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Abstract

Fungi are arguably the most diverse eukaryotic kingdom of organisms in terms of number of estimated species,
trophic and life history strategies, and their functions in ecosystems. However, our knowledge of fungi is limited due
to a distributional bias; the vast majority of available data on fungi have been compiled from non-tropical regions. Far
less is known about fungi from tropical regions, with the bulk of these data being temporally limited surveys for fun-
gal species diversity. Long-term studies (LTS), or repeated sampling from the same region over extended periods, are
necessary to fully capture the extent of species diversity in a region, but LTS of fungi from tropical regions are almost
non-existent. In this paper, we discuss the contributions of LTS of fungi in tropical regions to alpha diversity, ecological
and functional diversity, biogeography, hypothesis testing, and conservation—with an emphasis on an ongoing tropi-
cal LTS in the Pakaraima Mountains of Guyana. We show how these contributions refine our understanding of Fungi.
We also show that public data repositories such as NCBI, IUCN, and iNaturalist contain less information on tropical
fungi compared to non-tropical fungi, and that these discrepancies are more pronounced in fungi than in plants

and animals.
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Resumen

Los hongos son, posiblemente, el reino més diverso dentro del dominio Eukaryota en cuanto al nimero de espe-
cies estimadas, estrategias tréficas, ciclos de vida y funciones en los ecosistemas. No obstante, nuestro conocimiento
sobre ellos es limitado debido a un sesgo de distribucién: la mayorfa de los datos disponibles provienen de regiones
no tropicales. Se sabe mucho menos sobre los hongos de las zonas tropicales, y la mayor parte de los estudios reali-
zados en estas dreas han sido de corta duracién, centrados en la diversidad de especies fungicas. Los estudios a largo
plazo (LTS, por sus siglas en inglés), es decir, muestreos repetidos en una misma regién durante periodos prolonga-
dos, son fundamentales para captar de manera completa la diversidad de especies en una zona. Sin embargo, los LTS
de hongos en regiones tropicales son practicamente inexistentes. En este articulo, analizamos las contribuciones de
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los LTS de hongos en zonas tropicales en relacién con la diversidad alfa, la diversidad ecolégica y funcional, la bio-
geografia, la prueba de hipdtesis y la conservacion, destacando un estudio LTS en curso en las montanas Pakaraima
de Guyana. Mostramos como estos estudios enriquecen nuestra comprension de los hongos. Ademas, demostramos
que los repositorios publicos de datos como NCBI, UICN e iNaturalist contienen menos informacién sobre los hon-
gos tropicales en comparacion con los de regiones no tropicales, y que estas discrepancias son mas marcadas en los

hongos que en las plantas y los animales.

Introduction

Fungi are extremely diverse in terms of species richness
and ecological functions. About 155,000 species are for-
mally described (Kirk 2023) out of approximately 2.5
million (Niskanen et al. 2023), although estimates vary
between 600,000 and 12,000,000 (Mora et al. 2011; Wu
et al. 2019). Even though fungi fulfill essential ecological
roles in our ecosystems as saprotrophs, mutualists, and
parasites and pathogens (Willis 2018), our knowledge of
fungal diversity lags behind that of other groups of organ-
isms. Reasons for this include: (i) most fungi are micro-
scopic or produce cryptic, temporal sporocarps, (ii) they
often occupy highly specialized substrates or microhabi-
tats, and (iii) potential hotspots for fungal biodiversity
remain underexplored (Blackwell 2011). Traditionally,
our knowledge of fungal diversity—inclusive of species
richness, gene richness, and ecological and functional
roles—has been based on information from the temper-
ate Northern Hemisphere (e.g., Aime and Brearley 2012;
Quandt and Haelewaters 2021).

Terrestrial tropical ecosystems include the forests,
savannahs, and other habitat types that lie between the
Tropic of Cancer and the Tropic of Capricorn where the
latitudinal diversity gradient hypothesis posits that maxi-
mum alpha diversity is found (Pianka 1966; Hillebrand
2004). Although the warm, wet, and relatively aseasonal
climate of tropical forests is favorable for maintaining
potentially higher fungal diversity than anywhere else
in the world, current data show this is variable based on
taxonomic and functional groups. For example, increased
tropical diversity has been supported for ecological
groups, such as endophytes (Arnold and Lutzoni 2007),
and proposed for plant-pathogenic microfungi (Shivas
and Hyde 1997) and arthropod-associated Laboulbeni-
ales (Weir and Hammond 1997), while ectomycorrhizal
(ECM) fungi and certain classes such as Leotiomycetes
are believed to be more diverse in non-tropical regions
(Tedersoo and Nara 2010; Tedersoo et al. 2014). Evidence
from meta-analyses of high-throughput sequencing
(HTS) studies of soils confirms that tropical woodlands,
highlands, and lowland and montane forests have some
of the highest alpha diversity of fungi in the world,
excluding extremely wet or arid regions (Mikryukov et al.
2023; Niskanen et al. 2023; but see Vétrovsky et al. 2019).

