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Abstract

The ability of a linear error-correcting code to recover erasures is connected to
influences of particular monotone Boolean functions. These functions provide insight
into the role that particular coordinates play in a code’s erasure repair capability. In
this paper, we consider directly the influences of coordinates of a code. We describe a
family of codes, called codes with minimum disjoint support, for which all influences
may be determined. As a consequence, we find influences of repetition codes and certain
distinct weight codes. Computing influences is typically circumvented by appealing to
the transitivity of the automorphism group of the code. Some of the codes considered
here fail to meet the transitivity conditions required for these standard approaches, yet
we can compute them directly.

1 Introduction

Capacity-achieving codes are considered the holy grail by information theorists, since They
provide reliable communication at the most efficient rates. Their existence—proven in
Shannon’s theorem [8]—launched an entire discipline as researchers search for explicit con-
structions with efficient encoding and decoding algorithms. Recently, algebraic tools have
been used by Kudekar, Kumar, Mondelli, Pfister, Şaşoǧlu, and Urbanke to demonstrate the
capacity-achieving nature of Reed-Muller codes, settling an old problem in coding theory [6].
The authors connect this coding theory question to influences of variables in Boolean func-
tions, a notion introduced by Ben-Or and Linial [1] for collective coin flipping which has
since been used in a variety of contexts; see, for instance, the survey [5].

In this paper, we explore influences as they relate to coordinates of error-correcting
codes and the ability of a codeword symbol to be recovered from a received word in which
erasures have occurred. Following the breakthrough work [6] which relies on the fact that
the automorphism group of a Reed-Muller is doubly transitive, Kumar, Calderbank, and
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Pfister [7] observed that a weaker condition on the automorphism group that can be used to
prove that a code is capacity achieving. They study the behavior of influences of monotone
Boolean functions f that encapsulate which errors are correctable when the orbits of the
automorhism group of the code are large. This approach can be thought of as a proxy for
working directly with the influences themselves, relying instead on the lower bound on the
largest influence provided by the celebrated Kahn-Kalai-Linial Theorem [4] and the high
degree of symmetry of the code.

A Boolean function f : FM
2 → F2 is said to be monotone if f(x) ≤ f(y) for all

x, y ∈ FM
2 with xi ≤ yi for all i = 1, . . . ,M . Here, F2 = {0, 1} denotes the field with two

elements, and we consider the ordering in which 0 ≤ 1. For a real number 0 < p < 1, the
influence of coordinate j on f , or simply the influence of j, is

I
(p)
j (f) :=

∑
x∈Fn

2
f(x)̸=f(x+ej)

pwt(x)(1− p)M−wt(x)

where the weight wt(x) of a vector x is its number of nonzero coordinates and ej =
(0, . . . , 0, 1, 0, . . . , 0) is the standard basis vector whose only nonzero coordinate is in the

jth position. Notice that I
(p)
j (f) may be thought of as the probability of the subset

Ωj(f) :=
{
x ∈ FM

2 : f(x) ̸= f(x+ ej)
}

under the Bernoulli-p product measure. The total influence I(p)(f) :=
∑

j∈[M ] I
(p)
j (f)

appears in the bound

p1−ε − pε ≤
2µp(Ωf )(1− µp(Ωf ))

I(p)(f)
log

1− ε

ε

on the transition width of the EXtrinsic Information Transfer (EXIT) function [6]. There,
code symmetry and a bound on the value I(p)(f) are used to show that the EXIT function
exhibits a sharp transition, implying that the code is capacity achieving. As a step toward
applying these ideas to more general families of codes, we consider the influences themselves.
In particular, we pursue directly the influences of codes with a lower degree of symmetry,
noting that theoretical results on influences tend to be elusive. We specify code families for
which influences can be expressed for an arbitrary member and describe them completely.
While they do not reveal any new families of capacity achieving codes, we hope they will
provide insight into behaviors of influences of coordinates of codewords.

To our knowledge, we are the first group to explicitly compute influences for families of
codes in this way. Our study of influences is motivated by their appearance in the proof
that some code families, including the Reed-Muller codes, achieve capacity. However, the
code families here do not provide new instances of capacity-achieving codes due to their
low dimensions. In particular, for each family considered here, as the code length grows,
the code rate goes to zero. Hence, it remains an open problem to find new families of
capacity-achieving codes by computing influences directly.

This paper is organized as follows. Section 2 reviews terminology needed from coding
theory, provides a motivating example, and describes the connection between influences of
codes and monotone Boolean functions. In Section 4, we consider codes with controlled sup-
port, defining so-called minimal disjoint support codes, and determine their influences.
Finally, we give a summary and discussion of open problems in Section 6.
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2 Preliminaries

An [n, k, d] code C over F2 is a k-dimensional F2-subspace of the vector space Fn
2 in which

any two distinct elements c, c′ ∈ C differ in at least d coordinates. The code C is said to
have length n, dimension k, and minimum distance d. We sometimes omit d from
the notation and call C an [n, k] code. Elements of C are called codewords. When using
an [n, k] code C, received words are elements of (F2 ⊔ {∗})n where ∗ denotes an erasure.
Associated with a received word w ∈ (F2 ⊔ {∗})n is an erasure pattern e ∈ Fn

2 whose
entries are given by

ei :=

{
1 if wi = ∗
0 otherwise.

The code C may be described by a generator matrix G, meaning a matrix whose rows
span C. We may consider xG as the encoding of a message vector x ∈ Fk

2 and typically take
G ∈ Fk×n

2 so that
C =

{
xG : x ∈ Fk

2

}
,

where Fm×n
2 denotes the set of m × n matrices with entries in F2. Often G will appear in

systematic form, meaning that the first k columns of G are the k×k identity matrix. The
code C can be also described by a parity-check matrix H ∈ F(n−k)×n

2 , which is a matrix
that has C as its nullspace; that is,

C =
{
x ∈ Fn

2 : HxT = 0
}
.

