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constraints, is developed in this work. It is based on the geometric decomposition of Lagrange

?311609 elements into bubble functions on each sub-simplex. Each tensor at a sub-simplex is further
decomposed into tangential and normal components. The tangential component forms the
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bubble function space, while the normal component characterizes the trace. Some degrees of
freedom can be redistributed to (n — 1)-dimensional faces. The developed finite element spaces
are H (div)-conforming and satisfy the discrete inf-sup condition. Intrinsic bases of the constraint
tensor space are also established.

H(div)-conforming finite element
Differential form

Tensors with linear constraints
Geometric decomposition

Bubble space

1. Introduction

Hilbert complexes play a fundamental role in the theoretical analysis and the design of stable numerical methods for partial
differential equations [1-5]. Recently, in [6], Arnold and Hu have developed a systematic approach to derive new Hilbert complexes
from well-understood differential complexes, such as the de Rham complex. In space R”, for 0 < k < n, let Alt*"~! := AltF @ Alt"!
be the tensor product of alternating multilinear functional spaces, H* be the standard Sobolev space with real index s, and «; be the
Koszul operator for the de Rham complex. Below, we rotate the right end column of the Bernstein-Gelfand-Gelfand (BGG) diagram
in [6] and switch the ordering of the index in [6] to match the row action of the operator div.

HI" @ Al L> HIH @ Al el % o 228 o=l ® Al L> HY ® Alt®!
2n-1
\de x J/div skw \ \Ldlv u \Ldiv
H 1 @ Alt™ —— HI" @ Al — o — HT 2®A1t1" —— HT" L@ A"

The algebraic operator s*"~! : Alt*"~! — Alt*"1", for 1 < k < n along the \, direction, is defined as

so" o (wy, .., wi_y) (v, - Z( Do (v, wy, oo, wiy) (0, D esvy) V0l U s w0y ER™

The tensor space X is defined as

X :=ker(s*" HnAlth" !, 1<k<n-1.
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A tensor w € Alt*""! can be represented by a matrix A = (a,;) € ]R(k)x", which is called a proxy matrix, and then X is a subset
of matrices satisfying certain linear constraints. For simplicity, we will use matrix A to represent an element in X. Given a domain
Q c R", define H(div, 2;X) space as

H(div, %) = {A € LX(@:X) : divA e L2 RW)),

where the divergence operator is applied to each row of A. Notable examples are H(div;S) with the symmetric matrix S, which
plays an important role in the discretization of the elasticity equation in the mixed form [7-9], and H(div;T) with the traceless
matrix T, which is used in the mixed form of the linearized Einstein-Bianchi system [10-12].

Given a simplicial mesh 7, of @2, we shall develop a systematic construction of H(div)-conforming finite element subspaces
of H(div,2;X) space. Take a proxy matrix A for an elementwise smooth tensor w € L*(2;X). H(div)-conformity means Anj is
continuous across each (n — 1)-dimensional face F of 7. Namely, each row of A is an H (div)-conforming vector function.

It is the constraint s*"~!(A) = 0 that makes the finite element construction difficult, as the constraint and the normal continuity
should be satisfied simultaneously. For example, the symmetry of the tensors makes it a challenging problem to construct H(div;S)-
conforming finite elements. Arnold and Winther [9] constructed such an element in two dimensions, and later it was extended to
higher dimensions in [13-15]. Hu and Zhang [16,17] constructed H (div; S)-conforming finite elements with full polynomial spaces
with matched order of approximation.

The approach we shall use is the geometric decomposition, which leads to explicit bases for finite elements. The geometric
decomposition is an important tool for finite element analysis. For example, it is used in [18] to construct a local and bounded
co-chain projection to the discrete de Rham complexes. The finite element system in [19] also originates from the geometric
decomposition. The geometric decomposition of standard finite element de Rham complexes is well-studied in [1,20,21], and in [22]
for nodal finite element de Rham complexes. Recently geometric decomposition has been extended to smooth finite elements and
smooth finite element de Rham and Stokes complexes [23,24].

We shall integrate the geometric decomposition of the Lagrange element with tangential-normal (s-n) decompositions R" =
I/ @/ on subsimplices to produce geometric decompositions of H(div)-conforming finite element vectors and tensors, exhibiting
normal continuity across all (n — 1)-dimensional faces. In a similar way, hierarchical geometric decomposition of H(div)-conforming
finite elements in two and three dimensions is discussed in [25-27]. A geometric decomposition of H(div)-conforming finite element
vectors with a different tangential-normal decomposition in three dimensions is also shown in [22]. While these prior studies offer
similar insights, our methodology introduces a novel level of generality. A significant aspect of our contribution is the expansion of
geometric decomposition techniques to effectively manage tensors subjected to specific constraints.

To satisfy the constraint while still keeping normal continuity, the crucial step is to get a ¢-n decomposition of X with respect to
the second component in Al e,

X=9/X e X),

where 7/(X) = (Alt'!®F /) n ker(s*"~!) and #/(X) = nyx(Alt* ®#/) with an oblique (non-orthogonal) projection operator
7y : Alt* @ ¥/ - X so that one constraint is used only once either in 7/ (X) or 4/ (X).
This induces the geometric decomposition

BAT:X) = B0 jes b Brie) (N @ [77 ) @ 4/ (). W
The tangential component will contribute to the polynomial bubble space
B, (div, ;%) := @D res, ) [bsPreerny(N) ® T/ (],

and the normal component b Py () QN 7 (X) to the trace.
As a direct result of decomposition (1), the following degrees of freedom (DoFs)

o(v;), i=0,....,n,w€eX, e
@mp  NEP_n(N®N(X), fe(T, £=1,....n—1, @0
@nr  neBWVT:X), TeT, o

will determine a space V,, C H(div, £2; X). Here we single out the vertex DoFs to emphasize the finite element function is continuous
on vertices.

Discrete inf-sup condition will be established with requirement r > »n + 1 and with modification of DoFs for r > k + 1 for
1 < k < n—2. Variants can be constructed by further tuning DoFs (2), which will recover the existing H(div;S) elements [16,17,28]
and H(div;T) elements [11,12].

The geometric decomposition approach in this paper is not easy to extend to the case X = SnT, which requires special care and
super-smoothness of DoFs; see the recent work [29].

The rest of this paper is organized as follows. Section 2 covers foundational concepts, including simplex, barycentric coordinates,
Bernstein polynomials, #-n bases, and a geometric decomposition of Lagrange elements. Sections 3 and 4 explore the geometric
decompositions of vector face elements and matrix face elements, respectively. Section 5 focuses on the constraint tensor space X
and its bases. The geometric decomposition of H(div)-conforming tensors is developed in Section 6. As the language of differential
form is abstract, in the first few sections we present the results using vector and matrix language and then move to the differential
forms in Sections 5 and 6.
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2. Notation and background

We summarize the most important notation and integer indices in the beginning:

» R" : n is the dimension of the ambient Euclidean space and n > 2;

+ P, : r is the degree of the polynomial and r > 0;

« A¥ : k is the order of the differential form and 0 < k < n;

+ 4,(T) : ¢ is the dimension of a sub-simplex f € 4,(T) and 0 < # < n.

2.1. Simplex and sub-simplices

Let T c R" be an n-dimensional simplex with vertices v, v, ..., v, in general position. Following [20], we let A(T) denote all
the subsimplices of T, while 4,(T) denotes the set of subsimplices of dimension #, for 0 < ¢ < n.

For a sub-simplex f € 4,(T), we will overload the notation f for both the geometric simplex and the algebraic set of indices.
Namely on one hand f = {f(0),..., f(¢¥)} C {0, 1,...,n}, and on the other hand

S = Convex(v sy, .-, Vp(p)) € Ap(T)

is the #-dimensional simplex spanned by the vertices v, ..., V). If f € 4,(T), for £ =0,...,n— 1, then f* € 4,_,_,(T) denotes
the sub-simplex of T opposite to f. Algebraically treating f as a subset of {0, 1,...,n}, f* C {0,1,...,n} so that fU f* ={0,1,...,n},
i.e., f* is the complement of set f. Geometrically,

S = Convex(V px(1y, - » V pr(u_gy) € 4yp_ 1 (T)

is the (n — ¢ — 1)-dimensional simplex spanned by vertices not in f. We refer to [24, Fig. 2] for an illustration of f and f*.

Denote by F; the (n—1)-dimensional face opposite to vertex v;, i.e., F; = {i}*. Here capital F is reserved for an (n— 1)-dimensional
face of T. For lower dimensional sub-simplices, we sometimes use more conventional notation. For example, the vertex will be
denoted by v; and the edge formed by v; and v; will be denoted by e;;.

2.2. Tangential-normal (t-n) bases

For an /-dimensional sub-simplex f € 4,(T), choose ¢ linearly independent tangential vectors {tlf Ve ,t;} of f and n—¢ linearly
independent normal vectors {n{, ,nf_f} of f. The set of n vectors {tlf, ,t?,n{, ,nf_f} forms a basis of R”. Notice that for
¢ =0, i.e., at vertices, there are no tangential vectors, and for # = n, there are no normal vectors. Define the tangent plane and
normal plane of f as

gl .= span{tif,i =1,....7}, N o= span{nf i=1,....n=7¢}.

+
All vectors are normalized but {t,./ '} or {nif } may not form an orthonormal basis.

Inside the subspace 5/, we can find a basis {i{,...,i?} dual to {tlf,...,tbf,:}, ie, 1, € 7/ and (?,-,tj) =4, fori,j =1,....7.
Similarly we have a basis {f:{, ,fzi_f} of #/ and (An) =6, fori,j=1,...,n—¢. As g7/ 1 w7, the basis {i{, ,f;,ﬁlf, ,ﬁi_f}
is also dual to {tlf, ,té,nlf, ,n’{_f}.

Given a sub-simplex f € 4,(T), we now present two bases for its normal plane .#'/ constructed in [30].

Recall that we label F; as the (n — 1)-dimensional face opposite to the ith vertex. Then f C F; for i € f*. One basis is composed

by unit normal vectors of all such (n — 1)-dimensional faces:
{ng.ief 1,

and will be called the face normal basis.
We now give its dual basis in #//. For f € 4,(T),¢ =0,1,...,n—1 and i € f*, let f U {i} denotes the (7 + 1)-dimensional face
in A,,(T) with vertices {i, (0),..., f(£)}. Let nfu(i} be a unit normal vector of f but tangential to f U {i}. The basis

S : *
(i€ 1)
will be called the tangential normal basis.

f

Lemma 2.1. For f € A,(T), the rescaled tangential normal basis {n f

U(‘.}/(nfu(‘.} “ng),i € f*} of 1 is dual to the face normal basis
{nﬂ,i e f*L

Proof. Clearly n?u 1y E, e ¥/ for i € f*. It suffices to prove

i

n’

_ . o
/um'"F,_O fori,je f*i#j,

which follows from the fact f U {i} C F; and "fum eg/vil O
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3 {0,1}

0,13}
(a) Basis {to,1,%0,2,t0,3} and {VA1, VA2, VAz}. (b) Basis {np,, ’npg} and {nigﬁg}, "Eg:i,}a}

Fig. 1. Face normal basis and tangential normal basis of a vertex and an edge in a tetrahedron.

Example 2.2. An important example is f € 4y(T), i.e., f is a vertex. Without loss of generality, let f = {0}. Then n?um is a unit
normal vector of edge {0,i}: ty; or t;, depending on the orientation. Its dual basis is {nﬁ /(nﬁ ~tg),i =1,...,n}. See Fig. 1(a).

Example 2.3. Let f = {0,1} be an edge of a tetrahedron. Then we have two bases of the normal plane #/: {n £ NE ) and

on pon )}. They are dual to each other with an appropriate rescaling. See Fig. 1(b).

{ng 10 M01

2.3. Barycentric coordinates and Bernstein polynomials

For a domain 2 C R” and integer r > 0, P.(£2) denotes the space of real valued polynomials defined on £ of degree
less than or equal to r. For simplicity, we let P, = P,(R"). Hence, if n-dimensional domain £ has nonempty interior, then
dimP,(Q) = dimP, = ("""). When @ = {v} is a point, P,(v) = R for all > 0. And we set P,(2) = {0} when r < 0. Let H,(€2)
denote the space of real valued polynomials defined on 2 of degree r.

For n-dimensional simplex T, we denote by 4, 4, ..., 4, the barycentric coordinate functions with respect to T. That is 4; € P;(T)
and A, (vj) =6;,0<i,j<n where 5 is the Kronecker delta function. The functions {4;,i = 0,1,...,n} form a basis for P, (T),
Z?:o A(x)=1,and 0 < 4;(x) £ 1,i = 0,1,...,n, for x € T. The sub-simplices of T correspond to the zero sets of the barycentric
coordinates. Indeed f = {x € T | A;(x) =0,i € f*} for f € 4,(T).

We will use the multi-index notation « € N", meaning a = (al, ,a,,) with integer o; > 0. We define x* = xT' -~-xz”, and
la] 1= Y| ;. We will also use the set N of multi-indices a = (a, ..., @,), with A% := 4" - 4" for a € NO*".

We introduce the simplicial lattice [23,24], which is also known as the principal lattice [31]. A simplicial lattice of degree r and
dimension » is a multi-index set of n + 1 components and with fixed length r, i.e.,

T" = {a=(ag.ap,...,2) ENO" | ag+ oy + -+, =1}
An element « € T” is called a node of the lattice. The Bernstein representation of polynomial of degree r on a simplex T is
P,(T) :=span{A® = 4°A]" ... 4", @ € T/}
In the Bernstein form, for an f € 4,(T),
— a _ % X ‘
P,(f) = span{2% = A0 A5 2% a € TL).

Through the natural extension defined by the barycentric coordinate, P,(f) C P.(T). The bubble polynomial of f is a polynomial of
degree ¢ + 1:

by 1= Ap = Apydsay - Arey € Pryr ()
We have the following property of the bubble polynomial b,.

Lemma 2.4. Let f,e € AT). If f L e, then b, |,=0.

