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A B S T R A C T

A unified construction of 𝜔(div)-conforming finite element tensors, including vector element,
symmetric matrix element, traceless matrix element, and, in general, tensors with linear
constraints, is developed in this work. It is based on the geometric decomposition of Lagrange
elements into bubble functions on each sub-simplex. Each tensor at a sub-simplex is further
decomposed into tangential and normal components. The tangential component forms the
bubble function space, while the normal component characterizes the trace. Some degrees of
freedom can be redistributed to (𝜀 ε 1)-dimensional faces. The developed finite element spaces
are 𝜔(div)-conforming and satisfy the discrete inf-sup condition. Intrinsic bases of the constraint
tensor space are also established.

1. Introduction

Hilbert complexes play a fundamental role in the theoretical analysis and the design of stable numerical methods for partial
differential equations [1–5]. Recently, in [6], Arnold and Hu have developed a systematic approach to derive new Hilbert complexes
from well-understood differential complexes, such as the de Rham complex. In space R

𝜀, for 0 ∱ 𝜗 ∱ 𝜀, let Alt𝜗,𝜀ε1 ϑ= Alt𝜗 𝜛Alt𝜀ε1
be the tensor product of alternating multilinear functional spaces, 𝜔𝜚 be the standard Sobolev space with real index 𝜚, and 𝜍

𝜗
be the

Koszul operator for the de Rham complex. Below, we rotate the right end column of the Bernstein–Gelfand–Gelfand (BGG) diagram
in [6] and switch the ordering of the index in [6] to match the row action of the operator div.

𝜔
𝜑ε𝜀

𝜛 Alt𝜀,𝜀ε1 𝜔
𝜑ε𝜀+1

𝜛 Alt𝜀ε1,𝜀ε1 ⋛ 𝜔
𝜑ε1

𝜛 Alt1,𝜀ε1 𝜔
𝜑
𝜛 Alt0,𝜀ε1

𝜔
𝜑ε𝜀ε1

𝜛 Alt𝜀,𝜀 𝜔
𝜑ε𝜀

𝜛 Alt𝜀ε1,𝜀 ⋛ 𝜔
𝜑ε2

𝜛 Alt1,𝜀 𝜔
𝜑ε1

𝜛 Alt0,𝜀
div

𝜍𝜀

id
div

𝜍𝜀ε1

skw 𝜚
2,𝜀ε1

𝜍2 𝜍1

tr
div div

𝜍𝜀 𝜍𝜀ε1 𝜍2 𝜍1

The algebraic operator 𝜚𝜗,𝜀ε1 ϑ Alt𝜗,𝜀ε1  Alt𝜗ε1,𝜀, for 1 ∱ 𝜗 ∱ 𝜀 along the  direction, is defined as

𝜚
𝜗,𝜀ε1

𝛻
⌋

𝜕1,… ,𝜕
𝜗ε1

⌈ ⌋

ℵ1,… , ℵ
𝜀

⌈

ϑ=
𝜀
⌉

ℶ=1
(ε1)ℶε1𝛻

⌋

ℵ
ℶ
,𝜕1,… ,𝜕

𝜗ε1
⌈ ⌋

ℵ1,… , ℷℵ
ℶ
,… , ℵ

𝜀

⌈

ϖ ℵ1,… , ℵ
𝜀
,𝜕1,… ,𝜕

𝜗ε1 ϱ R
𝜀
.

The tensor space X is defined as

X ϑ= ker(𝜚𝜗,𝜀ε1) ς Alt𝜗,𝜀ε1, 1 ∱ 𝜗 ∱ 𝜀 ε 1.
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A tensor 𝛻 ϱ Alt𝜗,𝜀ε1 can be represented by a matrix 𝝎 = (ℸ
⊳,ℶ
) ϱ R

(𝜀
𝜗
)φ𝜀, which is called a proxy matrix, and then X is a subset

of matrices satisfying certain linear constraints. For simplicity, we will use matrix 𝝎 to represent an element in X. Given a domain
⊲ 0 R

𝜀, define 𝜔(div,⊲;X) space as

𝜔(div,⊲;X) =
{

𝝎 ϱ 1
2(⊲;X) ϑ div𝝎 ϱ 1

2(⊲;R(
𝜀

𝜗
))
}

,

where the divergence operator is applied to each row of 𝝎. Notable examples are 𝜔(div; S) with the symmetric matrix S, which
plays an important role in the discretization of the elasticity equation in the mixed form [7–9], and 𝜔(div;T) with the traceless
matrix T, which is used in the mixed form of the linearized Einstein-Bianchi system [10–12].

Given a simplicial mesh ∲
2
of ⊲, we shall develop a systematic construction of 𝜔(div)-conforming finite element subspaces

of 𝜔(div,⊲;X) space. Take a proxy matrix 𝝎 for an elementwise smooth tensor 𝛻 ϱ 1
2(⊲;X). 𝜔(div)-conformity means 𝝎𝜺

3
is

continuous across each (𝜀 ε 1)-dimensional face 3 of ∲
2
. Namely, each row of 𝝎 is an 𝜔(div)-conforming vector function.

It is the constraint 𝜚𝜗,𝜀ε1(𝝎) = 0 that makes the finite element construction difficult, as the constraint and the normal continuity
should be satisfied simultaneously. For example, the symmetry of the tensors makes it a challenging problem to construct 𝜔(div; S)-
conforming finite elements. Arnold and Winther [9] constructed such an element in two dimensions, and later it was extended to
higher dimensions in [13–15]. Hu and Zhang [16,17] constructed 𝜔(div; S)-conforming finite elements with full polynomial spaces
with matched order of approximation.

The approach we shall use is the geometric decomposition, which leads to explicit bases for finite elements. The geometric
decomposition is an important tool for finite element analysis. For example, it is used in [18] to construct a local and bounded
co-chain projection to the discrete de Rham complexes. The finite element system in [19] also originates from the geometric
decomposition. The geometric decomposition of standard finite element de Rham complexes is well-studied in [1,20,21], and in [22]
for nodal finite element de Rham complexes. Recently geometric decomposition has been extended to smooth finite elements and
smooth finite element de Rham and Stokes complexes [23,24].

We shall integrate the geometric decomposition of the Lagrange element with tangential-normal (4-𝜀) decompositions R
𝜀 =

⋜5
6⋝5 on subsimplices to produce geometric decompositions of 𝜔(div)-conforming finite element vectors and tensors, exhibiting

normal continuity across all (𝜀ε 1)-dimensional faces. In a similar way, hierarchical geometric decomposition of 𝜔(div)-conforming
finite elements in two and three dimensions is discussed in [25–27]. A geometric decomposition of 𝜔(div)-conforming finite element
vectors with a different tangential-normal decomposition in three dimensions is also shown in [22]. While these prior studies offer
similar insights, our methodology introduces a novel level of generality. A significant aspect of our contribution is the expansion of
geometric decomposition techniques to effectively manage tensors subjected to specific constraints.

To satisfy the constraint while still keeping normal continuity, the crucial step is to get a 4-𝜀 decomposition of X with respect to
the second component in Alt𝜗,𝜀ε1, i.e.,

X = ⋜5 (X)6⋝5 (X),

where ⋜5 (X) =
⌋

Alt𝜗 𝜛⋜5
⌈

ς ker(𝜚𝜗,𝜀ε1) and ⋝5 (X) = 7X(Alt𝜗 𝜛⋝5 ) with an oblique (non-orthogonal) projection operator
7X ϑ Alt𝜗 𝜛⋝5  X so that one constraint is used only once either in ⋜5 (X) or ⋝5 (X).

This induces the geometric decomposition

P
8
(9 ;X) =6𝜀

⋞=065ϱ.⋞ (9 ),5P8ε(⋞+1)(5 )𝜛
⦃

⋜5 (X)6⋝5 (X)
⦄

. (1)

The tangential component will contribute to the polynomial bubble space

B
8
(div, 9 ;X) ϑ=6𝜀

⋞=165ϱ.⋞ (9 )
⦃

,
5
P
8ε(⋞+1)(5 )𝜛⋜5 (X)

⦄

,

and the normal component ,
5
P
8ε(⋞+1)(5 )𝜛⋝5 (X) to the trace.

As a direct result of decomposition (1), the following degrees of freedom (DoFs)

𝛻(⥳
ℶ
), ℶ = 0,… , 𝜀,𝛻 ϱ X, (2a)

(𝛻, <)
5
, < ϱ P

8ε(⋞+1)(5 )𝜛⋝5 (X), 5 ϱ .⋞(∲2), ⋞ = 1,… , 𝜀 ε 1, (2b)

(𝛻, <)
9
, < ϱ B

8
(div, 9 ;X), 9 ϱ ∲

2
, (2c)

will determine a space ℏ
2
0 𝜔(div,⊲;X). Here we single out the vertex DoFs to emphasize the finite element function is continuous

on vertices.
Discrete inf-sup condition will be established with requirement 8 ∳ 𝜀 + 1 and with modification of DoFs for 8 ∳ 𝜗 + 1 for

1 ∱ 𝜗 ∱ 𝜀ε 2. Variants can be constructed by further tuning DoFs (2), which will recover the existing 𝜔(div; S) elements [16,17,28]
and 𝜔(div;T) elements [11,12].

The geometric decomposition approach in this paper is not easy to extend to the case X = SςT, which requires special care and
super-smoothness of DoFs; see the recent work [29].

The rest of this paper is organized as follows. Section 2 covers foundational concepts, including simplex, barycentric coordinates,
Bernstein polynomials, 4-𝜀 bases, and a geometric decomposition of Lagrange elements. Sections 3 and 4 explore the geometric
decompositions of vector face elements and matrix face elements, respectively. Section 5 focuses on the constraint tensor space X

and its bases. The geometric decomposition of 𝜔(div)-conforming tensors is developed in Section 6. As the language of differential
form is abstract, in the first few sections we present the results using vector and matrix language and then move to the differential
forms in Sections 5 and 6.
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2. Notation and background

We summarize the most important notation and integer indices in the beginning:

• R
𝜀 ϑ 𝜀 is the dimension of the ambient Euclidean space and 𝜀 ∳ 2;

• P
8
ϑ 8 is the degree of the polynomial and 8 ∳ 0;

• >
𝜗 ϑ 𝜗 is the order of the differential form and 0 ∱ 𝜗 ∱ 𝜀;

• .⋞(9 ) ϑ ⋞ is the dimension of a sub-simplex 5 ϱ .⋞(9 ) and 0 ∱ ⋞ ∱ 𝜀.

2.1. Simplex and sub-simplices

Let 9 0 R
𝜀 be an 𝜀-dimensional simplex with vertices ⥳0, ⥳1,…, ⥳

𝜀
in general position. Following [20], we let .(9 ) denote all

the subsimplices of 9 , while .⋞(9 ) denotes the set of subsimplices of dimension ⋞, for 0 ∱ ⋞ ∱ 𝜀.
For a sub-simplex 5 ϱ .⋞(9 ), we will overload the notation 5 for both the geometric simplex and the algebraic set of indices.

Namely on one hand 5 = {5 (0),… , 5 (⋞)} ⋆ {0, 1,… , 𝜀}, and on the other hand

5 = Convex(⥳
5 (0),… , ⥳

5 (⋞)) ϱ .⋞(9 )

is the ⋞-dimensional simplex spanned by the vertices ⥳
5 (0),… , ⥳

5 (⋞). If 5 ϱ .⋞(9 ), for ⋞ = 0,… , 𝜀 ε 1, then 5
ω ϱ .

𝜀ε⋞ε1(9 ) denotes
the sub-simplex of 9 opposite to 5 . Algebraically treating 5 as a subset of {0, 1,… , 𝜀}, 5 ω

⋆ {0, 1,… , 𝜀} so that 5 ∇5
ω = {0, 1,… , 𝜀},

i.e., 5 ω is the complement of set 5 . Geometrically,

5
ω = Convex(⥳

5ω(1),… , ⥳
5ω(𝜀ε⋞)) ϱ .

𝜀ε⋞ε1(9 )

is the (𝜀 ε ⋞ ε 1)-dimensional simplex spanned by vertices not in 5 . We refer to [24, Fig. 2] for an illustration of 5 and 5
ω.

Denote by 3
ℶ
the (𝜀ε1)-dimensional face opposite to vertex ⥳

ℶ
, i.e., 3

ℶ
= {ℶ}ω. Here capital 3 is reserved for an (𝜀ε1)-dimensional

face of 9 . For lower dimensional sub-simplices, we sometimes use more conventional notation. For example, the vertex will be
denoted by ⥳

ℶ
and the edge formed by ⥳

ℶ
and ⥳

≨
will be denoted by ⥴

ℶ≨
.

2.2. Tangential-normal (4-𝜀) bases

For an ⋞-dimensional sub-simplex 5 ϱ .⋞(9 ), choose ⋞ linearly independent tangential vectors {𝝑
5

1 ,… , 𝝑
5

⋞} of 5 and 𝜀ε⋞ linearly
independent normal vectors {𝜺51 ,… ,𝜺

5

𝜀ε⋞} of 5 . The set of 𝜀 vectors {𝝑51 ,… , 𝝑
5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞} forms a basis of R
𝜀. Notice that for

⋞ = 0, i.e., at vertices, there are no tangential vectors, and for ⋞ = 𝜀, there are no normal vectors. Define the tangent plane and
normal plane of 5 as

⋜5 ϑ= span{𝝑5
ℶ
, ℶ = 1,… ,⋞}, ⋝5 ϑ= span{𝜺5

ℶ
, ℶ = 1,… , 𝜀 ε ⋞}.

All vectors are normalized but {𝝑5
ℶ
} or {𝜺5

ℶ
} may not form an orthonormal basis.

Inside the subspace ⋜5 , we can find a basis {𝐴𝝑51 ,… , 𝐴𝝑
5

⋞} dual to {𝝑51 ,… , 𝝑
5

⋞}, i.e., 𝐴𝝑ℶ ϱ ⋜5 and (𝐴𝝑
ℶ
, 𝝑

≨
) = 𝐵

ℶ,≨
for ℶ, ≨ = 1,… ,⋞.

Similarly we have a basis { 𝐴𝜺51 ,… , 𝐴𝜺
5

𝜀ε⋞} of ⋝
5 and ( 𝐴𝜺

ℶ
,𝜺

≨
) = 𝐵

ℶ,≨
for ℶ, ≨ = 1,… , 𝜀ε⋞. As ⋜5 ⟥ ⋝5 , the basis {𝐴𝝑51 ,… , 𝐴𝝑

5

⋞ , 𝐴𝜺
5

1 ,… , 𝐴𝜺
5

𝜀ε⋞}
is also dual to {𝝑51 ,… , 𝝑

5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞}.
Given a sub-simplex 5 ϱ .⋞(9 ), we now present two bases for its normal plane ⋝5 constructed in [30].
Recall that we label 3

ℶ
as the (𝜀 ε 1)-dimensional face opposite to the ℶth vertex. Then 5 ⋆ 3

ℶ
for ℶ ϱ 5

ω. One basis is composed
by unit normal vectors of all such (𝜀 ε 1)-dimensional faces:

{𝜺
3ℶ
, ℶ ϱ 5

ω},

and will be called the face normal basis.
We now give its dual basis in ⋝5 . For 5 ϱ .⋞(9 ),⋞ = 0, 1,… , 𝜀 ε 1 and ℶ ϱ 5

ω, let 5 ∇ {ℶ} denotes the (⋞ + 1)-dimensional face
in .⋞+1(9 ) with vertices {ℶ, 5 (0),… , 5 (⋞)}. Let 𝜺5

5∇{ℶ} be a unit normal vector of 5 but tangential to 5 ∇ {ℶ}. The basis

{𝜺5
5∇{ℶ}, ℶ ϱ 5

ω}

will be called the tangential normal basis.

Lemma 2.1. For 5 ϱ .⋞(9 ), the rescaled tangential normal basis {𝜺55∇{ℶ}∂(𝜺
5

5∇{ℶ} ⋟ 𝜺3ℶ ), ℶ ϱ 5
ω} of ⋝5 is dual to the face normal basis

{𝜺
3ℶ
, ℶ ϱ 5

ω}.

Proof. Clearly 𝜺
5

5∇{ℶ},𝜺3ℶ ϱ ⋝5 for ℶ ϱ 5
ω. It suffices to prove

𝜺
5

5∇{ℶ} ⋟ 𝜺3≨ = 0 for ℶ, ≨ ϱ 5
ω
, ℶ ⨋ ≨,

which follows from the fact 5 ∇ {ℶ} ⋆ 3
≨
and 𝜺

5

5∇{ℶ} ϱ ⋜5∇{ℶ}. ⋠
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L. Chen and X. Huang

Fig. 1. Face normal basis and tangential normal basis of a vertex and an edge in a tetrahedron.

Example 2.2. An important example is 5 ϱ .0(9 ), i.e., 5 is a vertex. Without loss of generality, let 5 = {0}. Then 𝜺
5

5∇{ℶ} is a unit
normal vector of edge {0, ℶ}: 𝝑0ℶ or 𝝑ℶ0 depending on the orientation. Its dual basis is {𝜺3ℶ∂(𝜺3ℶ ⋟ 𝝑0ℶ), ℶ = 1,… , 𝜀}. See Fig. 1(a).

Example 2.3. Let 5 = {0, 1} be an edge of a tetrahedron. Then we have two bases of the normal plane ⋝5 : {𝜺
32 ,𝜺33 } and

{𝜺{0,1}{0,1,2},𝜺
{0,1}
{0,1,3}}. They are dual to each other with an appropriate rescaling. See Fig. 1(b).

2.3. Barycentric coordinates and Bernstein polynomials

For a domain ⊲ ⋆ R
𝜀 and integer 8 ⩾ 0, P

8
(⊲) denotes the space of real valued polynomials defined on ⊲ of degree

less than or equal to 8. For simplicity, we let P
8

= P
8 (R𝜀). Hence, if 𝜀-dimensional domain ⊲ has nonempty interior, then

dimP
8
(⊲) = dimP

8
=

⌋

8+𝜀
𝜀

⌈

. When ⊲ = {⥳} is a point, P
8
(⥳) = R for all 8 ⩾ 0. And we set P

8
(⊲) = {0} when 8 < 0. Let H

8
(⊲)

denote the space of real valued polynomials defined on ⊲ of degree 8.
For 𝜀-dimensional simplex 9 , we denote by 𝐶0, 𝐶1,… , 𝐶

𝜀
the barycentric coordinate functions with respect to 9 . That is 𝐶

ℶ
ϱ P1(9 )

and 𝐶
ℶ

⌋

⥳
≨

⌈

= 𝐵
ℶ,≨
, 0 ⩽ ℶ, ≨ ⩽ 𝜀, where 𝐵

ℶ,≨
is the Kronecker delta function. The functions {𝐶

ℶ
, ℶ = 0, 1,… , 𝜀} form a basis for P1(9 ),

⟨𝜀

ℶ=0 𝐶ℶ(𝐷) = 1, and 0 ∱ 𝐶
ℶ
(𝐷) ∱ 1, ℶ = 0, 1,… , 𝜀, for 𝐷 ϱ 9 . The sub-simplices of 9 correspond to the zero sets of the barycentric

coordinates. Indeed 5 = {𝐷 ϱ 9 − 𝐶
ℶ
(𝐷) = 0, ℶ ϱ 5

ω} for 5 ϱ .⋞(9 ).
We will use the multi-index notation 𝐸 ϱ N

𝜀, meaning 𝐸 =
⌋

𝐸1,… , 𝐸
𝜀

⌈

with integer 𝐸
ℶ
⩾ 0. We define 𝐷

𝐸 = 𝐷
𝐸1
1 ⋛ 𝐷

𝐸𝜀
𝜀 , and

⟩𝐸⟩ ϑ= ⟨𝜀

ℶ=1 𝐸ℶ. We will also use the set N
0ϑ𝜀 of multi-indices 𝐸 =

⌋

𝐸0,… , 𝐸
𝜀

⌈

, with 𝐶
𝐸 ϑ= 𝐶

𝐸0
0 ⋛ 𝐶

𝐸𝜀
𝜀 for 𝐸 ϱ N

0ϑ𝜀.
We introduce the simplicial lattice [23,24], which is also known as the principal lattice [31]. A simplicial lattice of degree 8 and

dimension 𝜀 is a multi-index set of 𝜀 + 1 components and with fixed length 8, i.e.,

T
𝜀

8
=
{

𝐸 = (𝐸0, 𝐸1,… , 𝐸
𝜀
) ϱ N

0ϑ𝜀 − 𝐸0 + 𝐸1 +⋛ + 𝐸
𝜀
= 8

}

.

An element 𝐸 ϱ T
𝜀

8
is called a node of the lattice. The Bernstein representation of polynomial of degree 8 on a simplex 9 is

P
8
(9 ) ϑ= span{𝐶𝐸 = 𝐶

𝐸0
0 𝐶

𝐸1
1 … 𝐶

𝐸𝜀
𝜀 , 𝐸 ϱ T

𝜀

8
}.

In the Bernstein form, for an 5 ϱ .⋞(9 ),

P
8
(5 ) = span{𝐶𝐸

5
= 𝐶

𝐸0
5 (0)𝐶

𝐸1
5 (1) … 𝐶

𝐸⋞
5 (⋞), 𝐸 ϱ T

⋞
8
}.

Through the natural extension defined by the barycentric coordinate, P
8
(5 ) ⋆ P

8
(9 ). The bubble polynomial of 5 is a polynomial of

degree ⋞ + 1:

,
5
ϑ= 𝐶

5
= 𝐶

5 (0)𝐶5 (1) … 𝐶
5 (⋞) ϱ P⋞+1(5 ).

We have the following property of the bubble polynomial ,
5
.

Lemma 2.4. Let 5 , 𝐹 ϱ .(9 ). If 5 𝐺 𝐹, then ,
5
−
𝐹
= 0.

Proof. As 5 = (5 ς 𝐹
ω)∇ (5 ς 𝐹) and 5 𝐺 𝐹, we conclude 5 ς 𝐹

ω ⨋ +. So ,
5
contains 𝐶

ℶ
for some ℶ ϱ 𝐹

ω and consequently ,
5
⟩

𝐹
= 0. ⋠

In particular, ,
5
vanishes at all sub-simplices other than 5 with dimensions ∱ dim 5 , and higher dimensional sub-simplices not

containing 5 .
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2.4. Geometric decomposition of Lagrange elements

We begin with the geometric decomposition of the Lagrange element. The following geometric decomposition of Lagrange
element is given in [20] without proofs. As it is the foundation of other geometric decompositions in later sections, we present
it using our notation and provide a detailed proof. We refer to [20, Fig. 2.1] for an illustration of this geometric decomposition. For
the 0-dimensional face, i.e., a vertex ⥳, we understand that ⨌⥳ 𝐻 d𝜚 = 𝐻(⥳) for 1 ϱ P

8
(⥳) = R.

Theorem 2.5 (Geometric Decomposition of Lagrange Element, (2.6) in [20]). For the polynomial space P
8
(9 ) with 8 ∳ 1 on an 𝜀-dimensional

simplex 9 , we have the following decomposition

P
8
(9 ) =6𝜀

⋞=065ϱ.⋞ (9 ),5P8ε(⋞+1)(5 ). (3)

And the function 𝐻 ϱ P
8
(9 ) is uniquely determined by degrees of freedom (DoFs)

⨍
5

𝐻 𝐼 d𝜚, 𝐼 ϱ P
8ε(⋞+1)(5 ), 5 ϱ .⋞(9 ),⋞ = 0, 1,… , 𝜀. (4)

Proof. We first prove the decomposition (3). Each component ,
5
P
8ε(⋞+1)(5 ) 0 P

8
(9 ) and the sum is direct due to the property of

,
5
, cf. Lemma 2.4. Then count the dimensions and use the combinatorial identity

𝜀
⌉

⋞=0

⟪

𝜀 + 1
⋞ + 1

⟫⟪

8 ε 1
8 ε ⋞ ε 1

⟫

=
⟪

𝜀 + 8

8

⟫

,

which can be proved by looking at the coefficient of 𝐷8 in (1 + 𝐷)𝜀+1(1 + 𝐷)8ε1 = (1 + 𝐷)𝜀+8.
To prove the unisolvence, we choose a basis {𝐽

ℶ
} of P

8
(9 ) by the decomposition (3) and denote DoFs (4) as {𝐾

ℶ
}. By construction,

the dimension of {𝐽
ℶ
} matches the number of DoFs {𝐾

ℶ
}. The DoF-Basis matrix (𝐾

ℶ
(𝐽

≨
)) is thus square and block lower triangular

in the sense that for 𝐽
5
ϱ ,

5
P
8ε(⋞+1)(5 ),

⨍
𝐹

𝐽
5
𝐼 d𝜚 = 0, 𝐹 ϱ .