When C has generator matrix G = [I|P ] in systematic form, a parity-check matrix for C is
H = [P |I] (in characteristic 2).

The product of an [n1, k1] code C1 and an [n2, k2] code C2 is defined to be the code
C1 ⊗ C2 with generator matrix

G1 ⊗G2 =


a11G2 a12G2 · · · a1n1G2

a21G2 a22G2 · · · a2n1G2
...

...
...

ak11G2 ak12G2 · · · ak1n1G2

 ∈ Fk1k2×n1n2
2

where G1 =


a11 a12 · · · a1n1

a21 a22 · · · a2n1

...
...

...
ak11 ak12 · · · ak1n1

 ∈ Fk1×n1
2 is a generator matrix of C1 and G2 ∈ Fk2×n2

2

is a generator matrix of the code C2. Equivalently, C1 ⊗ C2 is simply the linear span of
{c1 ⊗ c2 : c1 ∈ C1, c2 ∈ C2}.

Given a positive integer n, set [n] := {1, . . . , n}. We refer to elements of Fn
2 as words or

vectors. We write A ⊔ B to mean the disjoint union of sets A and B (typically, subsets of
[n] or some Fn′

2 with n′ ≤ n).
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3 Influences of coordinates

In this section, we use a scenario to describe the connection between influences of coordinates
of codewords to influences of related monotone Boolean functions and erasure recovery. We
then formalize the notion and provide some examples.

We begin with some fundamental definitions. Let C be an [n, k] code. The support of
x ∈ Fn

2 is
supp (x) := {i ∈ [n] : xi ̸= 0} .

Notice that the weight of x ∈ Fn
2 satisfies

wt(x) = | {i ∈ [n] : xi ̸= 0} | = |supp (x)|.

Definition 3.1. Given x, x′ ∈ Fn
2 , we say that x covers x′ if and only if supp (x) ⊇ supp (x′).

In this case, we write x ⪰ x′. We may also write x′ ⪯ x and say that x′ is covered by x.

We are now prepared for a motivating example. Consider the code C with systematic
generator matrix

G =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∣∣∣∣∣∣∣∣
1 0 1 0 1
1 0 1 1 0
0 1 1 0 0
1 1 1 1 1

 ∈ F4×9
2

We would like to know what kind of erasures cannot be recovered by C. At the highest
level, we are unable to recover the underlying codeword c from a partially erased codeword
w ∈ (F2 ⊔ {∗})9 if there exist two or more plausible codewords for w; that is, two distinct
codewords x, y which agree with w on the indices which have not been erased. For instance,
consider the received word

w = ∗ ∗ 1 ∗ 0 0 1 ∗ ∗

which we may think of as a partially-erased codeword. There are (at least) two plausible
codewords:

x = 1 0 1 1 0 0 1 1 0

y = 0 1 1 1 0 0 1 0 1

This is equivalent to saying that x − y is zero at all indices which are not erased in w.
Since C is a linear code and x ̸= y, x − y is a (nonzero) codeword which is identically zero
on the coordinates which are not erased. Consequently, if we had received a partially-erased
codeword w′ with the same erasure pattern as w, and in which each non-erased coordinate
was 0, we could not determine whether the sent codeword was 0⃗ or x− y.

This ambiguity arises when the erasure pattern erases all non-zero coordinates of any non-
zero codeword. This naturally brings us to an equivalent, more convenient way to determine
whether an error is recoverable:

Observation 3.2. A received word is recoverable from an erasure pattern e ∈ Fn
2 if and

only if e does not cover any non-zero codeword of C.
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In the case of this example, we had

e = 1 1 0 1 0 0 0 1 1

which covers the codeword

x− y = 1 1 0 0 0 0 0 1 1

and so, given the partially-erased codeword

w′ = ∗ ∗ 0 ∗ 0 0 0 ∗ ∗

we cannot recover, because we cannot determine whether the correct codeword is x− y or 0⃗.
Beyond full codeword recovery, we may instead be interested in recovering only specific

coordinates of a partially-erased codeword—this is a slightly more delicate problem than
that described above. We now introduce some useful tools to handle this situation.

The set of vectors covering a codeword with i in its support is

Ωi(C) := {x ∈ Fn
2 : x ⪰ c for some c ∈ C with ci ̸= 0};

we write Ωi if the code is clear from the context. It may be helpful to think about the set of
codewords with i in their supports:

Si := {c ∈ C : ci ̸= 0} = {c ∈ C : i ∈ supp (c)} ⊆ Fn
2 .

With this notation in mind, we have

Ωi = {x ∈ Fn
2 : x ⪰ c for some c ∈ Si}

and
|Ωi| ≥ |Si|.

The codeword symbol in position i ∈ [n] can be recovered from a received word impacted by
erasure pattern e ∈ Fn

2 if and only if

e ⪰̸ c ∀c ∈ Si.

Hence, the set of erasure patterns that prevent recovery of i ∈ [n] is precisely Ωi.

Definition 3.3. Given a code C of length n and j ∈ [n] \ {i}, the jth boundary of Ωi is

∂jΩi := {x ∈ Fn
2 : x ∈ Ωi ∧ x+ ej ̸∈ Ωi} ∪ {x ∈ Fn

2 : x ̸∈ Ωi ∧ x+ ej ∈ Ωi}.

The jth boundary of C is

Bj :=
⋃

i∈[n]\{j}

∂jΩi;

We may think of the jth boundary of Ωi, ∂jΩi, as the set of all vectors x ∈ Fn
2 such that

changing the jth coordinate of x “toggles” whether x is in Ωi.
To determine how influential j ∈ [n] is on recovery of i ∈ [n] \ {j}, observe that the set

∂jΩi consists of erasure patterns where changing the jth coordinate either “moves” a vector
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• from Ωi to Fn
2 \ Ωi, meaning changing the jth coordinate converts an erasure pattern

that was not recoverable into one that is, or

• from Fn
2 \ Ωi to Ωi, meaning changing the jth coordinate converts an erasure pattern

that was recoverable into one that is not.