Proof. As f=(fne)u(fne)and f ¢ e, we conclude f ne* # @. So b, contains 4; for some i € e* and consequently b/|, =0. []

In particular, b, vanishes at all sub-simplices other than f with dimensions < dim f, and higher dimensional sub-simplices not
containing f.
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2.4. Geometric decomposition of Lagrange elements

We begin with the geometric decomposition of the Lagrange element. The following geometric decomposition of Lagrange
element is given in [20] without proofs. As it is the foundation of other geometric decompositions in later sections, we present
it using our notation and provide a detailed proof. We refer to [20, Fig. 2.1] for an illustration of this geometric decomposition. For
the 0-dimensional face, i.e., a vertex v, we understand that fv uds =u(v) for 1 € P,.(v) = R.

Theorem 2.5 (Geometric Decomposition of Lagrange Element, (2.6) in [20]). For the polynomial space P,(T) with r > 1 on an n-dimensional
simplex T, we have the following decomposition

PAT) = 69;:069/'e4f(r)bfpr—(f+I>(f)' 3
And the function u € P.(T) is uniquely determined by degrees of freedom (DoFs)

/ upds,  PEP,_pun(f)f € AT =01, @
f

Proof. We first prove the decomposition (3). Each component b,P,_,,,(f) C P.(T) and the sum is direct due to the property of
by, cf. Lemma 2.4. Then count the dimensions and use the combinatorial identity

() -)

which can be proved by looking at the coefficient of x” in (1 + x)"*!(1 + x)"~! = (1 + x)"*".

To prove the unisolvence, we choose a basis {¢;} of P(T') by the decomposition (3) and denote DoFs (4) as { N;}. By construction,
the dimension of {¢;} matches the number of DoFs {N,}. The DoF-Basis matrix (N,(¢,)) is thus square and block lower triangular
in the sense that for ¢, € b,P,_,,1)(f),

/q.')fpds =0, ecA,(T)withm<¢ande# f,p €EP,_gme_1(e)
e
due to the property of b, established in Lemma 2.4. Each diagonal block matrix is the Gram matrix
/quf dxp. pq €Pr_(pyy (/)
A

in the measure b, dx, and thus symmetric and positive definite. In particular, it is invertible. So the unisolvence follows from the
invertibility of this lower triangular matrix; see below for an illustration.

N\ ¢, 0 1 n—1 n

0 n 0 0 0

1 O O 0 0 )
n—1 O O O 0

n O O O |

O

Remark 2.6. It is important to note that P,_.,;,(f) = {0} when r < # + 1. As a result, the last non-zero term in (3) corresponds to
¢ < min{r—1,n}. This implies that the degree of the polynomial dictates the dimension of the sub-simplex in decomposition (3). For
instance, with quadratic polynomials, the summation includes only edge bubbles and excludes face bubbles and higher dimensions.
Despite this, the full summation notation @}_,, is retained for simplicity, with the implicit understanding that the range of non-zero
sub-spaces will automatically truncate the limits.

Let {7,} be a family of partitions of 2 into nonoverlapping simplices with A := diam(T) and s := maxycy, hr. The mesh 7, is
conforming in the sense that the intersection of any two simplices is either empty or a common lower sub-simplex. Let 4,(7}) be
the set of all #-dimensional sub-simplices of the partition 7, for # =0, 1, ..., n. The Lagrange finite element space

S, ={veC): vreP.(T),YT €T, DoFs (4) are single-valued},
has the geometric decomposition
SZ = @Z:O@feAf(ﬁ)bfPr—(m—l)(f)'

Here we extend the polynomial b,P,_.,,(f) to each element T containing f by the Bernstein form in the barycentric coor-
dinate and thus it is a piecewise polynomial function and continuous in Q. Consequently S; c H 1(Q) and the dimension of

5
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.o
Sh is

o - —1
dlmSh=2|Af(Th)|<rf )
=0

where |4,(7},)| is the cardinality, i.e., the number of /-dimensional simplices in 7.
The geometric decomposition of the vector Lagrange elements is a straightforward generalization:

PR = @0 ses, ) [BrPrier1y(H O R (©)

In (6), a fixed orthonormal basis of R” is implicitly assumed in which the vector is expanded. It is usually the Cartesian coordinate
describing the domain Q.

3. Geometric decompositions of vector face elements

In this section we consider H(div)-conforming vector finite elements with local shape function space P,(T;R"). Define
H(div, Q) := {v € L*(Q2;R") : divv € L*(2)}. For a subdomain K C £, the trace operator for the div operator is

tr‘}(“’v =v-n|yx for veCK),

where n denotes the outwards unit normal vector of 0K. Given a triangulation 7, and a piecewise smooth function u, it is well
known that u € H(div, ) if and only if nj - u is continuous across all faces F € 4,_,(7;,), which can be ensured by having DoFs on
faces. An H(div)-conforming finite element is thus also called a face element.

3.1. Examples in three dimensions

We first use three-dimensional examples to illustrate the main idea. Recall that the geometric decomposition of the vector
Lagrange elements in three dimensions reads

P(T;R%) = @;:O@feA/(T) (6P i) () @ RY]. @

A fixed orthonormal basis {e; },'3:| of R? is used in (7). See Fig. 2(a).
An H (div) function is a vector proxy of an (n—1)-form; see Section 5. As a differential form, it is an intrinsic quantity independent
of the choice of coordinates/frames. Based on this observation, we shall choose different frames at different sub-simplex f € 4,(T).
For f € A,(T) with £ =0, 1,2, 3, the tangent plane and normal plane of f are

fo:span{tf i=1,....7}, ./Vf:span{nif,i:l,...j—f}.

i

Then R3 admits a tangential-normal (t-n) decomposition R?> = 7/ @1 .#/. Coupled with the bubble polynomials, we obtain a t-n
decomposition of P,(T; R?) as

3
P.(T;R?) = D:-0D es, ) B9/ @B,#],
where
B9/ =bP ( g/, BN =b,P n
" P ey(H®T7, B, Py (N

Notice that for a vertex v € 4y(T), B, = {0}, and B,#/V = 1,R? as b, = 4,,P,_,(v) =R, and 4V = R3.
Define the polynomial bubble space B,(div,T) := ker(tr%i") NP,.(T;R3). The tangential component will form the div bubble space:
for r > 2, it holds that

. 3
B,(div,T) = @,_, D /e A/(T)IB,F/‘f .

Verification of B,/ C B,(div,T) is straightforward. For face F not containing f, b +|lp = 0. For face F containing f, trV oy =
u-np=0as tif~nF=0.

The normal component will contribute to the trace. We can derive the second family of Nédélec element [32,33], which
generalizes the Brezzi-Douglas-Marini (BDM) element [34] in two dimensions, from a special ¢-n basis. For face F € 4,(T), choose
two linearly independent tangential vectors t¥ ,t2F of F and one normal vector n, of F. For edge e € 4,(T), choose a tangential
vector t¢ of e and the face normal basis vectors {n FoE b where F|, F, are two faces containing e. For vertex v € 4,(T), choose
{np,np,,ng}, where F|, F,, F; are three faces containing vertex v. For tetrahedron T, we keep the canonical basis {e,.}le, which
is considered as tangential vectors of 7. See Fig. 2(b).

We then group normal components {B,.#/, f € A(T)} face by face. On each face F, again by the geometric decomposition of
Lagrange element, the normal components at different sub-simplices f € A(F) will determine the scalar function u - nj. In Fig. 2(c),
we show such face-wise redistribution for a quadratic face element.
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€3
€9
N 61

ne,

ne,
np; ng My nry
np,
npy
te

(a) Fixed Cartesian basis {ei}?zl isused for (b) In Nédélec/BDM element, face normal (c) Facewise redistribution of the normal
the vector Lagrange element. basis {np, f C F} is used for N- . DoFs for the quadratic face element.

Fig. 2. Classical face elements can be obtained by a special +-n decomposition and face-wise redistribution of normal components.

Example 3.1 (Nédélec Element/BDM Element). Taking N'/ := span{n 7»f € F;}, the following DoFs

@ np)lp (D). F € 85(T).v € 4y(F), (8a)
/(v ‘np)lp, pds, F; € 4(T),e € A((F),p €P,_y(e), (8b)
(w-ng) pds, F; € 4(T),p €P._3(F), (80)
F'[
/ v-pdx, peDB,.(dv,T) (8d)
T

define the Nédélec element/BDM element. DoFs (8a)—(8c) are all located on face F;, and uniquely determine (v - n 7) | FE P.(F).
Hence DoFs (8a)—(8c) can be combined to one DoF

/ (W-ng) pds, F; € 4)(T),peP.(F).
Fi

The interior DoF (8d) can be further replaced by p € (P,_,(T:R") @ H,_»(T;K)x) with K being the skew-symmetric matrix space;
see [28]. Therefore DoFs (8) induce the Nédélec/BDM element; see Fig. 3(a).

Different H (div)-conforming finite elements can be obtained by different ¢-n basis.

Example 3.2 (Stenberg Element). Taking {n}’}f:1 ={e;}>_, and {n¢ },'2:| = {np, }1.2:] as two face F, sharing e, the following DoFs
v(v), veEAT),
/E(v cnp)lp pds, F, € 8y(T).e € A,(F),p € F,_y(e),
/Fv~nF pds, F € AT),peP._5(F),
/Tv -pdx, pe€DB.(div,T)

induce the Stenberg element [35], which is continuous at vertices; see Fig. 3(b).

Example 3.3 (Christiansen-Hu-Hu Element). Taking {"}/}?:1 = {ei}?=1 and {n{ }le depending only on e, the following DoFs
v(v), vE AT),
(v-n}) pds, e€A(T),p P, _5(e),i=1,2,
/(v -ng) pds, F € A)(T),p€eP,_3(F),
F
/ v-pdx, p€B.(div,T)
T

define the Christiansen—-Hu-Hu (CHH) face element [22, Section 3.5], which has extra continuity at vertices and on the normal
planes of edges; see Fig. 3(c).
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es
es
€1
ng
tc
(a) Nédélec/BDM element. (b) Stenberg element. (c) CHH element.

Fig. 3. Different H(div)-conforming finite elements can be obtained by different 7-n decompositions.

3.2. Face elements in arbitrary dimension

We now present and prove the result in arbitrary »n >2 dimensions. Again the main idea is using different and in general
non-orthonormal 7-n decomposition adapted to different sub-simplices.

3.2.1. Bubble spaces

For an /-dimensional sub-simplex f € 4,(T), choose ¢ linearly independent tangential vectors {tlf - ,t?} of f and n—¢ linearly
independent normal vectors {n{ - ,nf _ f} of f. The set of n vectors { tf - ,t?,n{ - ,nf N f} forms a basis of R". Notice that for
¢ =0, i.e., at vertices, there are no tangential vectors and for # = n, there are no normal vectors. Define the tangent plane and
normal plane of f as

g/ =span{t! i=1,....¢), # :=span{nl i=1,....n-¢).
All vectors are normalized but {t'l.f } or {n'l.f } may not be an orthonormal basis. Coupled with the bubble polynomial, for r > 1, define

BT/ =bP_oiy(N®T!, BN =bP,_ (RN

Lemma 3.4. The shape function space P.(T;R") has a geometric decomposition

P(T:R") = By D ses, ) BT @B.4']. 9)
A function u € P,(T;R") is uniquely determined by the DoFs: for all f € 4,(T),¢ =0,1,...,n,
/(u.t{)pds, i=1, 6P €P,_piy)(f), (10a)
S
/(u~nj)pds, j=ln—t,pEP (£ (10b)
f

Proof. Since {tf, e t;, n{, . n{_f} forms a basis of R", DoFs (10a)-(10b) are equivalent to

/“ -pds, PEP._piy(fiRY.
f

Then the unisolvence follows from Theorem 2.5 for the Lagrange element. []

Next we use B,/ or B,.#/ to characterize the kernel or range of the trace operator, respectively. Define the polynomial bubble
space

B,(div, T) := ker(tr®") n P, (T; R").
It is obvious that B (div, T) = {0} and B, (div,T) = {0}.

Lemma 3.5. For r > 2, it holds that

B,(div.T) = @)_, D cs BT an
and

u : DLo6D e,y BV u T BTIRY (12)
is a bijection. Consequently

dimB,(div, T) = Y <;: i) (’; 1) (”:)

=1
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Proof. Verification of

@;:1@&4/@)&9# € B,(div.T)

is straightforward. For face F not containing f, b,| = 0. For face F containing f, " u|, =u-ny =0ast/ -np =0forueB,J/.
Then apply the trace operator to the decomposition (9) and use tr4V(B,7 /) = 0 to obtain

Y ( ;;z)@feAf(T)Br/Vf) = uVP(T;R").

So the map tr4" in (12) is onto.

We then prove it is also injective. For an f € 4,(T), recall that {np.i€ f*}is the face normal basis of .#'/ and {Ap.ie f*}isits
dual basis of #'/. We expand u € @;;BQ/.EA/(T)B,/Vf in the dual basis, i.e., u = Y/} 2 rea, ) Zie Py, with ply € Py (/).
We will prove if tr4V u = 0, then u = 0.

To do so, we consider the operator N l:f w)=@-ng, )| - Condition trdV y = 0 implies Nl.f w)=0forall f € AT)and i € f*. By
the choice of the basis of .#/ and the property of bubble polynomial b /> the corresponding N-¢ matrix is block lower triangular
with diagonal matrices in the diagonal block; see (5) for an illustration. Therefore Nif (u) = 0 implies u = 0. More specifically, we
have N'(u) = p{, =0 for v € 4y(T) and i € v*. After that, we apply N‘.f (u) to conclude pif = 0 for f € A((T). Using this forward
substitution argument for the lower triangular matrix, we conclude all coefficient polynomials pl.f =0.

Once we have proved the map tr in (12) is bijective, we conclude (11) from the decomposition (9). [J

With this characterization, tangential DoFs in (10a) can be merged as one B, (div, T).

3.2.2. Brezzi-Douglas—Marini element
Given an f € A,(T), we choose {np, f C F € 4,_,(T)} as the basis for its normal plane .#/.

