section, a summary

of up-to-date public UAV (aerial) datasets that were col-

lected or synthesized over the last decade. In contrast to the

very few existing review papers [262–266], we summarize

the most popular and recent UAV datasets that cover the

RS applications presented in section 4.2 (i.e., agriculture

and forestry, environment monitoring, disaster response,

land mapping). This summary of the available UAV

datasets should greatly help the research community in its

efforts to develop DL algorithms for aerial data analysis.

5.2.1 Datasets in agriculture and forestry

Developing reliable and robust DL methods for crop

monitoring, disease detection, weed control, plant classi-

fication, and other precision agriculture and applications

requires a high-quality, large-scale dataset. Practically, it is

hard to build such datasets due to the cost and efforts that

are needed for image acquisition, classification, and

annotation. Therefore, datasets that are publicly available

play an integral role in fostering remote sensing scientific

progress and significantly reducing the cost and time nee-

ded for dataset preparation. In this subsection, we present a

tabulated summary (Table 3) of recent publicly available

datasets in the field of RS in agriculture and forestry.

The datasets are classified based on the application

within precision agriculture. The table also provides the

reader with a link to the dataset website as well as a brief

description of the contents of the dataset. Our search was

limited to aerial images that are acquired by UAVs, drones,

airplanes, or any flying device. We also provide the sensor

type in each dataset which is entirely dependent on the type

of application [65], as indicated in Fig. 15. For example,

multispectral images are used mainly in precision irrigation

and disease detection while RGB is mainly used for weed

control.

5.2.2 Aerial datasets for disaster response

Unlike agriculture and forestry, finding public datasets of

aerial images for disaster response can be challenging. As

shown in Fig. 16, 53% of the data sources for damage

assessment as a result of natural disasters are acquired by

satellites and only 21% are acquired by UAVs [276].

However, with the increased interest in using UAVs for

disaster response and damage assessment over the last 5

years, it is expected that UAVs will gain more volume as a

source of data than satellites due to their high temporal and

spatial resolution. Therefore, we are presenting in this

section the publicly available aerial image datasets which

are categorized by the type of disaster and ordered by the

date of the last update of the dataset as shown in Table 4. A

brief description of the dataset (based on the publishing

source) is also provided.

5.2.3 Aerial datasets for environment monitoring

Due to the advantages of UAVs mentioned earlier in this

section, they have been increasingly used for environ-

mental monitoring, especially in hard-to-reach areas. UAV

remote sensing technology is capable of operating at dif-

ferent spatial resolutions while keeping a high temporal

resolution. Furthermore, with the recent advancements in

the miniaturized multispectral and LiDAR sensors, UAVs

have become the best choice for distinguishing between

natural and pollutant materials and building precise 2D/3D

maps of the land surfaces [120]. In recent times, unmanned

Fig. 15 Data modality used in

different precision agriculture

applications
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aerial vehicles (UAVs) have emerged as a significant

transformative factor in marine monitoring. They play a

crucial role in addressing biological and environmental

issues, encompassing tasks such as monitoring invasive

species, conducting surveys and mapping, observing mar-

ine animal activities, and monitoring marine disasters

[281, 282]. Imagery data acquired by UAVs are normally

analyzed using DL which requires datasets of real images

collected by UAVs. In this subsection, we present the

recent publicly available datasets based on our review of

the literature. Table 5 provides a list of the dataset cate-

gorized based on the application as well as a description of

the dataset contents.

5.2.4 Aerial datasets for land mapping

UAVs have become valuable tools for land mapping and

surveying due to their ability to capture high-resolution

aerial images and data efficiently. Moreover, UAVs pro-

vide rapid cover for large areas which is important for

time-sensitive projects, and can access hard-to-reach or

hazardous areas, making them suitable for mapping terrain,

forests, cliffs, and other challenging landscapes. UAVs can

also capture images from multiple angles and altitudes,

enabling the creation of 3D models of the land. These

models are valuable for urban planning, archaeological site

preservation, and environmental assessment. Repeated

UAV flights over time can be used to monitor land chan-

ges, such as urban expansion, deforestation, or erosion. For

land mapping, deep learning techniques are employed in

various ways to extract valuable information from aerial.