Loosely speaking, Bj is the set of vectors for which flipping their jth entry results in “crossing”
the jth boundary of some Ωi. The influence of j ∈ [n] on recovery is then found by considering
how influential j is on all Ωi where i ∈ [n] \ {j} giving rise the the definition below.

Definition 3.4. Given 0 < p < 1, the influence of the jth coordinate of a code C is
defined by

I
(p)
j (C) =

∑
x∈Bj

pwt(x)−1(1− p)n−wt(x) (1)

and the total influence of (the coordinates of) a code C is

I(p)(C) =
∑
j∈[n]

I
(p)
j (C).

We often write I
(p)
j and I(p) when the code C is clear from the context.

Remark 3.5. Note that I
(p)
j (C) intuitively measures the probability that changing the jth

coordinate xj of x ∈ Fn
2 causes x to cross the jth boundary of some Ωi. Observe that if

x ∈ ∂jΩi then certainly xi = 1, since if xi = 0 then (x+ ej)i = 0 so that neither x nor x+ ej
can be in Ωi. Then

I
(p)
j (C) ≤

∑
x∈Fn

2

pwt(x)−1(1− p)n−wt(x) =
1

p

n∑
ℓ=0

(
n

ℓ

)
pℓ(1− p)n−ℓ =

1

p
.

We now consider a toy example to illustrate these concepts.

Example 3.6. Consider the [5, 2, 3] code C with generator matrix[
1 1 1 0 0
0 0 1 1 1

]
.

Observe that

C = {(1, 1, 1, 0, 0), (0, 0, 1, 1, 1), (1, 1, 0, 1, 1), (0, 0, 0, 0, 0)} .

Considering the sets of codewords with particular indices in their supports, we see that

S1 = S2 = {(1, 1, 1, 0, 0), (1, 1, 0, 1, 1)} ,

S3 = {(1, 1, 1, 0, 0), (0, 0, 1, 1, 1)} ,

and
S4 = S5 = {(0, 0, 1, 1, 1), (1, 1, 0, 1, 1)} .
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It follows that the sets of vectors covering those in the sets above are

Ω1 = Ω2 = {(1, 1, 1, 0, 0), (1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (1, 1, 1, 1, 1), (1, 1, 0, 1, 1)} ,

Ω3 =

{
(1, 1, 1, 0, 0), (1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (1, 1, 1, 1, 1),
(0, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 0, 1, 1, 1)

}
,

and

Ω4 = Ω5 = {(0, 0, 1, 1, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1), (1, 1, 0, 1, 1)} .

To find the jth boundaries when j = 1, we first note that

∂1Ω2 =

{
(1, 1, 1, 0, 0), (1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (1, 1, 1, 1, 1), (1, 1, 0, 1, 1),
(0, 1, 1, 0, 0), (0, 1, 1, 1, 0), (0, 1, 1, 0, 1), (0, 1, 1, 1, 1), (0, 1, 0, 1, 1)

}
,

∂1Ω3 =

{
(1, 1, 1, 0, 0), (1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (0, 0, 1, 1, 1),
(0, 1, 1, 0, 0), (0, 1, 1, 1, 0), (0, 1, 1, 0, 1)

}
,

and
∂1Ω4 = ∂1Ω5 = {(1, 1, 0, 1, 1), (0, 1, 0, 1, 1)} .

As a result,

B1 =

{
(0, 1, 1, 0, 0), (0, 1, 0, 1, 1), (0, 1, 1, 0, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0),
(0, 1, 1, 1, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 1), (1, 1, 1, 1, 0), (1, 1, 1, 1, 1)

}
.

Similarly,

B2 =

{
(0, 1, 1, 0, 0), (0, 1, 0, 1, 1), (0, 1, 1, 0, 1), (0, 1, 1, 1, 0), (1, 1, 1, 0, 0),
(0, 1, 1, 0, 1), (0, 1, 0, 1, 0), (0, 1, 1, 0, 0), (0, 1, 1, 1, 1), (1, 1, 1, 0, 1)

}
.

As a result,
I
(p)
1 = I

(p)
2 = p(1− p)3 + 4p2(1− p)2 + 4p3(1− p) + p4.

In addition,

∂3Ω1 = ∂3Ω2 =

{
(1, 1, 0, 0, 0), (1, 1, 0, 0, 1), (1, 1, 0, 1, 0),
(1, 1, 1, 0, 0), (1, 1, 1, 0, 1), (1, 1, 1, 1, 0)

}
and

∂3Ω4 = ∂3Ω5 =

{
(0, 0, 0, 1, 1), (0, 0, 1, 1, 1), (0, 1, 0, 1, 1),
(1, 0, 0, 1, 1), (0, 1, 1, 1, 1), (1, 0, 1, 1, 1)

}
.

Thus,

B3 =

{
(0, 0, 0, 1, 1), (1, 1, 0, 0, 0), (0, 0, 1, 1, 1), (0, 1, 0, 1, 1), (1, 0, 0, 1, 1), (1, 1, 0, 0, 1),
(1, 1, 0, 1, 0), (1, 1, 1, 0, 0), (0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 1, 0, 1), (1, 1, 1, 1, 0)

}
As a result,

I
(p)
3 = 2p(1− p)3 + 6p2(1− p)2 + 4p3(1− p).
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Finally, we observe that

∂4Ω1 = ∂4Ω2 = {(1, 1, 0, 0, 1), (1, 1, 0, 1, 1)} ,

∂4Ω3 = {(0, 0, 1, 0, 1), (0, 1, 1, 0, 1), (1, 0, 1, 0, 1)} ,
and

∂4Ω5 =

{
(0, 0, 1, 0, 1), (0, 0, 1, 1, 1), (0, 1, 1, 0, 1), (1, 0, 1, 0, 1), (1, 1, 0, 0, 1),
(0, 1, 1, 1, 1), (1, 0, 1, 1, 1), (1, 1, 0, 1, 1), (1, 1, 1, 0, 1), (1, 1, 1, 1, 1)

}
.