Lemma 3.6 (Local BDM Element). The shape function space P,.(T;R") is uniquely determined by the DoFs
/ v-ngpds, peP.(F),Fea, (T) (13a)
F

/ v-pdx, peB,.(div,T). (13b)
T

Proof. By the geometric decomposition of P,(F) element, (13a) can be decomposed into

/f(v np)lp pds, F €A, (T).f €A,(F).pEP,_py1)(f).6 =0,1,....n— 1. (14)
We switch the ordering of f and F to

/f(v ‘np)lp pds, fE€AM),FeA_(T),fCF.peP._pn(f)2=01,....n—-1,

which is exactly (10b) according to our choice of normal basis.
Therefore given a v € P.(T;R"), if (13a) vanishes, then tr v = 0 and consequently v € B,(div, T). Finally the vanishing DoF (13b)
impliesv=0. [

One benefit of using the decomposed version (14) instead of the merged one (13a) is that the well documented Lagrange basis
functions can be used in the implementation of the face element; see [30].

We call the change from (14) to (13a) the facewise redistribution of normal DoFs. Namely by using the face normal basis, we
can redistribute the DoFs on f to each (n — 1)-dimensional face F containing f.

To glue local finite elements to form an H(div)-conforming finite element, we need to enforce continuity of v - n by choosing
ny depending only on F not element 7.

Lemma 3.7 (BDM Space). For each F € A,_,(T},), choose a normal vector n. For the shape function space P.(T'; R"), the following DoFs
/v-ands, peP.F), Fed,_ (T, (15a)
F
/ v-pdx, peB.(iv.T),T €7, (15b)
T

define an H (div)-conforming space

Vapm = (v, € H(div, Q) : v,y € P(T;R"), VT €7,}.

Proof. On each element 7, DoFs (15) will determine a function in P.(T;R") by Lemma 3.6. DoF (15a) will determine the trace
v-np on F independent of the element containing F, and thus the function is H(div, 2)-conforming. []
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We have the geometric decomposition of the global BDM element space

Vepm = @FEA,, I(Th)®f—0®feAt(F)B NI(F. Q& @Ter B, (div, T),

and

. 1\, (r-1
dlmVBDM:|An_1(Th)|<n+: > |4, (Th)|z<;il> <’f )

Here

B,/ (F, Q) :={v, € Hdiv,Q) : v;|r € BN/ for T €7, FCT,v,lq» =0 for T € T,,, F ¢ T').

3.2.3. Stenberg’s type element

We can construct an H (div)-conforming element with more continuity on the normal plane of lower dimensional sub-simplices
by choosing a global basis of /7.

In the 7-n decomposition, if a basis vector tlf or nif depends only on f not on element 7' containing f, we call it global and
otherwise t,.f (T) or nl.f (T) is local and the corresponding DoFs are different for different 7 containing f. For a global basis vector,
the corresponding DoF (10a) or (10b) only depends on f and thus imposes continuity in that direction. In the extreme case, if all
t-n basis vectors are global, we obtain the Lagrange element.

The following is a generalization of Stenberg element by imposing more continuity on the normal plane for sub-simplices with
dimension from 0 to m for some —1 < m < n—2. When m = 0, it is the original Stenberg’s element [35], i.e., only continuous at
vertices. When m = n—2, it is Christiansen-Hu-Hu element constructed in [22]. When m = —1, no DoF (16a) exists and thus reduces
to the BDM element.

Lemma 3.8 (Stenberg Type Element). Let —1 < m < n—2. For each f € A,(T;,) with £ < m, we choose n— ¢ normal vectors {n{, ,nfff}

Then the DoFs
/v nl pds, pEP_yy(f). fEATi=1con—¢,£=0,....m, (16a)

S
/(v np)lp pds, pEP,_piy(f).F €A (T, fE€A(F).C=m+1,....,n—1, (16b)

f
/ v-pdx, peB.(div.T), T €T, (16c)
T
will determine a space V., Stenberé C H(div, Q).

Proof. For T € 7;, and f € 4,(T), both {nlf, ,ni_f} and {np, F € A,_(T), f C F} are bases of the normal plane .#/. Then the
number of DoFs (16) restricted to 7 equals to the number of DoFs (13). DoF (16a) determines DoF (15a) for # =0,...,m. Thus we
conclude the result from Lemma 3.7. [

We have the geometric decomposition of the global Stenberg element space

VSrlcnbcrg = 6?20@]”&4;(7;[)]3’/’//(!2) @ @FEA (Th)®/ m+1 @feA[(F)BV‘/Vf(F’ ‘Q) @ @TET;, ]B'”(div’ T)’

and
u 1 o 1 < (n+1 1\ (¢
r— n r— n r—
AV ey = 2 14Tl = f)( P ) +14, Tl Y (H 1) < , ) +14,(T)1 Y (K i 1> ( P ) (1)
£=0 £=m+1 /=1
Here
B,/ (Q) :={v, € H(div, Q) : vylp €B,N/ for T €Ty, f CT,vplqn =0 for T € Tp,, f ¢ T').
Clearly V, Slenbero C Vapm, and dim Vg, enberg < dimVgpy for 0 <m <n-2.

We introduce an n-dimensional smoothness vector r = (rg. 7y, ..., r,_1)7 € R" to characterize the smoothness of the finite element
space at sub-simplices of dimension # =0, 1,...,n — 1. For the space VS’tenberg defined by DoFs (16), the smoothness vector is given
by

1 m T
=(0,———,...,——,—1,...,—-1) .
" ( n—1 n—1 )
For an /-dimensional face f € 4,(7,), a smoothness parameter of __1 means the vector is discontinuous only on the #-dimensional

tangential space and continuous on the normal plane N'/. The value —1 indicates that the DoF is redistributed to faces, and the
vector is discontinuous on the tangential space of (n — 1)-dimensional faces. The same smoothness vector will determine the same
global finite element space, although DoFs may be slightly different; see the modification of DoFs in Corollary 3.11.

Here are the smoothness vectors for the examples in Section 3.1: Nédélec element/BDM element: r = —1 with m = —1, Stenberg
element: r = (0,—1,-1)T with m = 0, and CHH element: r = (0, —1/2,—1)T with m = 1. These vectors give the smoothness properties
of the respective finite element spaces at vertices, edges, and faces.

10
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3.3. Discrete inf-sup condition

In the unisolvence of vector Lagrange elements, cf. the proof of Lemma 3.4, any basis of R" at f is allowed. The - basis is used
for two purposes: 1. the H(div)-conformity; 2. the discrete div stability.

If the H(div)-conformity is the only concern, we can simply choose the Lagrange element. Another and more important
consideration is from the div stability. At the continuous level, we have the div stability, i.e., div : H(div, 2) - L%(R) is surjective,
which has a continuous right inverse. A regular right inverse in H 1(Q) also exists [36].

By the Euler’s formula for homogeneous degree polynomials H,_,(7), i.e. div(xq) = (r — 1 + n)q for any ¢ € H,_;(T), clearly we
have divP,(T;R") = P,_,(T). Hence the discrete div stability in one element always holds. We discuss the global version. Let

V, ={v, € H(div, Q) : vyl € P(T;R") for each T € 7}, },
Q,, :={qy € LX) : g4lp € P,_|(T) for each T € T, }. anzn

The discrete div stability refers to divV,, = Q, and the operator div has a continuous right inverse.
We will use the L?-inner product (-,-); and define the orthogonal complement of a subspace V c L*(T) as V4, i.e.,

Vi={ue L’0): wv)r=0 YveV).

We first give the following characterization of the range of the div operator on the bubble polynomial space.

Lemma 3.9 (Lemma 3.6 in [28]). It holds
divB,(div,T) = P,_(T)nR:, r>0.
Proof. When r =0, 1, both sides are zero. Therefore we focus on r > 2.
The inclusion div(B,(div,T)) C (P,_,(T) N R}) is proved through integration by parts
(dive, p)y = —(v,gradp)r =0, p € ker(grad) =R.

If div(B,(div, T)) # P,_,(T) nR*, there exists a p € P,_;(T) nR* and p L div(B,(div, T)), which is equivalent to grad p L B,(div, T).
Expand the vector grad p in the basis {n;,i = 1,...,n} as gradp = ¥\, g;n; with q; € P,_,(T). Then set v, = Y| |VAlg404it; €
B,(div,T), where t; := v, — v;. We have

n
radpoyy =Y, [ @ghax=o.
i=1 /T
which implies ¢; =0 for i = 1,...,n, i.e., gradp=0and p=0as peP,_;(T)nR:. [
Next we verify the discrete div stability.

Proposition 3.10. Let r > 1 and Vpy be the BDM space defined in Lemma 3.7 and Q,, defined by (17). It holds the discrete inf-sup
condition

(divwy, q5)

—_————— Vg, €0, 18)
lwplly + Il diveyll h==h

llgpllo S sup
v €VBDM

Proof. By Theorem 1.1 in [36], there exists v € H'(£2;R") such that

dive =g, lvlly < ligpllo- 19
Let D, € Vpy satisfy

/Fi)h~npds=/Fv~ans, Fed,_ (T,
and the rest DoFs vanish. By the scaling argument,

1DRllo + N1 div Dy llo < 1Xlly < Nlgnllo- (20)

Clearly we have div(¥), — v)|; € P,_(T) nR* for each T € 7). By Lemma 3.9, there exists b, € L>(2;R") such that b,|; € B,(div,T)
for each T € 7, and

divb, =divw —9,), |byllor S hrlldivd, —v)llor- 21
Take v, = 0, + b, € Vgpy- By (19) and (21), it holds

dive, = divd, +divb, =dive = gp,. (22)
It follows from (20) and (21) that

loallo + 11 diveylly = lwallo + lanllo < 1Z4llo + IB4llo + laallo < 184llo + All div &l + lanllo < lanlo. 23)

Combining (22)-(23) yields (18). [

11
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For the Stenberg-type element, the continuity at normal planes introduces some constraint and makes the discrete inf-sup
condition harder. As all bubble functions are treated locally, div B,(div, T) = P,_,(T)nR* still holds. We only need to show Urer, Po(T)
is in the range of div V,, which requires the face average [, v-ny ds in DoF.

We propose the following modification to have a better discrete inf-sup condition. Denote by

By i1 (F) = [@)) 1 @rea,r) byProisn(N)], —1<m<n-2.
Corollary 3.11. With the same setting in Lemma 3.8 and further assume r > m + 2 for —1 < m < n — 2. Replacing DoF (16b) by

/ vong qds, F €4, (T, q € B, (F)NPL(F) ® Py(F), (24)
F

will define the same finite element space.

Proof. When -1 <m<n-2andr>m+2,dimB,, (F)> |4,,,(F)| > dimP,(F). Therefore the number of DoFs remains the same
as DoF (16b).

Vanishing DoFs (16a) will imply v - ng|r € B, ,,,(F), which can be determined by (24). So the unisolvence follows.

As the change will not affect the continuity, it will define the same finite element space. []

Now [ ¢ U-npds is in DoF (24). The proof of the following result is identical to that of Proposition 3.10.

Proposition 3.12. Let —1 <m <n—2and r > m+2. Let V| be the H(div)-conforming finite element defined in Lemma 3.8. The following
discrete inf-sup condition holds with a constant independent of h

(divvy, q)
[lgnllo S sup

—————— Vg, €0,. (25)
opevy 1allo + Idive,lly "= ="

4. Geometric decompositions of matrix face elements

In this section, we generalize the geometric decomposition of H (div)-conforming vector finite elements to two H (div)-conforming
matrix finite elements: the traceless matrix T and the symmetric matrix S.

4.1. Traceless matrix elements

We consider the H(div, ; T)-conforming finite element spaces, where T € R™" is the set of square matrices with vanishing trace,
i.e., the sum of the diagonal is zero.
We start from the tensor product of the Lagrange element and T:

PAT:T) = D70 rea, ) [0/ Pr-e4n (N @ T].

That is each component of the matrix function is a Lagrange element of degree r and thus is continuous. To be H (div)-conforming,
however, normal continuity is sufficient.

To impose the normal continuity of a traceless matrix function, the key is a r-n decomposition at each sub-simplex. Here the
t-n decomposition is with respect to the second component in the tensor product form u ® v of representing a matrix. Given a
sub-simplex f € 4,(T), choose a r-n basis {tif n' }jzl’“""_f and decompose R" = 7/ @' #/. All basis vectors are normalized but

Jli=l,... 0
may not be mutually orthogonal. By the tensor product the n x n matrix space M has the following decomposition

M=R'®7) o R ® ). (26)

For a matrix A € M, tr‘};"(A) = Any and thus tr‘},i"(]R" ® /) = 0. The normal component R"” ® .#'/ will contribute to the normal
trace.

We then modify (26) for M to impose the traceless constraint while not changing tr%'. When computing the trace of a matrix,
we use trace(u ® v) = v - u. We pick up the element t{ ® tlf €R"® I/ and use it to modify the basis in (R" ® 7/)® R"® #/) to
get the following ¢-n decomposition on f € 4,(T) for £ > 1:

(T :=Span{nf®t{,l <i<?,1 sjsn—f}@span{t{o;t]’f—(t{~t]f)t{®t{,1 <ij<t),

HI(T) :=spanf{t/ @nl,1<i<¢1<j<n—¢} @span{n] @n] —(n] -n)t] @1, 1<i,j<n-¢}.
By counting the dimensions, it is easy to show the direct decomposition

T=9/Mes/ (T), fea,D),¢=1,..,n

For ¢ = 0, i.e., at vertex v € 4y(T), we understand 7 (T) = {0} and #(T) = T. For # = n, 77(T) = T and #7(T) = {0}. Coupled
with the bubble polynomials, we define

BT/ (T) i= bP,_p1y(N @ T/ (D), BN/ (T) i=byP,_py1)(f) @ /(D).

12
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Lemma 4.1. The shape function space P,.(T; T) has a geometric decomposition
P.(T;T) = @;:O@feA/(T) [B.9/(T) @ B,.#/(T)|.
A function A € P.(T;T) is uniquely determined by the DoFs

/A iqds,  qEP_(N®TI(D).f €M)l =1,...n, (27a)
s

/A : qds, qEP_ o y(N® N/ (D), f € 4,(T),¢ =0,....n— 1. (27b)
f

Proof. Since T = J/(T) @ #/(T), DoFs (27a)-(27b) are equivalent to
/A : gds, GEP, (i (I®T, [ €4,T),6=0,....n
!
Then the unisolvence follows from the unisolvence of the Lagrange element. []
Define the bubble polynomial space
B,(div,T; T) := P,(T; T) nker(tr®™).

Follow the same proof of Lemma 3.5, we have the characterization of the bubble space.