Deep learning models can be used to detect changes in land

cover and land use over time by comparing historical and

current imagery. It can be also applied to identify and

extract building footprints from high-resolution aerial

imagery and extract road networks, enabling the creation of

detailed road maps. This information is essential for urban

planning, disaster response, and infrastructure develop-

ment. Deep learning algorithms proficiently classify land

parcels or areas into different land-use types, such as res-

idential, commercial, agricultural, or industrial, and can

process LiDAR data to create accurate digital elevation

models, which are essential for terrain analysis, and flood

modeling. To implement deep learning in land mapping,

large labeled datasets are required for model training, and

specialized neural network architectures. Consequently, we

present a compilation of recently accessible datasets, as per

our comprehensive literature review. Table 6 illustrates a

categorized list of datasets, detailing their respective

applications and dataset contents.

5.3 Satellites datasets

There is a large number of active remote sensing satellites

and databases, which are accessible through freely avail-

able and commercial interfacing software programs. Some

of the common sources of remote sensing data are the

United States Geological Survey; National Oceanic and

Atmospheric Administration; National Aeronautics and

Space Administration Earthdata; NASA Earth Observa-

tions; European Space Agency; Japan Aerospace Explo-

ration Agency; AirBus Defense and Space; MAXAR

Company; Planet Labs; Satellite Imaging Corporation;

Apollo Mapping. We present a selection of popular and

recently cited datasets of overhead imagery, mostly from

remote sensing Earth satellites. The available satellite data

is vast. Most datasets combine satellite imagery from

multiple satellites with ground-based measurements to

train artificial intelligence models to create algorithms that

can be used to process new data. For example, a local 2011

study of mangrove forests in the coastal region of West

Africa was used to develop a general model for mangrove

detection globally [297].

We present a partial list of interesting satellite-based

datasets in the four most popular applications. Agriculture

and forestry datasets are included in Table 7. Such datasets

commonly reply to RGB color imagery, as well as infrared

to detect the extent of vegetation on the surface. Often data

products for analysis via machine learning are created to

include urban sprawl, human development, and water

levels. The results are often global maps useful for

assessment and planning.

Furthermore, disaster response satellite datasets are lis-

ted in Table 8; common sensor modalities include infrared,

radar, RGB, and multispectral imagery. Applications

include the study of global storms, floods, and landslide

patterns, as well as volcano activity, temperature extremes,

wildfires, and building damage mapping.

Fig. 16 Damage assessment data sources in response to different

natural disaster
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In addition, environmental monitoring satellite datasets

are listed in Table 9. Applications include monitoring

wildlife habitats, ice sheet monitoring, climate predictions,

atmospheric gas concentrations, freshwater reservoir

assessment, ocean flux, and plastic pollution monitoring.

Sensor modalities include combinations of multispectral,

radar, GPS, ground data, infrared, and RGB.

Finally, satellite datasets for scene classification and

object segmentation detection are listed in Table 10.

Applications include semantic segmentation of overhead

scene pixels into categories of land use, as well as road,

car, and ship detection. Sensor modalities include RGB,

infrared, radar, and multispectral imagery.

6 Discussion and future direction

6.1 Perspective from imaging and sensing

The combination of UAV and satellite imagery with deep

learning algorithms in remote sensing is anticipated to

persist in transforming our capacity to observe and com-

prehend the Earth’s surface and its dynamic processes. This

advancement is poised to contribute to progress in fields

such as agriculture, environmental conservation, disaster

management, and urban planning, among others. Drawing

from our expertise and comprehensive review of this field,

we present key trends and areas of development as follows:

Table 6 List of the publicly available datasets for land mapping based on the application

References Dataset name/

website

Year Sensors Application Content

[289] UC Merced Land

Use Dataset

2010 RGB Land-use

classification

Overhead images of 21 urban structure classes. 100 images

per class. 256�256 pixels with 30 cm spatial resolution.