𝐿
(9 ) with 𝐿 ∱ ⋞ and 𝐹 ⨋ 5 , 𝐼 ϱ P

8εdim 𝐹ε1(𝐹)

due to the property of ,
5
established in Lemma 2.4. Each diagonal block matrix is the Gram matrix

⨍
5

𝐼𝜑,
5
d𝐷

5
, 𝐼, 𝜑 ϱ P

8ε(⋞+1)(5 ),

in the measure ,
5
d𝐷

5
and thus symmetric and positive definite. In particular, it is invertible. So the unisolvence follows from the

invertibility of this lower triangular matrix; see below for an illustration.

𝐾
5
± 𝐽

5
0 1 … 𝜀 ε 1 𝜀

0
1
⋡

𝜀 ε 1
𝜀

❲

❳

❳

❳

❳

❳

❳

❳

❳

/

⋠ 0 ⋛ 0 0

⋠ ⋠ ⋛ 0 0

⋡ ⋡ ⋢ ⋡ ⋡

⋠ ⋠ ⋛ ⋠ 0

⋠ ⋠ ⋛ ⋠ ⋠

\

(

(

(

(

(

(

(

(

)

(5)

⋠

Remark 2.6. It is important to note that P
8ε(⋞+1)(5 ) = {0} when 8 < ⋞ + 1. As a result, the last non-zero term in (3) corresponds to

⋞ ∱ min{8ε1, 𝜀}. This implies that the degree of the polynomial dictates the dimension of the sub-simplex in decomposition (3). For
instance, with quadratic polynomials, the summation includes only edge bubbles and excludes face bubbles and higher dimensions.
Despite this, the full summation notation6𝜀

⋞=0 is retained for simplicity, with the implicit understanding that the range of non-zero
sub-spaces will automatically truncate the limits.

Let {∲
2
} be a family of partitions of ⊲ into nonoverlapping simplices with 2

9
ϑ= diam(9 ) and 2 ϑ= max

9ϱ∲2 29 . The mesh ∲
2
is

conforming in the sense that the intersection of any two simplices is either empty or a common lower sub-simplex. Let .⋞(∲2) be
the set of all ⋞-dimensional sub-simplices of the partition ∲

2
for ⋞ = 0, 1,… , 𝜀. The Lagrange finite element space

𝑀
8

2
ϑ= {ℵ ϱ 𝑁(⊲) ϑ ℵ−

9
ϱ P

8
(9 ),ϖ 9 ϱ ∲

2
, DoFs (4) are single-valued},

has the geometric decomposition

𝑀
8

2
=6𝜀

⋞=065ϱ.⋞ (∲2),5P8ε(⋞+1)(5 ).

Here we extend the polynomial ,
5
P
8ε(⋞+1)(5 ) to each element 9 containing 5 by the Bernstein form in the barycentric coor-

dinate and thus it is a piecewise polynomial function and continuous in ⊲. Consequently 𝑀
8

2
0 𝜔

1(⊲) and the dimension of
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𝑀
8

2
is

dim𝑀
8

2
=

𝜀
⌉

⋞=0
⟩.⋞(∲2)⟩

⟪

8 ε 1
⋞

⟫

,

where ⟩.⋞(∲2)⟩ is the cardinality, i.e., the number of ⋞-dimensional simplices in ∲
2
.

The geometric decomposition of the vector Lagrange elements is a straightforward generalization:

P
8
(9 ;R𝜀) =6𝜀

⋞=065ϱ.⋞ (9 )
⦃

,
5
P
8ε(⋞+1)(5 )𝜛 R

𝜀
⦄

. (6)

In (6), a fixed orthonormal basis of R𝜀 is implicitly assumed in which the vector is expanded. It is usually the Cartesian coordinate
describing the domain ⊲.

3. Geometric decompositions of vector face elements

In this section we consider 𝜔(div)-conforming vector finite elements with local shape function space P
8
(9 ;R𝜀). Define

𝜔(div,⊲) ϑ= {𝝕 ϱ 1
2(⊲;R𝜀) ϑ div𝝕 ϱ 1

2(⊲)}. For a subdomain 𝑂 ⋆ ⊲, the trace operator for the div operator is

trdiv
𝑂

𝝕 = 𝝕 ⋟ 𝜺⟩
𝑃𝑂

for 𝝕 ϱ 𝑁(𝑂),

where 𝜺 denotes the outwards unit normal vector of 𝑃𝑂. Given a triangulation ∲
2
and a piecewise smooth function 𝝔, it is well

known that 𝝔 ϱ 𝜔(div,⊲) if and only if 𝜺
3
⋟ 𝝔 is continuous across all faces 3 ϱ .

𝜀ε1(∲2), which can be ensured by having DoFs on
faces. An 𝜔(div)-conforming finite element is thus also called a face element.

3.1. Examples in three dimensions

We first use three-dimensional examples to illustrate the main idea. Recall that the geometric decomposition of the vector
Lagrange elements in three dimensions reads

P
8
(9 ;R3) =63

⋞=065ϱ.⋞ (9 )
⦃

,
5
P
8ε(⋞+1)(5 )𝜛 R

3⦄
. (7)

A fixed orthonormal basis {𝝇
ℶ
}3
ℶ=1 of R

3 is used in (7). See Fig. 2(a).
An 𝜔(div) function is a vector proxy of an (𝜀ε1)-form; see Section 5. As a differential form, it is an intrinsic quantity independent

of the choice of coordinates/frames. Based on this observation, we shall choose different frames at different sub-simplex 5 ϱ .⋞(9 ).
For 5 ϱ .⋞(9 ) with ⋞ = 0, 1, 2, 3, the tangent plane and normal plane of 5 are

⋜5 = span{𝝑5
ℶ
, ℶ = 1,… ,⋞}, ⋝5 = span{𝜺5

ℶ
, ℶ = 1,… , 3 ε ⋞}.

Then R
3 admits a tangential-normal (4-𝜀) decomposition R

3 = ⋜5
6

⟥ ⋝5 . Coupled with the bubble polynomials, we obtain a 4-𝜀
decomposition of P

8
(9 ;R3) as

P
8
(9 ;R3) =63

⋞=065ϱ.⋞ (9 )
⦃

B
8
⋜5

6 B
8
⋝5

⦄

,

where

B
8
⋜5 = ,

5
P
8ε(⋞+1)(5 )𝜛⋜5

, B
8
⋝5 = ,

5
P
8ε(⋞+1)(5 )𝜛⋝5

.

Notice that for a vertex ⥳ ϱ .0(9 ), B8
⋜⥳ = {0}, and B

8
⋝⥳ = 𝐶⥳R

3 as ,⥳ = 𝐶⥳,P8ε1(⥳) = R, and ⋝⥳ = R
3.

Define the polynomial bubble space B
8
(div, 9 ) ϑ= ker(trdiv

9
)ςP

8
(9 ;R3). The tangential component will form the div bubble space:

for 8 ∳ 2, it holds that

B
8
(div, 9 ) =63

⋞=165ϱ.⋞ (9 )B8
⋜5

.

Verification of B
8
⋜5

⋆ B
8
(div, 9 ) is straightforward. For face 3 not containing 5 , ,

5
⟩

3
= 0. For face 3 containing 5 , trdiv 𝝔⟩

3
=

𝝔 ⋟ 𝜺
3
= 0 as 𝝑5

ℶ
⋟ 𝜺

3
= 0.

The normal component will contribute to the trace. We can derive the second family of Nédélec element [32,33], which
generalizes the Brezzi–Douglas–Marini (BDM) element [34] in two dimensions, from a special 4-𝜀 basis. For face 3 ϱ .2(9 ), choose
two linearly independent tangential vectors 𝝑31 , 𝝑

3

2 of 3 and one normal vector 𝜺
3
of 3 . For edge 𝐹 ϱ .1(9 ), choose a tangential

vector 𝝑𝐹 of 𝐹 and the face normal basis vectors {𝜺
31 ,𝜺32 }, where 31,32 are two faces containing 𝐹. For vertex ⥳ ϱ .0(9 ), choose

{𝜺
31 ,𝜺32 ,𝜺33 }, where 31,32,33 are three faces containing vertex ⥳. For tetrahedron 9 , we keep the canonical basis {𝝇

ℶ
}3
ℶ=1, which

is considered as tangential vectors of 9 . See Fig. 2(b).
We then group normal components {B

8
⋝5

, 5 ϱ .(9 )} face by face. On each face 3 , again by the geometric decomposition of
Lagrange element, the normal components at different sub-simplices 5 ϱ .(3 ) will determine the scalar function 𝝔 ⋟𝜺

3
. In Fig. 2(c),

we show such face-wise redistribution for a quadratic face element.
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Fig. 2. Classical face elements can be obtained by a special 4-𝜀 decomposition and face-wise redistribution of normal components.

Example 3.1 (Nédélec Element/BDM Element). Taking ⨎ 5 ϑ= span{𝜺
3ℶ
, 5 0 3

ℶ
}, the following DoFs

(𝝕 ⋟ 𝜺
3ℶ
)⟩
3ℶ
(⥳), 3

ℶ
ϱ .2(9 ), ⥳ ϱ .0(3ℶ

), (8a)

⨍
𝐹

(𝝕 ⋟ 𝜺
3ℶ
)⟩
3ℶ

𝐼 d𝜚, 3
ℶ
ϱ .2(9 ), 𝐹 ϱ .1(3ℶ

), 𝐼 ϱ P
8ε2(𝐹), (8b)

⨍
3ℶ

(𝝕 ⋟ 𝜺
3ℶ
) 𝐼 d𝜚, 3

ℶ
ϱ .2(9 ), 𝐼 ϱ P

8ε3(3ℶ
), (8c)

⨍
9

𝝕 ⋟ 𝝋 d𝐷, 𝝋 ϱ B
8
(div, 9 ) (8d)

define the Nédélec element/BDM element. DoFs (8a)–(8c) are all located on face 3
ℶ
, and uniquely determine (𝝕 ⋟ 𝜺

3ℶ
) −

3ℶ
ϱ P

8
(3

ℶ
).

Hence DoFs (8a)–(8c) can be combined to one DoF

⨍
3ℶ

(𝝕 ⋟ 𝜺
3ℶ
) 𝐼 d𝜚, 3

ℶ
ϱ .2(9 ), 𝐼 ϱ P

8
(3

ℶ
).

The interior DoF (8d) can be further replaced by 𝝋 ϱ
⌋

P
8ε2(9 ;R𝜀)6 H

8ε2(9 ;K)𝜵
⌈

with K being the skew-symmetric matrix space;
see [28]. Therefore DoFs (8) induce the Nédélec/BDM element; see Fig. 3(a).

Different 𝜔(div)-conforming finite elements can be obtained by different 4-𝜀 basis.

Example 3.2 (Stenberg Element). Taking {𝜺⥳
ℶ
}3
ℶ=1 = {𝝇

ℶ
}3
ℶ=1 and {𝜺𝐹

ℶ
}2
ℶ=1 = {𝜺

3ℶ
}2
ℶ=1 as two face 3

ℶ
sharing 𝐹, the following DoFs

𝝕(⥳), ⥳ ϱ .0(9 ),

⨍
𝐹

(𝝕 ⋟ 𝜺
3ℶ
)⟩
3ℶ

𝐼 d𝜚, 3
ℶ
ϱ .2(9 ), 𝐹 ϱ .1(3ℶ

), 𝐼 ϱ P
8ε2(𝐹),

⨍
3

𝝕 ⋟ 𝜺
3
𝐼 d𝜚, 3 ϱ .2(9 ), 𝐼 ϱ P

8ε3(3 ),

⨍
9

𝝕 ⋟ 𝝋 d𝐷, 𝝋 ϱ B
8
(div, 9 )

induce the Stenberg element [35], which is continuous at vertices; see Fig. 3(b).

Example 3.3 (Christiansen–Hu–Hu Element). Taking {𝜺⥳
ℶ
}3
ℶ=1 = {𝝇

ℶ
}3
ℶ=1 and {𝜺𝐹

ℶ
}2
ℶ=1 depending only on 𝐹, the following DoFs

𝝕(⥳), ⥳ ϱ .0(9 ),

⨍
𝐹

(𝝕 ⋟ 𝜺𝐹
ℶ
) 𝐼 d𝜚, 𝐹 ϱ .1(9 ), 𝐼 ϱ P

8ε2(𝐹), ℶ = 1, 2,

⨍
3

(𝝕 ⋟ 𝜺
3
) 𝐼 d𝜚, 3 ϱ .2(9 ), 𝐼 ϱ P

8ε3(3 ),

⨍
9

𝝕 ⋟ 𝝋 d𝐷, 𝝋 ϱ B
8
(div, 9 )

define the Christiansen–Hu–Hu (CHH) face element [22, Section 3.5], which has extra continuity at vertices and on the normal
planes of edges; see Fig. 3(c).
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Fig. 3. Different 𝜔(div)-conforming finite elements can be obtained by different 4-𝜀 decompositions.

3.2. Face elements in arbitrary dimension

We now present and prove the result in arbitrary 𝜀 ∳ 2 dimensions. Again the main idea is using different and in general
non-orthonormal 4-𝜀 decomposition adapted to different sub-simplices.

3.2.1. Bubble spaces
For an ⋞-dimensional sub-simplex 5 ϱ .⋞(9 ), choose ⋞ linearly independent tangential vectors {𝝑

5

1 ,… , 𝝑
5

⋞} of 5 and 𝜀ε⋞ linearly
independent normal vectors {𝜺51 ,… ,𝜺

5

𝜀ε⋞} of 5 . The set of 𝜀 vectors {𝝑51 ,… , 𝝑
5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞} forms a basis of R
𝜀. Notice that for

⋞ = 0, i.e., at vertices, there are no tangential vectors and for ⋞ = 𝜀, there are no normal vectors. Define the tangent plane and
normal plane of 5 as

⋜5 ϑ= span{𝝑5
ℶ
, ℶ = 1,… ,⋞}, ⋝5 ϑ= span{𝜺5

ℶ
, ℶ = 1,… , 𝜀 ε ⋞}.

All vectors are normalized but {𝝑5
ℶ
} or {𝜺5

ℶ
} may not be an orthonormal basis. Coupled with the bubble polynomial, for 8 ∳ 1, define

B
8
⋜5 = ,

5
P
8ε(⋞+1)(5 )𝜛⋜5

, B
8
⋝5 = ,

5
P
8ε(⋞+1)(5 )𝜛⋝5

.

Lemma 3.4. The shape function space P
8
(9 ;R𝜀) has a geometric decomposition

P
8
(9 ;R𝜀) =6𝜀

⋞=065ϱ.⋞ (9 )
⦃

B
8
⋜5

6 B
8
⋝5

⦄

. (9)

A function 𝝔 ϱ P
8
(9 ;R𝜀) is uniquely determined by the DoFs: for all 5 ϱ .⋞(9 ),⋞ = 0, 1,… , 𝜀,

⨍
5

(𝝔 ⋟ 𝝑5
ℶ
) 𝐼 d𝜚, ℶ = 1,… ,⋞, 𝐼 ϱ P

8ε(⋞+1)(5 ), (10a)

⨍
5

(𝝔 ⋟ 𝜺5
≨
) 𝐼 d𝜚, ≨ = 1,… , 𝜀 ε ⋞, 𝐼 ϱ P

8ε(⋞+1)(5 ). (10b)

Proof. Since {𝝑51 ,… , 𝝑
5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞} forms a basis of R
𝜀, DoFs (10a)–(10b) are equivalent to

⨍
5

𝝔 ⋟ 𝝋 d𝜚, 𝝋 ϱ P
8ε(⋞+1)(5 ;R𝜀).

Then the unisolvence follows from Theorem 2.5 for the Lagrange element. ⋠

Next we use B
8
⋜5 or B

8
⋝5 to characterize the kernel or range of the trace operator, respectively. Define the polynomial bubble

space

B
8
(div, 9 ) ϑ= ker(trdiv) ς P

8
(9 ;R𝜀).

It is obvious that B0(div, 9 ) = {𝛚} and B1(div, 9 ) = {𝛚}.

Lemma 3.5. For 8 ∳ 2, it holds that
B
8
(div, 9 ) =6𝜀

⋞=165ϱ.⋞ (9 )B8
⋜5

, (11)

and
trdiv ϑ6𝜀ε1

⋞=065ϱ.⋞ (9 )B8
⋝5  trdiv P

8
(9 ;R𝜀) (12)

is a bijection. Consequently

dimB
8
(div, 9 ) =

𝜀
⌉

⋞=1

⟪

𝜀 + 1
⋞ + 1

⟫⟪

8 ε 1
⋞

⟫⟪

⋞
1

⟫

.
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Proof. Verification of

6
𝜀

⋞=165ϱ.⋞ (9 )B8
⋜5

⋆ B
8
(div, 9 )

is straightforward. For face 3 not containing 5 , ,
5
⟩

3
= 0. For face 3 containing 5 , trdiv 𝝔⟩

3
= 𝝔 ⋟𝜺

3
= 0 as 𝝑5

ℶ
⋟𝜺

3
= 0 for 𝝔 ϱ B

8
⋜5 .

Then apply the trace operator to the decomposition (9) and use trdiv(B
8
⋜5 ) = 0 to obtain

trdiv
⦅

6
𝜀ε1
⋞=065ϱ.⋞ (9 )B8

⋝5

⦆

= trdiv P
8
(9 ;R𝜀).

So the map trdiv in (12) is onto.
We then prove it is also injective. For an 5 ϱ .⋞(9 ), recall that {𝜺3ℶ , ℶ ϱ 5

ω} is the face normal basis of⋝5 and { 𝐴𝜺
3ℶ
, ℶ ϱ 5

ω} is its
dual basis of⋝5 . We expand 𝝔 ϱ6𝜀ε1

⋞=065ϱ.⋞ (9 )B8
⋝5 in the dual basis, i.e., 𝝔 = ⟨𝜀ε1

⋞=0
⟨

5ϱ.⋞ (9 )
⟨

ℶϱ5ω ,5 𝐼
ℶ

5
𝐴𝜺
3ℶ
with 𝐼

ℶ

5
ϱ P

8ε(⋞+1)(5 ).
We will prove if trdiv 𝝔 = 0, then 𝝔 = 0.

To do so, we consider the operator 𝐾5

ℶ
(𝝔) = (𝝔 ⋟ 𝜺

3ℶ
)⟩
5
. Condition trdiv 𝝔 = 0 implies 𝐾5

ℶ
(𝝔) = 0 for all 5 ϱ .(9 ) and ℶ ϱ 5

ω. By
the choice of the basis of ⋝5 and the property of bubble polynomial ,

5
, the corresponding 𝐾-𝐽 matrix is block lower triangular

with diagonal matrices in the diagonal block; see (5) for an illustration. Therefore 𝐾
5

ℶ
(𝝔) = 0 implies 𝝔 = 0. More specifically, we

have 𝐾
⥳
ℶ
(𝝔) = 𝐼

ℶ

⥳ = 0 for ⥳ ϱ .0(9 ) and ℶ ϱ ⥳ω. After that, we apply 𝐾
5

ℶ
(𝝔) to conclude 𝐼

5

ℶ
= 0 for 5 ϱ .1(9 ). Using this forward

substitution argument for the lower triangular matrix, we conclude all coefficient polynomials 𝐼5
ℶ
= 0.

Once we have proved the map tr in (12) is bijective, we conclude (11) from the decomposition (9). ⋠

With this characterization, tangential DoFs in (10a) can be merged as one B
8
(div, 9 ).

3.2.2. Brezzi–Douglas–Marini element
Given an 5 ϱ .⋞(9 ), we choose {𝜺

3
, 5 ⋆ 3 ϱ .

𝜀ε1(9 )} as the basis for its normal plane ⋝5 .

Lemma 3.6 (Local BDM Element). The shape function space P
8
(9 ;R𝜀) is uniquely determined by the DoFs

⨍
3

𝝕 ⋟ 𝜺
3
𝐼 d𝜚, 𝐼 ϱ P

8
(3 ),3 ϱ .

𝜀ε1(9 ), (13a)

⨍
9

𝝕 ⋟ 𝝋 d𝐷, 𝝋 ϱ B
8
(div, 9 ). (13b)

Proof. By the geometric decomposition of P
8
(3 ) element, (13a) can be decomposed into

⨍
5

(𝝕 ⋟ 𝜺
3
)⟩
3
𝐼 d𝜚, 3 ϱ .

𝜀ε1(9 ), 5 ϱ .⋞(3 ), 𝐼 ϱ P
8ε(⋞+1)(5 ),⋞ = 0, 1,… , 𝜀 ε 1. (14)

We switch the ordering of 5 and 3 to

⨍
5

(𝝕 ⋟ 𝜺
3
)⟩
3
𝐼 d𝜚, 5 ϱ .⋞(9 ),3 ϱ .

𝜀ε1(9 ), 5 ⋆ 3 , 𝐼 ϱ P
8ε(⋞+1)(5 ),⋞ = 0, 1,… , 𝜀 ε 1,

which is exactly (10b) according to our choice of normal basis.
Therefore given a 𝝕 ϱ P

8
(9 ;R𝜀), if (13a) vanishes, then tr 𝝕 = 0 and consequently 𝝕 ϱ B

8
(div, 9 ). Finally the vanishing DoF (13b)

implies 𝝕 = 0. ⋠

One benefit of using the decomposed version (14) instead of the merged one (13a) is that the well documented Lagrange basis
functions can be used in the implementation of the face element; see [30].

We call the change from (14) to (13a) the facewise redistribution of normal DoFs. Namely by using the face normal basis, we
can redistribute the DoFs on 5 to each (𝜀 ε 1)-dimensional face 3 containing 5 .

To glue local finite elements to form an 𝜔(div)-conforming finite element, we need to enforce continuity of 𝝕 ⋟ 𝜺
3
by choosing

𝜺
3
depending only on 3 not element 9 .

Lemma 3.7 (BDM Space). For each 3 ϱ .
𝜀ε1(∲2), choose a normal vector 𝜺3 . For the shape function space P8

(9 ;R𝜀), the following DoFs

⨍
3

𝝕 ⋟ 𝜺
3
𝐼 d𝜚, 𝐼 ϱ P

8
(3 ),3 ϱ .

𝜀ε1(∲2), (15a)

⨍
9

𝝕 ⋟ 𝝋 d𝐷, 𝝋 ϱ B
8
(div, 9 ), 9 ϱ ∲

2
, (15b)

define an 𝜔(div)-conforming space

ℏBDM = {𝝕
2
ϱ 𝜔(div,⊲) ϑ 𝝕

2
⟩

9
ϱ P

8
(9 ;R𝜀), ϖ 9 ϱ ∲

2
}.

Proof. On each element 9 , DoFs (15) will determine a function in P
8
(9 ;R𝜀) by Lemma 3.6. DoF (15a) will determine the trace

𝝕 ⋟ 𝜺
3
on 3 independent of the element containing 3 , and thus the function is 𝜔(div,⊲)-conforming. ⋠
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We have the geometric decomposition of the global BDM element space

ℏBDM =63ϱ.𝜀ε1(∲2)6
𝜀ε1
⋞=065ϱ.⋞ (3 )B8

⋝5 (3 ,⊲)669ϱ∲2B8
(div, 9 ),

and

dimℏBDM = ⟩.
𝜀ε1(∲2)⟩

⟪

𝜀 + 8 ε 1
8

⟫

+ ⟩.
𝜀
(∲

2
)⟩

𝜀
⌉

⋞=1

⟪

𝜀 + 1
⋞ + 1

⟫

⋞
⟪

8 ε 1
⋞

⟫

.

Here

B
8
⋝5 (3 ,⊲) ϑ={𝝕

2
ϱ 𝜔(div,⊲) ϑ 𝝕

2
⟩

9
ϱ B

8
⋝5 for 9 ϱ ∲

2
,3 ⋆ 9 , 𝝕

2
⟩

9 ∓ = 0 for 9 ∓ ϱ ∲
2
,3 𝐺 9

∓}.

3.2.3. Stenberg’s type element
We can construct an 𝜔(div)-conforming element with more continuity on the normal plane of lower dimensional sub-simplices

by choosing a global basis of ⋝5 .
In the 4-𝜀 decomposition, if a basis vector 𝝑

5

ℶ
or 𝜺

5

ℶ
depends only on 5 not on element 9 containing 5 , we call it global and

otherwise 𝝑
5

ℶ
(9 ) or 𝜺5

ℶ
(9 ) is local and the corresponding DoFs are different for different 9 containing 5 . For a global basis vector,

the corresponding DoF (10a) or (10b) only depends on 5 and thus imposes continuity in that direction. In the extreme case, if all
4-𝜀 basis vectors are global, we obtain the Lagrange element.