Lemma 4.2. For r > 2, it holds that
B,(div, T5T) = @), D res, BT/ (D),
and
o DD ses, B () — 8 BT T)
is a bijection.
Similar to the generalized Stenberg element, we can redistribute some normal DoFs onto the (n — 1)-dimensional faces to obtain

the following H(div; T) element.

Theorem 4.3 (H (div; T)-Conforming Finite Elements). Let 0 < m < n—2. For each f € A,(T},) with ¢ < m, we choose n— ¢ normal vectors

{n'lf yeen ,n': _, ). For each F € A,_,(T},), choose a normal vector ny. Then the DoFs
A(W), veA(T,),AeT, (28a)
/(An,-f)'qu, fFe€AT.qeEP _(piy(fiRDi=1,....n=¢, £=1,....m, (28b)
S
/(AnF)lF -qds, Fed,_((T,), fe A, (F),qe IP,_(KH)(f;R"), f=m+1,...,n—1, (28c)
!
/A i qdx, TeT, qeB.div,T;T), (28d)
T

will determine a space V'(T) C H(div, £2; T), where
V'(T) :={A e L*;T) : Alp e P(T;T) VT €T, DoFs (28a)—-(28b) are single-valued across f € A,(T,) for £ =0,....m,
DoF (28c) is single-valued across F € A,_{(T})}.

Proof. For T € 7, and f € A,(T), both {n{,...,nf_f} and {np,F € A,_(T), f C F} are basis of the normal plane .#/. Then

DoFs (28) restricted to T are equivalent to DoFs (27), thus uniquely determine P,(T; T).
For F € A,_,(T,,), DoFs (28a)—(28b) restricted to F will determine

/ (Anp)lp-qds. [ €4,(F).q€P,_ oy (fiR"), £=0,....m.
f

Then by the unisolvence of Lagrange element in Theorem 2.5, (Ang)| is determined by DoFs (28a)—(28c) restricted to F. Therefore
Vr(T) c H(div,&2;T). [

To have a better discrete div stability, we modify the face DoFs.

Corollary 4.4. With the same setting in Theorem 4.3 and further assume r > m+2 for0 < m <n-3,andr > n+1 form = n-2.
Replacing DoF (28c) by

/(Anp) -qds, F €A, (T, q€ B, (F) ﬂ]P’lL(F)) ®P (F)| @R", (29)
F
will define the same finite element space.

13
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Proof. When m = n -2, we require r > n+ 1 so that r —(m+ 1+ 1) > 1 and dimB, ,(F) > dimP(F). When 0 < m < n -3 and
r>m+2,dimB,, (F) > |4,,,(F)| > dimP,(F). Therefore the number of DoFs remains the same as DoF (28¢c).
Vanishing DoFs (28a)-(28b) will imply Ang|r € B, ,,;(F) ® R", which can be determined by (29). So the unisolvence follows.
As the change will not affect the continuity, it will define the same finite element space. []

DoF (29) is more friendly for verifying the discrete inf-sup condition and (28c) is better for the uni-solvence and implementation.

When m = 0, it is the generalization of Stenberg element for vector functions to traceless tensor functions. Almost all DoFs are
redistributed to face F except at the vertex, where the traceless constraint is imposed. The case n = 3,r > 2 is the H(div; T) element
constructed in [11].

Remark 4.5. Comparing with the vector face element, cf. Lemma 3.8, m starts from 0 not —1. Namely the H (div; T)-element should
be continuous at vertices. We argue that the continuity at vertices is also necessary. Take a vertex in 4y(T), for example v,. Then
Ang (Vo) is determined by the vector An Flr €R" for i =1, ...,n. If it is continuous on each face but not on vertices, the number of
elements in An F, (Vo) is n for each face. Running i from 1 to n, A(v,) is determined by n? conditions, which is more than dim T = n?—1.

4.2. Discrete div stability for traceless tensors

We first show the div stability of the bubble space B, (div, T; T). Denote by ¢, ; the edge vector from v; to v;. By computing the
constant directional derivative ¢, ; - V4, by values on the two vertices, we have

1, ife=j,
t; Vi =6, —6,=1-1, if£=i,
0, ife#i,j.

i=0,...,n

Lemma 4.6. The set of traceless tensors {VA; ® 1 ; }je(O AAAAA A\ (i)

{t;; ®V4; + %I}':=0 """ "n - All indices are modulo n.

is a basis of the traceless tensor space T. Its dual basis is

Proof. It suffices to prove
e ® V) 1 (VA; @1y ;) =636,
for0<ik<n,je{0,....,n\{i,i+1}, and £ € {0,...,n}\{k, k + 1}.
When i =k, by ¢ #i,i + 1, it follows
A ®Vap) : (VA @iy )= Vg -ty ;=6
When i = ¢, by i # j, it follows
trx®Vig) 1 (VA4;®14 ;) =0.
When i # k, 7, clearly (t,, ® VA,) 1 (V4;®t1,;)=0. [
Let RT = {ax+b : a € R,b € R"}. For a matrix A, define devA = A— %trace(A)I as the projection of A to T. It is straight forward
to verify ker(dev grad) = RT. Again let RT* be the L?-orthogonal complement in L(T;R").

Lemma 4.7. For each T € T, it holds

divB,(div,T;T) = P,_,(T; R") A\ RT". (30)

Proof. It follows from the integration by parts that
divB,(div, T;T) C (P,_;(T; R") nRT™).

We claim the equality holds. If divB,(div,T;T) C (P,_;(T;R") n RT!), then there exists u € P,_;(T;R") n RT* satisfying the
orthogonality condition (u, div A); = 0 for any A € B, (div, T; T). Equivalently

(devgradu,A)y =0 V A € B,(div,T;T).

n
A=) D A1 A0V 0 @ty € B,(div, T; ).
i=0 je{0,....n}\{ii+1}
Then we have

n

Z Z ()'i-f—l}‘jqij’qij)T =0.

i=0 je{0,....,n}\{i,i+1}
Therefore ¢;; =0 for all i and j. Thusu=0. [

14
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(a) t-n decomposition at a vertex. (b) t-n decomposition on an (c) t-n decomposition on a face. (d) t-n decomposition of a tetra-
No tangent component. edge. hedron. No normal component.

Fig. 4. Several t-n decompositions for S in R3. Blocks with the same symbol (circle, square, or diamond) are in the same constraint sequence and the white
block is used as the pair index. Color of the block represents: Green: free rows and free blocks; Blue: all free indices not in free rows; Red: bubble functions.
Blue or green blocks are free indices in .#/(S). All white blocks are pair indices and the corresponding coefficients are determined by the free variables through
the constraints. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We mention that characterization (30) in three dimensions is firstly proved in [12].

Proposition 4.8 (Discrete Inf-Sup Condition for H (div; T)-Conforming Finite Elements). Let 0 <m < n—2. Let r > m+2 for 0 <m < n-3,
and r > n+1 for m = n— 2. Let V"(T) be defined in Theorem 4.3. It holds the discrete inf-sup condition

Moy s sup  —— Aty oo 31
A, 1 Apllo + 1 div Aylly

where Q,, := (v, € L>(&;R") : v,|y € P,_|(T;R") for each T € T}, ).

Proof. First there exists A € H'(2; T) such that
divA=v,, Al < llvgllo- (32)

Thanks to DoFs (28) and (29), we let Zh € V'(T) satisfy

/(X,,nF) .gds = /(AnF) -qds, qEP(F;R"),F € A,_(Ty).
F F
and other DoFs vanish. By the scaling argument,
I Anllo + Il div Ayllo S Al S llwgllo- (33)

Then through integration by parts we have div(z Al €P._(T; R™NRT? foreach T e T,. By Lemma 4.7, there exists b, € L?(22; T)
such that b, | € B,(div,T; T) for each T € 7,, and

divhy, = div(A — A,),  lIbyllor S hrlldiv(A, — Allgr- (34)
Take A, = A, + b;, € V"(T). By (32) and (34), it holds

div Ay, = div A, +divh, =divA = v,. (35)
It follows from (33) and (34) that

[ Axllo + 1 div Aplly = 1AL llo + llvplly < ||l~4h||o + bpllo + llvplly S ”Zhllo + Al div Zn”o + lwpllo S llwpllo- (36)

Combining (35)-(36) yields (31). [
4.3. Symmetric matrix elements

We start from the tensor product of the Lagrange element and the symmetric matrix S:

PAT:S) = @70 ses, ) [brPr-er1) () ®S] - (37)

The construction process is similar to the traceless case in which #-n decompositions of S at sub-simplices are the key. Additional
complication arises as the n(n — 1)/2 symmetry constraints are more complicated than only 1 traceless constraint.

Let {v,,...,v,} be a basis of R”. Then M = {Z:j=l a;;v; ®v;,a; € R} is the space of n x n-matrices. An element A € M can be
identified with the coefficient matrix (q;;) and will be still denoted by A. For a better explanation, we illustrate an » X n-matrix by
nx n blocks; see Fig. 4 for the case n = 3. Block (i, j) corresponds to the basis function v; ® v;. We will identify n(n+ 1)/2 blocks and
modify corresponding basis function to form a basis of S with consideration of the normal continuity.
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Given an f € 4,(T), choose a t-n basis {tl.f,njf}jfl""’"

—t L,_f and decompose R" = 7/ @ #/. All basis vectors are normalized. We
have the matrix decomposition
M=R'®7)®R"® ).
We modify each component to impose the symmetric constraint. For the tangential component, we simply take
gIS) =R"®@I)nS.
Using the tensor product with the scalar bubble polynomial, we can construct

BT/ (S) 1= b;P,_p41)(f) ® T/ (S) C ker(tr™™) n P(T:S).

We provide a specific example for n = 3,# = 2, i.e., a t-n decomposition on a face F of a tetrahedron. Choose a r-n basis

* % 0
{tlF ,tzF ,np}. An element in R” ® 7 ¥ has the matrix representation [+ * 0|, where * represents a generic value. The symmetric
* % 0
* % 0
constraint implies an element in 7 (S) has the form % 0| The value a,; is left blank since due to the symmetric constraint
0 0 0

it is equal to a;,. We call (1,2) a free index while (2, 1) is the pair index of (1,2).
We then move to the normal component. A naive definition of .#'/(S) would be (R” ® /#//)NS. Unfortunately in general for three
subspaces of a vector space:

ANC)®d(BNC)C(A®B)NC.

And the equality may not hold. We continue the example with n = 3,7 = 2. An element in R” ® /¥ has the matrix form

(=)
(=)

0O 0 O
w.r.t the basis {tlF, tZF,nF}. An element in (R” ® #/F)n'S has the form |0 0 0] Then
0 0 =

dm(R"® T NS) +dim((R" @ #T)NS)=3+1=4<6=dimS.

The discrepancy is due to the fact that the constraints a3 = a3; and a,; = a3, have been used duplicately in both (R" ® 7F)nS and
(R" ® #F)n'S. We need to make sure one constraint is used only once either in 7/ (S) or 4/ (S).

To this end, for each constraint, we set the index (j,i) with i < j as the pair index and call (i, j) a free index. The pair index
value a;; is determined by the free variable g;; through the constraint a;; = g,

We introduce the concept: normal constraints. We call the constraint a;; = a;;,i # j, a normal constraint if both (i, j) and (j, ) are
in the normal component, i.e., i, j > # + 1 w.r.t the ¢-n basis {t,.f,n/f }j:ll'“""_f. For example, in Fig. 4(b), for an edge e € 4,(T), there
are (n — 1)(n — 2)/2 normal constraints. As the constraint involves two entries, no normal constraints for F € 4,_,(T); see Fig. 4(c).
The normal constraints will be imposed inside the normal components.

For non-normal constraint, in the pair index (j, i), i is inside the tangential component. We can use it to change the basis without
affecting the normal trace. As an example, consider the circle block in Fig. 4(b)-(c), the basis function is changing from t ® n to
sym®n)=nQ®t+t®n)/2 and 2sym(t ® n)nyp = (t ® n)ny. By doing this way, we ensure each constraint is used only once and
the normal trace remains unchanged.

In summary, for f € 4,(T), £ =0,...,n, define

7/ (S) := span{sym(t] ®tjf),1 <i<j<el,
#7(S) :=span{sym(t/ @ n’),1 <i <, 1<j<n-¢} @span{sym(n/ ®n/), 1 <i<j<n-r}.
By counting the dimensions, it is easy to show the direct decomposition
S=7/S)® N/ (S).
Then tensor product with the scalar bubble function to obtain
IB}_S’/‘f(S) = bfPrf(t’Jrl)(f) ® gf(g)’ Br/‘/f(s) = bfPrf(ml)(f) ® -/V/(S)~
With the #-n decomposition, (37) can be rewritten as
P.T;S) = @,_,D Fea,m) [B.7/S) @B,/ (©S).
Define the polynomial bubble space

B,(div, T;S) := ker(tr®™) N P(T; S).
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Again the tangential component B,J /(S) will contribute to the bubble space. Namely for r > 2, it holds that

B,(div. T:S) = @)_, D s, BT/ ). (38)

Characterization of B,(div,T;S) in (38) is new and different with the one given in [16,17].

The normal component B,.#/(S) will determine the trace of the div operator. Notice that due to the constraint, not all >
components of the matrix are included when defining B,/ (S) and B,.#/(S). In Fig. 4, function values in all white blocks are
determined by the corresponding free variables through the constraints.

Unlike the traceless case, not all normal DoFs can be redistributed to faces since the normal constraint should be imposed on
AT @/ with a global normal basis {nif }, which can be thought of as the super-smoothness induced by the constraint. For example,
for symmetric matrix A, the restriction of A to the normal plane of f, which is a symmetric matrix of smaller size (n — £) X (n - ¢),
should be continuous due to DoF (39b). The tangential-normal component can be redistributed to face F. Therefore, in DoFs (39),
(39c¢) is posed globally and (39d) is facewisely.