[290] DynamicEarthNet 2022 RGB, IR Land-use

classification

The dataset contains daily observations of 75 separate areas

of interest around the globe, with 7 land-use and land-

cover (LULC) semantic classes

[291] SinkholeNet 2022 RGB Land-use

classification

The dataset comprises 467 high-resolution UAV images.

The alignment of these spatially overlapped images was

achieved using the Visual Structure from Motion system

(VisualSfM) algorithm to produce an orthomosaic image

and a Digital Elevation Model (DEM) for the study area

[292] UAVid 2020 RGB Land-cover

classification

This dataset has 300 images and each of size e 4096 x 2160

or 3840 x 2160. In total, 30 small UAV video sequences

are captured in 30 different places to bring variance to the

dataset.

Data collection takes place under favorable weather

conditions with ample illumination

[293] UNCD 2018 RGB Land use The UMCD Dataset (about 3.50 GB) is composed of two

main sets (geo-referenced and not geo-reference) of

challenging video sequences acquired at very low-altitude.

This dataset can be used for land-use classification

[253] IEEE GRSS

DATA

FUSION

2018 Fusion of multispectral

LiDAR and

hyperspectral data

Land

management

The provided data encompasses Multispectral-LiDAR point

cloud information at wavelengths 1550 nm, 1064 nm, and

532 nm; Hyperspectral data spanning a spectral range of

380–1050 nm with 48 bands at a 1-m Ground Sample

Distance (GSD), along with high-resolution RGB imagery

at a 5-centimeter GSD

[294] LandCover 2017 RGB, LiDAR and

ALS

Land-cover

classification

The dataset comprises aerial images with ground control

points and direct geo-referencing data. The data cover

various areas of interest for research, such as buildings

with diverse sizes and roof materials, roads, and

vegetation

[295] Pavia University

Scene

2022 Hyper spectral

(430–960 nm)

Land-cover

classification

Contains 42,776 aerial images of 9 classes of land-cover

types such as asphalt, meadow, gravel, trees, shadows,

painted metal, etc.

[296] Indian Pines 2022 Hyper spectral with

224

bands(400–2500 nm)

Vegetation

classification

Contains 10,249 aerial images of 16 classes of vegetation

and agricultural fields, including Alfalfa, Corn, Grass,

Oats, Wheat, woods, etc.
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• Enhancing the spatial and temporal resolution of

satellite and UAV imagery is imperative. This enhance-

ment will facilitate more frequent and detailed moni-

toring of landscapes, ecosystems, and urban areas.

• Multi-sensor integration is a critical requirement within

the field of remote sensing data analysis and remote

sensing, where data from a variety of sensors such as

optical, thermal, LiDAR, and hyperspectral sensors

must be effectively combined. This integration offers

the potential for a more comprehensive understanding

of the environment. However, it also presents a new

challenge in the implementation of novel deep learning

architectures, as they need to be capable of handling the

fusion of multi-modal data for enhanced analysis.

Standardize data and calibration procedures across

different sensors and the development of DL architec-

tures designed for multi-sensor integration with the

collaboration of the sensor manufacturers, could help to

mitigate the aforementioned challenges

• In dynamic scenarios applications, such as disaster

response and precision agriculture, real-time and on-

device processing of UAV imagery is an immediate

need. However, this also requires efficient algorithms

and hardware capable of handling large volumes of data

with low latency. The development of lightweight DL

models optimized for on-device processing could be

needed for this scenario, in which edge computing and

distributed processing systems are used to reduce

latency problems.

• There will be an increasing trend toward tailoring deep

learning models with satellite/UAV platforms to speci-

fic applications, whether it is precision agriculture,

forestry management, environment monitoring, or dis-

aster management. This requires a deep understanding

Table 7 Selected satellite-based datasets used in forestry and agriculture

References Dataset name/

Website

Year Modalities Applications Content

[297] Mangrove Forests

Distribution

Polygon, v1 (2000)

2000 RGB, NIR, SWIR Study West African mangrove

forests subject to sea level

rise threat

A map of ‘‘true mangroves’’ based on

training data from 200 km of African

coastline mangrove areas. 30 m

resolution.