The following is a generalization of Stenberg element by imposing more continuity on the normal plane for sub-simplices with
dimension from 0 to 𝐿 for some ε1 ∱ 𝐿 ∱ 𝜀 ε 2. When 𝐿 = 0, it is the original Stenberg’s element [35], i.e., only continuous at
vertices. When 𝐿 = 𝜀ε2, it is Christiansen–Hu–Hu element constructed in [22]. When 𝐿 = ε1, no DoF (16a) exists and thus reduces
to the BDM element.

Lemma 3.8 (Stenberg Type Element). Let ε1 ∱ 𝐿 ∱ 𝜀ε2. For each 5 ϱ .⋞(∲2) with ⋞ ∱ 𝐿, we choose 𝜀ε⋞ normal vectors {𝜺51 ,… ,𝜺
5

𝜀ε⋞}.
Then the DoFs

⨍
5

𝝕 ⋟ 𝜺5
ℶ
𝐼 d𝜚, 𝐼 ϱ P

8ε(⋞+1)(5 ), 5 ϱ .⋞(∲2), ℶ = 1,… , 𝜀 ε ⋞, ⋞ = 0,… ,𝐿, (16a)

⨍
5

(𝝕 ⋟ 𝜺
3
)⟩
3
𝐼 d𝜚, 𝐼 ϱ P

8ε(⋞+1)(5 ),3 ϱ .
𝜀ε1(∲2), 5 ϱ .⋞(3 ),⋞ = 𝐿 + 1,… , 𝜀 ε 1, (16b)

⨍
9

𝝕 ⋟ 𝝋 d𝐷, 𝝋 ϱ B
8
(div, 9 ), 9 ϱ ∲

2
, (16c)

will determine a space ℏ 8

Stenberg 0 𝜔(div,⊲).

Proof. For 9 ϱ ∲
2
and 5 ϱ .⋞(9 ), both {𝜺51 ,… ,𝜺

5

𝜀ε⋞} and {𝜺
3
,3 ϱ .

𝜀ε1(∲ ), 5 0 3 } are bases of the normal plane ⋝5 . Then the
number of DoFs (16) restricted to 9 equals to the number of DoFs (13). DoF (16a) determines DoF (15a) for ⋞ = 0,… ,𝐿. Thus we
conclude the result from Lemma 3.7. ⋠

We have the geometric decomposition of the global Stenberg element space

ℏ
8

Stenberg =6
𝐿

⋞=065ϱ.⋞ (∲2)B8
⋝5 (⊲)663ϱ.𝜀ε1(∲2)6

𝜀ε1
⋞=𝐿+165ϱ.⋞ (3 )B8

⋝5 (3 ,⊲)669ϱ∲2B8
(div, 9 ),

and

dimℏ
8

Stenberg =
𝐿
⌉

⋞=0
⟩.⋞(∲2)⟩(𝜀 ε ⋞)

⟪

8 ε 1
⋞

⟫

+ ⟩.
𝜀ε1(∲2)⟩

𝜀ε1
⌉

⋞=𝐿+1

⟪

𝜀

⋞ + 1

⟫⟪

8 ε 1
⋞

⟫

+ ⟩.
𝜀
(∲

2
)⟩

𝜀
⌉

⋞=1

⟪

𝜀 + 1
⋞ + 1

⟫⟪

8 ε 1
⋞

⟫⟪

⋞
1

⟫

.

Here

B
8
⋝5 (⊲) ϑ={𝝕

2
ϱ 𝜔(div,⊲) ϑ 𝝕

2
⟩

9
ϱ B

8
⋝5 for 9 ϱ ∲

2
, 5 ⋆ 9 , 𝝕

2
⟩

9 ∓ = 0 for 9 ∓ ϱ ∲
2
, 5 𝐺 9

∓}.

Clearly ℏ
8

Stenberg ⋆ ℏBDM, and dimℏ
8

Stenberg < dimℏBDM for 0 ∱ 𝐿 ∱ 𝜀 ε 2.
We introduce an 𝜀-dimensional smoothness vector 𝝏 = (80, 81,… , 8

𝜀ε1)⋣ ϱ R
𝜀 to characterize the smoothness of the finite element

space at sub-simplices of dimension ⋞ = 0, 1,… , 𝜀 ε 1. For the space ℏ
8

Stenberg defined by DoFs (16), the smoothness vector is given
by

𝝏 =
⌋

0,ε 1
𝜀 ε 1 ,… ,ε 𝐿

𝜀 ε 1 ,ε1,… ,ε1
⌈⋣
.

For an ⋞-dimensional face 5 ϱ .⋞(∲2), a smoothness parameter of ε ⋞
𝜀ε1 means the vector is discontinuous only on the ⋞-dimensional

tangential space and continuous on the normal plane ⨎ 5 . The value ε1 indicates that the DoF is redistributed to faces, and the
vector is discontinuous on the tangential space of (𝜀 ε 1)-dimensional faces. The same smoothness vector will determine the same
global finite element space, although DoFs may be slightly different; see the modification of DoFs in Corollary 3.11.

Here are the smoothness vectors for the examples in Section 3.1: Nédélec element/BDM element: 𝝏 = 𝛆𝛝 with 𝐿 = ε1, Stenberg
element: 𝝏 = (0,ε1,ε1)⋣ with 𝐿 = 0, and CHH element: 𝝏 = (0,ε1∂2,ε1)⋣ with 𝐿 = 1. These vectors give the smoothness properties
of the respective finite element spaces at vertices, edges, and faces.

Results�in�Applied�Mathematics�23��������100494�

10�



L. Chen and X. Huang

3.3. Discrete inf-sup condition

In the unisolvence of vector Lagrange elements, cf. the proof of Lemma 3.4, any basis of R𝜀 at 5 is allowed. The 4-𝜀 basis is used
for two purposes: 1. the 𝜔(div)-conformity; 2. the discrete div stability.

If the 𝜔(div)-conformity is the only concern, we can simply choose the Lagrange element. Another and more important
consideration is from the div stability. At the continuous level, we have the div stability, i.e., div ϑ 𝜔(div,⊲)  1

2(⊲) is surjective,
which has a continuous right inverse. A regular right inverse in 𝜔

1(⊲) also exists [36].
By the Euler’s formula for homogeneous degree polynomials H

8ε1(9 ), i.e. div(𝜵𝜑) = (8 ε 1 + 𝜀)𝜑 for any 𝜑 ϱ H
8ε1(9 ), clearly we

have divP
8
(9 ;R𝜀) = P

8ε1(9 ). Hence the discrete div stability in one element always holds. We discuss the global version. Let

ℏ
2
ϑ={𝝕

2
ϱ 𝜔(div,⊲) ϑ 𝝕

2
⟩

9
ϱ P

8
(9 ;R𝜀) for each 9 ϱ ∲

2
},

𝑄
2
ϑ={𝜑

2
ϱ 1

2(⊲) ϑ 𝜑
2
⟩

9
ϱ P

8ε1(9 ) for each 9 ϱ ∲
2
}. (17)

The discrete div stability refers to divℏ
2
= 𝑄

2
and the operator div has a continuous right inverse.

We will use the 1
2-inner product (⋟, ⋟)

9
and define the orthogonal complement of a subspace ℏ 0 1

2(9 ) as ℏ ⟥, i.e.,

ℏ
⟥ = {𝐻 ϱ 1

2(9 ) ϑ (𝐻, ℵ)
9
= 0 ϖ ℵ ϱ ℏ }.

We first give the following characterization of the range of the div operator on the bubble polynomial space.

Lemma 3.9 (Lemma 3.6 in [28]). It holds
divB

8
(div, 9 ) = P

8ε1(9 ) ς R
⟥
, 8 ∳ 0.

Proof. When 8 = 0, 1, both sides are zero. Therefore we focus on 8 ∳ 2.
The inclusion div(B

8
(div, 9 )) ⋆ (P

8ε1(9 ) ς R
⟥) is proved through integration by parts

(div 𝝕, 𝐼)
9
= ε(𝝕, grad 𝐼)

9
= 0, 𝐼 ϱ ker(grad ) = R.

If div(B
8
(div, 9 )) ⨋ P

8ε1(9 ) ςR
⟥, there exists a 𝐼 ϱ P

8ε1(9 ) ςR
⟥ and 𝐼 ⟥ div(B

8
(div, 9 )), which is equivalent to grad 𝐼 ⟥ B

8
(div, 9 ).

Expand the vector grad 𝐼 in the basis {𝜺
ℶ
, ℶ = 1,… , 𝜀} as grad 𝐼 = ⟨𝜀

ℶ=1 𝜑ℶ𝜺ℶ with 𝜑
ℶ
ϱ P

8ε2(9 ). Then set 𝝕𝐼 = ⟨𝜀

ℶ=1 ⟩(𝐶ℶ⟩𝜑ℶ𝐶0𝐶ℶ𝝑ℶ,0 ϱ
B
8
(div, 9 ), where 𝝑

ℶ,0 ϑ= ⥳0 ε ⥳
ℶ
. We have

(grad 𝐼, 𝝕
𝐼
)
9
=

𝜀
⌉

ℶ=1 ⨍9 𝜑
2
ℶ
𝐶0𝐶ℶ d𝐷 = 0,

which implies 𝜑
ℶ
= 0 for ℶ = 1,… , 𝜀, i.e., grad 𝐼 = 0 and 𝐼 = 0 as 𝐼 ϱ P

8ε1(9 ) ς R
⟥. ⋠

Next we verify the discrete div stability.

Proposition 3.10. Let 8 ∳ 1 and ℏBDM be the BDM space defined in Lemma 3.7 and 𝑄
2
defined by (17). It holds the discrete inf-sup

condition

[𝜑
2
[0 𝑅 sup

𝝕2ϱℏBDM

(div 𝝕
2
, 𝜑

2
)

[𝝕
2
[0 + [ div 𝝕

2
[0

ϖ 𝜑
2
ϱ 𝑄

2
. (18)

Proof. By Theorem 1.1 in [36], there exists 𝝕 ϱ 𝜔
1(⊲;R𝜀) such that

div 𝝕 = 𝜑
2
, [𝝕[1 𝑅 [𝜑

2
[0. (19)

Let 𝑆𝝕
2
ϱ ℏBDM satisfy

⨍
3

𝑆𝝕
2
⋟ 𝜺

3
d𝜚 = ⨍

3

𝝕 ⋟ 𝜺
3
d𝜚, 3 ϱ .

𝜀ε1(∲2),
and the rest DoFs vanish. By the scaling argument,

[ 𝑆𝝕
2
[0 + [ div 𝑆𝝕

2
[0 𝑅 [𝝕[1 𝑅 [𝜑

2
[0. (20)

Clearly we have div( 𝑆𝝕
2
ε 𝝕)⟩

9
ϱ P

8ε1(9 ) ςR
⟥ for each 9 ϱ ∲

2
. By Lemma 3.9, there exists ℵ

2
ϱ 1

2(⊲;R𝜀) such that ℵ
2
⟩

9
ϱ B

8
(div, 9 )

for each 9 ϱ ∲
2
, and

div ℵ
2
= div(𝝕 ε 𝑆𝝕

2
), [ℵ

2
[0,9 𝑅 2

9
[ div( 𝑆𝝕

2
ε 𝝕)[0,9 . (21)

Take 𝝕
2
= 𝑆𝝕

2
+ ℵ

2
ϱ ℏBDM. By (19) and (21), it holds

div 𝝕
2
= div 𝑆𝝕

2
+ div ℵ

2
= div 𝝕 = 𝜑

2
. (22)

It follows from (20) and (21) that

[𝝕
2
[0 + [ div 𝝕

2
[0 = [𝝕

2
[0 + [𝜑

2
[0 ∱ [ 𝑆𝝕

2
[0 + [ℵ

2
[0 + [𝜑

2
[0 𝑅 [ 𝑆𝝕

2
[0 + 2[ div 𝑆𝝕

2
[0 + [𝜑

2
[0 𝑅 [𝜑

2
[0. (23)

Combining (22)–(23) yields (18). ⋠
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For the Stenberg-type element, the continuity at normal planes introduces some constraint and makes the discrete inf-sup
condition harder. As all bubble functions are treated locally, divB

8
(div, 9 ) = P

8ε1(9 )ςR⟥ still holds. We only need to show ∇
9ϱ∲2P0(9 )

is in the range of divℏ
2
, which requires the face average ⨌

3
𝝕 ⋟ 𝜺

3
d𝜚 in DoF.

We propose the following modification to have a better discrete inf-sup condition. Denote by

B
8,𝐿+1(3 ) ϑ=

⦃

6
𝜀ε1
⋞=𝐿+1 65ϱ.⋞ (3 ) ,5P8ε(⋞+1)(5 )

⦄

, ε1 ∱ 𝐿 ∱ 𝜀 ε 2.

Corollary 3.11. With the same setting in Lemma 3.8 and further assume 8 ∳ 𝐿 + 2 for ε1 ∱ 𝐿 ∱ 𝜀 ε 2. Replacing DoF (16b) by

⨍
3

𝝕 ⋟ 𝜺
3
𝜑 d𝜚, 3 ϱ .

𝜀ε1(∲2), 𝜑 ϱ (B
8,𝐿+1(3 ) ς P

⟥
0 (3 ))6 P0(3 ), (24)

will define the same finite element space.

Proof. When ε1 ∱ 𝐿 ∱ 𝜀ε 2 and 8 ∳ 𝐿+ 2, dimB
8,𝐿+1(3 ) ∳ ⟩.

𝐿+1(3 )⟩ ∳ dimP0(3 ). Therefore the number of DoFs remains the same
as DoF (16b).

Vanishing DoFs (16a) will imply 𝝕 ⋟ 𝜺
3
⟩

3
ϱ B

8,𝐿+1(3 ), which can be determined by (24). So the unisolvence follows.
As the change will not affect the continuity, it will define the same finite element space. ⋠

Now ⨌
3
𝝕 ⋟ 𝜺

3
d𝜚 is in DoF (24). The proof of the following result is identical to that of Proposition 3.10.

Proposition 3.12. Let ε1 ∱ 𝐿 ∱ 𝜀ε2 and 8 ∳ 𝐿+2. Let ℏ 8

𝐿
be the 𝜔(div)-conforming finite element defined in Lemma 3.8. The following

discrete inf-sup condition holds with a constant independent of 2

[𝜑
2
[0 𝑅 sup

𝝕2ϱℏ 8
𝐿

(div 𝝕
2
, 𝜑

2
)

[𝝕
2
[0 + [ div 𝝕

2
[0

ϖ 𝜑
2
ϱ 𝑄

2
. (25)

4. Geometric decompositions of matrix face elements

In this section, we generalize the geometric decomposition of 𝜔(div)-conforming vector finite elements to two 𝜔(div)-conforming
matrix finite elements: the traceless matrix T and the symmetric matrix S.

4.1. Traceless matrix elements

We consider the 𝜔(div,⊲;T)-conforming finite element spaces, where T ϱ R
𝜀φ𝜀 is the set of square matrices with vanishing trace,

i.e., the sum of the diagonal is zero.
We start from the tensor product of the Lagrange element and T:

P
8
(9 ;T) =6𝜀

⋞=065ϱ.⋞ (9 )
⦃

,
5
P
8ε(⋞+1)(5 )𝜛 T

⦄

.

That is each component of the matrix function is a Lagrange element of degree 8 and thus is continuous. To be 𝜔(div)-conforming,
however, normal continuity is sufficient.

To impose the normal continuity of a traceless matrix function, the key is a 4-𝜀 decomposition at each sub-simplex. Here the
4-𝜀 decomposition is with respect to the second component in the tensor product form 𝝔 𝜛 𝝕 of representing a matrix. Given a
sub-simplex 5 ϱ .⋞(9 ), choose a 4-𝜀 basis {𝝑5

ℶ
,𝜺

5

≨
}≨=1,…,𝜀ε⋞
ℶ=1,…,⋞ and decompose R

𝜀 = ⋜5
6

⟥ ⋝5 . All basis vectors are normalized but
may not be mutually orthogonal. By the tensor product the 𝜀 φ 𝜀 matrix space M has the following decomposition

M = (R𝜀
𝜛⋜5 )6 (R𝜀

𝜛⋝5 ). (26)

For a matrix 𝝎 ϱ M, trdiv
3

(𝝎) = 𝝎𝜺
3
and thus trdiv

3
(R𝜀

𝜛 ⋜5 ) = 0. The normal component R𝜀
𝜛 ⋝5 will contribute to the normal

trace.
We then modify (26) for M to impose the traceless constraint while not changing trdiv. When computing the trace of a matrix,

we use trace(𝝔𝜛 𝝕) = 𝝕 ⋟ 𝝔. We pick up the element 𝝑51 𝜛 𝝑
5

1 ϱ R
𝜀
𝜛⋜5 and use it to modify the basis in (R𝜀

𝜛⋜5 )6 (R𝜀
𝜛⋝5 ) to

get the following 4-𝜀 decomposition on 5 ϱ .⋞(9 ) for ⋞ ∳ 1:

⋜5 (T) ϑ= span
{

𝜺
5

≨
𝜛 𝝑

5

ℶ
, 1 ∱ ℶ ∱ ⋞, 1 ∱ ≨ ∱ 𝜀 ε ⋞

}

6 span
{

𝝑
5

ℶ
𝜛 𝝑

5

≨
ε (𝝑5

ℶ
⋟ 𝝑5

≨
)𝝑51 𝜛 𝝑

5

1 , 1 ∱ ℶ, ≨ ∱ ⋞
}

,

⋝5 (T) ϑ= span
{

𝝑
5

ℶ
𝜛 𝜺

5

≨
, 1 ∱ ℶ ∱ ⋞, 1 ∱ ≨ ∱ 𝜀 ε ⋞

}

6 span
{

𝜺
5

ℶ
𝜛 𝜺

5

≨
ε (𝜺5

ℶ
⋟ 𝜺5

≨
)𝝑51 𝜛 𝝑

5

1 , 1 ∱ ℶ, ≨ ∱ 𝜀 ε ⋞
}

.

By counting the dimensions, it is easy to show the direct decomposition

T = ⋜5 (T)6⋝5 (T), 5 ϱ .⋞(9 ),⋞ = 1,… , 𝜀.

For ⋞ = 0, i.e., at vertex ⥳ ϱ .0(9 ), we understand ⋜⥳(T) = {0} and ⋝⥳(T) = T. For ⋞ = 𝜀, ⋜9 (T) = T and ⋝9 (T) = {0}. Coupled
with the bubble polynomials, we define

B
8
⋜5 (T) ϑ= ,

5
P
8ε(⋞+1)(5 )𝜛⋜5 (T), B

8
⋝5 (T) ϑ= ,

5
P
8ε(⋞+1)(5 )𝜛⋝5 (T).
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Lemma 4.1. The shape function space P
8
(9 ;T) has a geometric decomposition

P
8
(9 ;T) =6𝜀

⋞=065ϱ.⋞ (9 )
⦃

B
8
⋜5 (T)6 B

8
⋝5 (T)

⦄

.

A function 𝝎 ϱ P
8
(9 ;T) is uniquely determined by the DoFs

⨍
5

𝝎 ϑ ℶ d𝜚, ℶ ϱ P
8ε(⋞+1)(5 )𝜛⋜5 (T), 5 ϱ .⋞(9 ),⋞ = 1,… , 𝜀, (27a)

⨍
5

𝝎 ϑ ℶ d𝜚, ℶ ϱ P
8ε(⋞+1)(5 )𝜛⋝5 (T), 5 ϱ .⋞(9 ),⋞ = 0,… , 𝜀 ε 1. (27b)

Proof. Since T = ⋜5 (T)6⋝5 (T), DoFs (27a)–(27b) are equivalent to

⨍
5

𝝎 ϑ ℶ d𝜚, ℶ ϱ P
8ε(⋞+1)(5 )𝜛 T, 5 ϱ .⋞(9 ),⋞ = 0,… , 𝜀.

Then the unisolvence follows from the unisolvence of the Lagrange element. ⋠

Define the bubble polynomial space

B
8
(div, 9 ;T) ϑ= P

8
(9 ;T) ς ker(trdiv).

Follow the same proof of Lemma 3.5, we have the characterization of the bubble space.

Lemma 4.2. For 8 ∳ 2, it holds that

B
8
(div, 9 ;T) =6𝜀

⋞=165ϱ.⋞ (9 )B8
⋜5 (T),

and

trdiv ϑ6𝜀ε1
⋞=065ϱ.⋞ (9 )B8

⋝5 (T)  trdiv P
8
(9 ;T)

is a bijection.
Similar to the generalized Stenberg element, we can redistribute some normal DoFs onto the (𝜀ε 1)-dimensional faces to obtain

the following 𝜔(div;T) element.

Theorem 4.3 (𝜔(div;T)-Conforming Finite Elements). Let 0 ∱ 𝐿 ∱ 𝜀ε2. For each 5 ϱ .⋞(∲2) with ⋞ ∱ 𝐿, we choose 𝜀ε⋞ normal vectors
{𝜺51 ,… ,𝜺

5

𝜀ε⋞}. For each 3 ϱ .
𝜀ε1(∲2), choose a normal vector 𝜺3 . Then the DoFs

𝝎(⥳), ⥳ ϱ .0(∲2),𝝎 ϱ T, (28a)

⨍
5

(𝝎𝜺
5

ℶ
) ⋟ ℶ d𝜚, 5 ϱ .⋞(∲2), ℶ ϱ P

8ε(⋞+1)(5 ;R𝜀), ℶ = 1,… , 𝜀 ε ⋞, ⋞ = 1,… ,𝐿, (28b)

⨍
5

(𝝎𝜺
3
)⟩
3
⋟ ℶ d𝜚, 3 ϱ .

𝜀ε1(∲2), 5 ϱ .⋞(3 ), ℶ ϱ P
8ε(⋞+1)(5 ;R𝜀), ⋞ = 𝐿 + 1,… , 𝜀 ε 1, (28c)

⨍
9

𝝎 ϑ ℶ d𝐷, 9 ϱ ∲
2
, ℶ ϱ B

8
(div, 9 ;T), (28d)

will determine a space ℏ 8(T) 0 𝜔(div,⊲;T), where

ℏ
8(T) ϑ= {𝝎 ϱ 1

2(⊲;T) ϑ 𝝎⟩

9
ϱ P

8
(9 ;T) ϖ 9 ϱ ∲

2
,DoFs (28a)–(28b) are single-valued across 5 ϱ .⋞(∲2) for ⋞ = 0,… ,𝐿,

DoF (28c) is single-valued across 3 ϱ .
𝜀ε1(∲2)}.

Proof. For 9 ϱ ∲
2
and 5 ϱ .⋞(9 ), both {𝜺51 ,… ,𝜺

5

𝜀ε⋞} and {𝜺3 ,3 ϱ .
𝜀ε1(∲ ), 5 0 3} are basis of the normal plane ⋝5 . Then

DoFs (28) restricted to 9 are equivalent to DoFs (27), thus uniquely determine P
8
(9 ;T).

For 3 ϱ .
𝜀ε1(∲2), DoFs (28a)–(28b) restricted to 3 will determine

⨍
5

(𝝎𝜺
3
)⟩
3
⋟ ℶ d𝜚, 5 ϱ .⋞(3 ), ℶ ϱ P

8ε(⋞+1)(5 ;R𝜀), ⋞ = 0,… ,𝐿.

Then by the unisolvence of Lagrange element in Theorem 2.5, (𝝎𝜺
3
)⟩
3
is determined by DoFs (28a)–(28c) restricted to 3 . Therefore

ℏ
8(T) 0 𝜔(div,⊲;T). ⋠

To have a better discrete div stability, we modify the face DoFs.

Corollary 4.4. With the same setting in Theorem 4.3 and further assume 8 ∳ 𝐿 + 2 for 0 ∱ 𝐿 ∱ 𝜀 ε 3, and 8 ∳ 𝜀 + 1 for 𝐿 = 𝜀 ε 2.
Replacing DoF (28c) by

⨍
3

(𝝎𝜺
3
) ⋟ ℶ d𝜚, 3 ϱ .

𝜀ε1(∲2), ℶ ϱ
⦃

(B
8,𝐿+1(3 ) ς P

⟥
1 (3 ))6 P1(3 )

⦄

𝜛 R
𝜀
, (29)

will define the same finite element space.
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Proof. When 𝐿 = 𝜀 ε 2, we require 8 ∳ 𝜀 + 1 so that 8 ε (𝐿 + 1 + 1) ∳ 1 and dimB
8,𝐿+1(3 ) ∳ dimP1(3 ). When 0 ∱ 𝐿 ∱ 𝜀 ε 3 and

8 ∳ 𝐿 + 2, dimB
8,𝐿+1(3 ) ∳ ⟩.