Aspects of fungal biology make documenting their
diversity harder than many other organismal groups.
The cryptic nature and ephemeral sporocarps of fungal
species make it difficult to find and collect even a small
proportion of the total number of (macrofungal) species
during a single sampling effort. The factors triggering
sporocarp production are multiple and often unpredict-
able, so to achieve a proper census, repeated sampling
over many years is necessary. Additionally, high variabil-
ity in species found across time and space may occur in
both studies collecting sporocarps (Lodge and Cantrell
1995) and HTS of soils (Izzo et al. 2005). The lack of long-
term datasets in tropical habitats has hindered the ability
to estimate how well sampling efforts are capturing the
full suite of fungal species richness (Aime and Brearley
2012).

Long-term studies in the tropics

Long-term studies (LTS) involve repeated sampling of a
specific field site over extended periods either in a stand-
ardized manner (i.e., plot-based or along transects at reg-
ular time intervals) or incidentally (O’Dell et al. 2004). In
this paper, we focus on scientific contributions from LTS
of at least one year in length. We note this is an arbitrary
time frame because studies with repeated, frequent sam-
pling <1 year may still make significant contributions and
studies > 1 year may only occur once annually for a short
period of time. By and large, LTS produce datasets that
offer numerous advantages compared to those resulting
from single sampling events, allowing comparisons over
time as populations, communities, ecosystems, and envi-
ronments change.

Datasets from fungal LTS sites can include vouchered
specimens and cultures with associated metadata,
including but not limited to phenological, ecological and
climatic measurements, Sanger sequencing, HTS, and
genomic-scale molecular data. However, very few myco-
logical studies have been designed to collect LTS data
from tropical systems (Hyde et al. 2020). Locations of
published examples of LTS from the tropics focusing on
species inventories include Benin (Houdanon et al. 2022),
Cameroon (Jumbam et al. 2019), southern China (Li
et al. 2018), Colombia (Vasco-Palacios et al. 2005; Lépez-
Quintero et al. 2012), Dominican Republic (Angelini
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2022), Ecuador (Leessge and Petersen 2011; Vandegrift
2023), the Greater Antilles (Lodge 2018), Hawai‘i, USA
(Hemmes and Desjardin 2001), Honduras (Haelewaters
et al. 2021b), Panama (Piepenbring et al. 2015), Sdo Tomé
and Principe (Desjardin and Perry 2022), and northern
Thailand (Hyde et al. 2018). Studies vary in time (two
years in Panama to 20 years in the Greater Antilles),
structure (plot-based surveys in Cameroon to general
field surveys in Hawai‘i), and may be ongoing (Honduras)
or completed (Sao Tomé and Principe), although publish-
ing data from “completed” studies may still be occurring
(e.g., Desjardin and Perry 2022). Additionally, LTS studies
focusing on other aspects of fungal biology, such as the
impact of nitrogen addition on fungal communities, have
occurred in China (He et al. 2021) and Panama (Corrales
et al. 2017). A data-rich tropical LTS comes from the
Pakaraima Mountains of western Guyana within South
America’s Guiana Shield. Known as the Upper Potaro
River Study (UPRS) due to the location of the study site
within the Upper Potaro River Basin at the base of Mount
Ayanganna, this LTS has produced data from nearly 20
years of continuous sampling.

The UPRS is based on long-term plots that were estab-
lished in the year 2000. Three 1-ha plots in primary
monodominant forests of the ECM canopy tree Dic-
ymbe corymbosa and three 1-ha plots in surrounding
mixed forest were sampled for seven years during the
primary rainy season (roughly May—June). Data collected
include complete plot counts of sporocarps, vouchers, a
plant species census in plots, daily rainfall and tempera-
ture, Sanger sequencing data from sporocarps and colo-
nized plant root tips, and HTS data from soil, leaf litter,
and ECM root tips (e.g., Henkel et al. 2012; Smith et al.
2013; Torres-Cruz 2023). Additionally, off-plot oppor-
tunistic sampling for microfungi, plant pathogens, and
mushrooms was conducted over 20 years in the same
region during both rainy seasons (roughly May—June and
December—January) and in neighboring regions either
contiguous or discontiguous with UPRS. To date, approx-
imately 1500 species of fungi have been documented
from these areas combined, of which 500 are putative
new species (Blackwell 2011; Table S1). Approximately
50% of collected vouchers are DNA barcoded, allow-
ing for comparisons and identification of sequences in
HTS-generated datasets (Smith et al. 2013), and genomic
data have been generated for select species. The nested
sampling design allows for multiple types of comparative
analyses (e.g., mixed plot vs. ECM plots, UPRS site vs.
similar discontiguous sites, etc.). At the time of writing,
85 papers have been published from this LTS, of which
65 deal with alpha diversity and 33 with comparative
analyses, functional or genetic diversity, or other topics
(Table S2; some papers address multiple topics). Below,
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we draw on LTS studies from the tropics, with an empha-
sis on the UPRS, to highlight knowledge advancements in
alpha, ecological, and functional diversity, biogeography,
hypothesis testing, and conservation of Fungi.

Contributions of long-term studies in the tropics
Alpha diversity

Discovery of new species and genera

To explore alpha diversity over time between tropical and
non-tropical locations, we examined all names deposited
in MycoBank (https://mycobank.org) since 1823. Of the
names assignable to a region, 33% were of tropical origin
and 67% were of non-tropical origin (Fig. 1, methods in
Additional file 1). While the annual percentage of tropi-
cal taxa described has stabilized at 30-45% in the last
30 years, only twice within the past 100 years have more
tropical than non-tropical taxa been described, in 1931
and 1980 (Fig. 1).