[297] Global Mangrove

Forests

Distribution, 2000

2000 RGB, NIR, SWIR Global mangrove forest

distribution modeling, land-

cover change analysis,

global carbon accounting

A global map of ‘‘true mangroves’’ based

on training data from 137,760 km2 in

118 countries and territories

[298] Deforestation, v1

(2000-2012)

2012 RGB, NIR, SWIR Study global tree cover extent,

loss, and gain

A time-series analysis of 654,178 Landsat

images. 30 m resolution

[299] MA Biodiversity, v1

(1950-2001)

2001 Moderate Resolution

Imaging

Spectroradiometer

and Data

Global biodiversity studies Data spanning 50 years, including disease

agents, animal and fish populations,

pollution, and loss of natural land cover

[300] Gravity Recovery

and Climate

Experiment

(GRACE), v1

(2002-2016)

2016 Gravity sensor Global freshwater availability

trends

A global gridded data set at a spatial

resolution of 0.5� that represents trends

in between 2022 and 2016

[301] Croplands, v1 (2000) 2000 Moderate Resolution

Imaging

Spectroradiometer

Human-environment

interaction: agriculture

Global maps for agricultural land

distribution in 2000

[301] Pastures, v1 (2000) 2000 Moderate Resolution

Imaging

Spectroradiometer

Human-environment

interaction: pastureland

Global maps for animal grazing in 2000

[302] HANPP Collection 2004 Radiometer Human appropriation of net

primary productivity (NPP)

studies

Global map of the annual amount of

Earth’s terrestrial net primary production

humans require for food, fiber (including

fabrication) and fuel, as well as the

amount of NPP required

[303] Food Insecurity

Hotspots Data Set,

v1 (2009-2019)

2019 Data product Food security studies Maps (250 m resolution) for intensity and

frequency of food insecurity (2009-2019)

and effects
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of the domain and the ability to adapt to changing

requirements.

• As the use of UAV/satellite and deep learning in remote

sensing grows, there will be a greater focus on ethical

and regulatory issues, including privacy concerns, data

security, and compliance with local and international

regulations. Methods such as strong data encryption and

access control measures to protect sensitive data could

be implemented to mitigate privacy concerns. Addi-

tionally, educate stakeholders about the importance of

data privacy and security.

6.2 Perspective from learning algorithms

Supervised classification algorithms need labeled data to

classify RS images correctly. However, collecting labeled

samples for learning is time-consuming and costly. Accu-

rate classification maps need sufficient and high-quality

training data. One of the major limitations of these

supervised approaches is the scarcity of a dataset superior

in quantity and quality for training the classifier. In remote

sensing image classification, data labeling can be tricky

and time-consuming. Thus, semi-supervised learning (SSL)

approaches have been used to train the classifier using

labeled and unlabeled data to enrich the input to the

supervised learning algorithm and increase classification

accuracy. This is especially beneficial in remote sensing,

where gathering and classifying vast training data may be

time-consuming and costly. However, SSL approach poses

some challenges. It requires carefully selecting the labeled

and unlabeled data and an appropriate semi-supervised

learning algorithm. Different SSL algorithms may perform

variably depending on the dataset characteristics and

classification tasks, where there is a need for algorithms

that can adapt to the specific properties of remote sensing

data, such as high dimensionality and spectral variability.

To address this issue, some advanced data selection

methods could be an option, such as developing

Table 8 Selected satellite-based datasets used in disaster response

References Dataset name/

Website

Year Modalities Applications Content

[304] Geocoded

Disasters

(GDIS)

2021 Geocoded Data Coded data for global disaster analysis:

floods; storms; landslides; droughts;

volcanoes; extreme temperatures

39,953 locations geocoded for 9,924 disasters

that occurred worldwide in the years

1960–2018

[305] Hephaestus

Dataset

2022 Interferometric

SAR (InSAR)