𝐿+1(3 )⟩ ∳ dimP1(3 ). Therefore the number of DoFs remains the same as DoF (28c).
Vanishing DoFs (28a)–(28b) will imply 𝝎𝜺

3
⟩

3
ϱ B

8,𝐿+1(3 )𝜛 R
𝜀, which can be determined by (29). So the unisolvence follows.

As the change will not affect the continuity, it will define the same finite element space. ⋠

DoF (29) is more friendly for verifying the discrete inf-sup condition and (28c) is better for the uni-solvence and implementation.
When 𝐿 = 0, it is the generalization of Stenberg element for vector functions to traceless tensor functions. Almost all DoFs are

redistributed to face 3 except at the vertex, where the traceless constraint is imposed. The case 𝜀 = 3, 8 ∳ 2 is the 𝜔(div;T) element
constructed in [11].

Remark 4.5. Comparing with the vector face element, cf. Lemma 3.8, 𝐿 starts from 0 not ε1. Namely the 𝜔(div;T)-element should
be continuous at vertices. We argue that the continuity at vertices is also necessary. Take a vertex in .0(9 ), for example ⥳0. Then
𝝎𝜺

3ℶ
(⥳0) is determined by the vector 𝝎𝜺

3ℶ
⟩

3ℶ
ϱ R

𝜀 for ℶ = 1,… , 𝜀. If it is continuous on each face but not on vertices, the number of
elements in 𝝎𝜺

3ℶ
(⥳0) is 𝜀 for each face. Running ℶ from 1 to 𝜀, 𝝎(⥳0) is determined by 𝜀2 conditions, which is more than dimT = 𝜀

2ε1.

4.2. Discrete div stability for traceless tensors

We first show the div stability of the bubble space B
8
(div, 9 ;T). Denote by 𝝑

ℶ,≨
the edge vector from ⥳

ℶ
to ⥳

≨
. By computing the

constant directional derivative 𝝑
ℶ,≨

⋟ (𝐶⋞ by values on the two vertices, we have

𝝑
ℶ,≨

⋟ (𝐶⋞ = 𝐵
≨⋞ ε 𝐵

ℶ⋞ =
]

⟦

⟧

⟦

⌊

1, if ⋞ = ≨,

ε1, if ⋞ = ℶ,

0, if ⋞ ⨋ ℶ, ≨.

Lemma 4.6. The set of traceless tensors {(𝐶
ℶ
𝜛 𝝑

ℶ+1,≨}
ℶ=0,…,𝜀

≨ϱ{0,…,𝜀}±{ℶ,ℶ+1} is a basis of the traceless tensor space T. Its dual basis is
{𝝑

≨,ℶ
𝜛 (𝐶

≨
+ 1

𝜀
𝑇}ℶ=0,…,𝜀

≨ϱ{0,…,𝜀}±{ℶ,ℶ+1}. All indices are modulo 𝜀.

Proof. It suffices to prove
(𝝑⋞,𝜗 𝜛 (𝐶⋞) ϑ ((𝐶

ℶ
𝜛 𝝑

ℶ+1,≨ ) = 𝐵
ℶ𝜗
𝐵
≨⋞

for 0 ∱ ℶ, 𝜗 ∱ 𝜀, ≨ ϱ {0,… , 𝜀}±{ℶ, ℶ + 1}, and ⋞ ϱ {0,… , 𝜀}±{𝜗, 𝜗 + 1}.
When ℶ = 𝜗, by ⋞ ⨋ ℶ, ℶ + 1, it follows

(𝝑⋞,𝜗 𝜛 (𝐶⋞) ϑ ((𝐶
ℶ
𝜛 𝝑

ℶ+1,≨ ) = (𝐶⋞ ⋟ 𝝑
ℶ+1,≨ = 𝐵

≨⋞ .

When ℶ = ⋞, by ℶ ⨋ ≨, it follows

(𝝑⋞,𝜗 𝜛 (𝐶⋞) ϑ ((𝐶
ℶ
𝜛 𝝑

ℶ+1,≨ ) = 0.

When ℶ ⨋ 𝜗,⋞, clearly (𝝑⋞,𝜗 𝜛 (𝐶⋞) ϑ ((𝐶
ℶ
𝜛 𝝑

ℶ+1,≨ ) = 0. ⋠

Let RT = {ℸ𝜵+ℵ ϑ ℸ ϱ R, ℵ ϱ R
𝜀}. For a matrix 𝝎, define dev𝝎 = 𝝎ε 1

𝜀
trace(𝝎)𝑇 as the projection of 𝝎 to T. It is straight forward

to verify ker(dev grad ) = RT. Again let RT⟥ be the 1
2-orthogonal complement in 1

2(9 ;R𝜀).

Lemma 4.7. For each 9 ϱ ∲
2
, it holds

divB
8
(div, 9 ;T) = P

8ε1(9 ;R𝜀) ς RT⟥
. (30)

Proof. It follows from the integration by parts that

divB
8
(div, 9 ;T) ⋆ (P

8ε1(9 ;R𝜀) ς RT⟥).

We claim the equality holds. If divB
8
(div, 9 ;T) 0 (P

8ε1(9 ;R𝜀) ς RT⟥), then there exists 𝝔 ϱ P
8ε1(9 ;R𝜀) ς RT⟥ satisfying the

orthogonality condition (𝝔, div𝝎)
9
= 0 for any 𝝎 ϱ B

8
(div, 9 ;T). Equivalently

(dev grad 𝝔,𝝎)
9
= 0 ϖ 𝝎 ϱ B

8
(div, 9 ;T).

By expressing dev grad 𝝔 = ⟨𝜀

ℶ=0
⟨

≨ϱ{0,…,𝜀}±{ℶ,ℶ+1} 𝜑ℶ≨ (𝝑≨,ℶ 𝜛 (𝐶
≨
+ 1

𝜀
𝑇) with 𝜑

ℶ≨
ϱ P

8ε2(9 ), we choose

𝝎 =
𝜀
⌉

ℶ=0

⌉

≨ϱ{0,…,𝜀}±{ℶ,ℶ+1}
𝐶
ℶ+1𝐶≨𝜑ℶ≨(𝐶ℶ 𝜛 𝝑

ℶ+1,≨ ϱ B
8
(div, 9 ;T).

Then we have
𝜀
⌉

ℶ=0

⌉

≨ϱ{0,…,𝜀}±{ℶ,ℶ+1}
(𝐶

ℶ+1𝐶≨𝜑ℶ≨ , 𝜑ℶ≨ )9 = 0.

Therefore 𝜑
ℶ≨
= 0 for all ℶ and ≨. Thus 𝝔 = 0. ⋠
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Fig. 4. Several 4-𝜀 decompositions for S in R3. Blocks with the same symbol (circle, square, or diamond) are in the same constraint sequence and the white
block is used as the pair index. Color of the block represents: Green: free rows and free blocks; Blue: all free indices not in free rows; Red: bubble functions.
Blue or green blocks are free indices in ⋝5 (S). All white blocks are pair indices and the corresponding coefficients are determined by the free variables through
the constraints. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We mention that characterization (30) in three dimensions is firstly proved in [12].

Proposition 4.8 (Discrete Inf-Sup Condition for 𝜔(div;T)-Conforming Finite Elements). Let 0 ∱ 𝐿 ∱ 𝜀ε2. Let 8 ∳ 𝐿+2 for 0 ∱ 𝐿 ∱ 𝜀ε3,
and 8 ∳ 𝜀 + 1 for 𝐿 = 𝜀 ε 2. Let ℏ 8(T) be defined in Theorem 4.3. It holds the discrete inf-sup condition

[𝝕
2
[0 𝑅 sup

𝝎2ϱℏ 8(T)

(div𝝎
2
, 𝝕

2
)

[𝝎
2
[0 + [ div𝝎

2
[0

ϖ 𝝕
2
ϱ 𝑄

2
, (31)

where 𝑄
2
ϑ= {𝝕

2
ϱ 1

2(⊲;R𝜀) ϑ 𝝕
2
⟩

9
ϱ P

8ε1(9 ;R𝜀) for each 9 ϱ ∲
2
}.

Proof. First there exists 𝝎 ϱ 𝜔
1(⊲;T) such that

div𝝎 = 𝝕
2
, [𝝎[1 𝑅 [𝝕

2
[0. (32)

Thanks to DoFs (28) and (29), we let 𝑈𝝎
2
ϱ ℏ

8(T) satisfy

⨍
3

(𝑈𝝎
2
𝜺
3
) ⋟ ℶ d𝜚 = ⨍

3

(𝝎𝜺
3
) ⋟ ℶ d𝜚, ℶ ϱ P1(3 ;R𝜀),3 ϱ .

𝜀ε1(∲2),
and other DoFs vanish. By the scaling argument,

[

𝑈𝝎
2
[0 + [ div 𝑈𝝎

2
[0 𝑅 [𝝎[1 𝑅 [𝝕

2
[0. (33)

Then through integration by parts we have div(𝑈𝝎
2
ε𝝎)⟩

9
ϱ P

8ε1(9 ;R𝜀)ςRT⟥ for each 9 ϱ ∲
2
. By Lemma 4.7, there exists ℵ

2
ϱ 1

2(⊲;T)
such that ℵ

2
⟩

9
ϱ B

8
(div, 9 ;T) for each 9 ϱ ∲

2
, and

div ℵ
2
= div(𝝎 ε 𝑈𝝎

2
), [ℵ

2
[0,9 𝑅 2

9
[ div(𝑈𝝎

2
ε𝝎)[0,9 . (34)

Take 𝝎
2
= 𝑈𝝎

2
+ ℵ

2
ϱ ℏ

8(T). By (32) and (34), it holds

div𝝎
2
= div 𝑈𝝎

2
+ div ℵ

2
= div𝝎 = 𝝕

2
. (35)

It follows from (33) and (34) that

[𝝎
2
[0 + [ div𝝎

2
[0 = [𝝎

2
[0 + [𝝕

2
[0 ∱ [

𝑈𝝎
2
[0 + [ℵ

2
[0 + [𝝕

2
[0 𝑅 [

𝑈𝝎
2
[0 + 2[ div 𝑈𝝎

2
[0 + [𝝕

2
[0 𝑅 [𝝕

2
[0. (36)

Combining (35)–(36) yields (31). ⋠

4.3. Symmetric matrix elements

We start from the tensor product of the Lagrange element and the symmetric matrix S:

P
8
(9 ; S) =6𝜀

⋞=065ϱ.⋞ (9 )
⦃

,
5
P
8ε(⋞+1)(5 )𝜛 S

⦄

. (37)

The construction process is similar to the traceless case in which 4-𝜀 decompositions of S at sub-simplices are the key. Additional
complication arises as the 𝜀(𝜀 ε 1)∂2 symmetry constraints are more complicated than only 1 traceless constraint.

Let {𝝕1,… , 𝝕
𝜀
} be a basis of R𝜀. Then M = {⟨𝜀

ℶ,≨=1 ℸℶ≨𝝕ℶ 𝜛 𝝕
≨
, ℸ

ℶ≨
ϱ R} is the space of 𝜀 φ 𝜀-matrices. An element 𝝎 ϱ M can be

identified with the coefficient matrix (ℸ
ℶ≨
) and will be still denoted by 𝝎. For a better explanation, we illustrate an 𝜀 φ 𝜀-matrix by

𝜀φ 𝜀 blocks; see Fig. 4 for the case 𝜀 = 3. Block (ℶ, ≨) corresponds to the basis function 𝝕
ℶ
𝜛𝝕

≨
. We will identify 𝜀(𝜀+1)∂2 blocks and

modify corresponding basis function to form a basis of S with consideration of the normal continuity.

Results�in�Applied�Mathematics�23��������100494�

15�



L. Chen and X. Huang

Given an 5 ϱ .⋞(9 ), choose a 4-𝜀 basis {𝝑5
ℶ
,𝜺

5

≨
}≨=1,…,𝜀ε⋞
ℶ=1,…,⋞ and decompose R

𝜀 = ⋜5
6 ⋝5 . All basis vectors are normalized. We

have the matrix decomposition

M = (R𝜀
𝜛⋜5 )6 (R𝜀

𝜛⋝5 ).

We modify each component to impose the symmetric constraint. For the tangential component, we simply take

⋜5 (S) ϑ= (R𝜀
𝜛⋜5 ) ς S.

Using the tensor product with the scalar bubble polynomial, we can construct

B
8
⋜5 (S) ϑ= ,

5
P
8ε(⋞+1)(5 )𝜛⋜5 (S) 0 ker(trdiv) ς P

8
(9 ; S).

We provide a specific example for 𝜀 = 3,⋞ = 2, i.e., a 4-𝜀 decomposition on a face 3 of a tetrahedron. Choose a 4-𝜀 basis

{𝝑31 , 𝝑
3

2 ,𝜺3 }. An element in R
𝜀
𝜛⋜3 has the matrix representation

❲

❳

❳

/

ω ω 0
ω ω 0
ω ω 0

\

(

(

)

, where ω represents a generic value. The symmetric

constraint implies an element in ⋜3 (S) has the form
❲

❳

❳

/

ω ω 0
ω 0

0 0 0

\

(

(

)

. The value ℸ21 is left blank since due to the symmetric constraint

it is equal to ℸ12. We call (1, 2) a free index while (2, 1) is the pair index of (1, 2).
We then move to the normal component. A naive definition of ⋝5 (S) would be (R𝜀

𝜛⋝5 )ςS. Unfortunately in general for three
subspaces of a vector space:

(𝑉 ς 𝑁)6 (𝑊 ς 𝑁) ⋆ (𝑉6 𝑊) ς 𝑁 .

And the equality may not hold. We continue the example with 𝜀 = 3,⋞ = 2. An element in R
𝜀
𝜛⋝3 has the matrix form

❲

❳

❳

/

0 0 ω
0 0 ω
0 0 ω

\

(

(

)

w.r.t the basis {𝝑31 , 𝝑
3

2 ,𝜺3 }. An element in (R𝜀
𝜛⋝3 ) ς S has the form

❲

❳

❳

/

0 0 0
0 0 0
0 0 ω

\

(

(

)

. Then

dim((R𝜀
𝜛⋜3 ) ς S) + dim((R𝜀

𝜛⋝3 ) ς S) = 3 + 1 = 4 < 6 = dimS.

The discrepancy is due to the fact that the constraints ℸ13 = ℸ31 and ℸ23 = ℸ32 have been used duplicately in both (R𝜀
𝜛⋜3 )ς S and

(R𝜀
𝜛⋝3 ) ς S. We need to make sure one constraint is used only once either in ⋜5 (S) or ⋝5 (S).
To this end, for each constraint, we set the index (≨, ℶ) with ℶ < ≨ as the pair index and call (ℶ, ≨) a free index. The pair index

value ℸ
≨ℶ
is determined by the free variable ℸ

ℶ≨
through the constraint ℸ

≨ℶ
= ℸ

ℶ≨
.

We introduce the concept: normal constraints. We call the constraint ℸ
ℶ≨
= ℸ

≨ℶ
, ℶ ⨋ ≨, a normal constraint if both (ℶ, ≨) and (≨, ℶ) are

in the normal component, i.e., ℶ, ≨ ∳ ⋞ +1 w.r.t the 4-𝜀 basis {𝝑5
ℶ
,𝜺

5

≨
}≨=1,…,𝜀ε⋞
ℶ=1,…,⋞ . For example, in Fig. 4(b), for an edge 𝐹 ϱ .1(9 ), there

are (𝜀 ε 1)(𝜀 ε 2)∂2 normal constraints. As the constraint involves two entries, no normal constraints for 3 ϱ .
𝜀ε1(9 ); see Fig. 4(c).

The normal constraints will be imposed inside the normal components.
For non-normal constraint, in the pair index (≨, ℶ), ℶ is inside the tangential component. We can use it to change the basis without

affecting the normal trace. As an example, consider the circle block in Fig. 4(b)–(c), the basis function is changing from 𝝑 𝜛 𝜺 to
sym(𝝑𝜛 𝜺) = (𝜺𝜛 𝝑 + 𝝑𝜛 𝜺)∂2 and 2 sym(𝝑𝜛 𝜺)𝜺

3
= (𝝑𝜛 𝜺)𝜺

3
. By doing this way, we ensure each constraint is used only once and

the normal trace remains unchanged.
In summary, for 5 ϱ .⋞(9 ), ⋞ = 0,… , 𝜀, define

⋜5 (S) ϑ= span
{

sym(𝝑5
ℶ
𝜛 𝝑

5

≨
), 1 ∱ ℶ ∱ ≨ ∱ ⋞

}

,

⋝5 (S) ϑ= span
{

sym(𝝑5
ℶ
𝜛 𝜺

5

≨
), 1 ∱ ℶ ∱ ⋞, 1 ∱ ≨ ∱ 𝜀 ε ⋞

}

6 span
{

sym(𝜺5
ℶ
𝜛 𝜺

5

≨
), 1 ∱ ℶ ∱ ≨ ∱ 𝜀 ε ⋞

}

.

By counting the dimensions, it is easy to show the direct decomposition

S = ⋜5 (S)6⋝5 (S).

Then tensor product with the scalar bubble function to obtain

B
8
⋜5 (S) = ,

5
P
8ε(⋞+1)(5 )𝜛⋜5 (S), B

8
⋝5 (S) = ,

5
P
8ε(⋞+1)(5 )𝜛⋝5 (S).

With the 4-𝜀 decomposition, (37) can be rewritten as

P
8
(9 ; S) =6𝜀

⋞=065ϱ.⋞ (9 )
⦃

B
8
⋜5 (S)6 B

8
⋝5 (S)

⦄

.

Define the polynomial bubble space

B
8
(div, 9 ; S) ϑ= ker(trdiv) ς P

8
(9 ; S).
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Again the tangential component B
8
⋜5 (S) will contribute to the bubble space. Namely for 8 ∳ 2, it holds that

B
8
(div, 9 ; S) =6𝜀

⋞=165ϱ.⋞ (9 )B8
⋜5 (S). (38)

Characterization of B
8
(div, 9 ; S) in (38) is new and different with the one given in [16,17].

The normal component B
8
⋝5 (S) will determine the trace of the div operator. Notice that due to the constraint, not all 𝜀2

components of the matrix are included when defining B
8
⋜5 (S) and B

8
⋝5 (S). In Fig. 4, function values in all white blocks are

determined by the corresponding free variables through the constraints.
Unlike the traceless case, not all normal DoFs can be redistributed to faces since the normal constraint should be imposed on

⋝5
𝜛⋝5 with a global normal basis {𝜺5

ℶ
}, which can be thought of as the super-smoothness induced by the constraint. For example,

for symmetric matrix 𝝎, the restriction of 𝝎 to the normal plane of 5 , which is a symmetric matrix of smaller size (𝜀ε ⋞) φ (𝜀ε ⋞),
should be continuous due to DoF (39b). The tangential-normal component can be redistributed to face 3 . Therefore, in DoFs (39),
(39c) is posed globally and (39d) is facewisely.

Theorem 4.9 (𝜔(div; S)-Conforming Finite Elements). Let 0 ∱ 𝐿 ∱ 𝜀 ε 2. For each 5 ϱ .⋞(∲2), we choose a global 4-𝜀 basis
{𝝑51 ,… , 𝝑

5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞}. Then the DoFs

𝝎(⥳), ⥳ ϱ .0(∲2),𝝎 ϱ S, (39a)

⨍
5

((𝜺5
ℶ
)⋣𝝎𝜺

5

≨
) 𝜑 d𝜚, 5 ϱ .⋞(∲2), 𝜑 ϱ P

8ε(⋞+1)(5 ), 1 ∱ ℶ ∱ ≨ ∱ 𝜀 ε ⋞, ⋞ = 1,… , 𝜀 ε 1, (39b)

⨍
5

((𝝑5
ℶ
)⋣𝝎𝜺

5

≨
) 𝜑 d𝜚, 5 ϱ .⋞(∲2), 𝜑 ϱ P

8ε(⋞+1)(5 ), ℶ = 1,… ,⋞, ≨ = 1,… , 𝜀 ε ⋞, ⋞ = 1,… ,𝐿, (39c)

⨍
5

((𝝑5
ℶ
)⋣𝝎𝜺

3
)⟩
3
𝜑 d𝜚, 3 ϱ .

𝜀ε1(∲2), 5 ϱ .⋞(3 ), 𝜑 ϱ P
8ε(⋞+1)(5 ), ℶ = 1,… ,⋞, ⋞ = 𝐿 + 1,… , 𝜀 ε 1, (39d)

⨍
9

𝝎 ϑ ℶ d𝐷, 9 ϱ ∲
2
, ℶ ϱ B

8
(div, 9 ; S), (39e)

will determine a space ℏ 8(S) 0 𝜔(div,⊲; S), where

ℏ
8(S) ϑ= {𝝎 ϱ 1

2(⊲; S) ϑ 𝝎⟩

9
ϱ P

8
(9 ; S) ϖ 9 ϱ ∲

2
,

DoFs (39a)–(39b) are single-valued across 5 ϱ .⋞(∲2) for ⋞ = 0,… , 𝜀 ε 1,
DoF (39c) is single-valued across 5 ϱ .⋞(∲2) for ⋞ = 1,… ,𝐿,

DoF (39d) is single-valued across 3 ϱ .
𝜀ε1(∲2)}.

Proof. For 9 ϱ ∲
2
and 5 ϱ .⋞(9 ), both {𝜺51 ,… ,𝜺

5

𝜀ε⋞} and {𝜺3 ,3 ϱ .
𝜀ε1(∲2), 5 0 3} are basis of the normal plane ⋝5 . DoFs (39a)–

(39d) restricted to 9 will determine normal component B
8
⋝5 (S) and (39e) for the tangential component B

8
⋜5 (S), thus uniquely

determine P
8
(9 ; S).

For 3 ϱ .
𝜀ε1(∲2), DoFs (39a)–(39d) restricted to 3 will determine

⨍
5

(𝝎𝜺
3
)⟩
3
⋟ ℶ d𝜚, 5 ϱ .⋞(3 ), ℶ ϱ P

8ε(⋞+1)(5 ;R𝜀), ⋞ = 0,… , 𝜀 ε 1,

and thanks to the unisolvence of Lagrange element in Theorem 2.5 will determine (𝝎𝜺
3
)⟩
3
. Therefore ℏ

8(S) 0 𝜔(div,⊲; S). ⋠

When 𝐿 = 𝜀 ε 2, it is the Hu-Zhang element [16,17]. When 𝐿 = 0, DoF (39d) can be further merged to one and lead to the
modification in [28, Lemma 4.5]

⨍
3

(𝑋
3
𝝎𝜺

3
) ⋟ ℶ d𝜚, 3 ϱ .

𝜀ε1(∲2), ℶ ϱ ND
8ε2(3 ), (40)

where ND
8ε2(3 ) ϑ= {ℶ ϱ P

8ε1(3 ;R𝜀ε1) ϑ ℶ ⋟ 𝜵 ϱ P
8ε1(3 )} and 𝑋

3
is the projection of a vector to the plane ⋜3 .

4.4. Discrete div stability for symmetric tensors

For each 9 ϱ ∲
2
, the range of the div operator on the bubble space of symmetric tensors [16,17] is

divB
8
(div, 9 ; S) = P

8ε1(9 ;R𝜀) ς RM⟥
, (41)

where RM = {ℷ𝜵 + ℵ ϑ ℷ ϱ K, ℵ ϱ R
𝜀} and RM⟥ is the 1

2-orthogonal complement in 1
2(9 ;R𝜀). It can be proved similar to

Lemma 4.7 and an abstract version will be proved in Lemma 6.9.
Applying the same argument as in Proposition 4.8, we derive the div stability of space ℏ

8(S) from (41).

Proposition 4.10. Let 8 ∳ 𝜀 + 1 and ℏ
8(S) be defined in Theorem 4.9. It holds the discrete inf-sup condition

[𝝕
2
[0 𝑅 sup

𝝎2ϱℏ 8(S)

(div𝝎
2
, 𝝕

2
)

[𝝎
2
[0 + [ div𝝎

2
[0

ϖ 𝝕
2
ϱ 𝑄

2
.
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Notice that due to the extra normal continuity, we cannot modify the face DoFs to relax the degree requirement 8 ∳ 𝜀 + 1 to
8 ∳ 2 as we have done for the traceless element in Proposition 4.8. Thanks to DoF (40), the tangential-normal component contains
P1(3 ) for 8 ∳ 2. Lower order 𝜔(div; S)-conforming finite elements are designed by enriching the symmetric quadratic polynomial
space with only (𝜀 + 1)-order normal–normal face bubbles in [37], which have only 𝜀(𝜀 + 1)2 DoFs for the reduced one.