In the UPRS, 128 new species and 10 new genera have
been described (Table S1). This is approximately one
quarter of the estimated new species from this system
(Blackwell 2011). New genera include Guyanagarika,
a robust mushroom-forming ECM genus (Sanchez-
Garcia et al. 2016), Meredithblackwellia, a monotypic
yeast genus (Toome et al. 2013), and Guyanagaster, an
unusual sequestrate taxon related to Armillaria (Henkel
et al. 2010; Koch et al. 2017) (Fig. 2). All are putatively
endemic to the UPRS. The UPRS is likely not unique
in having many novel species and genera. A LTS in the
Dja Biosphere Reserve of Cameroon from 2014-2019
has thus far resulted in the description of at least one
new genus and 18 new species in eight genera—all only
known from their type localities (Table S3). Addition-
ally, a LTS in Thailand has resulted in the description of
over 500 new species with>80% of species collected in
conspicuous genera such as Agaricus and Amanita being
new (Hyde et al. 2018).

Unique morphologies and expanding higher-rank concepts

The majority of fungal species have been described
from non-tropical regions (Fig. 1), and consequently,
most higher-rank diagnoses are based on characteris-
tics of temperate taxa. This can be problematic in tropi-
cal systems where attempts to place taxa into known
higher-level groups can be confounding based on current
diagnoses. For example, the species of the genus Cla-
vulina were primarily known as fleshy, ECM fungi that
produced coralloid sporocarps. Work in UPRS uncov-
ered a wealth of species that range in sporocarp mor-
phology from resupinate, effuso-coralloid, sub-globose,
and sub-cerebriform to craterelloid (Henkel et al. 2005,
2011; Thacker and Henkel 2004; Uehling et al. 2012a,
2012b) (Fig. 2). Of the 51 new species of Clavulina that
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Fig. 1 MycoBank.org data on tropical and non-tropical fungal name depositions. Cumulative counts of fungal species name depositions
in Mycobank.org from tropical and non-tropical locations, and annual percentage of tropical fungal names deposited in Mycobank from 1823

to November 2020

have been described globally since 2000, 15, or 29%, are
from the 6-ha study site at UPRS (Table S4). Nine of these
15 new species were also later reported from Colombia
(Vasco-Palacios and Boekhout 2022).

Additional examples of taxa with unique morpholo-
gies include Amauroderma coltricioides, the first known
species in Ganodermataceae with unornamented spore
walls, originally identified in the field as a Coltricia spe-
cies (Aime et al. 2003). Craterellus pleurotoides, which
produces gregarious, astipitate funnel-shaped basidi-
omata on sticks and litter, was originally identified in the
field as a member of Pezizales, but is now the first known
pleurotoid member of Cantharallales (Henkel et al.
2006a). In fact, pleurotoid forms of taxa that are primar-
ily known as stipitate—pileate in temperate regions seem
to be a common adaptation in tropical fungi, especially
within Russulales (Henkel et al. 2000; Miller et al. 2000,
2002; Buyck and Horak 1999).

Ecological and functional diversity

Multi-domain interactions

While the documentation of new taxa is important, LTS
can also provide data for assessing ecological and func-
tional diversity. For example, the discovery of the new
sequestrate genus and species Guyanagaster necrorhizus
in UPRS (Henkel et al. 2010) led to questions about how

it dispersed its spores because it lacked traits possessed
by temperate sequestrate fungi for wind, rain, or mam-
mal dispersal. Multi-year surveys, and a combination of
proteomics, genomics, population genetics, and nitrogen
fixation assays demonstrated that wood-feeding termites
feed on the gleba of mature G. necrorhizus sporocarps.
During feeding, mature basidiospores adhere to the ter-
mite exoskeletons for subsequent dispersal to woody
substrates (Koch and Aime 2018). This is the first known
instance of selective sporocarp feeding by termites, and
one of the only examples of nitrogen fixation within a
basidiocarp. Additional studies showed the fungus hosts
nitrogen-fixing bacteria within the sporocarp to sup-
plement termite diets, uses fermentation to produce
the energy for nitrogen-fixation, and likely maintains an
anoxic environment through the production of a thick,
impervious exoperidium (Koch et al. 2021). The secretion
of mucilage when the spores of G. necrorhizus are mature
is also hypothesized to ensure spore adhesion to termite
exoskeletons (Koch et al. 2021).

Fungi and bird nests

LTS in both the UPRS and the Dja Biosphere Reserve,
Cameroon have helped to elucidate the interactions
between fungal rhizomorphs and avian fauna. Rhizo-
morphs are autonomous vegetative structures produced
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Fig. 2 New, unusual, and endemic tropical taxa from the UPRS. Clavulina craterelloides, unique morphology for this genus a, Meredithblackwellia
eburnea, new genus b, Craterellus pleurotoides, unique morphology for this genus ¢, Pseudotulostoma volvata, new genus d, Guyanagaster
necrorhizus, new genus e1-2, Fusarium xyrophilum, new life history strategy for this genus f, Guyanagarika pakaraimensis, new genus g, Hygrocybe
sp., unique morphology for this genus h. Scale bars a, d-h 2 cm; b 10 um; c 1 cm