Similarly, we find that

B5 =

{
(0, 0, 1, 0, 1), (0, 0, 1, 1, 1), (0, 1, 1, 0, 1), (1, 0, 1, 0, 1), (1, 1, 0, 0, 1),
(0, 0, 1, 0, 0), (0, 0, 1, 1, 0), (0, 1, 1, 0, 0), (1, 0, 1, 0, 0), (1, 1, 0, 0, 0)

}
and

I
(p)
5 = p(1− p)3 + 4p2(1− p)2 + 4p3(1− p) + p4.

Therefore, for this code,

I(p) = 4
(
p(1− p)3 + 4p2(1− p)2 + 4p3(1− p) + p4

)
+ 2p(1− p)3 + 6p2(1− p)2 + 4p3(1− p)

= 6p(1− p)3 + 22p2(1− p)2 + 20p3(1− p).

In Example 3.6, we see that Si = Si′ implies Ωi = Ωi′ . While this fact follows immediately
from the definitions, the example highlights its impact on Bj when Ωi = Ωj. In particular,
we see that S1 = S2, Ω1 ⊔ Ω1 + e1 = B1 and B2 = Ω2 ⊔ Ω2 + e2 = B2; also, S4 = S5,
Ω4 ⊔ Ω4 + e4 = B4, and Ω5 ⊔ Ω5 + e5 = B5.

Remark 3.7. We note that the influence of the jth coordinate depends on the weights of
words in Bj rather than the words themselves. That might suggest that influences of a code
with known weight enumerator

∑
c∈C xwt(c) are easy to calculate. However, we are reminded

that the weights needed are not necessarily those of codewords but instead of words in Bj.
In Example 3.6, we see that Bj \ C ̸= ∅ for all j ∈ [5].

Despite the word of caution in Remark 3.7, knowledge of the weights of codewords can
provide some information about influences in certain circumstances. Suppose Si = Sj for
some i ̸= j. Then Ωi = Ωj. Moreover, we see that

{x ∈ Ωi : x+ ej /∈ Ωi} = Ωi = Ωj

and
{x /∈ Ωi : x+ ej ∈ Ωi} = Ωi − ej = Ωj − ej.

Consequently, recalling that Sj ⊆ Ωj, we can make the following observation.

Observation 3.8. If Si = Sj for some i ̸= j,

Sj ⊔ Sj + ej ⊆ Ωj ⊔ Ωj + ej ⊆ Bj.

In this case,

I
(p)
j ≥

∑
x∈Sj

pwt(x)−1(1− p)n−wt(x).
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This notion of influence of coordinate of a code is connected to that of monotone Boolean
functions. Consider the characteristic function of Ωi:

χΩi
: Fn

2 → F2

x 7→

{
1 if x ∈ Ωi

0 otherwise.

Notice that the jth boundary of Ωi is

∂jΩi = {x ∈ Fn
2 : χΩi

(x) ̸= χΩi
(x+ ej)}

Observe that if ∂jΩi ̸= ∂jΩℓ for all i, ℓ ∈ [n] \ {j} with i ̸= ℓ, then

I
(p)
j (C) = p−1

∑
i∈[n]\{j}

I
(p)
j (χΩi

).

4 Codes with minimum disjoint support

In this section, we consider a families of codes whose coordinates may be partitioned into
sets which support so-called minimal codewords, meaning those whose support does not
contain the support of another nonzero codeword [2]. We will see that this family of codes
contains the familiar repetition codes as well as some distinct weight codes. Then, in the
next section, we will demonstrate that this condition makes it straightforward to compute
the influences of variables of these codes and determine the total influence. As a consequence,
we provide expressions for influences of repetition codes and some relatives.

We begin by recalling some codes from the literature. The r-times repetition code Cr

may be defined by the generator matrix

Gr :=


1r

1r
. . .

1r

 ∈ Fk×rk
2

expressed in block form where 1r = 11 · · · 1 is a block of r 1s and all other entries in the
matrix are zero. Note Cr is an [rk, k, r] code. The codewords of Cr are of the form

xGr = (x1, . . . , x1︸ ︷︷ ︸
r

, . . . , xk, . . . , xk︸ ︷︷ ︸
r

) ∈ Frk
2

where x ∈ Fk
2 and each coordinate is repeated r times.

The next codes that will be considered were introduced in [3] as distinct weight codes
(see also [9]). They are reminiscent of repetition codes, but they lack the symmetry that Cr

features as coordinates are repeated different numbers of times depending on their position.
A code C of length n is called a distinct weight code if the map

wt : C → [n]
c 7→ wt(c)
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is injective. Consider the block diagonal matrix given by

Gr,k :=


12r

12r+1

. . .

12r+k−1

 ∈ Fk×2r(2k−1)
2 .

Note that the ith row of Gr,k has weight 2r+i−1 for all i ∈ [k]. Let Cr,k denote the binary
code with generator matrix Gr,k. The codewords of Cr,k are of the form

xGr,k = (x1, . . . , x1︸ ︷︷ ︸
2r

, x2, . . . , x2︸ ︷︷ ︸
2r+1

. . . , xk, . . . , xk︸ ︷︷ ︸
2r+k−1

) ∈ F2r+k−2r

2

where x ∈ Fk
2. Hence, Cr,k is a [2r+k − 2r, k, 2r] code.

We are also interested in a hybrid between the repetition codes and distinct weight
codes introduced above. We may observe that the repetition code and distinct weight code
mentioned above may be seen as these hybrid codes. Even so, it can be convenient to consider
their more refined forms to reflect the impact of the more controlled structures. Consider a
partition of [n] into parts A1, . . . , Ak:

[n] = A1 ⊔ A2 ⊔ · · · ⊔ Ak.