Theorem 4.9 (H(div;S)-Conforming Finite Elements). Let 0 < m < n — 2. For each f € A,(T,), we choose a global t-n basis
{tf, ,t?,n{, ,nfﬂ,}. Then the DoFs

A(W), vE AT, AES, (39a)
/f((n{)TAn{)qu, FEATaER, (N1 <i<j<n—t.f=Trn—1, (39b)
/f((t{’)TAnjf)qu, fE€MTNAEP _poy(f)i=1 .t j=1...n—¢t,C=1..m (39¢)

/f((z{")TAnFnqus, Fed, (T, [ €8;(F)qEP_puy(fhi=1,0sl, £ =m+1,...,n—1, (39d)
/TA i qdx, TeT, qebB.(div,T;S), (39¢)

will determine a space V' (S) C H(div, £2;S), where

V'(S) :={A e L*(2;S) : Aly eP(T;S) VT ET,
DoFs (39a)-(39b) are single-valued across f € A,(T;,) for £ =0,...,n—1,
DoF (39c) is single-valued across f € A,(T,) for £ =1, ..., m,
DoF (39d) is single-valued across F € A,_{(T;,)}.

Proof. For T € T, and f € A,(T), both {n{, ’"}:4} and {ny, F € A,_,(T;), f C F} are basis of the normal plane .#'/. DoFs (39a)-
(39d) restricted to T will determine normal component B,.#/(S) and (39) for the tangential component B,7/(S), thus uniquely
determine P,.(T;S).

For F € A,_,(T;,), DoFs (39a)—(39d) restricted to F will determine

[Anoly-ads, 7€ 4,Pq P,y (FiRD, £ =0, =1,
.

and thanks to the unisolvence of Lagrange element in Theorem 2.5 will determine (Anp)|r. Therefore V'(S) c H(div, 2;S). [

When m = n — 2, it is the Hu-Zhang element [16,17]. When m = 0, DoF (39d) can be further merged to one and lead to the
modification in [28, Lemma 4.5]

/(I'IFAnF) -qds, FeA, ((T,).,q €ND,_,(F), (40)
F

where ND,_,(F) := {q€P,_|(F;R""): q-x € P,_(F)} and IT is the projection of a vector to the plane 7F.

4.4. Discrete div stability for symmetric tensors

For each T € T, the range of the div operator on the bubble space of symmetric tensors [16,17] is
divB,(div, T;S) = P,_,(T; R") n RM*, (41

where RM = {Nx+b : N € K,b € R"} and RM* is the L?-orthogonal complement in L?(T;R"). It can be proved similar to
Lemma 4.7 and an abstract version will be proved in Lemma 6.9.
Applying the same argument as in Proposition 4.8, we derive the div stability of space V"(S) from (41).

Proposition 4.10. Let r > n+ 1 and V'(S) be defined in Theorem 4.9. It holds the discrete inf-sup condition
(div A, )

sup ————— Vv, €0,
A,evrs) [Apllo + 11 div Aylly

[lopllo S
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Notice that due to the extra normal continuity, we cannot modify the face DoFs to relax the degree requirement r > n+ 1 to
r > 2 as we have done for the traceless element in Proposition 4.8. Thanks to DoF (40), the tangential-normal component contains
P, (F) for r > 2. Lower order H(div;S)-conforming finite elements are designed by enriching the symmetric quadratic polynomial
space with only (n + 1)-order normal-normal face bubbles in [37], which have only n(n + 1)> DoFs for the reduced one.

5. Constraint tensor spaces

In this section we shall introduce the constraint tensor space X as a kernel space, and discover bases of X. We first recall some
background on differential forms, then give concrete formulae on the algebraic operator s*"~! and define the constraint tensor space
X as the kernel of s¥"~1. Lastly we present two bases of X.

5.1. Background on differential forms

5.1.1. Increasing sequence
We mainly follow the notation set in [20] but with some simplification. For non-negative integers a, b,/,m, with 0 < b—a < m—1,
define the set of increasing sequences as

2(a:bl:m):={c:{a,....b} > {l,....m}|o(a)<o(a+1)< - <a(b)}.

We will overload the notation ¢ as its range, i.e.,, for ¢ € X(a : b,/ : m), we use the same notation o to refer to the set
{c() | i=a,..,b}. The set X0 : k,0 : n) will be mainly used for the description of sub-simplices, and X(1 : k,1 : n) for k
differential forms in R". For 0 € 2(0 : k,0 : n), f, € A, (T) is the sub-simplex formed by vertices with index {c(0),...,c(k)}. On the
other hand, for f € 4,(T), the index of its vertices can be sorted in ascending order to get an increasing sequence o.

For 6 € 2(0 : k,0 : n), denote by ¢* € (1 : n—k,0 : n) the complementary map characterized by

cuUc” ={0,1,...,n}.
For o € X(1 : k,1 : n), its complementary map ¢° € X(1 : n—k, 1 : n) satisfies
ocUc ={I1,...,n}.

For the unique element in X(a : b,a : b), we simply write it as [a : b].

We follow [38] to introduce notation on the addition and subtraction of increasing sequences. Let ¢ € X(a : b,l : m). If
g € [l : m]\o, then we write ¢ + ¢ = q + ¢ for the unique element of X(a : b+ 1,/ : m) with image ¢ U {q}. In that case, we also
write e(q, o) for the signum of the permutation that orders the sequence [gq, c(a), ..., 6(b)] in the ascending order. For g € 6, 6 — g is
the unique element in X(a : b— 1,1 : m) s.t. (6 —q) +q =o.

5.1.2. Differential forms

We consider an n-dimensional domain 2 c R”. Usually we choose a Cartesian coordinate and describe a point x = (xy, ..., x,) € 2
in this coordinate. We also use R” to denote the n-dimensional linear vector space, which can be identified with the space of points by
identifying a point x with the vector x = ox. We use 6xl as the unit vector from the origin o to point (0, ..., 1, ..., 0), which is considered
as an element in the tangent space 7,<. Its dual basis of (R")* is denoted by { dx; }f=1’ i.e., dx;(dy,) = 8; ;. We use the standard inner
product of vectors to make R”" a Hilbert space, which introduces an inner product on (R")*: (dx;, dx J-) =6;;,0,j=1,....,n. We shall
reserve notation { dx;}7_, for the orthonormal basis induced by the ambient orthonormal coordinate of R".

A generic basis will be denoted by { dy; Y which may not be orthonormal. We can find another basis { dy; Y dual to { dy; Y
in the sense that (dj;, dy;) = §,;;. Indeed let M = ((dy,, dyj»?,j:r Then (dj,,..., dj,)T = M~(dy,,..., dy,)T. When {dy;}, is
orthonormal, dj; = dy; fori=1,...,n as M is identity.

For a vector space V, we define the space of exterior k-forms as the alternating multilinear functional space on V¥ :=V x --- x V'

k
and denote it by Alt“(V) or simply Alt* if V is clear in the context. By definition, Alt" c (V*)*. The best way to study a k-form is
through the action on k vectors in V.
Let w € Alt? and 5 € Alt?, we define the wedge product o A 7 € Alt?*4:

(@ AMD©s o Vi) = D SIEOIO (1) - > VoM Uity -+ Vo)
o

where the sum is over all permutations ¢ of {1,...,p + ¢}, for which ¢(1) < 6(2) < - < 6(p), 6(p+ 1) <o(p+2) < - < c(p+9q),
and sign(o) is the signature of the permutation . We have the determinant formula on the wedge product. For w; € V*,v; € V,
i=1,....,p,

(@1 A Aw,) (1, ...,v,) = det (oo,-(vj))i’j=1 """" .

For a smooth manifold 2, a kth order differential form is a section of the tangent bundle U, .o Alt“(T,£2), where T, is the
tangent space at x. The linear space formed by all kth differential forms is denoted by A¥(2), or simply A¥. As 2 is a domain in R”,
given any point x in the interior of €, the tangent space T, €2 is isomorphism to 7,2 by shifting the origin to x. That is we can use
one basis { dy;} for all Alt'(T,Q),x € Q.
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For 6 € (1 : k,1 : n), we extend the multi-index notation to write dy, € Alt*:
dys 1= dysay A A Aoy

An element o € A¥(Q) thus has a representation
w= Z a,(x)dy,, x€Q. 42)
cex(l:k,1:n)

For a manifold, the basis { dy;}o, is defined on a local chart while in (42), as £ is flat, a global coordinate is used.
Using (42), we define the exterior derivative d : A*(2) - A**!(Q) as: for o = Y, 5(1.4.1:n) @ (%) dy,, define dw € AF*(Q) by

o= Y  Noadynady,= Y Y (ay,aa) €(i,0)dy,,.
c€X(1:k,1:n) i¢c c€X(1:k,1:n) i¢c
It can be verified that this definition of dw is independent of the choice of bases.

The Hodge star for the ambient orthonormal basis { dx;}!_, is defined as

*xdx; = (=) ldxe, xdx;e = (=1)"" dx;,
which satisfy
dx; A xdx; = dx, dx; Axdx;e = dx,

with the volume dx := dx; A dx, A - A dx,,. By definition, % x & = (=1)""!w for w € Alt' or Alt""!.
We extend the definition to a generic coordinate and define

% dy; :=(=1)""1dy, satisfying dy;A * dy; =6, dy.

5.1.3. Inner product
An intrinsic definition of an inner product on Alt* is

(w,n) := z @(e5(1)s - > Co)M(Cs(1)s - > Co(k))s
cex(l:k,1:n)
where (e, ...,e,) is any orthonormal basis of R”. Then by definition

o Ax = {wn)dx, o,nec Al

Recall that {dx,-};’=1 is an orthonormal basis of Alt', i.e., (dx;, dx j) =6 j=1....nlt is naturally extended to an orthonormal

basis {dx,,o € Z(1 : k,1 : n)} of Alt¥, i.e.
(dx,, dxn) = 55,;7’ o,ne X(1:k,1:n).
The duality of { dp, " and {dy; ", are also extended to the k-forms
(dp,. dy,) =65, on€Z(1: k1 : n). (43)

But { dy,~}:.’:l may not be orthogonal.
For w,n € A¥(Q), a further integral over the domain is included, i.e.,

(CU, 7])[) = /<CU, 7]> dx’ @, n € Ak(Q)
Q

For a sub-manifold f of £, the volume form dx will induce the one for f and denoted by dx,. Define

(0. = /(w, nydxy.
S

For w,n € A*(Q2) with expression

= 2 a,(x)dx,, and 5= z by(x)dx ,

oceX(l:k,1:n) ceX(l:k,1:n)

it is easy to prove that

@me= Y / a,()by(x) dx, (44)

AN

and (44) is invariant when changing to another orthonormal basis. For non-orthonormal basis, transformation will enter the formulae
of the inner product.

Denote by P, A¥(2) the space with polynomial coefficients, and L% A¥(£2) is the space with square-integrable coefficient functions.
The space HAX(Q) := {w € L?A¥(Q) : dw € L?A**1(Q)}. When k = n—1, H A"~1(Q) is isomorphism to H(div, 2) := {v € L*(;R") :
dive € L*(Q)}.
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5.1.4. Proxy vectors of differential forms
Representation (42) enables us to identify a differential form with a vector function:

© < (A5)5es(1:k1:n)

and (a,) is called a vector proxy of w. Be aware that, by definition, the differential form is coordinate independent while a vector
proxy depends on the coordinate.
For a 1-form w = Y u; dx; € A!, define

Prox; (@) =u = (uy,uy, ..., u,)".

For a vector t = (1. 1,. ..., 1,)T representing the tangent vector Y| 1;0,,, the action is

n

o) = z u,-tj(dxi,axl,) =u-t.

ij=1

For w € A"™!, we can write = Y}/ u; * dx;, which induces an isomorphism
Prox,_; : @ = u = (u,uy, ..., u,).

By definition, we have

Prox, (k @) =(=1)""! Prox,_; (), we A",
Prox,_;(x ) = Prox,(w), we Al
Notice that the proxy vectors are defined using an orthonormal basis. Using the proxy vectors, we can change the wedge product
to the inner product of vectors
(@.n) = (Prox, @, Prox,_;(x 1), @.n € A',
(w,n) = (Prox; w, Prox, n), weA neA k=1orn-1,

o An = (Prox; w,Prox,_;n)dx, we Al pe Al
For w € A""!, the representation of dw using the proxy vector is divu, i.e.,
dw = (divu)dx, with u = Prox,_; .

The Prox operator is a bijection. More precisely, given a vector u = (uy,...,u,)" represented in the ambient coordinate, let
o=Y udx; € A and x @ = Y_ u; x dx; € A""!. Then Prox,(w) = Prox,_;(* ®) = u. To resemble the notation of differential
forms, we introduce notation

n n
du := Proxl_](u) = Zui dx;, *x du = Prox;_'l(u) = Z u; * dx;.
i=1 i=1
Here in du, d is understood as a dual operator mapping a tangent vector u to a co-tangent vector du € A!, and the symbol d is not
associated to any differentiation. A textbook notation of du is "1u and * du is "1 u.
Denote the proxy vector of { dy; 1, by (v}, and { dy; ¥, by {0}, Then {9, Y, is dual to {v;})_, in the sense that (¥;,v;) = §; ;.

i= = i

Treat v; as a column vector and form the matrix V = (v,,...,v,) and V = (9, ..., ,). The gram matrix is M = VTV, Then we have
the relation V = VM~
From

(v, Prox,,_; (x dy;))dx = dy;A = dy; = 6, ; dy = 6, ; det(V) dx,
(. Prox,_; (+ d9;))dx = dj,A * d; =6, d = 5, ; det(V) dx,
we get
Prox,_;(x dy;) = det(V) Prox,(dy;) = det(V) ¥;,
Prox,_,(+ d9;) = det(V) Prox,(dy,) = det(V) v;,
where the scaling det(V) or det(V) is due to the non-orthogonality. In view of proxy vectors, * is like a kind of dual operator mapping

a vector to its dual vector.

5.1.5. Trace operator
For F € A,_,(T), let the trace operator tr8l" : A"~1(T') = A"~!(F) be the pullback of the inclusion F < T. That is for any tangent

F
vectors vy, ..., v,_, of F, we also treat them as tangent vectors of T and define
U Oy o 0yy) 1= O, s U,y @ € AT

We denote by tr'®" : A" (T) - Upeyr A" 1(F) as 'V o] = 1o
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13 = ClBPrOX(d/\[l,B]‘> / = CBPmX(dA[l’?’]*)

np,. = coprox(dig)

1 t12 = croprox(dAp o) 1

(a) Face fi123. (b) Edge fi3.

Fig. 5. Sub-simplices and their tangential and normal vectors.