by many species in the Marasmiineae. In tropical rain-
forests, rhizomorphs are most common aboveground.
They form wiry webs throughout the canopy and play a
crucial role in aboveground decomposition (Hedger et al.
1993) while providing food and shelter for arthropods
(Snaddon et al. 2012). One estimate suggests that 70% of
arthropods are supported by these rhizomorph networks

in the lower canopy zones (Snaddon et al. 2012). Recent
studies, however, have shown that aerial rhizomorphs
are also a component of bird nests in both the neotrop-
ics and paleotropics and involve at least 27 rhizomorph-
forming fungal species (César et al. 2018; Koch et al
2018, 2020; Elliott et al. 2019). There is now increas-
ing evidence that birds are selective in incorporating
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rhizomorphs of different fungal species for different parts
of nest construction (Koch et al. 2020), and that selective
advantages include structural support (Freymann 2008;
Koch et al. 2020), and possibly antibiotic production for
parasite control (Aubrecht et al. 2013; Koch et al. 2020).
One hypothesis for why the enigmatic fungus, Brun-
neocorticium corynecarpon (Marasmiaceae), has never
been observed to produce any means of sexual or asexual
reproductive structures is that it is adapted for vegetative
dispersal by birds.

Floral and fungal mimicry

Another unique interaction discovered in the UPRS is
floral mimicry, or pseudoflower formation by the recently
discovered and described fungus, Fusarium xyrophilum
(Laraba et al. 2020a). Pseudoflower formation by fungi
was thus far only known in temperate rust species (Batra
and Batra 1985; Roy 1993; Raguso and Roy 1998; Pfunder
and Roy 2000; Naef et al. 2002) by the modification of
plant tissue. In contrast, pseudoflowers formed by F
xyrophilum are entirely composed of fungal tissue, mim-
icking visual and olfactory cues of true flowers to attract
insect pollinators (Laraba et al. 2020b).

Tropical LTS also offer examples of the opposite phe-
nomenon, when plants mimic a fungus to enhance pol-
lination or dispersal. Dracula orchids, restricted to
mountainous habitats of tropical America, have evolved
similar visual and olfactory characteristics as mush-
rooms for deceptive pollination by flies seeking places
to lay their eggs (Kaiser 2006; Dentinger and Roy 2010;
Endara et al. 2010). In a LTS in Ecuador, Policha et al.
(2016, 2019) showed that flies were attracted to fungus-
mimicking flowers by both olfactory and visual cues and
that the flies suffered at least some fitness reduction in
using flowers instead of mushrooms to lay their eggs.
Flowers that mimic fungal sporocarps are rare, and so
far, all examples are known only from the tropics. This
includes the understory tree, Duguetia cadaverica, found
in humid forests in the Guianas, which produces flowers
that mimic stinkhorns in both morphology and scent to
deceptively attract stinkhorn-associated insects (Teichert
et al. 2012).

Biogeography

Quantifying disparities in DNA sequence data

With the development of HTS over the last 20 years,
microbial biogeography has quickly advanced to test
theories developed in plants and animals on primarily
microbial organisms, such as fungi (Dickey et al. 2021).
DNA sequence data are crucial to compare individual
taxa across global scales, improve range assessments,
determine endemism, and perform other biogeographi-
cal analyses. To quantify the global distribution of
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public fungal genetic and genomic data, we examined
popular loci used for fungal barcoding and phylogenet-
ics—ITS, LSU, TEFI1, RPB2-as well as BioSamples in the
Sequence Read Archive and genome sequencing studies
in the NCBI archives (methods in Additional file 1). We
found biases towards predominantly non-tropical loca-
tions such as the United States, Europe, and China in all
datasets (Fig. 3a, b). Biogeographical information bias is
often referred to as the Wallacean shortfall (Hortal et al.
2015) and has previously been identified in understud-
ied groups of fungi such as Leotiomycetes and Laboulbe-
niomycetes (Quandt and Haelewaters 2021; Haelewaters
et al. 20244, b). Less DNA sequence data from both spo-
rocarps and environmental samples in tropical regions
limits biogeographical knowledge and therefore also
hampers understanding of fungal diversity, evolution,
and conservation.

Biodiversity, distribution, and endemism of ectomycorrhizal
fungi

Ectomycorrhizal fungi were traditionally hypothesized
to be insignificant in tropical habitats, whereas arbus-
cular mycorrhizal fungi were archetypal (Redhead 1968;
Thomazini 1974; Bereau et al. 1997). However, this par-
adigm was informed by the disproportionate amount
of ECM research conducted in non-tropical habitats as
compared to tropical habitats. LTS in tropical ecosys-
tems over the last decades have dispelled this notion and
provide evidence of the robust diversity and ecological
significance of ECM in tropical habitats (e.g., Alexan-
der 2006; Diédhiou et al. 2010; Peay et al. 2010; Teder-
soo et al. 2010a; Smith et al. 2011; Vasco-Palacios 2016;
Corrales et al. 2022). Although important, global HTS
sequencing of soils has repeatedly found that ECM fun-
gal diversity is lower in the tropics than in temperate and
boreal ecosystems (Tedersoo and Nara 2010; Tedersoo
etal. 2014).