Volcano state classification, semantic

segmentation, ground deformation,

the atmospheric signal in InSAR

imagery

Contains 19,919 manually annotated Sentinel-

1 satellite SAR interferograms of 44

different volcanoes globally

[306] WildFires 2019 RGB, NIR,

MIR, and

Thermal IR,

and data

Predict the occurrence of wildfires

using machine learning and data

mining

804 rows vectors of data (386 ‘‘fire,’’ 418 ‘‘no

fire’’) collected from 2 million hectares in

Canada in the period 2013–2014

[307] VIIRS

NightFire

(VNF)

2013 NIR, SWIR Detect fires and combustion sources on

Earth’s surface at night

Infrared data recorded at night. Bands M10,

M11, M12, and M13 bands are used to

detect combustion sources

[308] Global Fire

Emissions

Database

(GFED4))

2013 Radiometer,

RGB, IR,

Rainfall/Fire

Maps

Global area burning assessment Data product of global green area loss

between 1995 and 2013

[309] xBD 2019 multi-band

RBG

Assessment of building damage after

wildfires, earthquakes, tsunamis,

wind damage, etc.

Labeled pre and post-damage top view

imagery of buildings with bounding boxes

and labels of damage caused. Images of

700,000 buildings from 15 countries

covering 5,000 square kilometers

[310] Harmonized

Landsat

Sentinel-2

(HLS)

2018 Multispectral Flood, mudslide, and urban destruction

monitoring after weather-related

disasters

A Virtual Constellation of surface reflectance

data acquired by the Operational Land

Imager and Multi-Spectral Instrument on

Landsat-8 and Sentinel-2. 2–3 day and 30 m

resolutions

[311] NASA

Disasters

Program

2021 True Color

RGB, SAR

Maps and data to monitor hurricane

and flooding development and

aftermath

Near real-time Geographic Information

Systems (GIS) format producer from
multiple satellites. 3-4 m resolution
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reinforcement learning-based strategies for dynamically

selecting the most informative labeled and unlabeled

samples during training. In addition, future research can

focus on enhancing domain adaptation techniques [330]

within SSL frameworks to handle variations in data dis-

tributions across different regions and sensor types. We

also suggest exploring other types of machine learning

techniques like curriculum learning [331], where the model

is trained on easier tasks or samples first, gradually

increasing the complexity to improve learning efficiency

and performance.

In addition, multi-task learning (MTL) can be helpful in

RSIC when multiple related land-cover classification tasks

need to be performed. It allows the model to learn shared

features that may be useful for multiple tasks. One of the

main advantages of MTL is that it allows a model to learn

shared features that may be useful for multiple tasks, which

can help improve the model’s performance on each task.

For example, an MTL model could be used to classify

vegetation and water bodies in a satellite image, and the

model could learn useful features for both tasks. Thus,

MTL is a helpful tool for RSIC, mainly when multiple

related tasks need to be performed, and can help improve

accuracy and efficiency. In terms of future trends in MTL

development, we envision that research will continue

developing robust techniques for learning the degree of

relatedness between tasks in a context-aware manner,

potentially using attention mechanisms or graph-based

representations. Besides, as loss function is an important

task of MTL, innovative approaches to enhance the func-

tionality of task-specific layers with adaptive loss weight-

ing strategies would be beneficial. This ensures the

importance of each task’s loss is dynamically adjusted

based on task performance and difficulty.

Furthermore, active learning (AL) can be particularly

useful when labeled data are scarce and it is not feasible to

label the entire dataset. One of the main advantages of

active learning is that it can help improve a model’s

Table 9 Selected satellite-based datasets used in environmental monitoring

References Dataset name/

Website

Year Modalities Applications Content

[310] Harmonized

Landsat

Sentinel-2

(HLS)

2018 Multispectral Monitoring of phenomena such

as natural disasters, cyclical

crop yields, and wildlife

habitats

Surface reflectance data acquired by the OLI and

Multi-Spectral Instrument on Landsat-8 and

Sentinel-2

[312] MERRA-2 2017 Hyperspectral,

microwave,

GPS

climate prediction, aerosols, and

ice sheet monitoring

Timestamped ozone, wind, rain, temperature, and

other data between 1980 and 2012

[313] MODIS

MYD11C3

2018 Data

transformations

Earth climate monitoring, land-

climate interactions

Temporal and spatial surface air temperature

records (2003–2016)