Let np be the normal vector of F so that the orientation of F, which is given by the volume dx, € A" !(F), and ny form a
consistent orientation of the ambient orthonormal basis. Then

tr‘},ivw =u-npdxp with u="Prox,_; @. (45)

On the other hand, for any p € L?(F), we have

(o, p % an)F=/u~andxF=/ptr‘}_.i"a).
F F

Based on (45), we can discuss the trace operator in the more familiar vector function setting. The trace operator for space
H(div,T)

Y . H(div,T) —» H™Y/20T)

is a continuous extension of tr%"u = u - n|,; defined on smooth functions.

5.1.6. Differential forms in the barycentric coordinates

As Y 4 =1,2",dl; =0and {di,..., di,} is not a basis of Alt'. Set a vertex as the origin, without loss of generality, say
vy, then {d4,, ..., d4,} forms a basis of Alt'. In general, through the index o, there is one-to-one correspondence between 4,_;(F,)
and Alt“(T). Namely for ¢ € X(1 : k,1 : n), f, is a (k — 1)-dimensional simplex in 4,_,(F,) with vertices {o(1),...,0(k)} and
dA; = ddsqy A A ddgy) € Altk. We can also write as di + assuming the index of the vertices of f is sorted in the ascending order.

The 1-form dA; has a vector representation V4;, which is a scaled normal vector n F of face F;. For a simplex f € A,(T),
{V4;,i € f*} are n — ¢ normal vectors of f and can span the normal plane of f. The vector representations of (n — 1)-forms, for
i=1,...¢,

A0 = 940:n-00)-0G) ‘= ddg A A ddgy A= A ddgy A e A dAy,

are scaling of tangential vectors ¢, Of f, and can span the tangent plane of f. This is illustrated in Fig. 5.

5.2. An algebraic operator

Define Alt%'(R") = AltF(R") ® Alt'(R") for k,i = 0,1,...,n. In particular Alt®*""1(R") = AltF(R") ® Alt"'(R") =~ Alt*(R") ® R". To
simplify the notation, Alt*/(R") is abbreviated as Alt*'. In [6], the algebraic operator s*"~! : Alt*"~! — Alt*=! is defined as

n
sk'"’la}(wl,...,wkq) (v,,...,vn) = Z(—l)i’lw(vi,wl,...,wk_]) (vl,...,ﬁ[,...,vn) YU, ..., 0 W, ..., w_ €R"
i=1

Recall that we have reserved {dx;} for a fixed orthonormal basis of Alt!(R"). We are going to derive more concrete forms of
operator s*"~! in a generic basis { dy,}, which may not be orthonormal. We expand @ € Alt*"~! in this basis as
n

W= Z Z a5 ; dy,® * dy;.
i=1 c€X(1:k,1:n)

k,n—1

An element in Alt can be identified as a matrix A = (a,,;) of size (:) x n indexed by (o,i) fori=1,2,...,nand ¢ € X(1 : k,1 : n).

Lemma 5.1. For w = Zf’zl Zaez(l:k,lm) a,,;dy,® = dy,, we have

skl = Z Z e(i, T)a,-+”-> dy, ® dy.

teX(l:k—1,1:n) i€t

21



L. Chen and X. Huang Results in Applied Mathematics 23 (2024) 100494
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Fig. 6. Illustration of constraint sequences and operator s*"~! for k = 1,3 and k = n—1 for a simplex in R’. For a (k—2)-dimensional sub-simplex 7, ¢ = i+t with
i € ¢ are all (k — 1)-dimensional sub-simplex containing r. For each o, we attach a vector of length » and consider its ith component, which is a representation
of dy,® s dy,. The constraint sequence of = will be formed by all (¢, i) surrounding .

Proof. Let {dy;} be the basis of the tangent space dual to {dy,}. Thatis dy;(@y;) = 6;; for 1 <i,j <n. Giveno € X(1 : k,1 : n), we
use the notation dy, to denote k vectors (9y, ), --- > 0¥s))- Then dy,(dy,r) = 6, for o,6’ € Z(1 : k,1 : n). To get the coefficient of
sk"=1e for the component dy, ® dy,7 € X(1 : k—1,1 : n), we check the action

n
skl (0¥2(1ys -+ > OVege—1y) (915 -, 0y,) = 2(_1)i_1“’ (091209 (1)s -+ 02y (991 - RO +0Y)
i=1

= Z w (e(i,r)dyiM) ((—l)i_ldy,-c) = Z €(i,T)aj 4 ;-
ier¢ ier¢
If i € 7, then vectors dy;,0y,(...»0Y, ) are linearly dependent and thus the term vanishes. So only i € z¢ are left in the
summation. []

For a given 7 € 2(1 : k— 1,1 : n), we call the sequence of index {(i,, + 7,i,).i,, € t,m = 1,2,...,n — k + 1}, the constraint
sequence of z, which can be also written as {(G[m’ iphm=12....n—k+1lo, =i,+ 7}. The length of the constraint sequence is
|z¢| = n — k + 1. Without loss of generality, we can sort as i; < i, < -+ <i,_;,;. The first one (i; + 7, i;) will be called the pair index
of the constraint sequence.

We provide some visualization of the constraint sequence. The tensor product dy,® * dy; can be visualized as follows: for each
sub-simplex f,, we attach a vector of length n. The sub-index i in * dy; corresponds to the ith component of this vector. See 5-edge
stars in Fig. 6. We can associate the (k — 1)-form dy, with the sub-simplex f, of dimension k — 2, then {f;,.};c,c corresponds to all
(k — 1)-dimensional sub-simplices of F, (excluding f,, as index 0 is not used in differential forms) using r as a boundary face. See
Fig. 6.

If we identify entries of the matrix proxy as nodes of a graph, a constraint sequence will define a path of nodes. See Fig. 7.
Indices in different constraint sequences are different. Namely for = # 7/, (i + 7,i) # (j + 7/, j) as either i # j or i+ v # j + 7’. On the
graph, different constraint sequences will correspond to disjoint paths.

Since only the value a,,; on the constraint sequence will contribute to the image s*"!

w, we conclude that
skrl(dy, @ + dy) =0 < i€o".

For each row, i.e., for a fixed o, there are k entries (o,i),i € o on k different constraint sequences and the rest n — k entries are not
in any constraint sequence.

We can identify Alt*~!" as a vector in Rdm A" With the matrix and vector representations, the s*"~! operator induces an
operator from matrix A to a vector in RIMA“™" and will be still denoted by s*"~!. We collect the coefficients of a constraint
sequence and denote by a, = (a; yr; Jm=12,...n—k+1- L€t € = (€(iy D)p=i2,.. n—k+1 De the corresponding sign vector. We can write
the operator as

(Sk.n—lA)T:ar-e teX(l:k-1,1:n).

T

That is the action is along each constraint sequence.

Lemma 5.2. For k = 1,...,n — 1, the operator s&"=1 : Alt*"~1 - AIt*"" is onto. And s"*! : Alt™"~! — Alt""'" is a bijection and its
proxy s~ is the transpose operator.

Proof. First consider k = 1,...,n— 1. By the linearity, it suffices to prove for z =[1,...,k — 1], there exists = Y\ ¥ cv(1:1.1:m %o.i
dy,® * dy, such that s*"low = dy, ® dy.

For a given z, we just pick up one ¢ =i + 7 from its constraint sequence and set the coefficient be ¢(i, 7). More precisely, take
apy, gk =€k, [1: k=1]) = (=1)*71, and a,; = 0 for the rest. Then

shn=lg = Z (Z e(i,f)a,-_,_;‘i) dy; ® dy = dy, ® dy.
teX(l:k—1,1:n)

i€t
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(1,2)

(1.3)

(1.4)

(2.3)

(24)

Fig. 7. Constraint sequences for n = 4,k = 2 with sign (i, 7). A constraint sequence will define a path of nodes. Different constraint sequences will correspond
to disjoint paths. The white circle denotes the pair index of each constraint sequence which is a non-free index. Other circles in yellow are free indices. For
each row, there are k entries (o,i),i € o on k different constraint sequences and the rest n — k entries are not in any constraint sequence. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Next consider k = n. For w = )}/ 4;dy® * dy;, we have

n

sl = Z <Z e(i, r)a,-) dy, ® dy = Z a; % dy; ® dy.
re€X(1:n—1,1:n) \i€T®

i=1
Namely s""~! maps the row vector (ay, ...,a,) to a column vector (ay,...,a,)T. [

If we identify the row and column vector by the transpose, we can also say s™"~! is the identity operator.
5.3. Constraint tensor spaces

Now we are ready to introduce the tensor space
X :=ker(s*" " HnAltF"! = {w e Al | 2l =0}, 1<k<n-1.
When k = n, as 5"~ is bijection, X = {0} is trivial. So throughout the rest of the paper, we will consider the non-trivial case
1 <k <n-1.For a given basis { dy;}, it will be more convenient to work on the matrix representation
n
X = {w: > Y a,dy,®x dy | A=(a,,) e RG> . Y €l =0, VreZ(l:k=1,1: n)}.
i=1 c€X(1:k,1:n) ier¢

As s*"1 is surjective,

dim X = dim Alt*"! — dim Alt* 1" = n<z> - (k " 1) =(n- k)(";g 1). (46)

For the orthonormal basis { dx;}, we introduce

H(div, 2;X) := {A =(a,) € [X(2,X) : divA € L2<.Q, R(Z))}
with div A := (ZL 1 Ox, az,,,-), i.e., the divergence operator is applied row-wise. Its differential form version is
H(d,_ ,Q:X) := {w € L2AR (@) 1 sl =0,d, 0 € LZA""’(.Q)},

where the exterior derivative d,_; is applied to the component A"~! in A¥"~1, In view of the matrix proxy A in the orthonormal
basis { dx;}, the trace on face F

div 4 —
trp'A= Ang

is a column vector of length (Z), and should be continuous on the (n — 1)-dimensional faces across simplices.

Example 5.3. Consider k =n—1. For w = },_, Z;-l=1 a;; * dy;® * dy;, we have

sl =Y <Z(—1)<“:"]\“”“‘le(i, r)au;nj\[,-m,,-) dy, ® dy
t€X(1:n-2,1:n)

i€t
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= z (—1)i+j (aj,i - ai,j) dy(i,j)’-' ® dy,
1<i<j<n
where dy; e 1= dy; A+ A t/i}i A A El}j A -+ A dy,. In terms of the matrix proxy, it holds
"M 7l(A) = 2vskw(A)  with A= (q;;), ~€R™,

where operator vskw : R™" — R""~1/2 is defined by

(vskw(A)){r = %(—1)’” (a

si—a;)  with o=[i,jle (1 :2,1:n.

Thus X =S consists of all symmetric matrices.

Example 5.4. Consider k = 1. For o =3, 3", a;;dy;® * dy;, we have

n

stnlep = 2 a;; dy.

i=1

In terms of the matrix proxy,
sP"1(A) = trace(A).

Thus X =T is the traceless matrix space.
5.4. Bases of the constraint tensor space

Recall that
Alt“" ! = gpan{dy,® * dy,c € (1 : k,1 :n),i=1,...,n}, 1<k<n

We shall modify the basis function dy,® * dy, to get a basis of X = Alt*"~! nker(s*"~1).
Recall that we consider the non-trivial case: 1 < k < n—1 so that the length of the constraint sequence n — k + 1 is greater than
or equal to 2. We shall define an oblique (non-orthogonal) projection operator zx applied to dy,® = dy; for index pair (o, i).
When i € 6¢, s%"1(dy,® * dy;) =0, and thus we keep it unchanged, i.e.,

7x(dy,® * dy;) = dy,® * dy;, i€o".

For each constraint sequence (6;,,i,)p=1,.. n-k+1> S€t (6}, i) as the pair index and modify basis functions to, form=1,...,n—k+1,
”X(dya[m® * dy,-m) = dymm® * dy,-m — (i, 7)e(iy, T) dy”fl ® * dy,-l.

In terms of the coefficient vector, =y will map the vector a, = (0, ..., 1,...,0) to the vector
a, = (—e(i,, 1)e(i;, 0),0, ..., 1,...,0),

so that the constraint a, - €, = 0 is satisfied. By the linear combination, we get the mapping zx : Alt*"~! — X,

An index (o, i) will be called a free index if zx(dy,® = dy;) # 0. By definition, only nX(dy,,i] ® * dy; ) =0, i.e., only the pair index
of each constraint sequence is not free. Therefore the number of basis functions is reduced by one for each constraint sequence. In
total, we remove ( kf I) basis functions of Alt*"~! and obtain a basis of X:

X = span{zx(dy,® * dy;), (c,i) is free }.

In Section 6, we will use 7y to define a r-n decomposition of X and construct finite element subspaces of H(div, £; X).
Next we will present intrinsic bases of X using the barycentric coordinate.

Lemma 5.5. Foranyoc € X(0 : n—k,0:n)andi=1,...,n—k, it holds
s+ ® dAps )0+ € X
where
AA0)000* = 9Aq0:n1=00)=ci) = Ao A =+ A ddgy A== A ddgy A -+ A d4,.
Proof. We treat o(0) as the origin. Let y; = A, fori = 1,...,n—k, and y,_,,; = Ags() for i = 1,.... k. Then di,« ® dApy) 00 =
DN dy, g1 A Ady,)® % dy; €Xfori=1,....,n—kasi€n—k+1,...,n° [

The vector proxy of dA,) .+ is @ scaling of the edge vector #,(),;), which is on the tangent plane of f, € 4,_(T). The k-form
d4,~ is the volume of the normal plane of f,, i.e. #/¢ of dimension k. Their tensor product for all f € 4,_,(T) forms a basis of X.

The inner product of k-form (w,7) can be extended to Alt“"~! by the tensor product. Define Py as the orthogonal projection
from Alt*"~! to X w.r.t. the inner product (-, -).
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Lemma 5.6. The set

c€X(0:n—k,0:n)
{ddge ® Aot S iy ok

in X is dual to the set

0:n—k,0:
{PX (* d/%_,,(l-) ® * d/l{;(i)) }:;Efsyn’ik "

in the sense that: for any o,7€ (0 : n—k,0 : n), and i,j =1,...,n—k,

(dAps ® dAiy0) o> P (% dAr_y ® * dA,)) ) = 8,6, .