In the UPRS, approximately 172 species of ECM taxa
have been collected from sporocarps, where they are pri-
marily associated with a single host species (Henkel et al.
2012). Eighty-four of these species have been described
to date (Table S1) and sequencing of root tips in this
region suggests that at least 250 ECM-forming species
exist in this system with an additional two host tree spe-
cies (Smith et al. 2011). Sporocarp collections from the
UPRS represent approximately 30% more species diver-
sity of ECM fungi than recovered in a 21-year plot study
of similar size in a temperate forest in Switzerland with
seven ECM host trees (Straatsma et al. 2001). This com-
parison, the presence of putative endemic ECM genera in
the UPRS, such as Guyanagarika, and the possibility that
HTS datasets from tropical ECM systems do not account
for the heterogeneous distribution of ECM host plants in
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tropical forests (Morris et al. 2009; Diédhiou et al. 2010;
Peay et al. 2010; Tedersoo and Nara 2010; Tedersoo et al.
2010b) signal there may be more diversity present in
these systems than is revealed by current HTS datasets.

Conversely, recent studies have shown that many ECM
species occurring with D. corymbosa in Guyana also
occur in Colombia with different hosts. For example,
Pseudotulostoma volvata (Fig. 2d), a fungus in Eurotiales
that produces tall, fleshy ascomata with a stipe and volva
(Miller et al. 2001) and is an ECM fungus of D. corym-
bosa (Henkel et al. 2006b) was later shown to associate
with Pseudomonotes tropenbosii in Colombia (Vasco-
Palacios 2016) and Aldina heterophylla in Brazil (Komura
et al. 2021). Additionally, species of ECM fungi from a
white sand forest dominated by D. uaiparuensis and an
Aldina sp. in Colombia’s western Amazonia had a 42%
overlap with species reported from Guyana (Vasco-Pala-
cios et al. 2018). At least 60% of Clavulina spp. reported
from Guyana are also found in Colombian Amazonia
forests dominated by P tropenbosii (Vasco-Palacios and
Boekhout 2022). Although broad distributions of many
lowland ECM-forming fungi among different hosts may
suggest lower diversity, Colombia still has a putative end-
emism rate of 18% for ECM fungi, most being found in
the Andean region (Vasco-Palacios et al. 2022). Sampling
ECM fungi from more host trees across broader geo-
graphic ranges will help clarify whether tropical ECM
fungi are mostly widespread generalists or have narrower
ranges and host preferences.

Endemism of non-ECM fungi and fungi on islands

Endemism of soil fungi has been found to be highest in
tropical regions in HTS studies (Tedersoo et al. 2022) and
LTS can help discover species that are found nowhere
else in the world. In the UPRS, the genus Guyanagaster
consists of two species, G. lucianii and G. necrorhizus,
that are distributed ~125 km apart with no evidence of
overlapping ranges (Koch et al. 2017). This is sugges-
tive of specialized adaptation of this genus to the region
(Koch and Aime 2018). Another putative endemic spe-
cies in the UPRS is Meredithblackwellia eburnea, a rare,
monotypic, distinctive yeast with a rosette budding pat-
tern (Fig. 2). Despite more than a decade of phylloplane
isolations in this region, only a single isolate representing
the holotype was ever recovered. Querying internal data-
sets of HTS data from leaf litter and root samples from
the UPRS (R.A. Koch Bach and M.C. Aime unpublished),
M. eburnea was found in 26 out of 3.7 million reads,
being one of 4583 OTUs present in this dataset after
quality processing. To date, no collection-based or HTS
studies from any other region of the world have uncov-
ered Guyanagaster spp. or M. eburnea outside of the
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Pakaraima Mountains, supporting the hypothesis that
these species represent true endemics with limited range
and dispersal.

LTS of macrofungi in the Hawaiian Islands more than
tripled the number of known agarics from this archi-
pelago from 1990 to the early 2000s (Hemmes and
Desjardin 2002). Eighty-eight percent of the native spe-
cies were considered endemic to the Hawaiian Islands,
a number approximated by later studies (Mueller et al.
2007). Of Hawaiian-endemic Agaricomycetes, 18% are
Hygrophoraceae. Similarly, of the 63 Hygrophoraceae taxa
in the Greater Antilles, 36% have limited distributions
(Cantrell et al. 2001) and the study of Hygrophoraceae
once thought to be widespread throughout the Antilles
and South America show that these taxa are instead com-
plexes of regional endemics (D.]J. Lodge, pers. comm.).

Another island system with potentially high endemism
of macrofungi is Sdo Tomé and Principe. Desjardin and
Perry (2022) report 60 putative endemic Agaricomycetes
from these islands, although the authors cautioned that
this is a preliminary estimate due to lack of knowledge of
fungal biodiversity on nearby continental Africa. Indeed,
many supposedly-endemic species lack DNA sequence
data to compare with public databases. For example, only
18% of putative endemic Hawaiian Agaricomycetes spe-
cies have reference DNA sequences (Stallman et al. 2023).
Although more studies incorporating DNA sequence
data may lower endemism estimates, such as the case
with putative endemic ECM fungi in Guyana later found
in Colombia (Vasco-Palacios and Boekhout 2022), the
opposite is often true. For example, multiple studies of
lichens have shown that endemism estimates increase
when DNA sequence data is incorporated in both conti-
nental (Vasco-Palacios et al. 2022) and insular (Moncada
et al. 2020) systems due to cryptic or semi-cryptic species
that were not previously recognized.