5. Constraint tensor spaces

In this section we shall introduce the constraint tensor space X as a kernel space, and discover bases of X. We first recall some
background on differential forms, then give concrete formulae on the algebraic operator 𝜚𝜗,𝜀ε1 and define the constraint tensor space
X as the kernel of 𝜚𝜗,𝜀ε1. Lastly we present two bases of X.

5.1. Background on differential forms

5.1.1. Increasing sequence
We mainly follow the notation set in [20] but with some simplification. For non-negative integers ℸ, ,, 𝑌,𝐿, with 0 ⩽ ,εℸ ⩽ 𝐿ε 𝑌,

define the set of increasing sequences as

𝑍(ℸ ϑ ,, 𝑌 ϑ 𝐿) ϑ= {⊳ ϑ {ℸ,… , ,}  {𝑌,… ,𝐿} − ⊳(ℸ) < ⊳(ℸ + 1) < ⋛ < ⊳(,)}.

We will overload the notation ⊳ as its range, i.e., for ⊳ ϱ 𝑍(ℸ ϑ ,, 𝑌 ϑ 𝐿), we use the same notation ⊳ to refer to the set
{⊳(ℶ) − ℶ = ℸ,… , ,}. The set 𝑍(0 ϑ 𝜗, 0 ϑ 𝜀) will be mainly used for the description of sub-simplices, and 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀) for 𝜗

differential forms in R
𝜀. For ⊳ ϱ 𝑍(0 ϑ 𝜗, 0 ϑ 𝜀), 5

⊳
ϱ .

𝜗
(9 ) is the sub-simplex formed by vertices with index {⊳(0),… , ⊳(𝜗)}. On the

other hand, for 5 ϱ .
𝜗
(9 ), the index of its vertices can be sorted in ascending order to get an increasing sequence ⊳

5
.

For ⊳ ϱ 𝑍(0 ϑ 𝜗, 0 ϑ 𝜀), denote by ⊳
ω ϱ 𝑍(1 ϑ 𝜀 ε 𝜗, 0 ϑ 𝜀) the complementary map characterized by

⊳ ∇ ⊳
ω = {0, 1,… , 𝜀}.

For ⊳ ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀), its complementary map ⊳
♭ ϱ 𝑍(1 ϑ 𝜀 ε 𝜗, 1 ϑ 𝜀) satisfies

⊳ ∇ ⊳
♭ = {1,… , 𝜀}.

For the unique element in 𝑍(ℸ ϑ ,, ℸ ϑ ,), we simply write it as [ℸ ϑ ,].
We follow [38] to introduce notation on the addition and subtraction of increasing sequences. Let ⊳ ϱ 𝑍(ℸ ϑ ,, 𝑌 ϑ 𝐿). If

𝜑 ϱ [𝑌 ϑ 𝐿]±⊳, then we write ⊳ + 𝜑 = 𝜑 + ⊳ for the unique element of 𝑍(ℸ ϑ , + 1, 𝑌 ϑ 𝐿) with image ⊳ ∇ {𝜑}. In that case, we also
write ♮(𝜑, ⊳) for the signum of the permutation that orders the sequence [𝜑, ⊳(ℸ),… , ⊳(,)] in the ascending order. For 𝜑 ϱ ⊳, ⊳ ε 𝜑 is
the unique element in 𝑍(ℸ ϑ , ε 1, 𝑌 ϑ 𝐿) s.t. (⊳ ε 𝜑) + 𝜑 = ⊳.

5.1.2. Differential forms
We consider an 𝜀-dimensional domain ⊲ 0 R

𝜀. Usually we choose a Cartesian coordinate and describe a point 𝐷 = (𝐷1,… , 𝐷
𝜀
) ϱ ⊲

in this coordinate. We also use R𝜀 to denote the 𝜀-dimensional linear vector space, which can be identified with the space of points by
identifying a point 𝐷 with the vector 𝜵 = ♯⌣𝐷. We use 𝑃

𝐷ℶ
as the unit vector from the origin ⌣ to point (0,… , 1,… , 0), which is considered

as an element in the tangent space 9
⌣
⊲. Its dual basis of (R𝜀)ω is denoted by { d𝐷

ℶ
}𝜀
ℶ=1, i.e., d𝐷ℶ(𝑃𝐷≨ ) = 𝐵

ℶ,≨
. We use the standard inner

product of vectors to make R
𝜀 a Hilbert space, which introduces an inner product on (R𝜀)ω: ⌋ d𝐷

ℶ
, d𝐷

≨
⌈ = 𝐵

ℶ,≨
, ℶ, ≨ = 1,… , 𝜀. We shall

reserve notation { d𝐷
ℶ
}𝜀
ℶ=1 for the orthonormal basis induced by the ambient orthonormal coordinate of R

𝜀.
A generic basis will be denoted by { d⌢

ℶ
}𝜀
ℶ=1, which may not be orthonormal. We can find another basis { d 𝐴⌢ℶ}

𝜀

ℶ=1 dual to { d⌢
ℶ
}𝜀
ℶ=1

in the sense that ⌋ d 𝐴⌢
ℶ
, d⌢

≨
⌈ = 𝐵

ℶ,≨
. Indeed let ℏ = (⌋ d⌢

ℶ
, d⌢

≨
⌈)𝜀
ℶ,≨=1. Then ( d 𝐴⌢1,… , d 𝐴⌢

𝜀
)⋣ = ℏ

ε1( d⌢1,… , d⌢
𝜀
)⋣. When { d⌢

ℶ
}𝜀
ℶ=1 is

orthonormal, d 𝐴⌢
ℶ
= d⌢

ℶ
for ℶ = 1,… , 𝜀 as ℏ is identity.

For a vector space ℏ , we define the space of exterior 𝜗-forms as the alternating multilinear functional space on ℏ
𝜗 ϑ= ℏ φ⋛ φ ℏ

𝑎𝑏𝑏𝑏𝑏𝑐𝑏𝑏𝑏𝑏𝑑

𝜗

and denote it by Alt𝜗(ℏ ) or simply Alt𝜗 if ℏ is clear in the context. By definition, Alt𝜗 0 (ℏ 𝜗)ω. The best way to study a 𝜗-form is
through the action on 𝜗 vectors in ℏ .

Let 𝛻 ϱ Alt𝐼 and < ϱ Alt𝜑 , we define the wedge product 𝛻 ) < ϱ Alt𝐼+𝜑 :

(𝛻 ) <)(ℵ1,… , ℵ
𝐼+𝜑) =

⌉

⊳

sign(⊳)𝛻(ℵ
⊳(1),… , ℵ

⊳(𝐼))<(ℵ⊳(𝐼+1),… , ℵ
⊳(𝐼+𝜑)),

where the sum is over all permutations ⊳ of {1,… , 𝐼 + 𝜑}, for which ⊳(1) < ⊳(2) < ⋛ < ⊳(𝐼), ⊳(𝐼 + 1) < ⊳(𝐼 + 2) < ⋛ < ⊳(𝐼 + 𝜑),
and sign(⊳) is the signature of the permutation ⊳. We have the determinant formula on the wedge product. For 𝛻

ℶ
ϱ ℏ

ω
, ℵ

ℶ
ϱ ℏ ,

ℶ = 1,… , 𝐼,

(𝛻1 )⋛ ) 𝛻
𝐼
)(ℵ1,… , ℵ

𝐼
) = det

⌋

𝛻
ℶ
(ℵ

≨
)
⌈

ℶ,≨=1,…,𝐼
.

For a smooth manifold ⊲, a 𝜗th order differential form is a section of the tangent bundle ∇
𝐷ϱ⊲ Alt𝜗(9

𝐷
⊲), where 9

𝐷
⊲ is the

tangent space at 𝐷. The linear space formed by all 𝜗th differential forms is denoted by >
𝜗(⊲), or simply >

𝜗. As ⊲ is a domain in R
𝜀,

given any point 𝐷 in the interior of ⊲, the tangent space 9
𝐷
⊲ is isomorphism to 9

⌣
⊲ by shifting the origin to 𝐷. That is we can use

one basis { d⌢
ℶ
} for all Alt1(9

𝐷
⊲), 𝐷 ϱ ⊲.
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For ⊳ ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀), we extend the multi-index notation to write d⌢
⊳
ϱ Alt𝜗:

d⌢
⊳
ϑ= d⌢

⊳(1) )⋛ ) d⌢
⊳(𝜗).

An element 𝛻 ϱ >
𝜗(⊲) thus has a representation

𝛻 =
⌉

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀)
ℸ
⊳
(𝐷) d⌢

⊳
, 𝐷 ϱ ⊲. (42)

For a manifold, the basis { d⌢
ℶ
}𝜀
ℶ=1 is defined on a local chart while in (42), as ⊲ is flat, a global coordinate is used.

Using (42), we define the exterior derivative d ϑ >
𝜗(⊲)  >

𝜗+1(⊲) as: for 𝛻 = ⟨

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀) ℸ⊳ (𝐷) d⌢⊳ , define d𝛻 ϱ >
𝜗+1(⊲) by

d𝛻 =
⌉

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀)

⌉

ℶ0⊳
𝑃
⌢ℶ
ℸ
⊳
d⌢

ℶ
) d⌢

⊳
=

⌉

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀)

⌉

ℶ0⊳

⦅

𝑃
⌢ℶ
ℸ
⊳

⦆

♮(ℶ, ⊳) d⌢
ℶ+⊳ .

It can be verified that this definition of d𝛻 is independent of the choice of bases.
The Hodge star for the ambient orthonormal basis { d𝐷

ℶ
}𝜀
ℶ=1 is defined as

𝑒 d𝐷
ℶ
= (ε1)ℶε1 d𝐷

ℶ♭
, 𝑒 d𝐷

ℶ♭
= (ε1)𝜀εℶ d𝐷

ℶ
,

which satisfy

d𝐷
ℶ
) 𝑒 d𝐷

ℶ
= d𝐷, d𝐷

ℶ♭
) 𝑒 d𝐷

ℶ♭
= d𝐷,

with the volume d𝐷 ϑ= d𝐷1 ) d𝐷2 )⋛ ) d𝐷
𝜀
. By definition, 𝑒 𝑒 𝛻 = (ε1)𝜀ε1𝛻 for 𝛻 ϱ Alt1 or Alt𝜀ε1.

We extend the definition to a generic coordinate and define

ω d⌢
ℶ
ϑ= (ε1)ℶε1 d⌢

ℶ♭
satisfying d⌢

ℶ
) ω d⌢

≨
= 𝐵

ℶ,≨
d⌢.

5.1.3. Inner product
An intrinsic definition of an inner product on Alt𝜗 is

⌋𝛻, <⌈ ϑ=
⌉

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀)
𝛻(𝐹

⊳(1),… , 𝐹
⊳(𝜗))<(𝐹⊳(1),… , 𝐹

⊳(𝜗)),

where (𝐹1,… , 𝐹
𝜀
) is any orthonormal basis of R𝜀. Then by definition

𝛻 ) 𝑒 < = ⌋𝛻, <⌈ d𝐷, 𝛻, < ϱ Alt𝜗 .

Recall that { d𝐷
ℶ
}𝜀
ℶ=1 is an orthonormal basis of Alt

1, i.e., ⌋ d𝐷
ℶ
, d𝐷

≨
⌈ = 𝐵

ℶ,≨
, ℶ, ≨ = 1,… , 𝜀. It is naturally extended to an orthonormal

basis { d𝐷
⊳
, ⊳ ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀)} of Alt𝜗, i.e.

⌋ d𝐷
⊳
, d𝐷

<
⌈ = 𝐵

⊳,<
, ⊳, < ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀).

The duality of { d 𝐴⌢
ℶ
}𝜀
ℶ=1 and { d⌢

ℶ
}𝜀
ℶ=1 are also extended to the 𝜗-forms

⌋ d 𝐴⌢
⊳
, d⌢

<
⌈ = 𝐵

⊳,<
, ⊳, < ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀). (43)

But { d⌢
ℶ
}𝜀
ℶ=1 may not be orthogonal.

For 𝛻, < ϱ >
𝜗(⊲), a further integral over the domain is included, i.e.,

(𝛻, <)
⊲
= ⨍

⊲

⌋𝛻, <⌈ d𝐷, 𝛻, < ϱ >
𝜗(⊲).

For a sub-manifold 5 of ⊲, the volume form d𝐷 will induce the one for 5 and denoted by d𝐷
5
. Define

(𝛻, <)
5
= ⨍

5

⌋𝛻, <⌈ d𝐷
5
.

For 𝛻, < ϱ >
𝜗(⊲) with expression

𝛻 =
⌉

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀)
ℸ
⊳
(𝐷) d𝐷

⊳
, and < =

⌉

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀)
,
⊳
(𝐷) d𝐷

⊳
,

it is easy to prove that

(𝛻, <)
⊲
=

⌉

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀)⨍⊲ ℸ
⊳
(𝐷),

⊳
(𝐷) d𝐷, (44)

and (44) is invariant when changing to another orthonormal basis. For non-orthonormal basis, transformation will enter the formulae
of the inner product.

Denote by P
8
>
𝜗(⊲) the space with polynomial coefficients, and 1

2
>
𝜗(⊲) is the space with square-integrable coefficient functions.

The space 𝜔>
𝜗(⊲) ϑ= {𝛻 ϱ 1

2
>
𝜗(⊲) ϑ d𝛻 ϱ 1

2
>
𝜗+1(⊲)}. When 𝜗 = 𝜀ε1, 𝜔>

𝜀ε1(⊲) is isomorphism to𝜔(div,⊲) ϑ= {𝝕 ϱ 1
2(⊲;R𝜀) ϑ

div 𝝕 ϱ 1
2(⊲)}.
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5.1.4. Proxy vectors of differential forms
Representation (42) enables us to identify a differential form with a vector function:

𝛻  (ℸ
⊳
)
⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀),

and (ℸ
⊳
) is called a vector proxy of 𝛻. Be aware that, by definition, the differential form is coordinate independent while a vector

proxy depends on the coordinate.
For a 1-form 𝛻 = ⟨𝜀

ℶ=1 𝐻ℶ d𝐷ℶ ϱ >
1, define

Prox1(𝛻) = 𝝔 = (𝐻1, 𝐻2,… , 𝐻
𝜀
)⋣.

For a vector 𝝑 = (41, 42,… , 4
𝜀
)⋣ representing the tangent vector ⟨𝜀

ℶ=1 4ℶ𝑃𝐷ℶ , the action is

𝛻(𝝑) =
𝜀
⌉

ℶ,≨=1
𝐻
ℶ
4
≨
⌋ d𝐷

ℶ
, 𝑃

𝐷≨
⌈ = 𝝔 ⋟ 𝝑.

For 𝛻 ϱ >
𝜀ε1, we can write 𝛻 = ⟨𝜀

ℶ=1 𝐻ℶ 𝑒 d𝐷
ℶ
, which induces an isomorphism

Prox
𝜀ε1 ϑ 𝛻  𝝔 = (𝐻1, 𝐻2,… , 𝐻

𝜀
)⋣.

By definition, we have

Prox1(𝑒 𝛻) = (ε1)𝜀ε1 Prox
𝜀ε1(𝛻), 𝛻 ϱ >

𝜀ε1
,

Prox
𝜀ε1(𝑒 𝛻) = Prox1(𝛻), 𝛻 ϱ >

1
.

Notice that the proxy vectors are defined using an orthonormal basis. Using the proxy vectors, we can change the wedge product
to the inner product of vectors

⌋𝛻, <⌈ = (Prox1 𝛻,Prox𝜀ε1(𝑒 <)), 𝛻, < ϱ >
1
,

⌋𝛻, <⌈ = (Prox
𝜗
𝛻,Prox

𝜗
<), 𝛻 ϱ >

𝜗
, < ϱ >

𝜗
, 𝜗 = 1 or 𝜀 ε 1,

𝛻 ) < = (Prox1 𝛻,Prox𝜀ε1 <) d𝐷, 𝛻 ϱ >
1
, < ϱ >

𝜀ε1
.

For 𝛻 ϱ >
𝜀ε1, the representation of d𝛻 using the proxy vector is div 𝝔, i.e.,

d𝛻 = (div 𝝔) d𝐷, with 𝝔 = Prox
𝜀ε1 𝛻.

The Prox operator is a bijection. More precisely, given a vector 𝝔 = (𝐻1,… , 𝐻
𝜀
)⋣ represented in the ambient coordinate, let

𝛻 = ⟨𝜀

ℶ=1 𝐻ℶ d𝐷ℶ ϱ >
1 and 𝑒 𝛻 = ⟨𝜀

ℶ=1 𝐻ℶ 𝑒 d𝐷
ℶ
ϱ >

𝜀ε1. Then Prox1(𝛻) = Prox
𝜀ε1(𝑒 𝛻) = 𝝔. To resemble the notation of differential

forms, we introduce notation

d𝝔 ϑ= Proxε11 (𝝔) =
𝜀
⌉

ℶ=1
𝐻
ℶ
d𝐷

ℶ
, 𝑒 d𝝔 ϑ= Proxε1

𝜀ε1(𝝔) =
𝜀
⌉

ℶ=1
𝐻
ℶ
𝑒 d𝐷

ℶ
.

Here in d𝝔, d is understood as a dual operator mapping a tangent vector 𝝔 to a co-tangent vector d𝝔 ϱ >
1, and the symbol d is not

associated to any differentiation. A textbook notation of d𝝔 is 𝑓1𝝔 and 𝑒 d𝝔 is 𝑓𝜀ε1𝝔.
Denote the proxy vector of { d⌢

ℶ
}𝜀
ℶ=1 by {𝝕ℶ}

𝜀

ℶ=1 and { d 𝐴⌢
ℶ
}𝜀
ℶ=1 by { 𝐴𝝕ℶ}

𝜀

ℶ=1. Then { 𝐴𝝕
ℶ
}𝜀
ℶ=1 is dual to {𝝕ℶ}

𝜀

ℶ=1 in the sense that ( 𝐴𝝕ℶ, 𝝕≨ ) = 𝐵
ℶ,≨
.

Treat 𝝕
ℶ
as a column vector and form the matrix ℏ = (𝝕1,… , 𝝕

𝜀
) and 𝐴ℏ = ( 𝐴𝝕1,… , 𝐴𝝕

𝜀
). The gram matrix is ℏ = ℏ

⋣
ℏ . Then we have

the relation 𝐴ℏ = ℏℏ
ε1.

From

(𝝕
ℶ
,Prox

𝜀ε1(ω d⌢
≨
)) d𝐷 = d⌢

ℶ
) ω d⌢

≨
= 𝐵

ℶ,≨
d⌢ = 𝐵

ℶ,≨
det(ℏ ) d𝐷,

( 𝐴𝝕
ℶ
,Prox

𝜀ε1(ω d 𝐴⌢
≨
)) d𝐷 = d 𝐴⌢

ℶ
) ω d 𝐴⌢

≨
= 𝐵

ℶ,≨
d 𝐴⌢ = 𝐵

ℶ,≨
det( 𝐴ℏ ) d𝐷,

we get

Prox
𝜀ε1(ω d⌢

ℶ
) = det(ℏ ) Prox1( d 𝐴⌢ℶ) = det(ℏ ) 𝐴𝝕

ℶ
,

Prox
𝜀ε1(ω d 𝐴⌢

ℶ
) = det( 𝐴ℏ ) Prox1( d⌢ℶ) = det( 𝐴ℏ ) 𝝕

ℶ
,

where the scaling det(ℏ ) or det( 𝐴ℏ ) is due to the non-orthogonality. In view of proxy vectors, ω is like a kind of dual operator mapping
a vector to its dual vector.

5.1.5. Trace operator
For 3 ϱ .

𝜀ε1(9 ), let the trace operator trdiv3
ϑ >

𝜀ε1(9 )  >
𝜀ε1(3 ) be the pullback of the inclusion 3  9 . That is for any tangent

vectors ℵ1,… , ℵ
𝜀ε1 of 3 , we also treat them as tangent vectors of 9 and define

trdiv
3

𝛻(ℵ1,… , ℵ
𝜀ε1) ϑ= 𝛻(ℵ1,… , ℵ

𝜀ε1), 𝛻 ϱ >
𝜀ε1(9 ).

We denote by trdiv ϑ >
𝜀ε1(9 )  ∇

3ϱ𝑃9 >
𝜀ε1(3 ) as trdiv 𝛻⟩

3
= trdiv

3
𝛻.
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Fig. 5. Sub-simplices and their tangential and normal vectors.

Let 𝜺
3
be the normal vector of 3 so that the orientation of 3 , which is given by the volume d𝐷

3
ϱ >

𝜀ε1(3 ), and 𝜺
3
form a

consistent orientation of the ambient orthonormal basis. Then

trdiv
3

𝛻 = 𝝔 ⋟ 𝜺
3
d𝐷

3
with 𝝔 = Prox

𝜀ε1 𝛻. (45)

On the other hand, for any 𝐼 ϱ 1
2(3 ), we have

(𝛻, 𝐼 𝑒 d𝜺
3
)
3
= ⨍

3

𝝔 ⋟ 𝜺
3
𝐼 d𝐷

3
= ⨍

3

𝐼 trdiv
3

𝛻.

Based on (45), we can discuss the trace operator in the more familiar vector function setting. The trace operator for space
𝜔(div, 9 )

trdiv ϑ 𝜔(div, 9 )  𝜔
ε1∂2(𝑃9 )

is a continuous extension of trdiv𝝔 = 𝝔 ⋟ 𝜺⟩
𝑃9
defined on smooth functions.

5.1.6. Differential forms in the barycentric coordinates
As

⟨𝜀

ℶ=0 𝐶ℶ = 1, ⟨𝜀

ℶ=0 d𝐶
ℶ
= 0 and { d𝐶0,… , d𝐶

𝜀
} is not a basis of Alt1. Set a vertex as the origin, without loss of generality, say

⥳0, then { d𝐶1,… , d𝐶
𝜀
} forms a basis of Alt1. In general, through the index ⊳, there is one-to-one correspondence between .

𝜗ε1(30)
and Alt𝜗(9 ). Namely for ⊳ ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀), 5

⊳
is a (𝜗 ε 1)-dimensional simplex in .

𝜗ε1(30) with vertices {⊳(1),… , ⊳(𝜗)} and
d𝐶

⊳
= d𝐶

⊳(1) )⋛ ) d𝐶
⊳(𝜗) ϱ Alt𝜗. We can also write as d𝐶

5
assuming the index of the vertices of 5 is sorted in the ascending order.

The 1-form d𝐶
ℶ
has a vector representation (𝐶

ℶ
, which is a scaled normal vector 𝜺

3ℶ
of face 3

ℶ
. For a simplex 5 ϱ .⋞(9 ),

{(𝐶
ℶ
, ℶ ϱ 5

ω} are 𝜀 ε ⋞ normal vectors of 5 and can span the normal plane of 5 . The vector representations of (𝜀 ε 1)-forms, for
ℶ = 1,… ,⋞,

d𝐶[⊳(0),⊳(ℶ)]ω = d𝐶[0ϑ𝜀]ε⊳(0)ε⊳(ℶ) ϑ= d𝐶0 )⋛ ) 𝑔d𝐶
⊳(0) )⋛ ) 𝑔d𝐶

⊳(ℶ) )⋛ ) d𝐶
𝜀
,

are scaling of tangential vectors 𝝑
⊳(0)⊳(ℶ) of 5⊳ and can span the tangent plane of 5 . This is illustrated in Fig. 5.

5.2. An algebraic operator

Define Alt𝜗,ℶ(R𝜀) = Alt𝜗(R𝜀)𝜛 Altℶ(R𝜀) for 𝜗, ℶ = 0, 1,… , 𝜀. In particular Alt𝜗,𝜀ε1(R𝜀) = Alt𝜗(R𝜀)𝜛 Alt𝜀ε1(R𝜀) 1 Alt𝜗(R𝜀)𝜛 R
𝜀. To

simplify the notation, Alt𝜗,ℶ(R𝜀) is abbreviated as Alt𝜗,ℶ. In [6], the algebraic operator 𝜚𝜗,𝜀ε1 ϑ Alt𝜗,𝜀ε1  Alt𝜗ε1,𝜀 is defined as

𝜚
𝜗,𝜀ε1

𝛻
⌋

𝜕1,… ,𝜕
𝜗ε1

⌈ ⌋

ℵ1,… , ℵ
𝜀

⌈

ϑ=
𝜀
⌉

ℶ=1
(ε1)ℶε1𝛻

⌋

ℵ
ℶ
,𝜕1,… ,𝜕

𝜗ε1
⌈ ⌋

ℵ1,… , ℷℵ
ℶ
,… , ℵ

𝜀

⌈

ϖ ℵ1,… , ℵ
𝜀
,𝜕1,… ,𝜕

𝜗ε1 ϱ R
𝜀
.