[314] CT2019B 2022 Satellite and

ground data

Study concentrations of

atmospheric carbon dioxide

Global carbon dioxide surface flux, with a focus

on North America (2000–2018)

[315] GRBD 2020 Multi-satellite

imagery and

altimetry

Global water reservoir studies

and bathymetry

30 m resolution data for 347 global reservoirs,

representing half of the global water reservoir

capacity

[316] CMORPH 2023 Passive MW, IR Global precipitation estimation Precipitation rates from 1998 to the present in mm

per hour with 8 km by 8 km spatial, and 30 to 60

minute temporal resolution.

[317] HydroSat 2022 Satellite

altimetry,

imagery, and

gravimetry

Global surface water storage

studies

Hydrological time series (2016 to 2018), based on:

water level; river width estimation; water storage

anomalies; river discharge

[318] J-OFURO3 2019 Data product Global ocean flux studies Ocean surface heat, momentum, freshwater fluxes,

and related parameters globally between 1988

and 2013

[319] Global

Surface

Water

2021 Multispectral Surface water levels studies. Pixel level classified Landsat images (3 million):

water; land; non-valid. 30-m resolution

(1984–2021)

[320] Hyperspectral

Plastics

Dataset

2021 Hyperspectral Ocean plastic pollution detection Images from 30 test sites. 13 pixel-level classes

over water and land, including plastics. Plastics

sub-classes: tires; plastic; greenhouse; waste cite
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performance by focusing on labeling the most informative

samples. This can be particularly useful in RS image

classification, where labeling the entire dataset may not be

practical due to the size and complexity of the images. The

future trends in active learning are likely to focus on

integration with other learning methods such as meta-

learning algorithms to allow the active learning system to

adapt its querying behavior dynamically.

Besides, in RS image classification, transfer learning

(TL) can be beneficial when there is a lack of labeled data

for the specific land-cover classification task, but there is a

related task for which labeled data are available. This is

because the model can leverage the knowledge it has

learned from the source task to better classify the data for

the target task. We anticipate the development of TL will

be emphasized from the following aspects: (1) Unsuper-

vised domain adaptation, which allows models to adapt to

new domains without requiring labeled data in the target

domain. (2) Multi-view multi-source transfer learning.

With ever-increasing remote sensing data availability,

sensor and methodology advancement, ongoing research in

TL is most likely to leverage multi-source remote sensing

data from multiple views or perspectives to better

generalize to a target domain and thus improve perfor-

mance. (3) Parameter-efficiency models or lightweight

models. This makes it easier to fine-tune and deploy in

resource-constrained environments. (4) Privacy-preserving

and efficient transfer learning, such as developing transfer

learning models in federated learning settings that are

robust to adversarial attacks and compatible with varying

computational resources.

Finally, ensemble learning (EL) can be used to improve

the accuracy and robustness of a model’s classification

tasks by using the strengths of multiple models. For

example, if different models are trained on different subsets

of the data or with different algorithms, the EL model can

use the complementary strengths of each model to achieve

better results. Another advantage of EL is that it can help

reduce the risk of overfitting, as it can use the predictions

of multiple models rather than just one. Ongoing work is

suggested in the area of adaptive ensemble methods that

can dynamically adjust model aggregation based on data

characteristics and tasks. Another interesting area of

research is designing ensembles that work efficiently in

resource-constrained environments, such as edge comput-

ing and mobile devices.

Table 10 Selected satellite-based datasets used in scene classification, object segmentation, and detection

References Dataset name/

Website

Year Modalities Applications Content

[321] SEN12MS 2019 Dual Polarity

SAR,

multispectral

images.

Image classification, semantic

segmentation, and data fusion. Land-

cover maps of all inhabited continents

overall meteorological seasons

180,748 image triplets holding dual-polarity

SAR (Sentinel-1), multispectral images

(Sentinel-2), and land-cover maps

(MODIS)

[322] Massachusetts

Roads

Dataset

2013 RGB Road segmentation from overhead

imagery

1171 images 1500 9 1500 pixels of a 2600

square kilometer area with urban,

suburban, and rural areas with 1 pixel per

square meter

[323] SpaceNet 6 2020 Quad-

polarity SAR,

RGB

Semantic segmentation of city buildings in

all types of weather conditions

48,000 unique building rooftops in the city

of Rotterdam, with height information

labels.