Documentation of emerging diseases

Emerging fungal pathogens threaten the stability of both
natural and anthropogenic ecosystems and are therefore
a crucial topic of study. They can cause new diseases, shift
hosts, have an unusually high incidence, and exhibit fast
geographic expansion (Anderson et al. 2004; Fisher et al.
2012; Corredor-Moreno and Saunders 2020). Although
origins of most emerging fungal pathogens are unknown,
many are suspected to derive from the tropics (Nnadi
and Carter 2021). Examples of fungal diseases that have
emerged in tropical areas and become threats in temper-
ate areas are chytridiomycosis (Batrachochytrium dend-
robatidis) in amphibians (Scheele et al. 2019; Fisher and
Garner 2020) and tar spot (Phyllachora maydis) in corn
(Ruhl et al. 2016).
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One of the advantages of LTS is the ability to poten-
tially detect and document new pathogens before they
become more broadly dispersed. For example, Xylaria
karyophthora, a pathogen of the seeds of Chlorocar-
dium spp. (Lauraceae), was first discovered during LTS
in Guyana. This was the first record of a putative fungal
pathogen associated with a commercial timber species
in the Guyanese rainforest system. Approximately 80%
of dispersed seeds in both natural and logged forests are
affected, limiting germination and seedling recruitment
(Husbands et al. 2018; Husbands and Aime 2018). Early
identification and reporting of new and emerging dis-
ease epidemics can improve disease management out-
comes (Parnell et al. 2015) and this could be particularly
important for Chlorocardium spp., which are major com-
ponents of local, regional, and international forestry mar-
kets. Cultures of X. karyophthora have already led to the
discovery of a novel secondary metabolite, karyochalasin
(Lambert et al. 2023), and will facilitate future studies on
this fungus.

Hypothesis testing

Sequestration

Sequestration describes a morphological transition in
which a species with an exposed hymenium and spores,
adapted for forcible discharge, speciates into one with
an enclosed hymenium, and spores that are passively
discharged. This process has occurred independently
in many lineages within Ascomycota and Basidiomy-
cota with epigeous sporocarps (e.g., Hibbett et al. 1997;
Moreno et al. 2014). The stimuli driving the convergent
evolution of sequestrate forms are not clearly understood
but have traditionally been hypothesized to be an evolu-
tionary adaptation to protect spores from desiccation in
cold and arid regions (e.g., Thiers 1984; Miller and Miller
1988;). This hypothesis is supported by the high diversity
of sequestrate fungi from arid areas (e.g., Lebel and Syme
2012; Sheedy et al. 2016), seasonally dry North American
regions (e.g., Fogel and States 2001; Trappe et al. 2009),
and temperate Australia (e.g., Bougher and Lebel 2001;
Sheedy et al. 2016).

The paucity of published records of sequestrate taxa
from the tropics has also contributed to the belief that
sequestration was driven by temperate and boreal cli-
mates. However, this belief is eroding as both LTS from
Guyana and Cameroon (Henkel et al. 2010; Castellano
et al. 2012, 2016a, 2016b; Smith et al. 2015) and other
studies in tropical America, Africa, and Asia (Orihara
and Smith 2017; Elliott et al. 2020; de la Fuente et al.
2023) are uncovering a large consortium of novel seques-
trate lineages and species. Therefore, it is likely that
temperature and moisture level are not the only drivers
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of this syndrome. An alternative hypothesis suggests
neoteny or progenesis may lead to sequestration instead
of requiring a gradual, selection driven process (Kuhar
et al. 2023).

Island biogeography hypotheses

Documenting fungi in discrete locations for long periods
can lead to species checklists that are useful for fungal
conservation initiatives, monitoring, and comparative
studies of fungal diversity, including biogeography (Pie-
penbring et al. 2020). Part of the theory of island bioge-
ography suggests that larger, more isolated islands are
part of a ‘radiation zone’ and should have higher num-
bers of endemic species (MacArthur and Wilson 1967;
Whittaker et al. 2008). Using checklists of Agaricomy-
cetes from seven oceanic islands and archipelagos, Stall-
man et al. (2023) found a positive correlation between
endemism percentage and island size and distance to
mainland.

Beyond checklists, thorough sporocarp collecting
from discrete locations may lead to many collections of
the same species that can be used in biogeography and
population genetics studies. In the Hawaiian Islands,
Keirle et al. (2011) tested the progression rule (Funk
and Wagner 1995) whereby species are hypothesized to
colonize the geologically oldest island in a volcanic archi-
pelago, then disperse to progressively newer, emerging
islands as they appear. Using 120 collections of the puta-
tive endemic species Rhodocollybia laulaha spanning 20
years across 28 collecting sites and three different islands
within the archipelago, they did not find evidence R. laul-
aha followed this dispersal pattern.