Let CA denote the hybrid code with generator matrix
1A1

1A2

. . .

1Ak

 ∈ Fk×
∑k

i=1 |Ai|
2 .

Then CA is an [n, k,min{|Ai| : i ∈ k}] code.
Next, we introduce the family of codes we wish to study.

Definition 4.1. A binary [n, k, d] code C is said to have minimum disjoint support
provided:

1. For each i ∈ [n], the set of codewords Si has a minimum element ui according to ≺.

2. There exist i1, . . . , is ∈ [n] such that

[n] = supp (ui1) ⊔ · · · ⊔ supp (uis).

The codewords ui are called minimum support codewords.

We will demonstrate that each of the codes introduced at the beginning of this section is
a minimum disjoint support code. We will identify minimum elements ui of the Si, i ∈ [n],
and a partition

[n] = Ti1 ⊔ · · · ⊔ Tis

where Ti := supp (ui). We will see in Section 5 that these partitions will be very useful in
finding influences of coordinates of codewords.
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Proposition 4.2. The r-times repetition code Cr, the distinct weight code Cr,k, and the
hybrid code CA are minimum disjoint support codes.

Proof. For the repetition code is Cr, we can take

usr+1 = · · · = u(s+1)r =
r∑

t=1

esr+t

and
Tsr+1 = · · · = T(s+1)r = {sr + 1, . . . , (s+ 1)r}

for s ∈ {0, . . . , k − 1}. Hence,

[n] = Tr ⊔ T2r ⊔ · · · ⊔ Tkr.

Next, observe that the distinct weight code Cr,k has S1 = · · · = S2r and S2r+s−1+1 = · · · =
S2r+s for all 1 ≤ s ≤ k − 1. Hence, Cr,k is a minimum disjoint support code with minimal
support codewords

u1 = · · · = u2r =
2r∑
ℓ=1

eℓ

and

u2r+s−1+1 = · · · = u2r+s =
2r+s∑

ℓ=2r+s−1+1

eℓ

for s ∈ {1, . . . , k − 1}. Hence,

[n] = T2r ⊔ T2r+1 ⊔ · · · ⊔ T2r+k−1 .

Finally, the hybrid code CA has

ui =
∑
j∈Ai

ej

for each i ∈ [n] and

[n] =
k⊔

i=1

Tℓi

where we define ℓi =
k∑

j=1

|Aj|.

Proposition 4.3. Let C be a binary [n, k, d] minimum disjoint support code with minimum
support codewords u1, u2, . . . , un. Then for any i, j ≤ n either ui = uj, or ui and uj have
disjoint support.

Proof. Suppose that ui and uj do not have disjoint support, and let t ∈ supp (ui)∩supp (uj).
Since ui is supported at t, we must have ut ⪯ ui. Now, if i ̸∈ supp (ut), then ui + ut is
supported at i and not at t, contradicting our choice of t and our characterization of ui.
Thus i ∈ supp (ut), and so by the minimality of ui, we must have ui ⪯ ut. Of course,
this establishes that supp (ui) = supp (ut), and so ui = ut, since C is binary. A precisely
analogous argument establishes that uj = ut, and consequently ui = uj, as required.
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Proposition 4.4. Given binary minimum disjoint support codes C1 and C2 of lengths n1

and n2, their product C1 ⊗ C2 is also a minimum disjoint support code of length n1n2.

Proof. Let {u1, . . . , un1} and {v1, . . . , vn2} be the minimum suppport codewords of C1 and
C2, respectively. We claim that {ui⊗vj}1≤i≤n1

1≤j≤n2

are minimum support codewords for C1⊗C2.

First observe that each ui ⊗ vj ∈ C1 ⊗ C2. Next, choose r ∈ [n1] and t ∈ [n2], and let
c ∈ C1 ⊗ C2 be such that c(r,t) = 1. We may write

c =
N∑
i=1

c1i ⊗ c2i (2)

for some N ∈ N and some c11, c
1
2, . . . , c

1
N ∈ C1 and c21, c

2
2, . . . , c

2
N ∈ C2. Let n be the number

of terms c1i ⊗ c2i with (c1i ⊗ c2i )(r,t) = 1, and let m = N − n. Let 1 ≤ i1 < i2 < · · · < in ≤ N
be the indices which satisfy (c1ij ⊗ c2ij)(r,t) = 1, and let 1 ≤ i′1, < i′2 < · · · < i′m ≤ N be the
remaining indices. Defining

x1
j = c1ij for j = 1, 2, . . . , n

x2
j = c2ij for j = 1, 2, . . . , n

y1j = c1i′j for j = 1, 2, . . . ,m

y2j = c2i′j for j = 1, 2, . . . ,m

we obtain the following expression for c:

c =
n∑

i=1

x1
i ⊗ x2

i +
m∑
i=1

y1i ⊗ y2i

where each x1
i , y

1
i ∈ C1, x

2
i , y

2
i ∈ C2, each (x1

i ⊗ x2
i )(r,t) = 1 and each (y1i ⊗ y2i )(r,t) = 0.

Obviously n is odd. As well, we have

(x1
i ⊗ x2

i )(r,t) = 1 =⇒ x1
i,r = 1 and x2

i,t = 1

so that ur ⪯ x1
i and vt ⪯ x2

i for all i. Consequently, ur ⊗ vt ⪯ x1
i ⊗ x2

i for all i, and so (since
n is odd),

ur ⊗ vt ⪯
n∑

i=1

x1
i ⊗ x2

i .