Proof. Since di,» ® d(s) )+ € X, by definition of Py and the inner product (-, -), it suffices to prove that: for any ¢,z € (0 :
n—kO0:n),andi,j=1,...,n—k,

(dAge ® d2(o0).00y) A (dAr_ys) ® dAg;) #0
if and only if

c=randi=j.
By definition,

(dAgr ® dAio(0)o1) A (dAr—z() ® dAs(p) = (ddor A dArs() @ (dApg o) o0 A dArp)-

Then (d4,« ® dAy0)0(y+) A (dA_r(jy ® dA,(;)) # 0 is equivalent to

7(j) € {6(0),0()} and t-17(j)Co.
This indicates = C o. We finish the proof by the fact r and ¢ have the same length. []

We are in the position to present intrinsic bases of X using the barycentric coordinates.

Theorem 5.7 (Intrinsic Bases of X). The set
c€X(0:n—k,0:n)

{ddge ® Aot fimr...
is a basis of X. Its dual basis is

c€X(0:n—k,0:n)

{Px(*ddooiy ® X ddoqy) by o 47)
Proof. The number of the set { dA,« ® dA5)00) }flz(on:ko”) is (n — k)("zl), which equals to dimX, cf. (46). Hence it suffices to
prove that they are linearly independent. Assume there exist i ER foreachoc € X(0: n—k,0 : n)and i = 1,...,n — k such that

n—k
Y i ddgr ® dAip(0) o = 0.

oc€X2(0:n—k,0:n) i=1
Then apply the wedge product with dA,_;) ® dA,;, for 7 € X0 : n—k,0 : n) and 0 < j < n -k, due to Lemma 5.6, we obtain
¢;; = 0. As (z, j) runs over the whole set (0 : n—k,0 : n)x {1,...,n— k}, we conclude all [y vanishes. []

Example 5.8. When k =n—1, f, is an edge and the vector proxy of d,- is a scaling of the tangent vector #, ), of f,. A basis of
X is thus given by { dA,« ® di }aezm:l,o:n)’ and the dual basis is {sym(x dA, ® * d’lv(l))}aezwzl,o:n)' Equivalently, in terms of the
vector proxy, a basis of S is {t" Rt }Ee 44T and the dual basis is {sym(n F®n F/)}e=Convex(v,»,vj)e 4,1 which are crucial in designing
the H(div;S) element [16,17,39] and useful in the Regge calculus [40].

Example 5.9. When k =1, f, is an (n — 1)-dimensional face F and the vector proxy of di,. is ng. In the matrix proxy, a basis of
Tis {n, @tF }lFflA"‘}‘q(_Tl), which is discovered in [12] and presented in Lemma 4.6.
5.5. Formulae on the projections

We will present an explicit formula on Py. Recall that the basis { dy;}" . is dual to { dy, o, in the sense that (dj;, dy;) = 6, ; for

i=1

i,j=1,...,n. The duality also holds for corresponding bases of Alt%; see (43).

Lemma 5.10. It holds

Xt =span{e?, re 21 : k-1,1:m)}, (48)
where
el =) €, 1)dp,® * dj;. (49)
i€t
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For w € Alt*"~! expanded in the basis o = Y45 49,® * d;, it holds
a.- €. 4
lea) = T—Hef N (50)

ces(ihet,1:m "

where Px1 := I — Pyx. Consequently for c € 2(1 : k,1 : n),

Ag s i €0°,
(wa)a’i = a 4 e(i,r), i€o,71=0—1i 51
o n—k+1 7 ’ ’

Proof. Let =" ¥ csi:k1:m %, 4V,® * dy; € X. Then

@hm)y=Y el 0a,,; =0, reX(:k-1,1:n).
ierc
That is é;“ 1 X. As any two constraint sequences are disjointed, {éf, teX:k-1,1: n)} is linear independent and (48) follows
from the dimensions match.
Let €4 = Y. €(i,7) dy;,,® * dy,;, which also forms a basis of X*. Formula (50) holds by testing with €4

(a),ef):a,-e (éf,ef):n—k+l.

Combining (50) and Py = I — Px. gives (51). [

The constraint tensor spaces X and X* are defined intrinsically using properties of differential forms, which is independent of
choices of the basis. In the proof above, we use different bases { dy;} or { dy;} for the ease of computing the projection.

6. Geometric decomposition of H(div)-conforming tensors with constraints

In this section, we generalize the geometric decomposition of the H(div)-conforming vector finite element to the H(div)-
conforming tensor finite element. We decompose P, (T’; X) into a direct sum of the tangential bubble subspace and a normal subspace.
Then we present DoFs and show the H(div)-conformity and the discrete inf-sup condition.

6.1. Decomposition of the constraint tensor space

We start from the tensor product of the Lagrange element with X:
P.(T:X) = @;:O@fEAf(T) [bfpr—(ﬂl)(f) ® X] :

For an 7-dimensional face f € 4,(T), there is a matrix function Al e R satisfying the constraint s¥"~!(A/) = 0. The vector
H (div) element is k = 0 for which the matrix A is degenerated to a vector of length » and no constraint is imposed. For 1 <k <n-1,
it is the constraint s*"~1(A/) = 0 that makes the finite element construction difficult as the constraint and the normal continuity
should be satisfied simultaneously.

As before, for a face f € 4,(T), we choose a r-n basis {t']f - ,t;,nlf - ,ni_ }, where the set of # tangential vectors { t/ - ,t'; }
is a basis of the tangent plane 7/ of f and the set of n — # normal vectors {ny,... ,ni . forms a basis of the normal plane .#/ of
f. All basis vectors are normalized but may not be orthogonal. We write i € 7/ and i € .#/ to emphasize the range of the index.

Inside the subspace I/, we can find a basis {i{, ,?ﬁ} dual to {tlf, ,t?}, ie., 1€ I/ and (i,-,tj) =6, fori,je g /. Similarly

A/} of #/ and (;.n;) =6, for i,j € #/. As T/ L N/, the basis {i].....1,.4],....4

1oty is also dual to

we have a basis {ﬁlf,

S f o f f _f f o f f > _ ) o Sf ~f
{t).....tyony,oon L LetV =(t,....1,.n,....n;_ ) and V =(t,....1 N )

n—£ }
b,
We say the basis { dyl.f } is the basis of Alt! corresponding to a -n basis if

Prox (dyf)— {t'f forieg”,
LA et
n,_, foriex/.

Then its dual { djz,.f } has the vector proxy

N .
t forie g/,
Prox,(dj/) =4 ', :
nl_, foriens.
We extend the domain of Prox and Prox™' to subspaces. For example, Prox ! g/ = span{Prox ' l(ilf i = 1,..,¢} =

span{Prox;jl(tif),i =1,...,7}. Then
Alth =1 = gpan{ dy£® * dy’.f,a eX(l:k,1:n,i=1,...,n}
= (Altk ®Prox! £7f) ® (Altk ®Prox;71l /Vf).

n—1
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We introduce the concept normal constraints. A constraint with the constraint sequence {(o; ,i,)y=1, . n—k+} is called a normal
constraint if all i,, € .#/. The normal constraints will be imposed inside the normal component. Recall that we sort the constraint
sequence S.t. ij < iy < - <i, ;. and set (s; ,i;) as the pair index. So for a non-normal constraint, the pair index (o; ,i}), iy € 7 !
is in the tangential component for dim f > 1. Also recall that non-pair indices are free indices.

Define, for f € A,(T) with 0 <# <n,

T/ (X) :=span{mx(dy/ ® * dy)),(c,i) is free,i € T/},
NI (X) i=span{rx(dy/ ® * dy)), (0. i) is free,i € /).

For 7 =0, i.e., at vertex v € 4,(T), we understand 7 ¥(X) = {0} as no tangent plane and #/V(X) =X as /7 =R".

Lemma 6.1. Given a t-n basis of a face f € A,(T), we have the following decomposition
X=X &/ X).

Their dimensions are

s o foey o n—-¢ \_( n
dim 7 (X)_K<k>+<n—k+l> <k—1>’
. f _ _ n _ n—f

dim A7 (X) = (n f)<k> <n_k+1>.

Proof. By construction, the sum is direct. It suffices to count the dimension. The number of constraints is dim Alt*"!. By the proof
of the surjectivity of s"~1, all constraints are linearly independent.
Therefore

dimX = dim Alt"~! x dim Alt* — dim Alt*~! = ndim Alt* — dim Alt*~!
For each normal constraint, it will remove one index in /7. So
dim A4/ (X) = (n - ¢) x dim Alt* —# normal constraints.
If a constraint is non-normal, then the pair index is in the tangential component. So
dim 7/ (X) = ¢ x dim Alt* —# non-normal constraints.
Sum these two and use the fact
# normal constraints + # non-normal constraints = # all constraints = dim Alt*~!

to conclude dim X = dim 7/ (X) + dim ./ / (X).
The number of the normal constraints is (n:il
sequence {i,,m=1,....n—k+ 1}) and thus the number of the non-normal constraints is (," ) — ( n=¢ ). O

) (among n—¢ indices of the normal plane, choose n—k+1 to form the constraint

k-1 n—k+1
6.2. Geometric decomposition of polynomial constraint tensors
Define the bubble polynomial space
B,(div, T;X) := P.(T; X) nker(tr®").
There is no bubble polynomial for lower degree r =0, 1.
Lemma 6.2. We have B(div, T; X) = B, (div, T; X) = 0.
Proof. Take w € B,(div, T; X) with r = 0, 1. Since {"FU’ s SR e ,nFN} form a basis of R”, and (trF,_ o)(v;)=0 forO0<i#j<n,

we get w(v;) =0. Thus, v =0. [

The tangential component contributes to the bubble. The normal component will contribute to the normal trace. Coupled with
the bubble polynomials, we define, for f € 4,(T) with 0 <Z <n,

BT/ (X) 1= b,P_pyy() Q@ T/ (X), BN (X) 1= 0P,y y(f) @ H (X

Theorem 6.3 (Characterization of Div Bubble Tensors). For r > 2, it holds that
B,(div. T:X) = @), D res, BT/ X
and

v @D seay B (0 - 1 P (T X)
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is a bijection. Consequently

dimB,(div,T;X)=; <;ill> (’; 1> [,f(Z) + (nf;i 1) - (kL)] .

Proof. Notice that the trace operator is applied to the second component in the tensor product dy£ ® * dy,f and trj‘riv(* dyl,f ) =
det(Vyng - i{ dxy; =0if i € 7/ and f € A(F). The modification in ﬂx(dy'; ® * dy‘.f ) will use the pair index in 7/ and thus remains
the normal trace free. For f ¢ A(F), the bubble function b lp=0.

So we have verified @j_, 4, BT/ (X) C B,(div, T; X).

The rest is the same as Lemma 3.5. [

We propose the following finite element for the constraint tensor X.

Lemma 6.4. For each f € A,(T), choose a t-n basis {tf, ,té,nlf, ,n’{_f} for ¢ =1,...,n—1. Let {dy;} be the corresponding basis
of Alt', and {d$,} be its dual basis. The shape function space P,(T;X) is uniquely determined by the DoFs

o), i=0,..,nweX (52a)
@15 NEP, (N ®(dF @ i | (0,i) s freei € N/}, f € AT =1,....n—1, (52b)
(@M, 1€ B.(div,T;X). (520)

Proof. Recall the duality
(dy/ @ = dy',f, df’,{@ * df’f) = 05,0, j

forall 1 <ij<n ando,n€ X(1: k.1 :n). In zx(dy/® * dy/) = dy/® * dy/ — (i, D)ei). 1) dy) @ * dyi, the pair index (o,,i,) is
not free and thus the duality still holds for all free indices

(mx(dy!® * dy]), d3/® * d§/) =8, ,6,;, (o) and (,)) are free.

Now assume (52a)—(52b) vanishes. For w = ) free(o.i) c(a,,-)bffrx(dy£® * dyt.f), the DoF (w, ¢(, df/£® * djz,.f)f = 0 will imply
.y = 0 for all free indices (¢,i) and i € W /. Coupling with the property of the bubble function, we can prove by the forward
substitution argument for # = 0,1,...,n — 1 (see the proof of Lemma 3.5), all normal components B,.#/(X) for all f € 4,(T) will
vanish and thus only tangential components are left, i.e., v € @;=1@ re A/<T)IB%,9 /(X). By Theorem 6.3, w € B,(div, T;X) and
vanishing (52¢) will imply o =0. [

DoF (52b) is in the spirit of the Petrov—-Galerkin method, where the test function dﬁﬁ@ * dy{ ' is different from the trial function
nX(dy£ ® * dy,.f ). This change is important as Prox( djzg) ® Prox(x dfz[f ) = c¢Prox( dj/(f; ) ® n,.f for i € 4/ will contain the normal
component only, which will determine the normal trace to ensure the H(div)-conformity.

In view of the vector proxy, usually we can choose an orthonormal basis for 7/ so that tlf = ?if for i € /. We use the normal
vector {nif } to define DoFs while use its dual basis {ﬁif } to expand the shape function.

Similar to [30], we can write out an explicit basis function

bamx (VL@ + dy),  a € TZ(f), (0.i) is free, f € 4,(T),£ =0,...,n,

where ¢, is the nodal basis of Lagrange element at lattice point «, and Tf (f) is the set of lattice points whose geometric embedding
is in the interior of f.

6.3. H(div)-Conforming finite element spaces

We shall glue local finite element spaces to form an H(div)-conforming subspace of H(div, £2; X) by choosing a global -n basis
{tf, ,t’;, nlf, ,n’{_f}, i.e., depending only on f not the element containing f.

Theorem 6.5 (H (div)-Conforming Finite Element with Global t-n Bases). For each f € A,(T},), ¢ = 0,...,n — 1, choose a t-n basis
{tf . ,t’;, nlf e ,n’{ ) depending only on f. Let { dy;} be the corresponding basis of Alt', and { dy;} be its dual basis. Then the following
DoFs

o), i=0,...,nweX (53a)
@.m; NEP,_ (N ® P/ ® x A7) | (0.i) is free, i€ N/} f € A, (T). 0 =1,....n—1, (53b)
(@, m)p, n€B(div,T;X), T €Ty, (53¢)

will determine a space V), C H(div, 2; X).