Foraging ascomycete hypothesis and viaphytism
The foraging ascomycete hypothesis (Carroll 1999) pos-
its that some Ascomycota species have life history strat-
egies in which they spend substantial periods of time as
endophytes to avoid disadvantageous climatic conditions.
They also use their leaf hosts as an additional method of
dispersal. When leaves senesce and fall to the ground,
endophytes can colonize woody substrates where they
may produce saprotrophic reproductive structures. This
hypothesis has been tested in LTS in the Ecuadorian
cloud forest of Los Cedros (Vandegrift et al. 2023).
Thomas et al. (2016) showed that there is some support
for release from environmental constraints in the endo-
phytic life stage of Xylaria spp. regarding water availabil-
ity, and found spatial coupling between two Xylaria spp.
as both endophytes and sporocarps. Nelson et al. (2020)
showed that it was possible for a variety of endophytes
of both Ascomycota and Basidiomycota to colonize wood
via leaves, confirming this phenomenon with far greater
taxonomic breadth than Xylaria (as shown in Thomas
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et al. 2016), and introducing the term viaphyte to refer to
fungi with this life history strategy. Finally, Thomas et al.
(2020) provide a model of the tradeoffs made by fungi
engaging in this life history strategy, providing theoreti-
cal grounding that it can be advantageous for some fungi,
particularly under conditions that allow long-lasting
endophytes in the canopy. This provides an opportunity
for additional hypothesis testing as the model suggests
viaphytism should be more common in tropical areas
with long-persisting leaves versus non-tropical decidu-
ous forests with annual turnover.

Conservation

Threats to fungi and comparisons between tropical,
non-tropical, and non-fungal taxa

Loss of biodiversity is one of the most critical environ-
mental problems, threatening valuable ecosystem ser-
vices and human well-being (Daily and Matson 2008;
Mace et al. 2012; Ehrlich and Ehrlich 2013). This prob-
lem is most acute in tropical rainforests, which har-
bor more than half of all known species, but are being
depleted faster than any other ecosystem (Myers 1988).
Changes in land use leading to habitat loss and degrada-
tion are predicted to have the largest negative impact on
biodiversity in tropical ecosystems (Sala et al. 2000) and
land development was also identified as the top threat to
threatened and near-threatened fungi evaluated on the
IUCN Red List (Mueller et al. 2022).

To examine differences between tropical and non-trop-
ical fungi, plants, and animals, we downloaded IUCN Red
List data through June 2023 for all terrestrial organisms
in these groups (see methods in Additional file 1). We
found the absolute number of fungi evaluated for conser-
vation status by the IUCN is drastically lower than both
plants and animals, as shown in other studies (Haelewa-
ters et al. 2024b). We also found that there is a dispro-
portionate number of evaluations for non-tropical fungi
(Fig. 4a), a discrepancy noted by Corrales et al. (2022) for
ECM fungi, and broadly shown by Niskanen et al. (2023)
in their country-by-country analysis. The difference
between tropical and non-tropical evaluations skews
the opposite direction for plants and animals (Fig. 4a).
We also found that data-deficient evaluations were more
than twice as common in tropical fungi than non-tropical
fungi, whereas in plants and animals it is more common
for non-tropical species to have data-deficient evalu-
ations (Fig. 4b). Finally, tropical fungi are the most fre-
quently evaluated as threatened (critically endangered,
endangered, or vulnerable) among the organismal groups
examined (Fig. 4b).

While there is a discrepancy between global conser-
vation data available on tropical and non-tropical fungi,
efforts by the Global Fungal Red List Initiative to increase
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evaluations in targeted regions have been successful. For
example, workshops in (tropical and non-tropical) South
America have greatly increased the number of evalu-
ations from this region (Mueller et al. 2022). Therefore,
hosting workshops in tropical locations may lead to more
conservation assessments from these localities.

Rare, invasive, and cosmopolitan species

Data from LTS allow researchers both observational
and quantitative insights on the species that are pre-
sent, absent, rare, and common in their system. Without
repeated sampling, data on rarity or population shifts
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may be lacking or not available when conditions change.
For example, LTS of agarics from the Hawaiian Islands led
to detailed information on species ranges and prevalence,
including many endemic Hygrophoraceae species that are
rare or have restricted ranges (Desjardin and Hemmes
1997; Hemmes and Desjardin 2002). When a non-native
pathogen arrived that began killing the dominant tree
species within these limited ranges (Barnes et al. 2018),
decades of observation meant mycologists could quickly
evaluate if the co-occurring Hygrophoraceae species
would also be threatened. Indeed, these data helped with
five JIUCN evaluations, including multiple ‘endangered’
assessments (e.g., Vellinga 2017, 2019).

In addition to recognizing the rarity of species native
to study sites, LTS can also help determine when newer,
non-native species have established, and provide insights
on putatively cosmopolitan species. For example,
Hemmes et al. (2018) documented newly established spe-
cies since the publication of a field guide to the Hawaiian
Islands (Hemmes and Desjardin 2002), including a spe-
cies in the invasive Favolaschia calocera complex (Vizzini
et al. 2009; Zhang et al. 2023). The cosmopolitan fungus
Schizophyllum commune is common and abundant in the
Caribbean and South America (James et al. 2001; James
and Vilgalys 2008) yet has never been collected within
the study plots of UPRS. Additionally, no sequences of
S. commune can be identified in HTS litter samples of
UPRS (R.A. Koch Bach and M.C. Aime unpublished),
suggesting there are regional limits to establishment even
for globally dispersed, putatively cosmopolitan fungi.