It remains to show that (
∑m

i=1 y
1
i ⊗ y2i )(r′,t′) = 0 for all (r′, t′) ∈ supp (ur ⊗ vt), since this

will yield ur ⊗ vt ⪯ c.
Fix j, and suppose that (y1j ⊗ y2j )(r′,t′) = 1 for some (r′, t′) ∈ supp (ur ⊗ vt). Obviously

this requires y1j,r′ = 1 and y2j,t′ = 1, so that ur′ ⪯ y1j and vt′ ⪯ y2j . But (s
′, t′) ∈ supp (ur ⊗ vt)

says that r′ ∈ supp (us) and t′ ∈ supp (vt), so that by Proposition 4.3, we in fact have
ur ⪯ y1j and vt ⪯ y2j . But this gives (y1j ⊗ y2j )(r,t) = 1, contradicting the assumption that
(y1j ⊗ y2j )(r,t) = 0. So we must have (y1j ⊗ y2j )(r′,t′) = 0 for all (r′, t′) ∈ supp (ur ⊗ vt), and so
(
∑m

i=1 y
1
i ⊗ y2i )(r′,t′) = 0 for all (r′, t′) ∈ supp (ur ⊗ vt), as required.

12



It follows that (ur ⊗ vt) ⪯ c, as required.
Finally, for any r ∈ [s1] and t ∈ [s2], we have supp (ur ⊗ vt) = T 1

i × T 2
j . Moreover, if

[n1] =
⊔

i∈{i1,...,ia} T
1
i and [n2] =

⊔
j∈{j1,...,jb} T

1
j , then

[n1]× [n2] =
⊔

i∈{i1,...,ia}
j∈{j1,...,jb}

T 1
i × T 2

j =
⊔

i∈{i1,...,ia}
j∈{i1,...,ib}

supp (ui ⊗ vj)

which completes the proof.

Remark 4.5. It is worth distinguishing minimum disjoint support codes from minimal
codes, which are codes in which every codeword covers only itself [2]. More formally, a code
C is minimal provided c ⪯ c′ for codewords c, c′ ∈ C \ {0} implies c = c′. Notice that the
2-times repetition code of length 6 is not minimal since (1, 1, 0, 0, 0, 0), (1, 1, 1, 1, 0, 0) ∈ C
and (1, 1, 0, 0, 0, 0) ⪯ (1, 1, 1, 1, 0, 0).

We will see that the structure of minimum disjoint support codes lends itself to deter-
mining the sets Ωi and their boundaries, facilitating the calculation of influences.

5 Influences of coordinates of parity-check and mini-

mum disjoint support codes

In this section, we compute influences of some families of codes. We begin with a result
on influences of the coordinates of a simple parity-check code and then consider minimum
disjoint support codes.

Consider the simple parity-check code C of length n which is given by parity-check
matrix

H = [1 · · · 1] ∈ F1×n
2 ,

so that

C =

{
c ∈ Fn

2 :
n∑

i=1

ci = 0

}
.

Then C is an [n, n− 1, 2] code as codewords are of the form (c1, . . . , cn−1,
∑n−1

i=1 ci).

Proposition 5.1. Given an [n, n−1, 2] simple parity-check code, for all j ∈ [n], the influence
of the jth coordinate is

I
(p)
j = (n− 1)(1− p)n−2.

Therefore,
I(p) = n(n− 1)(1− p)n−2.

Proof. For i ∈ [n], Si = {x ∈ Fn
2 : xi = 1,wt(x) is even}. Then

Ωi = {x ∈ Fn
2 : xi = 1,wt(x) ≥ 2}

= {x ∈ Fn
2 : xi = 1} \ {ei} .
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Notice that for i ∈ [n] \ {j}, eij := ei + ej ∈ Ωi but eij + ej = ei /∈ Ωi since wt(ei) = 1. It
follows that

∂jΩi = {eij, ei}
and

Bj =
⋃

i∈[n]\{j}

{ei, eij}.

Since Bj contains n− 1 words eij of weight 2 and n− 1 words ei of weight 1,

I
(p)
j = (n− 1)

(
p(1− p)n−2 + (1− p)n−1

)
= (n− 1)(1− p)n−2.

Therefore,
I(p) = n(n− 1)(1− p)n−2.

Next, we consider a particular example to illustrate the observations made in the proof
of Proposition 5.1.

Example 5.2. Consider the [10, 9, 2] parity-check code C and the influence of first coordinate
on the other nine coordinates. Take j = 1 and first consider i = 2. Observe that

S2 = {c ∈ C : c2 ̸= 0} = {(c1, 1, c3, . . . , c10) : c1 + c3 + · · ·+ c10 = 1}

and
Ω2 = {(x1, 1, x3, . . . , x10) : (x1, x3, . . . , x10) ̸= (0, . . . , 0)} .

Then
{x ∈ Ω2 : x+ e1 /∈ Ω2} = {(1, 1, 0, . . . , 0)}

and
{x /∈ Ω2 : x+ e1 ∈ Ω2} = {(0, 1, 0, . . . , 0)} .

Hence,
∂1Ω2 = {(1, 1, 0, . . . , 0), (0, 1, 0, . . . , 0)} .

Similarly, we find that

∂1Ω3 = {(1, 0, 1, 0, . . . , 0), (0, 0, 1, 0, . . . , 0)}
∂1Ω4 = {(1, 0, 0, 1, 0, . . . , 0), (0, 0, 0, 1, 0, . . . , 0)}

...
∂1Ω10 = {(1, 0, . . . , 0, 1), (0, . . . , 0, 1)} .

Hence,
B1 = {e1 + ei : i ∈ {2, . . . , 10}} ∪ {ei : i ∈ {2, . . . , 10}}.

As a result,

I
(p)
1 = 9p2−1(1− p)10−2 + 9p1−1(1− p)10−1 = 9p(1− p)8 + 9(1− p)9 = 9(1− p)8.

The influences of other coordinates may be found similarly. Alternatively, one may observe
that I

(p)
j = I

(p)
j′ for all j, j′ ∈ [10]. Therefore,

I(p) = 10 · 9(1− p)8 = 90(1− p)8.
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According to Proposition 5.1, all coordinates have the same influence. This fact also
follows from the double transitivity of the automophism group of the code (see, for instance,
[7]).