Recall that we have reserved { d𝐷
ℶ
} for a fixed orthonormal basis of Alt1(R𝜀). We are going to derive more concrete forms of

operator 𝜚𝜗,𝜀ε1 in a generic basis { d⌢
ℶ
}, which may not be orthonormal. We expand 𝛻 ϱ Alt𝜗,𝜀ε1 in this basis as

𝛻 =
𝜀
⌉

ℶ=1

⌉

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀)
ℸ
⊳,ℶ

d⌢
⊳
𝜛 ω d⌢

ℶ
.

An element in Alt𝜗,𝜀ε1 can be identified as a matrix 𝝎 = (ℸ
⊳,ℶ
) of size

⌋

𝜀

𝜗

⌈

φ𝜀 indexed by (⊳, ℶ) for ℶ = 1, 2,… , 𝜀 and ⊳ ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀).

Lemma 5.1. For 𝛻 = ⟨𝜀

ℶ=1
⟨

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀) ℸ⊳,ℶ d⌢⊳𝜛 ω d⌢
ℶ
, we have

𝜚
𝜗,𝜀ε1

𝛻 =
⌉

ℎϱ𝑍(1ϑ𝜗ε1,1ϑ𝜀)

⦅

⌉

ℶϱℎ♭
♮(ℶ, ℎ)ℸ

ℶ+ℎ,ℶ

⦆

d⌢
ℎ
𝜛 d⌢.
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Fig. 6. Illustration of constraint sequences and operator 𝜚𝜗,𝜀ε1 for 𝜗 = 1, 3 and 𝜗 = 𝜀ε1 for a simplex in R5. For a (𝜗ε2)-dimensional sub-simplex ℎ, ⊳ = ℶ+ℎ with
ℶ ϱ ℎ

♭ are all (𝜗ε 1)-dimensional sub-simplex containing ℎ. For each ⊳, we attach a vector of length 𝜀 and consider its ℶth component, which is a representation
of d⌢

⊳
𝜛 ω d⌢

ℶ
. The constraint sequence of ℎ will be formed by all (⊳, ℶ) surrounding ℎ.

Proof. Let {𝑃⌢
ℶ
} be the basis of the tangent space dual to { d⌢

ℶ
}. That is d⌢

ℶ
(𝑃⌢

≨
) = 𝐵

ℶ,≨
for 1 ∱ ℶ, ≨ ∱ 𝜀. Given ⊳ ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀), we

use the notation 𝑃⌢
⊳
to denote 𝜗 vectors (𝑃⌢

⊳(1),… , 𝑃⌢
⊳(𝜗)). Then d⌢

⊳
(𝑃⌢

⊳∓ ) = 𝐵
⊳,⊳∓ for ⊳, ⊳∓ ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀). To get the coefficient of

𝜚
𝜗,𝜀ε1

𝛻 for the component d⌢
ℎ
𝜛 d⌢, ℎ ϱ 𝑍(1 ϑ 𝜗 ε 1, 1 ϑ 𝜀), we check the action

𝜚
𝜗,𝜀ε1

𝛻
⌋

𝑃⌢
ℎ(1),… , 𝑃⌢

ℎ(𝜗ε1)
⌈ ⌋

𝑃⌢1,… , 𝑃⌢
𝜀

⌈

=
𝜀
⌉

ℶ=1
(ε1)ℶε1𝛻

⌋

𝑃⌢
ℶ
, 𝑃⌢

ℎ(1),… , 𝑃⌢
ℎ(𝜗ε1)

⌈ ⌋

𝑃⌢1,… ,𝑔𝑃⌢
ℶ
,… , 𝑃⌢

𝜀

⌈

=
⌉

ℶϱℎ♭
𝛻
⌋

♮(ℶ, ℎ)𝑃⌢
ℶ+ℎ

⌈ ⌋

(ε1)ℶε1𝑃⌢
ℶ♭

⌈

=
⌉

ℶϱℎ♭
♮(ℶ, ℎ)ℸ

ℶ+ℎ,ℶ.

If ℶ ϱ ℎ, then vectors 𝑃⌢
ℶ
, 𝑃⌢

ℎ(1),… , 𝑃⌢
ℎ(𝜗ε1) are linearly dependent and thus the term vanishes. So only ℶ ϱ ℎ

♭ are left in the
summation. ⋠

For a given ℎ ϱ 𝑍(1 ϑ 𝜗 ε 1, 1 ϑ 𝜀), we call the sequence of index {(ℶ
𝐿
+ ℎ, ℶ

𝐿
), ℶ

𝐿
ϱ ℎ

♭
,𝐿 = 1, 2,… , 𝜀 ε 𝜗 + 1}, the constraint

sequence of ℎ, which can be also written as {(⊳
ℶ𝐿
, ℶ
𝐿
),𝐿 = 1, 2,… , 𝜀 ε 𝜗 + 1, ⊳

ℶ𝐿
= ℶ

𝐿
+ ℎ}. The length of the constraint sequence is

⟩ℎ
♭
⟩ = 𝜀 ε 𝜗 + 1. Without loss of generality, we can sort as ℶ1 < ℶ2 < ⋛ < ℶ

𝜀ε𝜗+1. The first one (ℶ1 + ℎ, ℶ1) will be called the pair index
of the constraint sequence.

We provide some visualization of the constraint sequence. The tensor product d⌢
⊳
𝜛 ω d⌢

ℶ
can be visualized as follows: for each

sub-simplex 5
⊳
, we attach a vector of length 𝜀. The sub-index ℶ in ω d⌢

ℶ
corresponds to the ℶth component of this vector. See 5-edge

stars in Fig. 6. We can associate the (𝜗 ε 1)-form d⌢
ℎ
with the sub-simplex 5

ℎ
of dimension 𝜗 ε 2, then {5

ℶ+ℎ}ℶϱℎ♭ corresponds to all
(𝜗ε 1)-dimensional sub-simplices of 30 (excluding 50+ℎ as index 0 is not used in differential forms) using ℎ as a boundary face. See
Fig. 6.

If we identify entries of the matrix proxy as nodes of a graph, a constraint sequence will define a path of nodes. See Fig. 7.
Indices in different constraint sequences are different. Namely for ℎ ⨋ ℎ

∓, (ℶ+ ℎ, ℶ) ⨋ (≨ + ℎ
∓
, ≨) as either ℶ ⨋ ≨ or ℶ+ ℎ ⨋ ≨ + ℎ

∓. On the
graph, different constraint sequences will correspond to disjoint paths.

Since only the value ℸ
⊳,ℶ
on the constraint sequence will contribute to the image 𝜚

𝜗,𝜀ε1
𝛻, we conclude that

𝜚
𝜗,𝜀ε1( d⌢

⊳
𝜛 ω d⌢

ℶ
) = 0 ⥵ ℶ ϱ ⊳

♭
.

For each row, i.e., for a fixed ⊳, there are 𝜗 entries (⊳, ℶ), ℶ ϱ ⊳ on 𝜗 different constraint sequences and the rest 𝜀ε 𝜗 entries are not
in any constraint sequence.

We can identify Alt𝜗ε1,𝜀 as a vector in R
dimAlt𝜗ε1 . With the matrix and vector representations, the 𝜚

𝜗,𝜀ε1 operator induces an
operator from matrix 𝝎 to a vector in R

dimAlt𝜗ε1 and will be still denoted by 𝜚
𝜗,𝜀ε1. We collect the coefficients of a constraint

sequence and denote by ℸ
ℎ
= (ℸ

ℶ𝐿+ℎ,ℶ𝐿 )𝐿=1,2,…,𝜀ε𝜗+1. Let ⊳ℎ = (♮(ℶ
𝐿
, ℎ))

𝐿=1,2,…,𝜀ε𝜗+1 be the corresponding sign vector. We can write
the operator as

(𝜚𝜗,𝜀ε1𝝎)
ℎ
= ℸ

ℎ
⋟ ⊳

ℎ
, ℎ ϱ 𝑍(1 ϑ 𝜗 ε 1, 1 ϑ 𝜀).

That is the action is along each constraint sequence.

Lemma 5.2. For 𝜗 = 1,… , 𝜀 ε 1, the operator 𝜚𝜗,𝜀ε1 ϑ Alt𝜗,𝜀ε1  Alt𝜗ε1,𝜀 is onto. And 𝜚
𝜀,𝜀ε1 ϑ Alt𝜀,𝜀ε1  Alt𝜀ε1,𝜀 is a bijection and its

proxy 𝜚
𝜀,𝜀ε1 is the transpose operator.

Proof. First consider 𝜗 = 1,… , 𝜀ε 1. By the linearity, it suffices to prove for ℎ = [1,… , 𝜗ε 1], there exists 𝛻 = ⟨𝜀

ℶ=1
⟨

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀) ℸ⊳,ℶ
d⌢

⊳
𝜛 ω d⌢

ℶ
such that 𝜚𝜗,𝜀ε1𝛻 = d⌢

ℎ
𝜛 d⌢.

For a given ℎ, we just pick up one ⊳ = ℶ + ℎ from its constraint sequence and set the coefficient be ♮(ℶ, ℎ). More precisely, take
ℸ[1,…,𝜗],𝜗 = ♮(𝜗, [1 ϑ 𝜗 ε 1]) = (ε1)𝜗ε1, and ℸ

⊳,ℶ
= 0 for the rest. Then

𝜚
𝜗,𝜀ε1

𝛻 =
⌉

𝑆ℎϱ𝑍(1ϑ𝜗ε1,1ϑ𝜀)

⌉

⌉

ℶϱ 𝑆ℎ♭

♮(ℶ, 𝑆ℎ)ℸ
ℶ+ 𝑆ℎ,ℶ

{

d⌢
𝑆ℎ
𝜛 d⌢ = d⌢

ℎ
𝜛 d⌢.
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Fig. 7. Constraint sequences for 𝜀 = 4, 𝜗 = 2 with sign ♮(ℶ, ℎ). A constraint sequence will define a path of nodes. Different constraint sequences will correspond
to disjoint paths. The white circle denotes the pair index of each constraint sequence which is a non-free index. Other circles in yellow are free indices. For
each row, there are 𝜗 entries (⊳, ℶ), ℶ ϱ ⊳ on 𝜗 different constraint sequences and the rest 𝜀 ε 𝜗 entries are not in any constraint sequence. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Next consider 𝜗 = 𝜀. For 𝛻 = ⟨𝜀

ℶ=1 ℸℶ d⌢𝜛 ω d⌢
ℶ
, we have

𝜚
𝜀,𝜀ε1

𝛻 =
⌉

ℎϱ𝑍(1ϑ𝜀ε1,1ϑ𝜀)

⌉

⌉

ℶϱℎ♭
♮(ℶ, ℎ)ℸ

ℶ

{

d⌢
ℎ
𝜛 d⌢ =

𝜀
⌉

ℶ=1
ℸ
ℶ
ω d⌢

ℶ
𝜛 d⌢.

Namely 𝜚
𝜀,𝜀ε1 maps the row vector (ℸ1,… , ℸ

𝜀
) to a column vector (ℸ1,… , ℸ

𝜀
)⋣. ⋠

If we identify the row and column vector by the transpose, we can also say 𝜚
𝜀,𝜀ε1 is the identity operator.

5.3. Constraint tensor spaces

Now we are ready to introduce the tensor space

X ϑ= ker(𝜚𝜗,𝜀ε1) ς Alt𝜗,𝜀ε1 = {𝛻 ϱ Alt𝜗,𝜀ε1 − 𝜚𝜗,𝜀ε1𝛻 = 0}, 1 ∱ 𝜗 ∱ 𝜀 ε 1.

When 𝜗 = 𝜀, as 𝜚
𝜀,𝜀ε1 is bijection, X = {0} is trivial. So throughout the rest of the paper, we will consider the non-trivial case

1 ∱ 𝜗 ∱ 𝜀 ε 1. For a given basis { d⌢
ℶ
}, it will be more convenient to work on the matrix representation

X ϑ=
}

𝛻 =
𝜀
⌉

ℶ=1

⌉

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀)
ℸ
⊳,ℶ

d⌢
⊳
𝜛 ω d⌢

ℶ
− 𝝎 = (ℸ

⊳,ℶ
) ϱ R

(𝜀
𝜗
)φ𝜀 ϑ

⌉

ℶϱℎ♭
♮(ℶ, ℎ)ℸ

ℶ+ℎ,ℶ = 0, ϖ ℎ ϱ 𝑍(1 ϑ 𝜗 ε 1, 1 ϑ 𝜀)
⦃

.

As 𝜚𝜗,𝜀ε1 is surjective,

dimX = dimAlt𝜗,𝜀ε1 ε dimAlt𝜗ε1,𝜀 = 𝜀

⟪

𝜀

𝜗

⟫

ε
⟪

𝜀

𝜗 ε 1

⟫

= (𝜀 ε 𝜗)
⟪

𝜀 + 1
𝜗

⟫

. (46)

For the orthonormal basis { d𝐷
ℶ
}, we introduce

𝜔(div,⊲;X) ϑ=
⦄

𝝎 = (ℸ
⊳,ℶ
) ϱ 1

2(⊲,X) ϑ div𝝎 ϱ 1
2
⦅

⊲,R
(𝜀
𝜗
)⦆⟨

with div𝝎 ϑ=
⦅

⟨𝜀

ℶ=1 𝑃𝐷ℶ ℸ⊳,ℶ

⦆

, i.e., the divergence operator is applied row-wise. Its differential form version is

𝜔( d
𝜀ε1,⊲;X) ϑ=

⦄

𝛻 ϱ 1
2
>
𝜗,𝜀ε1(⊲) ϑ 𝜚

𝜗,𝜀ε1
𝛻 = 0, d

𝜀ε1𝛻 ϱ 1
2
>
𝜗,𝜀(⊲)

⟨

,

where the exterior derivative d
𝜀ε1 is applied to the component >𝜀ε1 in >

𝜗,𝜀ε1. In view of the matrix proxy 𝝎 in the orthonormal
basis { d𝐷

ℶ
}, the trace on face 3

trdiv
3

𝝎 = 𝝎𝜺
3

is a column vector of length
⌋

𝜀

𝜗

⌈

, and should be continuous on the (𝜀 ε 1)-dimensional faces across simplices.

Example 5.3. Consider 𝜗 = 𝜀 ε 1. For 𝛻 = ⟨𝜀

ℶ=1
⟨𝜀

≨=1 ℸℶ,≨ ω d⌢
ℶ
𝜛 ω d⌢

≨
, we have

𝜚
𝜀ε1,𝜀ε1

𝛻 =
⌉

ℎϱ𝑍(1ϑ𝜀ε2,1ϑ𝜀)

⌉

⌉

ℶϱℎ♭
(ε1)([1ϑ𝜀]±[ℶ+ℎ])ε1♮(ℶ, ℎ)ℸ[1ϑ𝜀]±[ℶ+ℎ],ℶ

{

d⌢
ℎ
𝜛 d⌢
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=
⌉

1∱ℶ<≨∱𝜀
(ε1)ℶ+≨

⌋

ℸ
≨,ℶ

ε ℸ
ℶ,≨

⌈

d⌢(ℶ,≨)♭ 𝜛 d⌢,

where d⌢(ℶ,≨)♭ ϑ= d⌢1 )⋛ ) 𝑔d⌢
ℶ
)⋛ ) 𝑔d⌢

≨
)⋛ ) d⌢

𝜀
. In terms of the matrix proxy, it holds

𝜚
𝜀ε1,𝜀ε1(𝝎) = 2vskw(𝝎) with 𝝎 =

⌋

ℸ
ℶ,≨

⌈

𝜀φ𝜀 ϱ R
𝜀φ𝜀

,

where operator vskw ϑ R
𝜀φ𝜀  R

𝜀(𝜀ε1)∂2 is defined by
⌋

vskw(𝝎)
⌈

⊳
= 1

2 (ε1)
ℶ+≨ ⌋

ℸ
≨,ℶ

ε ℸ
ℶ,≨

⌈

with ⊳ = [ℶ, ≨] ϱ 𝑍(1 ϑ 2, 1 ϑ 𝜀).

Thus X = S consists of all symmetric matrices.

Example 5.4. Consider 𝜗 = 1. For 𝛻 = ⟨𝜀

ℶ=1
⟨𝜀

≨=1 ℸ≨,ℶ d⌢≨𝜛 ω d⌢
ℶ
, we have

𝜚
1,𝜀ε1

𝛻 =
𝜀
⌉

ℶ=1
ℸ
ℶ,ℶ
d⌢.

In terms of the matrix proxy,

𝜚
1,𝜀ε1(𝝎) = trace(𝝎).

Thus X = T is the traceless matrix space.

5.4. Bases of the constraint tensor space

Recall that

Alt𝜗,𝜀ε1 = span{ d⌢
⊳
𝜛 ω d⌢

ℶ
, ⊳ ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀), ℶ = 1,… , 𝜀}, 1 ∱ 𝜗 ∱ 𝜀.

We shall modify the basis function d⌢
⊳
𝜛 ω d⌢

ℶ
to get a basis of X = Alt𝜗,𝜀ε1 ς ker(𝜚𝜗,𝜀ε1).

Recall that we consider the non-trivial case: 1 ∱ 𝜗 ∱ 𝜀 ε 1 so that the length of the constraint sequence 𝜀 ε 𝜗 + 1 is greater than
or equal to 2. We shall define an oblique (non-orthogonal) projection operator 7X applied to d⌢

⊳
𝜛 ω d⌢

ℶ
for index pair (⊳, ℶ).

When ℶ ϱ ⊳
♭ , 𝜚𝜗,𝜀ε1( d⌢

⊳
𝜛 ω d⌢

ℶ
) = 0, and thus we keep it unchanged, i.e.,

7X( d⌢⊳𝜛 ω d⌢
ℶ
) = d⌢

⊳
𝜛 ω d⌢

ℶ
, ℶ ϱ ⊳

♭
.

For each constraint sequence (⊳
ℶ𝐿
, ℶ
𝐿
)
𝐿=1,…,𝜀ε𝜗+1, set (⊳ℶ1 , ℶ1) as the pair index and modify basis functions to, for 𝐿 = 1,… , 𝜀ε 𝜗+ 1,

7X( d⌢⊳ℶ𝐿 𝜛 ω d⌢
ℶ𝐿
) ϑ= d⌢

⊳ℶ𝐿
𝜛 ω d⌢

ℶ𝐿
ε ♮(ℶ

𝐿
, ℎ)♮(ℶ1, ℎ) d⌢⊳ℶ1𝜛 ω d⌢

ℶ1 .

In terms of the coefficient vector, 7X will map the vector ℸℎ = (0,… , 1,… , 0) to the vector

𝑆ℸ
ℎ
= (ε♮(ℶ

𝐿
, ℎ)♮(ℶ1, ℎ), 0,… , 1,… , 0),

so that the constraint 𝑆ℸ
ℎ
⋟ ⊳

ℎ
= 0 is satisfied. By the linear combination, we get the mapping 7X ϑ Alt𝜗,𝜀ε1  X.

An index (⊳, ℶ) will be called a free index if 7X( d⌢⊳𝜛 ω d⌢
ℶ
) ⨋ 0. By definition, only 7X( d⌢⊳ℶ1𝜛 ω d⌢

ℶ1 ) = 0, i.e., only the pair index
of each constraint sequence is not free. Therefore the number of basis functions is reduced by one for each constraint sequence. In
total, we remove

⌋

𝜀

𝜗ε1
⌈

basis functions of Alt𝜗,𝜀ε1 and obtain a basis of X:

X = span{7X( d⌢⊳𝜛 ω d⌢
ℶ
), (⊳, ℶ) is free }.

In Section 6, we will use 7X to define a 4-𝜀 decomposition of X and construct finite element subspaces of 𝜔(div,⊲;X).
Next we will present intrinsic bases of X using the barycentric coordinate.

Lemma 5.5. For any ⊳ ϱ 𝑍(0 ϑ 𝜀 ε 𝜗, 0 ϑ 𝜀) and ℶ = 1,… , 𝜀 ε 𝜗, it holds

d𝐶
⊳ω 𝜛 d𝐶[⊳(0),⊳(ℶ)]ω ϱ X,

where

d𝐶[⊳(0),⊳(ℶ)]ω = d𝐶([0ϑ𝜀]ε⊳(0))ε⊳(ℶ) = d𝐶0 )⋛ ) 𝑔d𝐶
⊳(0) )⋛ ) 𝑔d𝐶

⊳(ℶ) )⋛ ) d𝐶
𝜀
.

Proof. We treat ⊳(0) as the origin. Let ⌢
ℶ
= 𝐶

⊳(ℶ) for ℶ = 1,… , 𝜀 ε 𝜗, and ⌢
𝜀ε𝜗+ℶ = 𝐶

⊳ω(ℶ) for ℶ = 1,… , 𝜗. Then d𝐶
⊳ω 𝜛 d𝐶[⊳(0),⊳(ℶ)]ω =

(ε1)ℶε1( d⌢
𝜀ε𝜗+1 )⋛ ) d⌢

𝜀
)𝜛 ω d⌢

ℶ
ϱ X for ℶ = 1,… , 𝜀 ε 𝜗 as ℶ ϱ [𝜀 ε 𝜗 + 1,… , 𝜀]♭ . ⋠

The vector proxy of d𝐶[⊳(0),⊳(ℶ)]ω is a scaling of the edge vector 𝝑⊳(0)⊳(ℶ), which is on the tangent plane of 5⊳ ϱ .
𝜀ε𝜗(9 ). The 𝜗-form

d𝐶
⊳ω is the volume of the normal plane of 5⊳ , i.e. ⋝5⊳ of dimension 𝜗. Their tensor product for all 5 ϱ .

𝜀ε𝜗(9 ) forms a basis of X.
The inner product of 𝜗-form ⌋𝛻, <⌈ can be extended to Alt𝜗,𝜀ε1 by the tensor product. Define 𝑖X as the orthogonal projection

from Alt𝜗,𝜀ε1 to X w.r.t. the inner product ⌋⋟, ⋟⌈.
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Lemma 5.6. The set
{

d𝐶
⊳ω 𝜛 d𝐶[⊳(0),⊳(ℶ)]ω

}⊳ϱ𝑍(0ϑ𝜀ε𝜗,0ϑ𝜀)
ℶ=1,…,𝜀ε𝜗

in X is dual to the set
{

𝑖X
⌋

𝑒 d𝐶
⊳ε⊳(ℶ) 𝜛𝑒 d𝐶

⊳(ℶ)
⌈}⊳ϱ𝑍(0ϑ𝜀ε𝜗,0ϑ𝜀)

ℶ=1,…,𝜀ε𝜗

in the sense that: for any ⊳, ℎ ϱ 𝑍(0 ϑ 𝜀 ε 𝜗, 0 ϑ 𝜀), and ℶ, ≨ = 1,… , 𝜀 ε 𝜗,
⟩

d𝐶
⊳ω 𝜛 d𝐶[⊳(0),⊳(ℶ)]ω ,𝑖X

⌋

𝑒 d𝐶
ℎεℎ(ℶ) 𝜛𝑒 d𝐶

ℎ(ℶ)
⌈⟪

= 𝐵
⊳,ℎ

𝐵
ℶ,≨
.

Proof. Since d𝐶
⊳ω 𝜛 d𝐶[⊳(0),⊳(ℶ)]ω ϱ X, by definition of 𝑖X and the inner product ⌋⋟, ⋟⌈, it suffices to prove that: for any ⊳, ℎ ϱ 𝑍(0 ϑ

𝜀 ε 𝜗, 0 ϑ 𝜀), and ℶ, ≨ = 1,… , 𝜀 ε 𝜗,

( d𝐶
⊳ω 𝜛 d𝐶[⊳(0),⊳(ℶ)]ω ) ) ( d𝐶

ℎεℎ(≨) 𝜛 d𝐶
ℎ(≨)) ⨋ 0

if and only if

⊳ = ℎ and ℶ = ≨.

By definition,

( d𝐶
⊳ω 𝜛 d𝐶[⊳(0),⊳(ℶ)]ω ) ) ( d𝐶

ℎεℎ(≨) 𝜛 d𝐶
ℎ(≨)) = ( d𝐶

⊳ω ) d𝐶
ℎεℎ(≨))𝜛 ( d𝐶[⊳(0),⊳(ℶ)]ω ) d𝐶

ℎ(≨)).