Using non-traditional data sources to study global change
Global anthropogenic changes are already occurring, and
therefore “baseline” data of reference systems may no
longer exist. However, it is still critical to acquire as many
data as possible, particularly from habitats that are rela-
tively preserved from human destruction. While system-
atic LTS in relatively undisturbed habitats are one option,
innovative strategies can be used now to access baseline
biodiversity data and track changes over time.
Non-fungal organisms and abiotic objects can pro-
vide resources to study fungal diversity across time and
space. For example, Tipton et al. (2019) used saved air
filters from the Mauna Loa observatory in Hawaili to
examine the diversity of the aerial mycobiota annually
for 13 years. Plants in herbaria and their associated fungi
can be used to track pathogens (Lang et al. 2019), fungal
hyperparasites (Gdmez-Zapata et al. 2024), endophytes
(Datlof et al. 2017), and potentially other fungal symbi-
onts through time and space. Likewise, preserved insects
(dried and pinned or in DNA) have been used to infer
historical range and incidence of fungal parasites on a
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given host over time (Haelewaters et al. 2017). Therefore,
filters, natural history collections, and any other objects
encountering fungal particles could be used to study fun-
gal diversity over time.

Attempting to replicate studies or species inventories
that were completed pre-disturbance at the same location
is another possibility. For example, Kaishian (2021) sam-
pled Lake Eustis in Florida for insects carrying Laboul-
beniales 121 years after Roland Thaxter’s inventory in
the area (Thaxter 1908, 1924, 1931). The recent survey
compared Thaxter’s original inventory with species pre-
sent at Lake Eustis, an urbanized area, and the Emeralda
Marsh Conservation Area (EMCA), which was restored
and protected. The study found that 13 of 27 species
originally recorded were found within the EMCA, while
only one species was found at Lake Eustis. These results
suggest that the EMCA was at least partially effective at
protecting fungal biodiversity.

In addition to making new collections, historical
data of fungi accessioned in herbaria from MyCoPor-
tal (https://www.mycoportal.org/) and observations of
fungi from iNaturalist (https://www.inaturalist.org/) can
be used to examine fungal diversity over time. Although
citizen science data may have biases (Geldmann et al.
2016) and species may not be identified correctly
(McMullin and Allen 2022), these data can be useful to
observe broad trends, such as phenology of sporocarp
production. For example, some tropical localities, such
as cloud forest environments, have above-freezing tem-
peratures and high-precipitation year round, leading to
uncertainty about whether sporocarp production is even
throughout the year, or peaks in diversity or abundance
occur annually during particular periods as in non-trop-
ical systems. Using a checklist of Agaricomycetes species
(Mueller et al. 2007) with observation and collection data
from iNaturalist and MyCoPortal, Stallman and Robin-
son (2022) found sporocarp production of Agaricomy-
cetes spp. in the Hawaiian Islands varied throughout the
year. Richness and abundance were positively correlated
with increased monthly rainfall on only two of the four
islands examined and were not even throughout the year.
This indicates that even in ‘aseasonal’ tropical areas, rich-
ness and abundance of sporocarp production may vary
throughout the year and should be a consideration when
planning surveys.

Despite the potential for citizen science data to aug-
ment tropical fungal datasets and be used for con-
servation or other purposes, we found the use of
iNaturalist has much lower representation from tropical
regions (Fig. 5, methods in Additional file 1). Fungi, but
also plants and animals, have lower percentages of obser-
vations and observers from tropical regions with general
trends showing this discrepancy worsening until the year
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for fungi, plants, and animals through December 31, 2022. For fungi,
n=7,817,544 observations and 906,838 observers; for plants,
n=50,849,281 observations and 2,535,549 observers; for animals,
n=64,390,584 observations and 2,772,329 observers

2020. Although trends are shared between fungi, plants,
and animals, tropical fungi still have the lowest percent-
ages among observations (annual average 10% vs 13% in
plants and 24% in animals in 2008—2022) and observers
(annual average 15% vs 19% in plants and 24% in animals
in 2008-2022).

Conclusions

This paper argues for the necessity of tropical LTS to
better understand fungi. We acknowledge that much of
the knowledge of tropical fungal biodiversity is granted
to researchers from non-tropical regions with access
to more financial resources than mycologists based in
tropical areas. LTS cannot address all aspects of this
complex issue (Dahdouh-Guebas et al. 2003; Ryan et al.
2019; Minasby et al. 2020) but working repeatedly in
the same location increases the potential for making
personal connections, training students, and collabo-
rating with local and indigenous researchers. While this
cannot ameliorate all the problems associated with an
imbalance of resources or “helicopter” science (Haele-
waters et al. 2021a), building equal collaborations with
individuals with local and/or indigenous knowledge
often improves the science itself (Ward-Fear et al. 2019;

Page 12 0f 18

Copete et al. 2023) and can increase capacity in locali-
ties with limited resources (Gryzenhout et al. 2012;
Piepenbring and Yorou 2017). Additionally, we suggest
working with local collaborators to address important
logistical issues for field-based studies such as cost,
safety, and methodology that are not addressed in this
review and will vary by locality and study goals.

LTS in the tropics have improved our understanding
of alpha, ecological, functional, and geographic diver-
sity of fungi. While different LTS may have varying
goals and generate fungal biodiversity data from field-
work or alternative sources, this variety often is com-
plementary and improves the scope of our knowledge
of fungi. We hope mycologists continue building on this
foundation to reduce the disparities highlighted here in
species descriptions, DNA sequence data, conservation
data, and citizen science data. Only by incorporating
ample data from tropical environments will we be able
to understand Kingdom Fungi at a global scale.
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