28



L. Chen and X. Huang Results in Applied Mathematics 23 (2024) 100494

gf y 2
i1 b2 3 4
o ‘
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I normal
(1,3) =1 O constraint
block
(1.4)
(2.3)
free block
(2.4)
(3.4)

Fig. 8. The normal constraint block (in blue) and the free block (in green) for an f € A (T) with n = 4,k = 2. In the free block, no index is in a normal
constraint. In the normal constraint block, each row contains at least one index in a normal constraint. The red circles will contribute to the bubble spaces. The
white circle denotes the pair index of each constraint sequence which is not a free index. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Proof. By Lemma 6.4, on each simplex, DoFs (53) will define a function w € P,(T’; X). We only need to verify the trace is uniquely
determined by (53a)-(53b).
For a face F € 4,_;(7},), we have a normal vector n; depending only on F and the formula
(W o, dj/) = (o, dj/ @ xdnj).
For f € A(F), as np € #/, we can expand nj = Zl’.’j cifn{ and xdny = Zf;f cif * dnl.f =Y iens c”l.f * djzl.f.
When (o,i) is free and i € /7, (o, djz£® * djzl.f)f is given by the DoFs (53a)-(53b).
Then consider the case (c,i) is not free and i € #/. Namely (0,i) = (i, + 7,i,) is a pair index for a constraint sequence. As

iy = i € #7, this constraint is a normal constraint, i.e., all i,, € #/ for m = 1,...,n — k + 1. We can express €(i;, ) dy£® ® dyif =
et - Zf’n;k;l (i, T) dﬁ[f L ® djz[.f , where é# € X* is defined in (49). As w € X and &¢# € X!, (w,&#) = 0 and consequently
n—k+1
(@,€(i, ) dFL@ % dF) ) == D eliys D@, d9] @ % dF] ).
m=2

Notice that the index (i,, + 7,i,,) is free and i,, € #/ for m > 2. So (@, djz£® * dfzif)f can be also determined by DoFs (53a)-(53b)
even (o, i) is not free.
It follows that

@™ ao.m; S EMFLNEP, (@A £ =0,...n—1.

can be determined by DoFs (53a)-(53b). As trdFiV weP.(F)® Altk, by the uni-solvence of the vector Lagrange element, we conclude
tr‘}gv ® is uniquely determined by DoFs (53a)-(53b). []

DoF (53a) implies the continuity at vertices. We argue that the continuity at vertices is also necessary. Take a vertex in 4,(T), for
example v,. Then (Ang)(vg) is determined by the row vector (Anp)|f, € A¥ for i =1,...,n, where F, € A,_,(T) is the face opposite
to v;. If it is continuous on each face not on vertices, the number of elements in (Any)(v,) is dim Alt* for each face. Running i from 1
to n, A(vy) is determined by ndim Alt* conditions, which is more than dim X. In other words, the constraint makes the tensor product
of vector DoFs fails and introduce additional smoothness.

6.4. Facewise redistribution

DoFs (53a)-(53b) implies stronger continuity on the normal plane. We shall further redistribute some DoFs to faces F € 4,_;(T).

To do so, we introduce the concept of the free block and the normal constraint block. For a fixed o, the row vector (c,i),i =¢+1 : n
is called a free row if no index is in a normal constraint. All free rows will form a sub-matrix called the free block. The rest is called
the normal constraint block, which contains all normal constraints. Do not confuse the free row with the free index. All indices of
a free row are free. But a row with all free indices may not be a free row. A free index can be associated to a normal constraint
sequence. See the second and third rows in Fig. 8.

For indices in the free block, the pair index is in the tangential component, which will not change the normal trace. For a normal
constraint, the pair index is still in the normal constraint block and changing a basis of .#'/ may destroy the H(div)-conformity.
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Therefore a global basis {nif} of 7 is chosen to impose the normal constraints for the normal constraint block. For example,
DoFs (39b) for n,.To-n ; in the H(div,S) element are normal constraints.

For a free row, we have a vector in R” consists of [a, |,...,a5 ¢, G5 415 .-+ a5 ,]T. The first £ components are in the tangential
component and their values are determined locally as the element-wise div bubble polynomials. The part [a, 4. ....a,,]" is in the
normal component and the corresponding DoFs can be redistributed facewisely by using the face normal basis {np,f C F,F €
A,_(T)} of #/. In short, a free row is just like a vector H(div) element.

Theorem 6.6 (H (div)-Conforming Finite Element with Face Redistribution). For each f € A,(T,), £ =0, ...,n—1, choose a global t-n basis
{tf Y ,tﬁ, nlf s n’fl ) depending only on f. Let { dy;} be the corresponding basis of Alt!, and { dp;} be its dual basis. The following DoFs

o), i=0,....,nweX (54a)

@07 NEP,_r41)(f)® {9/ ® % d§/ | (o.i) is free and in the normal constraint block}, (54b)
feAT.e=1,...,n—1,

W o,n) . 1 EP,_p41)(f)®{dP] | o is in the free block}, F € A,_((T;), f € As(F),£ = 1,....n—1, (540

(@,mr, n€BWiv.T:X),T €7, o

will determine a space V), C H(div, £2; X).

Proof. Local unisolvence on an element. We write DoF (54c) as
¥ o, dp), = (0, dp7 @ xdnk),, fCF, (55)

where {nl, f C F,F € 4, (T} is the face normal basis of .#/ in element 7. As {n7l;i,i € f*} and {n{,j =1,...,n—¢} are different
bases of the same space .#/, DoF (55) will also determine

(@ dpf@ = d7)),, i=C+1,...n (56)

Together with (54b), we obtain DoFs (53b). The number of DoFs remains the same as in a free row all indices are free. Then we
conclude the unisolvence from Theorem 6.5.
Global conformity across elements. The continuity

(tr‘ﬁ" o,n ¢, NEP_pyi(f)®{ dyg | o is in the normal constraint block}

is implied by DoFs (54a)-(54b) as the global ¢-n basis {tf ]f -

: 1’
conclude tr‘};" w is continuous. []

,t'; n ,nf:_ K} depending only on f. Together with DoF (54c), we

Remark 6.7. It seems that we can also try to redistribute the rows in the normal constraint block as DoF (56) can be derived from
DoF (55). The problem comes from the fact the basis {n;, f CF,FeA,_ (T)} is element-dependent. Expand a global basis vector
nif =>r c?n? will let (56) be element dependent. For example, for H(div,S) element, niTrn ; cannot be redistributed to faces. In the
above proof, we transfer (54c) to (56) only for the ease of uni-solvence.

Following the management of DoFs presented in [30], we need to set global and local indexing rules for all DoFs. The global
numbering rule is similar to the Lagrange interpolation points. Globally, we can divide the DoFs into those that are shared among
simplices and those that are not. The DoFs shared among simplices can be further allocated to the respective sub-simplices. For the
DoFs situated on a sub-simplex f, we can choose global normal vectors n{ which share a global DoF labeling, and local tangential
vectors tlf which have different labeling in different elements.

We count the size of the normal constraint block. The normal constraint block disappears when # > k as the length of the
constraint n — k + 1 will be greater than n — # the dimension of the normal plane. That is when # > k, all rows are free and
corresponding DoFs can be redistributed to faces.

Consider the case # < k. If 6 € X(1 : k,1 : n) is in the constraint block, there exists some i > # such that t =6 —i € X(1 :
k— 1,1 : n) satisfies ¢ C [£ + 1 : n], which is equivalent to ¢¢ C [£ + 1 : n]. Hence the number of rows in the constraint block is
(::i): among all n — # indices of the normal plane, choose n — k indices to form ¢°. When # = 0, (nf k) = (:), i.e., all rows belong
to the constraint block. Consequently DoFs at vertices cannot be redistributed facewisely. We thus give another justification of the
continuity at vertices.

6.5. Discrete inf-sup condition

For a smooth tensor u = (u,) with index 6 € 2(1 : k,1 : n), let gradu be a tensor with size (:) X n give by

(gradu)g; := 0, u,.
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Lemma 6.8. It holds that
ker(Pygrad) = Py (T; R(Z)) + Xtx.

Proof. Noting that grad (Py(T ;R(D) + X1x) = X!, hence

Py(T; R(z)) +Xtx C ker(Pxgrad).
By (31) in [6], ker(Pxgrad) C IP’I(T;]R(:)). Take ¢ + Ax € ker(Pxgrad). By grad (c + Ax) = A, we have PxA =0, i.e. A € X*. Therefore
ker(Pygrad) € Po(T; RW) + Xtx. [

We introduce notation RX := ker(Pxgrad). Examples are RX = RM the rigid motion for X = S, and RX = RT for X = T, where
RT := Py(T;R") + xPy(T) is the lowest Raviart-Thomas element. In general, RX is the Whitney form PyA* + k., Py A**!, which is
another characterization of ker(Pxgrad).

Operator Pygrad is the proxy of Pyd := (=1)""! x Py x d : A*0 - Akl Indeed [LwA Pydn=(-1)""! [oArx*dy= [fwA dn,
then the integration by parts holds

/der,=(—l)"/wAPXdr/+/ trN oAy (57)
T T aT

for any @ € H(div,T;X) and 5 € A*?, In the matrix and vector proxy, we have

/(diVA)~udx:—/A : PXgradudx+/ (An) - udS.
T T or

We consider the finite elements defined in Theorem 6.6. Define the global finite element space
V, = A{w, € L*(2;X) : wylr EP(T;X) VT T,
the DoFs (54a)—(54b) is single-valued across f € 4,(7,) for £ =0, ...,n— 1,
the DoF (54c) is single-valued across F € 4,_;(7,)},
0, =lay € L*(% A" @ qylr €P,_((T54%) VT €T,). (58)

Thanks to Theorem 6.6, V;, C H(div, 2; X). We are going to verify the discrete inf-sup condition div V), = Q,, if r > n+1. The following
characterization of the range of the div operator on the bubble polynomial space is an abstract version of results (30) and (41)
established in [12,16,17].

Lemma 6.9. For each T € 7y, it holds

divB,(div, T; X) = P,_(T; A¥) nRX?. (59)

Proof. When r =0, 1, (59) is obviously true as both sides are zero. We thus consider r > 2.
Apply the integration by parts (57) to get

div B, (div, T; X) C (P,_,(T; A¥) nRXH).

Next we focus on the proof of the equality. For simplicity, write di,« ® dA(,() s+ @ ¢, for each ¢ € X0 : n—k,0 : n) and
i=1,...,n—k. By Theorem 5.7, {q‘)a’i}fjf F?;"_;k’oz") is a basis of X, whose dual basis (appropriate rescaling of (47)) is denoted by
(v, };iff?:::]f‘o;"), that is v, ; € X, (¢, . v, ;) = 1 for 6 = 7 and i = j, otherwise it vanishes.

Consider the edge e = e, ) -;)- The vector proxy of dij,q) ¢y« iS proportional to °. Coupled with the edge bubble function

b, = A,(0)40(;)» the vector function b,t¢ satisfies
ng-b,t°|p =0, FeA, (T,

as if the edge e ¢ F, then b,|r = 0; otherwise np -t = 0. Therefore A, 4,)®,,; € By (div, T; X).
If divB,(div, T; X) C (P,_,(T; A¥)nRX"), then there exists u € P,_,(T’; A¥)nRX* satisfying (u, div )y = 0 for any o € B,(div, T; X).
Equivalently
(Pggradu,w)r =0 V w € B.(div, T; X).

By expressing Pygradu = ¥, v n_i0:m Lot 4% W, With g% € P,_,(T)), we choose

n—k

w= > Y Ao Ao b0 € B, (div, T3 X).
c€X(0:n—k,0:n) i=1

Then we have
n—k

Z(A’D‘(O)}'G’(i)qa'is 4"y =0.
0€2(0:n—k,0:n) i=1

Therefore ¢° = 0 for all i and ¢ and consequently ¥ =0. []
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Employing the same argument as the proof of Proposition 4.8, the discrete inf-sup condition follows from (59).

Lemma 6.10. Letr > n+1. Let V;,, C H(div, 22; X) be the finite element space defined in Theorem 6.5 and Q,, be the space defined in (58).
It holds

(div wp,, q5,)
[lgnllo S sup

T a. V qh S Qh‘
wpey llopllo + 1 divey,llg

For ¢ > k, all DoFs can be redistributed facewisely as no normal constraint block exists. We can further modify the DoFs to get
the discrete inf-sup condition with degree r > k + 1 relaxing the requirement r > n+1for k=1,...,n-2.

Theorem 6.11 (H (div)-Conforming Finite Element with a Better Inf-Sup Condition). Let 1 <k <n—2and r > k+1. For each f € A,(T}),
¢ =0,...,n—1, choose a global t-n basis {tf, ,tﬁ, n-lf, ,n'nf_f} depending only on f. Let { dy;} be the corresponding basis of Alt', and
{dy;} be its dual basis. The DoFs

o(v;), i=0,...,nweX (60a)
(@,myp, NEP_py(f)®{ dﬁ{;® * dﬁif | (6,i) is free and in the constraint block}, f € A,(T,).¢ =1,...,k—1, (60b)
(tr‘},“’ w, r/)f, NEP_ (/) ®{ djz£ | o is in the free block}, F € A,_(T},). f € Ay(F),¢ =1,....,k—1, (60c)
W w.n)p. 7 € [P{(F)® B, (F)NPHF)] @ AltY, F € 4, (7). (60d)

(@, M7, n€B.(div,T;X), T €T,

will determine a space V), C H(div, 22; X).

Proof. The condition k < n— 2 is to ensure

n

dim By, (F) = |4 (F)| = <k +1

>2n=dim]P’1(F) if k<n-2.
So that we can modify the face DoF to (60d). Vanishing DoFs (60a)—(60c) will imply tr‘}g" o €B,, (F Y®AltX, which can be decomposed
into (60d). [

As 5 € P, (F)®Alt* is included in DoF (60d), we acquire the following discrete inf-sup condition by applying the same argument
as the proof of Lemma 6.10.

Corollary 6.12. Let 1 <k <n-2andr > k+ 1. Let V},, C H(div, 22;X) be the finite element space defined in Theorem 6.11 and Q,, be
the space defined in (58). It holds

(div @y, q5,)
llgpllo S sup

————— Vg, €0
wpeVy llwgllo + [ diveylly
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