Then ( d𝐶
⊳ω 𝜛 d𝐶[⊳(0),⊳(ℶ)]ω ) ) ( d𝐶

ℎεℎ(≨) 𝜛 d𝐶
ℎ(≨)) ⨋ 0 is equivalent to

ℎ(≨) ϱ {⊳(0), ⊳(ℶ)} and ℎ ε ℎ(≨) 0 ⊳.

This indicates ℎ ⋆ ⊳. We finish the proof by the fact ℎ and ⊳ have the same length. ⋠

We are in the position to present intrinsic bases of X using the barycentric coordinates.

Theorem 5.7 (Intrinsic Bases of X). The set
{

d𝐶
⊳ω 𝜛 d𝐶[⊳(0),⊳(ℶ)]ω

}⊳ϱ𝑍(0ϑ𝜀ε𝜗,0ϑ𝜀)
ℶ=1,…,𝜀ε𝜗

is a basis of X. Its dual basis is
{

𝑖X
⌋

𝑒 d𝐶
⊳ε⊳(ℶ) 𝜛𝑒 d𝐶

⊳(ℶ)
⌈}⊳ϱ𝑍(0ϑ𝜀ε𝜗,0ϑ𝜀)

ℶ=1,…,𝜀ε𝜗 . (47)

Proof. The number of the set { d𝐶
⊳ω 𝜛 d𝐶[⊳(0),⊳(ℶ)]ω

}⊳ϱ𝑍(0ϑ𝜀ε𝜗,0ϑ𝜀)
ℶ=1,…,𝜀ε𝜗 is (𝜀 ε 𝜗)

⌋

𝜀+1
𝜗

⌈

, which equals to dimX, cf. (46). Hence it suffices to
prove that they are linearly independent. Assume there exist ♭

⊳,ℶ
ϱ R for each ⊳ ϱ 𝑍(0 ϑ 𝜀 ε 𝜗, 0 ϑ 𝜀) and ℶ = 1,… , 𝜀 ε 𝜗 such that

⌉

⊳ϱ𝑍(0ϑ𝜀ε𝜗,0ϑ𝜀)

𝜀ε𝜗
⌉

ℶ=1
♭
⊳,ℶ

d𝐶
⊳ω 𝜛 d𝐶[⊳(0),⊳(ℶ)]ω = 0.

Then apply the wedge product with d𝐶
ℎεℎ(≨) 𝜛 d𝐶

ℎ(≨) for ℎ ϱ 𝑍(0 ϑ 𝜀 ε 𝜗, 0 ϑ 𝜀) and 0 ∱ ≨ ∱ 𝜀 ε 𝜗, due to Lemma 5.6, we obtain
♭
ℎ,≨

= 0. As (ℎ, ≨) runs over the whole set 𝑍(0 ϑ 𝜀 ε 𝜗, 0 ϑ 𝜀) φ {1,… , 𝜀 ε 𝜗}, we conclude all ♭
ℎ,≨
vanishes. ⋠

Example 5.8. When 𝜗 = 𝜀ε 1, 5
⊳
is an edge and the vector proxy of d𝐶

⊳ω is a scaling of the tangent vector 𝝑⊳(0)⊳(1) of 5⊳ . A basis of
X is thus given by

{

d𝐶
⊳ω 𝜛 d𝐶

⊳ω
}

⊳ϱ𝑍(0ϑ1,0ϑ𝜀), and the dual basis is
{

sym(𝑒 d𝐶
⊳(0) 𝜛𝑒 d𝐶

⊳(1))
}

⊳ϱ𝑍(0ϑ1,0ϑ𝜀). Equivalently, in terms of the
vector proxy, a basis of S is

{

𝝑
𝐹
𝜛 𝝑

𝐹
}

𝐹ϱ.1(9 )
and the dual basis is

{

sym(𝜺
3ℶ
𝜛 𝜺

3≨
)
}

𝐹=Convex(⥳ℶ ,⥳≨ )ϱ.1(9 )
, which are crucial in designing

the 𝜔(div; S) element [16,17,39] and useful in the Regge calculus [40].

Example 5.9. When 𝜗 = 1, 5
⊳
is an (𝜀 ε 1)-dimensional face 3 and the vector proxy of d𝐶

⊳ω is 𝜺3 . In the matrix proxy, a basis of
T is

{

𝜺
3
𝜛 𝝑

3

ℶ

}3ϱ.𝜀ε1(9 )
ℶ=1,…,𝜀ε1 , which is discovered in [12] and presented in Lemma 4.6.

5.5. Formulae on the projections

We will present an explicit formula on 𝑖X. Recall that the basis { d 𝐴⌢ℶ}𝜀ℶ=1 is dual to { d⌢
ℶ
}𝜀
ℶ=1 in the sense that ⌋ d 𝐴⌢ℶ, d⌢≨⌈ = 𝐵

ℶ,≨
for

ℶ, ≨ = 1,… , 𝜀. The duality also holds for corresponding bases of Alt𝜗; see (43).

Lemma 5.10. It holds
X
𝑗 = span

{

𝐴⊳
𝑉

ℎ
, ℎ ϱ 𝑍(1 ϑ 𝜗 ε 1, 1 ϑ 𝜀)

}

, (48)

where

𝐴⊳
𝑉

ℎ
ϑ=

⌉

ℶϱℎ♭
♮(ℶ, ℎ) d 𝐴⌢

ℶ+ℎ𝜛 ω d 𝐴⌢
ℶ
. (49)
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For 𝛻 ϱ Alt𝜗,𝜀ε1 expanded in the basis 𝛻 = ⟨

⊳,ℶ
ℸ
⊳,ℶ

d 𝐴⌢
⊳
𝜛 ω d 𝐴⌢

ℶ
, it holds

𝑖X𝑗𝛻 =
⌉

ℎϱ𝑍(1ϑ𝜗ε1,1ϑ𝜀)

ℸ
ℎ
⋟ ⊳

ℎ

𝜀 ε 𝜗 + 1 𝐴⊳
𝑉

ℎ
, (50)

where 𝑖X𝑗 ϑ= 𝑇 ε 𝑖X. Consequently for ⊳ ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀),

(𝑖X𝛻)⊳,ℶ =
]

⟦

⟧

⟦

⌊

ℸ
⊳,ℶ
, ℶ ϱ ⊳

♭
,

ℸ
⊳,ℶ

ε
ℸ
ℎ
⋟ ⊳

ℎ

𝜀 ε 𝜗 + 1 ♮(ℶ, ℎ), ℶ ϱ ⊳, ℎ = ⊳ ε ℶ.
(51)

Proof. Let < = ⟨𝜀

ℶ=1
⟨

⊳ϱ𝑍(1ϑ𝜗,1ϑ𝜀) ℸ⊳,ℶ d⌢⊳𝜛 ω d⌢
ℶ
ϱ X. Then

⌋ 𝐴⊳
𝑉

ℎ
, <⌈ =

⌉

ℶϱℎ♭
♮(ℶ, ℎ)ℸ

ℶ+ℎ,ℶ = 0, ℎ ϱ 𝑍(1 ϑ 𝜗 ε 1, 1 ϑ 𝜀).

That is 𝐴⊳
𝑉

ℎ
⟥ X. As any two constraint sequences are disjointed,

{

𝐴⊳
𝑉

ℎ
, ℎ ϱ 𝑍(1 ϑ 𝜗 ε 1, 1 ϑ 𝜀)

}

is linear independent and (48) follows
from the dimensions match.

Let ⊳𝑉
ℎ
= ⟨

ℶϱℎ♭ ♮(ℶ, ℎ) d⌢ℶ+ℎ𝜛 ω d⌢
ℶ
, which also forms a basis of X⟥. Formula (50) holds by testing with ⊳

𝑉

ℎ

⌋𝛻, ⊳
𝑉

ℎ
⌈ = ℸ

ℎ
⋟ ⊳

ℎ
, ⌋ 𝐴⊳

𝑉

ℎ
, ⊳

𝑉

ℎ
⌈ = 𝜀 ε 𝜗 + 1.

Combining (50) and 𝑖X = 𝑇 ε 𝑖X𝑗 gives (51). ⋠

The constraint tensor spaces X and X
⟥ are defined intrinsically using properties of differential forms, which is independent of

choices of the basis. In the proof above, we use different bases { d⌢
ℶ
} or { d 𝐴⌢

ℶ
} for the ease of computing the projection.

6. Geometric decomposition of ⊲(𝛡𝛠𝛓)-conforming tensors with constraints

In this section, we generalize the geometric decomposition of the 𝜔(div)-conforming vector finite element to the 𝜔(div)-
conforming tensor finite element. We decompose P

8
(9 ;X) into a direct sum of the tangential bubble subspace and a normal subspace.

Then we present DoFs and show the 𝜔(div)-conformity and the discrete inf-sup condition.

6.1. Decomposition of the constraint tensor space

We start from the tensor product of the Lagrange element with X:

P
8
(9 ;X) =6𝜀

⋞=065ϱ.⋞ (9 )
⦃

,
5
P
8ε(⋞+1)(5 )𝜛 X

⦄

.

For an ⋞-dimensional face 5 ϱ .⋞(9 ), there is a matrix function 𝝎
5 ϱ R

(𝜀
𝜗
)φ𝜀 satisfying the constraint 𝜚𝜗,𝜀ε1(𝝎5 ) = 0. The vector

𝜔(div) element is 𝜗 = 0 for which the matrix 𝝎 is degenerated to a vector of length 𝜀 and no constraint is imposed. For 1 ∱ 𝜗 ∱ 𝜀ε1,
it is the constraint 𝜚𝜗,𝜀ε1(𝝎5 ) = 0 that makes the finite element construction difficult as the constraint and the normal continuity
should be satisfied simultaneously.

As before, for a face 5 ϱ .⋞(9 ), we choose a 4-𝜀 basis {𝝑51 ,… , 𝝑
5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞}, where the set of ⋞ tangential vectors {𝝑
5

1 ,… , 𝝑
5

⋞}
is a basis of the tangent plane ⋜5 of 5 and the set of 𝜀 ε ⋞ normal vectors {𝜺51 ,… ,𝜺

5

𝜀ε⋞} forms a basis of the normal plane ⋝5 of
5 . All basis vectors are normalized but may not be orthogonal. We write ℶ ϱ ⋜5 and ℶ ϱ ⋝5 to emphasize the range of the index.

Inside the subspace ⋜5 , we can find a basis {𝐴𝝑51 ,… , 𝐴𝝑
5

⋞} dual to {𝝑51 ,… , 𝝑
5

⋞}, i.e., 𝐴𝝑 ϱ ⋜5 and (𝐴𝝑
ℶ
, 𝝑

≨
) = 𝐵

ℶ,≨
for ℶ, ≨ ϱ ⋜5 . Similarly

we have a basis { 𝐴𝜺51 ,… , 𝐴𝜺
5

𝜀ε⋞} of ⋝
5 and ( 𝐴𝜺

ℶ
,𝜺

≨
) = 𝐵

ℶ,≨
for ℶ, ≨ ϱ ⋝5 . As ⋜5 ⟥ ⋝5 , the basis {𝐴𝝑51 ,… , 𝐴𝝑

5

⋞ , 𝐴𝜺
5

1 ,… , 𝐴𝜺
5

𝜀ε⋞} is also dual to
{𝝑51 ,… , 𝝑

5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞}. Let ℏ = (𝝑51 ,… , 𝝑
5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞) and 𝐴ℏ = (𝐴𝝑51 ,… , 𝐴𝝑
5

⋞ , 𝐴𝜺
5

1 ,… , 𝐴𝜺
5

𝜀ε⋞).
We say the basis { d⌢5

ℶ
} is the basis of Alt1 corresponding to a 4-𝜀 basis if

Prox1( d⌢
5

ℶ
) =

⟫

𝝑
5

ℶ
for ℶ ϱ ⋜5

,

𝜺
5

ℶε⋞ for ℶ ϱ ⋝5
.

Then its dual { d 𝐴⌢5
ℶ
} has the vector proxy

Prox1( d 𝐴⌢
5

ℶ
) =

⟫

𝐴𝝑
5

ℶ
for ℶ ϱ ⋜5

,

𝐴𝜺
5

ℶε⋞ for ℶ ϱ ⋝5
.

We extend the domain of Prox and Proxε1 to subspaces. For example, Proxε1
𝜀ε1 ⋜

5 = span{Proxε1
𝜀ε1(𝐴𝝑

5

ℶ
), ℶ = 1,… ,⋞} =

span{Proxε1
𝜀ε1(𝝑

5

ℶ
), ℶ = 1,… ,⋞}. Then

Alt𝜗,𝜀ε1 = span{ d⌢5
⊳
𝜛 ω d⌢5

ℶ
, ⊳ ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀), ℶ = 1,… , 𝜀}

=
⌋

Alt𝜗 𝜛Proxε1
𝜀ε1 ⋜

5
⌈

6
⌋

Alt𝜗 𝜛Proxε1
𝜀ε1 ⋝

5
⌈

.
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We introduce the concept normal constraints. A constraint with the constraint sequence {(⊳
ℶ𝐿
, ℶ
𝐿
)
𝐿=1,…,𝜀ε𝜗+1} is called a normal

constraint if all ℶ
𝐿
ϱ ⋝5 . The normal constraints will be imposed inside the normal component. Recall that we sort the constraint

sequence s.t. ℶ1 < ℶ2 < ⋛ < ℶ
𝜀ε𝜗+1 and set (⊳ℶ1 , ℶ1) as the pair index. So for a non-normal constraint, the pair index (⊳

ℶ1 , ℶ1), ℶ1 ϱ ⋜5

is in the tangential component for dim 5 ∳ 1. Also recall that non-pair indices are free indices.
Define, for 5 ϱ .⋞(9 ) with 0 ∱ ⋞ ∱ 𝜀,

⋜5 (X) ϑ= span{7X( d⌢5⊳𝜛 ω d⌢5
ℶ
), (⊳, ℶ) is free, ℶ ϱ ⋜5 },

⋝5 (X) ϑ= span{7X( d⌢5⊳𝜛 ω d⌢5
ℶ
), (⊳, ℶ) is free, ℶ ϱ ⋝5 }.

For ⋞ = 0, i.e., at vertex ⥳ ϱ .0(9 ), we understand ⋜⥳(X) = {0} as no tangent plane and ⋝⥳(X) = X as ⋝⥳ = R
𝜀.

Lemma 6.1. Given a 4-𝜀 basis of a face 5 ϱ .⋞(9 ), we have the following decomposition

X = ⋜5 (X)6⋝5 (X).

Their dimensions are

dim⋜5 (X) = ⋞
⟪

𝜀

𝜗

⟫

+
⟪

𝜀 ε ⋞
𝜀 ε 𝜗 + 1

⟫

ε
⟪

𝜀

𝜗 ε 1

⟫

,

dim⋝5 (X) = (𝜀 ε ⋞)
⟪

𝜀

𝜗

⟫

ε
⟪

𝜀 ε ⋞
𝜀 ε 𝜗 + 1

⟫

.

Proof. By construction, the sum is direct. It suffices to count the dimension. The number of constraints is dimAlt𝜗ε1. By the proof
of the surjectivity of 𝜚𝜗,𝜀ε1, all constraints are linearly independent.

Therefore

dimX = dimAlt𝜀ε1 φ dimAlt𝜗 ε dimAlt𝜗ε1 = 𝜀 dimAlt𝜗 ε dimAlt𝜗ε1 .

For each normal constraint, it will remove one index in ⋝5 . So

dim⋝5 (X) = (𝜀 ε ⋞) φ dimAlt𝜗 ε# normal constraints.

If a constraint is non-normal, then the pair index is in the tangential component. So

dim⋜5 (X) = ⋞ φ dimAlt𝜗 ε# non-normal constraints.

Sum these two and use the fact

# normal constraints + # non-normal constraints = # all constraints = dimAlt𝜗ε1

to conclude dimX = dim⋜5 (X) + dim⋝5 (X).
The number of the normal constraints is

⌋

𝜀ε⋞
𝜀ε𝜗+1

⌈

(among 𝜀ε⋞ indices of the normal plane, choose 𝜀ε𝜗+1 to form the constraint
sequence {ℶ

𝐿
,𝐿 = 1,… , 𝜀 ε 𝜗 + 1}) and thus the number of the non-normal constraints is

⌋

𝜀

𝜗ε1
⌈

ε
⌋

𝜀ε⋞
𝜀ε𝜗+1

⌈

. ⋠

6.2. Geometric decomposition of polynomial constraint tensors

Define the bubble polynomial space

B
8
(div, 9 ;X) ϑ= P

8
(9 ;X) ς ker(trdiv).

There is no bubble polynomial for lower degree 8 = 0, 1.

Lemma 6.2. We have B0(div, 9 ;X) = B1(div, 9 ;X) = 0.

Proof. Take 𝛻 ϱ B
8
(div, 9 ;X) with 8 = 0, 1. Since {𝜺

30 ,… ,𝜺
3≨ε1 ,𝜺3≨+1 ,… ,𝜺

3𝜀
} form a basis of R𝜀, and (tr

3ℶ
𝛻)(⥳

≨
) = 0 for 0 ∱ ℶ ⨋ ≨ ∱ 𝜀,

we get 𝛻(⥳
≨
) = 0. Thus, 𝛻 = 0. ⋠

The tangential component contributes to the bubble. The normal component will contribute to the normal trace. Coupled with
the bubble polynomials, we define, for 5 ϱ .⋞(9 ) with 0 ∱ ⋞ ∱ 𝜀,

B
8
⋜5 (X) ϑ= ,

5
P
8ε(⋞+1)(5 )𝜛⋜5 (X), B

8
⋝5 (X) ϑ= ,

5
P
8ε(⋞+1)(5 )𝜛⋝5 (X).

Theorem 6.3 (Characterization of Div Bubble Tensors). For 8 ∳ 2, it holds that

B
8
(div, 9 ;X) =6𝜀

⋞=165ϱ.⋞ (9 )B8
⋜5 (X),

and

trdiv ϑ6𝜀ε1
⋞=065ϱ.⋞ (9 )B8

⋝5 (X)  trdiv P
8
(9 ;X)
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is a bijection. Consequently

dimB
8
(div, 9 ;X) =

𝜀
⌉

⋞=1

⟪

𝜀 + 1
⋞ + 1

⟫⟪

8 ε 1
⋞

⟫❲

⋞
⟪

𝜀

𝜗

⟫

+
⟪

𝜀 ε ⋞
𝜀 ε 𝜗 + 1

⟫

ε
⟪

𝜀

𝜗 ε 1

⟫❳

.

Proof. Notice that the trace operator is applied to the second component in the tensor product d⌢5⊳𝜛 ω d⌢5
ℶ
and trdiv

3
(ω d⌢5

ℶ
) =

det(ℏ )𝜺
3
⋟ 𝐴𝝑5

ℶ
d𝐷

3
= 0 if ℶ ϱ ⋜5 and 5 ϱ .(3 ). The modification in 7X( d⌢

5

⊳𝜛 ω d⌢5
ℶ
) will use the pair index in ⋜5 and thus remains

the normal trace free. For 5 0 .(3 ), the bubble function ,
5
⟩

3
= 0.

So we have verified6𝜀

⋞=165ϱ.⋞ (9 )B8
⋜5 (X) ⋆ B

8
(div, 9 ;X).

The rest is the same as Lemma 3.5. ⋠

We propose the following finite element for the constraint tensor X.

Lemma 6.4. For each 5 ϱ .⋞(9 ), choose a 4-𝜀 basis {𝝑51 ,… , 𝝑
5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞} for ⋞ = 1,… , 𝜀 ε 1. Let { d⌢
ℶ
} be the corresponding basis

of Alt1, and { d 𝐴⌢
ℶ
} be its dual basis. The shape function space P

8
(9 ;X) is uniquely determined by the DoFs

𝛻(⥳
ℶ
), ℶ = 0,… , 𝜀,𝛻 ϱ X, (52a)

(𝛻, <)
5
, < ϱ P

8ε(⋞+1)(5 )𝜛 { d 𝐴⌢5
⊳
𝜛 ω d 𝐴⌢5

ℶ
− (⊳, ℶ) is free, ℶ ϱ ⋝5 }, 5 ϱ .⋞(9 ),⋞ = 1,… , 𝜀 ε 1, (52b)

(𝛻, <)
9
, < ϱ B

8
(div, 9 ;X). (52c)

Proof. Recall the duality
⌋ d⌢5

⊳
𝜛 ω d⌢5

ℶ
, d 𝐴⌢5

<
𝜛 ω d 𝐴⌢5

≨
⌈ = 𝐵

⊳,<
𝐵
ℶ,≨

for all 1 ∱ ℶ, ≨ ∱ 𝜀, and ⊳, < ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀). In 7X( d⌢
5

⊳𝜛 ω d⌢5
ℶ
) = d⌢5⊳𝜛 ω d⌢5

ℶ
ε ♮(ℶ, ℎ)♮(ℶ1, ℎ) d⌢

5

⊳1𝜛 ω d⌢5
ℶ1
, the pair index (⊳1, ℶ1) is

not free and thus the duality still holds for all free indices

⌋7X( d⌢5⊳𝜛 ω d⌢5
ℶ
), d 𝐴⌢5

<
𝜛 ω d 𝐴⌢5

≨
⌈ = 𝐵

⊳,<
𝐵
ℶ,≨
, (⊳, ℶ) and (<, ≨) are free.

Now assume (52a)–(52b) vanishes. For 𝛻 = ⟨

free(⊳,ℶ) ♭(⊳,ℶ),5 7X( d⌢
5

⊳𝜛 ω d⌢5
ℶ
), the DoF (𝛻, ♭(⊳,ℶ) d 𝐴⌢

5

⊳𝜛 ω d 𝐴⌢5
ℶ
)
5

= 0 will imply
♭(⊳,ℶ) = 0 for all free indices (⊳, ℶ) and ℶ ϱ ⋝5 . Coupling with the property of the bubble function, we can prove by the forward
substitution argument for ⋞ = 0, 1,… , 𝜀 ε 1 (see the proof of Lemma 3.5), all normal components B

8
⋝5 (X) for all 5 ϱ .⋞(9 ) will

vanish and thus only tangential components are left, i.e., 𝛻 ϱ 6
𝜀

⋞=165ϱ.⋞ (9 )B8
⋜5 (X). By Theorem 6.3, 𝛻 ϱ B

8
(div, 9 ;X) and

vanishing (52c) will imply 𝛻 = 0. ⋠

DoF (52b) is in the spirit of the Petrov–Galerkin method, where the test function d 𝐴⌢5⊳𝜛 ω d 𝐴⌢5
ℶ
is different from the trial function

7X( d⌢
5

⊳𝜛 ω d⌢5
ℶ
). This change is important as Prox( d 𝐴⌢5⊳ ) 𝜛 Prox(ω d 𝐴⌢5

ℶ
) = ♭ Prox( d 𝐴⌢5⊳ ) 𝜛 𝜺

5

ℶ
for ℶ ϱ ⋝5 will contain the normal

component only, which will determine the normal trace to ensure the 𝜔(div)-conformity.
In view of the vector proxy, usually we can choose an orthonormal basis for ⋜5 so that 𝝑5

ℶ
= 𝐴𝝑

5

ℶ
for ℶ ϱ ⋜5 . We use the normal

vector {𝜺5
ℶ
} to define DoFs while use its dual basis { 𝐴𝜺5

ℶ
} to expand the shape function.

Similar to [30], we can write out an explicit basis function

𝐽
𝐸
7X( d⌢5⊳𝜛 ω d⌢5

ℶ
), 𝐸 ϱ T

⋞
8
( 𝑘5 ), (⊳, ℶ) is free, 5 ϱ .⋞(9 ),⋞ = 0,… , 𝜀,

where 𝐽
𝐸
is the nodal basis of Lagrange element at lattice point 𝐸, and T

⋞
8
( 𝑘5 ) is the set of lattice points whose geometric embedding

is in the interior of 5 .

6.3. 𝜔(div)-Conforming finite element spaces

We shall glue local finite element spaces to form an 𝜔(div)-conforming subspace of 𝜔(div,⊲;X) by choosing a global 4-𝜀 basis
{𝝑51 ,… , 𝝑

5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞}, i.e., depending only on 5 not the element containing 5 .