[324, 325] RSD46-WHU 2017 RGB Overhead scene classification: airplane,

building, bridge, oil tank, playground,

etc.

117,000 images of 46 classes. Between 500

and 3000 images per class

[326] Cars Overhead

with Context

(COWC)

2016 RGB,

Grayscale

Deep learning-based car detection in

overhead images

Overhead images from 6 cities: Toronto;

Selwyn; Potsdam; Vaihingen; and

Columbus. Also, 32,716 annotated car

objects with 58247 unique negative

examples and 15 cm per pixel resolution

[327] SAR-Ship-

Dataset

2019 SAR Object (ship) detection in images with

complex backgrounds. Scene

classification

43,819 SAR images of ships, from the

Gaofen-3 and Sentinel-1 satellites

[328] HRSC2016 2017 RGB Object (ship) recognition in high-

resolution color satellite images

1061 sea and sea-land images with 3786

annotated ship samples

[329] NEPUOWOD

V1.0

2021 RGB Oil Well detection 1192 oil wells in 432 images from Daqing

City, China
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6.3 Perspective from foundation models

The rapid advancement of large language models (LLMs)

has significantly impacted various natural language tasks.

This progression heralds an era where visual foundation

models (VFM) will become integral to numerous RS

applications. We anticipate the use of VFMs in tasks like

remote sensing image classification, segmentation, and

captioning. Furthermore, there is potential for the devel-

opment of domain-specific VFMs tailored to particular RS

applications. These applications could include precision

agriculture, disaster monitoring and response, and climate

change analysis, among others. This trend reflects a

growing synergy between advanced machine learning

techniques and practical, real-world applications in remote

sensing and environmental monitoring. However, the

development of VFM for RS applications requires over-

coming challenges related to model complexity, scalability,

and interoperability. To this end, future development in this

area will focus on scalable VFM methods capable of

handling large volumes of RS data. Additionally, we

envision that domain-specific or data-specific VFMs will

become more prevalent for managing various types of

optical and radar RS data. For instance, models like

SpectralGPT [332] can provide deeper insights into

advancing spectral RS big data applications.

6.4 Perspective from the ethical aspect
of remote sensing with deep learning
systems

Remote sensing technologies, when combined with deep

learning systems, offer remarkable capabilities for moni-

toring and understanding the Earth’s surface. However, the

integration of these technologies raises ethical concerns

that must be carefully addressed to ensure their responsible

and ethical use.

One of the primary ethical considerations in remote

sensing with deep learning systems is privacy. These sys-

tems can capture highly detailed information about indi-

viduals and their activities, raising concerns about

unauthorized surveillance and data misuse. To address

these concerns, privacy-preserving techniques should be

employed [333, 334]. In addition, given the sensitivity of

remote sensing data, ensuring its security is paramount.

This involves implementing robust data encryption tech-

niques to enable the efficient encryption of remote sensing

data [335, 336].

Another critical issue is the potential for bias and

unfairness in deep learning models used for remote sens-

ing. If these models are trained on biased data, they may

produce unfair outcomes. To mitigate these risks, it is

essential to use diverse and representative datasets and

implement bias detection and mitigation techniques in the

model development process [337].

Compliance with regulations and standards, as well as

establishing accountability for decisions made using

remote sensing data, is crucial. This includes establishing

clear policies and procedures for data collection, process-

ing, and use, providing transparency about data sources and

analysis algorithms, and implementing mechanisms for

accountability and oversight [338, 339].

Addressing these ethical concerns is essential for the

responsible and sustainable deployment of remote sensing

technologies with deep learning systems. It enables us to

harness the potential of these technologies for positive

impact while mitigating potential harm to individuals,

society, and the environment.

7 Conclusions

This review offers a thorough examination of diverse deep

learning models and frameworks, along with their archi-

tectural designs, tailored for remote sensing image classi-

fication tasks. It also delves into various sensor modalities

and imaging platforms pertinent to RS image analysis.