Next, we consider influences of coordinates of the codes introduced in Section 4.

Theorem 5.3. Consider a binary [n, k, d] code with minimum disjoint support given by
[n] = Ti1 ⊔ · · · ⊔ Tis. Then the influence of coordinate j where j ∈ Ti is

I
(p)
j = p|Ti|−2.

The total influence is given by

I(p) =
s∑

ℓ=1

|Tiℓ |p|Tiℓ
|−2.

Proof. For all i ∈ [n],

Ωi =

∑
ℓ∈Ti

eℓ +
∑

ℓ∈[n]\Ti

aℓeℓ : aℓ ∈ F2

 ∼= Fn−|Ti|
2 .

Hence,

∂jΩi =

{
Ωj ⊔ (Ωj − ej) if j ∈ Ti

∅ otherwise.

It follows that
Bj =

⋃
i∈[n]
j∈Ti

(Ωj ⊔ (Ωj − ej)) = Ωj ⊔ (Ωj − ej) .

Then

Bj =

∑
ℓ∈Ti

eℓ +
∑

ℓ∈[n]\Ti

aℓeℓ : aℓ ∈ F2

 ⊔

 ∑
ℓ∈Ti\{j}

eℓ +
∑

ℓ∈[n]\Ti

aℓeℓ : aℓ ∈ F2



=

 ∑
ℓ∈Ti\{j}

eℓ +
∑

ℓ∈{j}∪[n]\Ti

aℓeℓ : aℓ ∈ F2

 .

Notice that Bj
∼= Fn−|Ti|+1

2 . Thus, if |Ti| ≥ 2 for all i ∈ [n] and j ∈ Ti,

I
(p)
j =

n−|Ti|+1∑
ℓ=0

(
n− |Ti|+ 1

ℓ

)
p|Ti|+ℓ−2(1− p)n−|Ti|−ℓ+1

= p|Ti|−2

n−|Ti|+1∑
ℓ=0

(
n− |Ti|+ 1

ℓ

)
pℓ(1− p)n−|Ti|−ℓ+1

= p|Ti|−2(p+ (1− p))n−|Ti|+1 = p|Ti|−2.
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Hence,

I(p) =
s∑

l=1

|Til |p|Til
|−2.

Corollary 5.4. An r-times repetition code of length n with r ≥ 2 has

I
(p)
j = pr−2

for all j. Hence,
I(p) = npr−2.

Proof. Note that |Ti| = r for all i ∈ [n]. According to Theorem 5.3,

I
(p)
j = pr−2

for all j and
I(p) = npr−2.

Example 5.5. Consider the [15, 5, 3] 3-times repetition code C3. We set out to determine
the influence of the first coordinate on the others, meaning we take j = 1. Notice that

S1 = S2 = S3 = C ∩ {(1, 1, 1, x4, . . . , x15) : xi ∈ F2}
S4 = S5 = S6 = C ∩ {(x1, x2, x3, 1, 1, 1, x7, . . . , x15) : xi ∈ F2}
S7 = S8 = S9 = C ∩ {(x1, . . . , x6, 1, 1, 1, x10, . . . , x15) : xi ∈ F2}
S10 = S11 = S12 = C ∩ {(x1, . . . , x9, 1, 1, 1, x13, x14, x15) : xi ∈ F2}
S13 = S14 = S15 = C ∩ {(x1, . . . , x12, 1, 1, 1) : xi ∈ F2} .

Then
Ω1 = Ω2 = Ω3 = {(1, 1, 1, x4, . . . , x15) : xi ∈ F2}
Ω4 = Ω5 = Ω6 = {(x1, x2, x3, 1, 1, 1, x7, . . . , x15) : xi ∈ F2}
Ω7 = Ω8 = Ω9 = {(x1, . . . , x6, 1, 1, 1, x10, . . . , x15) : xi ∈ F2}
Ω10 = Ω11 = Ω12 = {(x1, . . . , x9, 1, 1, 1, x13, x14, x15) : xi ∈ F2}
Ω13 = Ω14 = Ω15 = {(x1, . . . , x12, 1, 1, 1) : xi ∈ F2} .

For i ∈ {2, 3},
{x ∈ Ωi : x+ e1 /∈ Ωi} = Ω1

and
{x /∈ Ωi : x+ e1 ∈ Ωi} = {(0, 1, 1, x4, . . . , x15) : xi ∈ F2} .

For i ∈ {4, 5, 6},

{x ∈ Ωi : x+ e1 /∈ Ωi} = {x /∈ Ωi : x+ e1 ∈ Ωi} = ∅.

Thus, for i ∈ {2, 3}
∂1Ωi = Ωi ∪ {(0, 1, 1, x4, . . . , x15) : xi ∈ F2}

and for i ∈ [15] \ {1, 2, 3}
∂1Ωi = ∅.
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This implies

B1 = Ω1 ⊔ {(0, 1, 1, x4, . . . , x15) : xi ∈ F2} = {(x1, 1, 1, x4, . . . , x15) : xi ∈ F2} .

Therefore,

I
(p)
1 =

∑
x∈F13

2

pwt(x)+2−1(1− p)15−wt(x)−2 =
13∑
ℓ=0

(
13

ℓ

)
pℓ+1(1− p)13−ℓ

= p

13∑
ℓ=0

(
13

ℓ

)
pℓ(1− p)13−ℓ = p(p+ (1− p))13 = p.

Similarly,
I
(p)
j = p

for all j ∈ [n]. Hence, all coordinates have the same influence. Moreover,

I(p) = 15p.

Alternatively, to find these influences, one may apply directly Theorem 5.3 noting that
|Tiℓ | = 3 for all iℓ, ℓ ∈ [5].