Theorem 6.5 (𝜔(div)-Conforming Finite Element with Global 4-𝜀 Bases). For each 5 ϱ .⋞(∲2), ⋞ = 0,… , 𝜀 ε 1, choose a 4-𝜀 basis
{𝝑51 ,… , 𝝑

5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞} depending only on 5 . Let { d⌢
ℶ
} be the corresponding basis of Alt1, and { d 𝐴⌢

ℶ
} be its dual basis. Then the following

DoFs

𝛻(⥳
ℶ
), ℶ = 0,… , 𝜀,𝛻 ϱ X, (53a)

(𝛻, <)
5
, < ϱ P

8ε(⋞+1)(5 )𝜛 { d 𝐴⌢5
⊳
𝜛 ω d 𝐴⌢5

ℶ
− (⊳, ℶ) is free, ℶ ϱ ⋝5 }, 5 ϱ .⋞(∲2),⋞ = 1,… , 𝜀 ε 1, (53b)

(𝛻, <)
9
, < ϱ B

8
(div, 9 ;X), 9 ϱ ∲

2
, (53c)

will determine a space ℏ
2
0 𝜔(div,⊲;X).
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Fig. 8. The normal constraint block (in blue) and the free block (in green) for an 5 ϱ .1(9 ) with 𝜀 = 4, 𝜗 = 2. In the free block, no index is in a normal
constraint. In the normal constraint block, each row contains at least one index in a normal constraint. The red circles will contribute to the bubble spaces. The
white circle denotes the pair index of each constraint sequence which is not a free index. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Proof. By Lemma 6.4, on each simplex, DoFs (53) will define a function 𝛻 ϱ P
8
(9 ;X). We only need to verify the trace is uniquely

determined by (53a)–(53b).
For a face 3 ϱ .

𝜀ε1(∲2), we have a normal vector 𝜺3 depending only on 3 and the formula

⌋trdiv
3

𝛻, d 𝐴⌢5
⊳
⌈ = ⌋𝛻, d 𝐴⌢5

⊳
𝜛 𝑒 d𝜺

3
⌈.

For 5 ϱ .(3 ), as 𝜺
3
ϱ ⋝5 , we can expand 𝜺

3
= ⟨𝜀ε⋞

ℶ=1 ♭
5

ℶ
𝜺
5

ℶ
and 𝑒 d𝜺

3
= ⟨𝜀ε⋞

ℶ=1 ♭
5

ℶ
𝑒 d𝜺5

ℶ
= ⟨

ℶϱ⋝5 𝑆♭
5

ℶ
ω d 𝐴⌢5

ℶ
.

When (⊳, ℶ) is free and ℶ ϱ ⋝5 , (𝛻, d 𝐴⌢5⊳𝜛 ω d 𝐴⌢5
ℶ
)
5
is given by the DoFs (53a)–(53b).

Then consider the case (⊳, ℶ) is not free and ℶ ϱ ⋝5 . Namely (⊳, ℶ) = (ℶ1 + ℎ, ℶ1) is a pair index for a constraint sequence. As
ℶ1 = ℶ ϱ ⋝5 , this constraint is a normal constraint, i.e., all ℶ

𝐿
ϱ ⋝5 for 𝐿 = 1,… , 𝜀 ε 𝜗 + 1. We can express ♮(ℶ1, ℎ) d 𝐴⌢

5

⊳𝜛 ω d 𝐴⌢5
ℶ
=

𝐴⊳
𝑉

ℎ
ε⟨𝜀ε𝜗+1

𝐿=2 ♮(ℶ
𝐿
, ℎ) d 𝐴⌢5

ℶ𝐿+ℎ
𝜛 ω d 𝐴⌢5

ℶ𝐿
, where 𝐴⊳

𝑉

ℎ
ϱ X

⟥ is defined in (49). As 𝛻 ϱ X and 𝐴⊳
𝑉

ℎ
ϱ X

⟥, ⌋𝛻, 𝐴⊳𝑉
ℎ
⌈ = 0 and consequently

(𝛻, ♮(ℶ1, ℎ) d 𝐴⌢5⊳𝜛 ω d 𝐴⌢5
ℶ
)
5
= ε

𝜀ε𝜗+1
⌉

𝐿=2
♮(ℶ

𝐿
, ℎ)(𝛻, d 𝐴⌢5

ℶ𝐿+ℎ
𝜛 ω d 𝐴⌢5

ℶ𝐿
)
5
.

Notice that the index (ℶ
𝐿
+ ℎ, ℶ

𝐿
) is free and ℶ

𝐿
ϱ ⋝5 for 𝐿 ∳ 2. So (𝛻, d 𝐴⌢5⊳𝜛 ω d 𝐴⌢5

ℶ
)
5
can be also determined by DoFs (53a)–(53b)

even (⊳, ℶ) is not free.
It follows that

(trdiv
3

𝛻, <)
5
, 5 ϱ .⋞(3 ), < ϱ P

8ε(⋞+1)(5 )𝜛 Alt𝜗,⋞ = 0,… , 𝜀 ε 1.

can be determined by DoFs (53a)–(53b). As trdiv
3

𝛻 ϱ P
8
(3 )𝜛Alt𝜗, by the uni-solvence of the vector Lagrange element, we conclude

trdiv
3

𝛻 is uniquely determined by DoFs (53a)–(53b). ⋠

DoF (53a) implies the continuity at vertices. We argue that the continuity at vertices is also necessary. Take a vertex in .0(9 ), for
example ⥳0. Then (𝝎𝜺

3ℶ
)(⥳0) is determined by the row vector (𝝎𝜺

3ℶ
)⟩
3ℶ

ϱ >
𝜗 for ℶ = 1,… , 𝜀, where 3

ℶ
ϱ .

𝜀ε1(9 ) is the face opposite
to ⥳

ℶ
. If it is continuous on each face not on vertices, the number of elements in (𝝎𝜺

3
)(⥳0) is dimAlt𝜗 for each face. Running ℶ from 1

to 𝜀, 𝝎(⥳0) is determined by 𝜀 dimAlt𝜗 conditions, which is more than dimX. In other words, the constraint makes the tensor product
of vector DoFs fails and introduce additional smoothness.

6.4. Facewise redistribution

DoFs (53a)–(53b) implies stronger continuity on the normal plane. We shall further redistribute some DoFs to faces 3 ϱ .
𝜀ε1(9 ).

To do so, we introduce the concept of the free block and the normal constraint block. For a fixed ⊳, the row vector (⊳, ℶ), ℶ = ⋞+1 ϑ 𝜀

is called a free row if no index is in a normal constraint. All free rows will form a sub-matrix called the free block. The rest is called
the normal constraint block, which contains all normal constraints. Do not confuse the free row with the free index. All indices of
a free row are free. But a row with all free indices may not be a free row. A free index can be associated to a normal constraint
sequence. See the second and third rows in Fig. 8.

For indices in the free block, the pair index is in the tangential component, which will not change the normal trace. For a normal
constraint, the pair index is still in the normal constraint block and changing a basis of ⋝5 may destroy the 𝜔(div)-conformity.
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Therefore a global basis {𝜺5
ℶ
} of ⋝5 is chosen to impose the normal constraints for the normal constraint block. For example,

DoFs (39b) for 𝜺⋣
ℶ
𝟎𝜺

≨
in the 𝜔(div, S) element are normal constraints.

For a free row, we have a vector in R
𝜀 consists of [ℸ

⊳,1,… , ℸ
⊳,⋞ , ℸ⊳,⋞+1,… , ℸ

⊳,𝜀
]⋣. The first ⋞ components are in the tangential

component and their values are determined locally as the element-wise div bubble polynomials. The part [ℸ
⊳,⋞+1,… , ℸ

⊳,𝜀
]⋣ is in the

normal component and the corresponding DoFs can be redistributed facewisely by using the face normal basis {𝜺
3
, 5 ⋆ 3 ,3 ϱ

.
𝜀ε1(9 )} of ⋝5 . In short, a free row is just like a vector 𝜔(div) element.

Theorem 6.6 (𝜔(div)-Conforming Finite Element with Face Redistribution). For each 5 ϱ .⋞(∲2), ⋞ = 0,… , 𝜀ε1, choose a global 4-𝜀 basis
{𝝑51 ,… , 𝝑

5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞} depending only on 5 . Let { d⌢
ℶ
} be the corresponding basis of Alt1, and { d 𝐴⌢

ℶ
} be its dual basis. The following DoFs

𝛻(⥳
ℶ
), ℶ = 0,… , 𝜀,𝛻 ϱ X, (54a)

(𝛻, <)
5
, < ϱ P

8ε(⋞+1)(5 )𝜛 { d 𝐴⌢5
⊳
𝜛 ω d 𝐴⌢5

ℶ
− (⊳, ℶ) is free and in the normal constraint block}, (54b)

5 ϱ .⋞(∲2),⋞ = 1,… , 𝜀 ε 1,

(trdiv
3

𝛻, <)
5
, < ϱ P

8ε(⋞+1)(5 )𝜛 { d 𝐴⌢5
⊳
− ⊳ is in the free block},3 ϱ .

𝜀ε1(∲2), 5 ϱ .⋞(3 ),⋞ = 1,… , 𝜀 ε 1, (54c)

(𝛻, <)
9
, < ϱ B

8
(div, 9 ;X), 9 ϱ ∲

2
, (54d)

will determine a space ℏ
2
0 𝜔(div,⊲;X).

Proof. 1 Local unisolvence on an element. We write DoF (54c) as

(trdiv
3

𝛻, d 𝐴⌢5
⊳
)
5
= (𝛻, d 𝐴⌢5

⊳
𝜛 𝑒 d𝜺9

3
)
5
, 5 ⋆ 3 , (55)

where {𝜺9
3
, 5 ⋆ 3 ,3 ϱ .

𝜀ε1(9 )} is the face normal basis of ⋝5 in element 9 . As {𝜺9
3ℶ
, ℶ ϱ 5

ω} and {𝜺5
≨
, ≨ = 1,… , 𝜀ε ⋞} are different

bases of the same space ⋝5 , DoF (55) will also determine

(𝛻, d 𝐴⌢5
⊳
𝜛 ω d 𝐴⌢5

ℶ
)
5
, ℶ = ⋞ + 1,… , 𝜀. (56)

Together with (54b), we obtain DoFs (53b). The number of DoFs remains the same as in a free row all indices are free. Then we
conclude the unisolvence from Theorem 6.5.

2 Global conformity across elements. The continuity

(trdiv
3

𝛻, <)
5
, < ϱ P

8ε(⋞+1)(5 )𝜛 { d 𝐴⌢5
⊳
− ⊳ is in the normal constraint block}

is implied by DoFs (54a)–(54b) as the global 4-𝜀 basis {𝝑51 ,… , 𝝑
5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞} depending only on 5 . Together with DoF (54c), we
conclude trdiv

3
𝛻 is continuous. ⋠

Remark 6.7. It seems that we can also try to redistribute the rows in the normal constraint block as DoF (56) can be derived from
DoF (55). The problem comes from the fact the basis {𝜺9

3
, 5 ⋆ 3 ,3 ϱ .

𝜀ε1(9 )} is element-dependent. Expand a global basis vector
𝜺
5

ℶ
= ⟨

3
♭
9

3
𝜺
9

3
will let (56) be element dependent. For example, for 𝜔(div, S) element, 𝜺⋣

ℶ
𝟏𝜺

≨
cannot be redistributed to faces. In the

above proof, we transfer (54c) to (56) only for the ease of uni-solvence.

Following the management of DoFs presented in [30], we need to set global and local indexing rules for all DoFs. The global
numbering rule is similar to the Lagrange interpolation points. Globally, we can divide the DoFs into those that are shared among
simplices and those that are not. The DoFs shared among simplices can be further allocated to the respective sub-simplices. For the
DoFs situated on a sub-simplex 5 , we can choose global normal vectors 𝜺5

ℶ
which share a global DoF labeling, and local tangential

vectors 𝝑5
ℶ
which have different labeling in different elements.

We count the size of the normal constraint block. The normal constraint block disappears when ⋞ ∳ 𝜗 as the length of the
constraint 𝜀 ε 𝜗 + 1 will be greater than 𝜀 ε ⋞ the dimension of the normal plane. That is when ⋞ ∳ 𝜗, all rows are free and
corresponding DoFs can be redistributed to faces.

Consider the case ⋞ < 𝜗. If ⊳ ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀) is in the constraint block, there exists some ℶ > ⋞ such that ℎ = ⊳ ε ℶ ϱ 𝑍(1 ϑ
𝜗 ε 1, 1 ϑ 𝜀) satisfies ℎ♭ ⋆ [⋞ + 1 ϑ 𝜀], which is equivalent to ⊳

♭
⋆ [⋞ + 1 ϑ 𝜀]. Hence the number of rows in the constraint block is

⌋

𝜀ε⋞
𝜀ε𝜗

⌈

: among all 𝜀 ε ⋞ indices of the normal plane, choose 𝜀 ε 𝜗 indices to form ⊳
♭ . When ⋞ = 0,

⌋

𝜀

𝜀ε𝜗
⌈

=
⌋

𝜀

𝜗

⌈

, i.e., all rows belong
to the constraint block. Consequently DoFs at vertices cannot be redistributed facewisely. We thus give another justification of the
continuity at vertices.

6.5. Discrete inf-sup condition

For a smooth tensor 𝐻 = (𝐻
⊳
) with index ⊳ ϱ 𝑍(1 ϑ 𝜗, 1 ϑ 𝜀), let grad 𝐻 be a tensor with size

⌋

𝜀

𝜗

⌈

φ 𝜀 give by

(grad 𝐻)
⊳,ℶ

ϑ= 𝑃
𝐷ℶ
𝐻
⊳
.
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Lemma 6.8. It holds that
ker(𝑖Xgrad ) = P0(9 ;R(

𝜀

𝜗
)) + X

𝑗
𝐷.

Proof. Noting that grad (P0(9 ;R(
𝜀

𝜗
)) + X

𝑗
𝐷) = X

𝑗, hence

P0(9 ;R(
𝜀

𝜗
)) + X

𝑗
𝐷 ⋆ ker(𝑖Xgrad ).

By (31) in [6], ker(𝑖Xgrad ) ⋆ P1(9 ;R(
𝜀

𝜗
)). Take ♭ +𝑉𝐷 ϱ ker(𝑖Xgrad ). By grad (♭ +𝑉𝐷) = 𝑉, we have 𝑖X𝑉 = 0, i.e. 𝑉 ϱ X

𝑗. Therefore
ker(𝑖Xgrad ) ⋆ P0(9 ;R(

𝜀

𝜗
)) + X

𝑗
𝐷. ⋠

We introduce notation RX ϑ= ker(𝑖Xgrad ). Examples are RX = RM the rigid motion for X = S, and RX = RT for X = T, where
RT ϑ= P0(9 ;R𝜀) + 𝐷P0(9 ) is the lowest Raviart–Thomas element. In general, RX is the Whitney form P0>

𝜗 + 𝜍
𝜗+1P0>

𝜗+1, which is
another characterization of ker(𝑖Xgrad ).

Operator 𝑖Xgrad is the proxy of 𝑖X d ϑ= (ε1)𝜀ε1 𝑒 𝑖X 𝑒 d ϑ >
𝜗,0  >

𝜗,1. Indeed ⨌
9
𝛻 ) 𝑖X d< = (ε1)𝜀ε1 ⨌

9
𝛻 ) 𝑒 𝑒 d< = ⨌

9
𝛻 ) d<,

then the integration by parts holds

⨍
9

d𝛻 ) < = (ε1)𝜀 ⨍
9

𝛻 ) 𝑖X d< + ⨍
𝑃9

trdiv 𝛻 ) < (57)

for any 𝛻 ϱ 𝜔(div, 9 ;X) and < ϱ >
𝜗,0. In the matrix and vector proxy, we have

⨍
9

(div𝝎) ⋟ 𝝔 d𝐷 = ε⨍
9

𝝎 ϑ 𝑖Xgrad 𝝔 d𝐷 + ⨍
𝑃9

(𝝎𝜺) ⋟ 𝝔 d𝑀.

We consider the finite elements defined in Theorem 6.6. Define the global finite element space

ℏ
2
ϑ= {𝛻

2
ϱ 1

2(⊲;X) ϑ 𝛻
2
⟩

9
ϱ P

8
(9 ;X) ϖ 9 ϱ ∲

2
,

the DoFs (54a)–(54b) is single-valued across 5 ϱ .⋞(∲2) for ⋞ = 0,… , 𝜀 ε 1,
the DoF (54c) is single-valued across 3 ϱ .

𝜀ε1(∲2)},
𝑄

2
ϑ={𝜑

2
ϱ 1

2(⊲;>𝜗) ϑ 𝜑
2
⟩

9
ϱ P

8ε1(9 ;>𝜗) ϖ 9 ϱ ∲
2
}. (58)

Thanks to Theorem 6.6, ℏ
2
0 𝜔(div,⊲;X). We are going to verify the discrete inf-sup condition divℏ

2
= 𝑄

2
if 8 ∳ 𝜀+1. The following

characterization of the range of the div operator on the bubble polynomial space is an abstract version of results (30) and (41)
established in [12,16,17].

Lemma 6.9. For each 9 ϱ ∲
2
, it holds

divB
8
(div, 9 ;X) = P

8ε1(9 ;>𝜗) ς RX⟥
. (59)

Proof. When 8 = 0, 1, (59) is obviously true as both sides are zero. We thus consider 8 ∳ 2.
Apply the integration by parts (57) to get

divB
8
(div, 9 ;X) ⋆ (P

8ε1(9 ;>𝜗) ς RX⟥).

Next we focus on the proof of the equality. For simplicity, write d𝐶
⊳ω 𝜛 d𝐶[⊳(0),⊳(ℶ)]ω as 𝐽

⊳,ℶ
for each ⊳ ϱ 𝑍(0 ϑ 𝜀 ε 𝜗, 0 ϑ 𝜀) and

ℶ = 1,… , 𝜀 ε 𝜗. By Theorem 5.7, {𝐽
⊳,ℶ
}⊳ϱ𝑍(0ϑ𝜀ε𝜗,0ϑ𝜀)
ℶ=1,…,𝜀ε𝜗 is a basis of X, whose dual basis (appropriate rescaling of (47)) is denoted by

{𝑙
ℎ,≨
}ℎϱ𝑍(0ϑ𝜀ε𝜗,0ϑ𝜀)
≨=1,…,𝜀ε𝜗 , that is 𝑙

ℎ,≨
ϱ X, ⌋𝐽

⊳,ℶ
,𝑙

ℎ,≨
⌈ = 1 for ⊳ = ℎ and ℶ = ≨, otherwise it vanishes.

Consider the edge 𝐹 = ⥴
⊳(0),⊳(ℶ). The vector proxy of d𝐶[⊳(0),⊳(ℶ)]ω is proportional to 𝝑

𝐹. Coupled with the edge bubble function
,
𝐹
= 𝐶

⊳(0)𝐶⊳(ℶ), the vector function ,
𝐹
𝝑
𝐹 satisfies

𝜺
3
⋟ ,

𝐹
𝝑
𝐹
⟩

3
= 0, 3 ϱ .

𝜀ε1(9 ),

as if the edge 𝐹 𝐺 3 , then ,
𝐹
⟩

3
= 0; otherwise 𝜺

3
⋟ 𝝑𝐹 = 0. Therefore 𝐶

⊳(0)𝐶⊳(ℶ)𝐽⊳,ℶ
ϱ B2(div, 9 ;X).

If divB
8
(div, 9 ;X) 0 (P

8ε1(9 ;>𝜗)ςRX⟥), then there exists 𝐻 ϱ P
8ε1(9 ;>𝜗)ςRX⟥ satisfying (𝐻, div𝛻)

9
= 0 for any 𝛻 ϱ B

8
(div, 9 ;X).

Equivalently

(𝑖Xgrad 𝐻,𝛻)9 = 0 ϖ 𝛻 ϱ B
8
(div, 9 ;X).

By expressing 𝑖Xgrad 𝐻 = ⟨

⊳ϱ𝑍(0ϑ𝜀ε𝜗,0ϑ𝜀)
⟨𝜀ε𝜗

ℶ=1 𝜑
⊳,ℶ
𝑙
⊳,ℶ
with 𝜑

⊳,ℶ ϱ P
8ε2(9 ), we choose

𝛻 =
⌉

⊳ϱ𝑍(0ϑ𝜀ε𝜗,0ϑ𝜀)

𝜀ε𝜗
⌉

ℶ=1
𝐶
⊳(0)𝐶⊳(ℶ)𝜑

⊳,ℶ
𝐽
⊳,ℶ

ϱ B
8
(div, 9 ;X).

Then we have
⌉

⊳ϱ𝑍(0ϑ𝜀ε𝜗,0ϑ𝜀)

𝜀ε𝜗
⌉

ℶ=1
(𝐶

⊳(0)𝐶⊳(ℶ)𝜑
⊳,ℶ
, 𝜑

⊳,ℶ)
9
= 0.

Therefore 𝜑
⊳,ℶ = 0 for all ℶ and ⊳ and consequently 𝐻 = 0. ⋠

Results�in�Applied�Mathematics�23��������100494�

31�



L. Chen and X. Huang

Employing the same argument as the proof of Proposition 4.8, the discrete inf-sup condition follows from (59).

Lemma 6.10. Let 8 ∳ 𝜀+1. Let ℏ
2
0 𝜔(div,⊲;X) be the finite element space defined in Theorem 6.5 and 𝑄

2
be the space defined in (58).

It holds

[𝜑
2
[0 𝑅 sup

𝛻2ϱℏ2

(div𝛻
2
, 𝜑

2
)

[𝛻
2
[0 + [ div𝛻

2
[0

ϖ 𝜑
2
ϱ 𝑄

2
.

For ⋞ ∳ 𝜗, all DoFs can be redistributed facewisely as no normal constraint block exists. We can further modify the DoFs to get
the discrete inf-sup condition with degree 8 ∳ 𝜗 + 1 relaxing the requirement 8 ∳ 𝜀 + 1 for 𝜗 = 1,… , 𝜀 ε 2.

Theorem 6.11 (𝜔(div)-Conforming Finite Element with a Better Inf-Sup Condition). Let 1 ∱ 𝜗 ∱ 𝜀ε2 and 8 ∳ 𝜗+1. For each 5 ϱ .⋞(∲2),
⋞ = 0,… , 𝜀 ε 1, choose a global 4-𝜀 basis {𝝑51 ,… , 𝝑

5

⋞ ,𝜺
5

1 ,… ,𝜺
5

𝜀ε⋞} depending only on 5 . Let { d⌢
ℶ
} be the corresponding basis of Alt1, and

{ d 𝐴⌢
ℶ
} be its dual basis. The DoFs

𝛻(⥳
ℶ
), ℶ = 0,… , 𝜀,𝛻 ϱ X, (60a)

(𝛻, <)
5
, < ϱ P

8ε(⋞+1)(5 )𝜛 { d 𝐴⌢5
⊳
𝜛 ω d 𝐴⌢5

ℶ
− (⊳, ℶ) is free and in the constraint block}, 5 ϱ .⋞(∲2),⋞ = 1,… , 𝜗 ε 1, (60b)

(trdiv
3

𝛻, <)
5
, < ϱ P

8ε(⋞+1)(5 )𝜛 { d 𝐴⌢5
⊳
− ⊳ is in the free block},3 ϱ .

𝜀ε1(∲2), 5 ϱ .⋞(3 ),⋞ = 1,… , 𝜗 ε 1, (60c)

(trdiv
3

𝛻, <)
3
, < ϱ [P1(3 )6 (B

8,𝜗
(3 ) ς P

⟥
1 (3 ))]𝜛 Alt𝜗,3 ϱ .

𝜀ε1(∲2), (60d)
(𝛻, <)

9
, < ϱ B

8
(div, 9 ;X), 9 ϱ ∲

2
,

will determine a space ℏ
2
0 𝜔(div,⊲;X).

Proof. The condition 𝜗 ∱ 𝜀 ε 2 is to ensure

dimB
𝜗+1,𝜗(3 ) = ⟩.

𝜗
(3 )⟩ =

⟪

𝜀

𝜗 + 1

⟫

∳ 𝜀 = dimP1(3 ) if 𝜗 ∱ 𝜀 ε 2.

So that we can modify the face DoF to (60d). Vanishing DoFs (60a)–(60c) will imply trdiv
3

𝛻 ϱ B
8,𝜗
(3 )𝜛Alt𝜗, which can be decomposed

into (60d). ⋠

As < ϱ P1(3 )𝜛Alt𝜗 is included in DoF (60d), we acquire the following discrete inf-sup condition by applying the same argument
as the proof of Lemma 6.10.

Corollary 6.12. Let 1 ∱ 𝜗 ∱ 𝜀 ε 2 and 8 ∳ 𝜗 + 1. Let ℏ
2
0 𝜔(div,⊲;X) be the finite element space defined in Theorem 6.11 and 𝑄

2
be

the space defined in (58). It holds

[𝜑
2
[0 𝑅 sup

𝛻2ϱℏ2

(div𝛻
2
, 𝜑

2
)

[𝛻
2
[0 + [ div𝛻

2
[0

ϖ 𝜑
2
ϱ 𝑄

2
.
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