Additionally, the review encompasses both existing and

potential applications in this domain. Further, it analyzes

current trends in the application of deep learning within the

remote sensing field and proposes predictions for ongoing

and future developments. Our aim is to inspire increased

interest and engagement within the vision and remote

sensing community, encouraging the use of various deep

learning models not only for RS image classification

challenges but also for broader applications in the field.

Data availability Data sharing is not applicable to this article as no

datasets were generated or analyzed during the current study.

Declarations

Conflict of interest The authors declare that they have no known

competing financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

16756 Neural Computing and Applications (2024) 36:16727–16767

123



holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

1. Yi Y, Zhang W (2020) A new deep-learning-based approach for

earthquake-triggered landslide detection from single-temporal

rapideye satellite imagery. IEEE J Sel Top Appl Earth Observ

Remote Sens 13:6166–6176

2. Toan NT, Cong PT, Hung NQV, Jo J (2019) A deep learning

approach for early wildfire detection from hyperspectral satellite

images. In: 2019 7th international conference on robot intelli-

gence technology and applications (RiTA), IEEE, pp 38–45

3. Maimaitijiang M, Sagan V, Sidike P, Hartling S, Esposito F,

Fritschi FB (2020) Soybean yield prediction from UAV using

multimodal data fusion and deep learning. Remote Sens Environ

237:111599

4. Babaeian E, Paheding S, Siddique N, Devabhaktuni VK, Tuller

M (2021) Estimation of root zone soil moisture from ground and

remotely sensed soil information with multisensor data fusion

and automated machine learning. Remote Sens Environ

260:112434

5. Sidike P, Sagan V, Maimaitijiang M, Maimaitiyiming M, Sha-

koor N, Burken J, Mockler T, Fritschi FB (2019) DPEN: deep

progressively expanded network for mapping heterogeneous

agricultural landscape using worldview-3 satellite imagery.

Remote Sens Environ 221:756–772

6. Srivastava S, Vargas-Munoz JE, Tuia D (2019) Understanding

urban landuse from the above and ground perspectives: a deep

learning, multimodal solution. Remote Sens Environ

228:129–143

7. Feddema JJ, Oleson KW, Bonan GB, Mearns LO, Buja LE,

Meehl GA, Washington WM (2005) The importance of land-

cover change in simulating future climates. Science

310(5754):1674–1678

8. Jia X, Kuo B-C, Crawford MM (2013) Feature mining for

hyperspectral image classification. Proc IEEE 101(3):676–697

9. Zhang L, Zhang L, Du B (2016) Deep learning for remote

sensing data: a technical tutorial on the state of the art. IEEE

Geosci Remote Sens Mag 4(2):22–40

10. Zhu XX, Tuia D, Mou L, Xia G-S, Zhang L, Xu F, Fraundorfer

F (2017) Deep learning in remote sensing: a comprehensive

review and list of resources. IEEE Geosci Remote Sens Mag

5(4):8–36

11. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature

521(7553):436–444

12. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classi-

fication with deep convolutional neural networks. Adv Neural

Inform Process Syst 25

13. Zhao Z-Q, Zheng P, Xu S-T, Wu X (2019) Object detection with

deep learning: a review. IEEE Trans Neural Netw Learn Syst

30(11):3212–3232

14. Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez

V, Garcia-Rodriguez J (2017) A review on deep learning tech-

niques applied to semantic segmentation. arXiv:1704.06857

15. Young T, Hazarika D, Poria S, Cambria E (2018) Recent trends

in deep learning based natural language processing. IEEE

Comput Intell Mag 13(3):55–75

16. Alom MZ, Taha TM, Yakopcic C, Westberg S, Sidike P, Nasrin

MS, Hasan M, Van Essen BC, Awwal AA, Asari VK (2019) A

state-of-the-art survey on deep learning theory and architectures.

Electronics 8(3):292

17. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ron-

neberger O, Tunyasuvunakool K, Bates R, Žı́dek A, Potapenko
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