We note that C3 is not a distinct weight code, since (1, 1, 1, 0, . . . , 0), (0, . . . , 0, 1, 1, 1) ∈ C3

and wt(1, 1, 1, 0, . . . , 0) = wt(0, . . . , 0, 1, 1, 1).

According to Corollary 5.4 and as illustrated in Example 5.5, all of the coordinates of
an r-times repetition code have the same influence. Next, we see that this is not necessarily
the case for the distinct weight codes.

Corollary 5.6. For the distinct weight code Ck,r, the influence of coordinate j ∈ [2r(2k−1)]
is

I
(p)
j = p2

⌈log2 j⌉−2.

The total influence is

I(p) =
k∑

i=1

|T2ir |p|T2ir |−2 =
k∑

i=1

2irp2
ir

.

Proof. Notice that
|T2r+s | = 2r+s

for s ∈ {0, . . . , k − 1}. In fact, j ∈ T2⌈log2 j⌉ . According to Theorem 5.3,

I
(p)
j = p2

⌈log2 j⌉−2

and

I(p) =
k∑

i=1

|T2ir |p|T2ir |−2 =
k∑

i=1

2irp2
ir

.
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Example 5.7. Consider the distinct weight code C3,2 which has generator matrix

G3,2 =

 14 08 016
04 18 016
04 08 116

 .

Recall that C3,2 is a [28, 3, 4] code. Indeed,

C3,2 = {028, 14024, 0418016, 112016, 012116, 1408116, 04124, 128} ,

demonstrating that it is fact a distinct weight code with exactly one word of weight 0, 4, 8,
12, 16, 20, 24, 28. Moreover,

S1 = S2 = S3 = S4 = {14024, 112016, 1408116, 128}
S5 = S6 = · · · = S12 = {0418016, 112016, 04124, 128}
S13 = S14 = · · · = S28 = {012116, 1408116, 04124, 128}

and

Ω1 = Ω2 = Ω3 = Ω4 = {(1, 1, 1, 1, x5, . . . , x28) : xi ∈ F2} ,
Ω5 = Ω6 = · · · = Ω12 = {(x1, x2, x3, x4, 1, . . . , 1, x13, . . . , x28) : xi ∈ F2} ,
Ω13 = Ω14 = · · · = Ω28 = {(x1, . . . , x12, 1, . . . 1) : xi ∈ F2} ⊆ F28

2 .

Take first j = 1. For i ∈ {2, 3, 4},

{x ∈ Ωi : x+ e1 /∈ Ωi} = Ω1

and
{x /∈ Ωi : x+ e1 ∈ Ωi} = Ω1 − e1 = {(0, 1, 1, 1, x5, . . . , x28) : xi ∈ F2} .

For i ∈ {5, . . . , 28},

{x ∈ Ωi : x+ e1 /∈ Ωi} = {x /∈ Ωi : x+ e1 ∈ Ωi} = ∅.

Thus,

∂1Ωi =

{
{(0, 1, 1, 1, x5, . . . , x28) : xi ∈ F2} for i = 2, 3, 4

∅ otherwise.

This implies

B1 = ∪i∈{2,...,28}∂1Ωi = Ω1 ⊔ Ω1 − e1 = {(x1, 1, 1, 1, x5, . . . , x28) : xi ∈ F2} .

Therefore,

I
(p)
1 =

∑
x∈F25

2

pwt(x)+3−1(1− p)28−wt(x) =
25∑
ℓ=0

(
25

ℓ

)
pℓ+2(1− p)25−ℓ

= p2
25∑
ℓ=0

(
25

ℓ

)
pℓ(1− p)25−ℓ = p2(p+ (1− p))25 = p2.
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Moreover,
I
(p)
2 = I

(p)
3 = I

(p)
4 = p2.

Using similar observations, one may calculate the remaining I
(p)
j . Since |{5, . . . , 12}| = 8

and |{13, . . . , 28}| = 16, we obtain

I
(p)
5 = · · · = I

(p)
12 = p8−2 = p6

and
I
(p)
13 = · · · = I

(p)
28 = p16−2 = p14,

indicating that coordinates with larger influences are those with smaller indices. Moreover,

I(p) = 4p2 + 8p6 + 16p14.

These conclusions are consistent with those found by apply directly Theorem 5.3 noting that
|Ti1 | = 4, |Ti2 | = 8, and |Ti3 | = 16.

Corollary 5.8. Consider the hybrid code CA of length n with |Ai| ≥ 2 for all i ∈ [k]. Then
for j ∈ Ai,

I
(p)
j = p|Ai|−2.

Moreover,

I(p) =
k∑

i=1

|Ai|p|Ai|−2.

Proof. The result follows similarly to the proof of Corollary 5.6.

We note that coordinates with larger influences have indices corresponding to smaller
parts of the partition [n] = A1 ⊔ · · · ⊔ Ak.

As observed previously, influences of coordinates in the simple parity-check codes and
repetition codes were identical. In contrast, the influences of coordinates in the distinct
weight codes Ck,r may differ. In the next example, we consider hybrid codes to demonstrate
how much influences can differ for these code families.

Example 5.9. Consider an integer n ≥ 3 and the partition

[n] = [2] ⊔ {3, . . . , n}.

According to Corollary 5.8,
I
(p)
1 = I

(p)
2 = 1

whereas
I
(p)
j = pn−3 ∀j ∈ [n] \ {1, 2}.
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6 Conclusion

In this paper, we defined minimum disjoint support codes, noting that repetition codes
and some distinct weight codes have minimum disjoint support. We reviewed the concept
of influences of variables of monotone Boolean functions and explained its connection to
coding theory. Finally, we determined the influences of coordinates of some families of
error correcting codes, including simple parity check codes and codes with minimum disjoint
support. While the codes themselves have rates approaching 0 as the length goes to infinity,
we hope that this study provides insight into influences of other code families with more
promising rate properties.
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