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In the field of biomechanics, customizing complex strain fields according to specific requirements poses an 
important challenge for bioreactor technology, primarily due to the intricate coupling and nonlinear actuation 
of actuator arrays, which complicates the precise control of strain fields. This paper introduces a bioreactor 
designed with a 9 × 9 array of independently controllable dielectric elastomer actuators (DEAs), addressing 
this challenge. We employ image regression-based machine learning for both replicating target strain fields 
through inverse control and rapidly predicting feasible strain fields generated by the bioreactor in response 
to control inputs via forward control. To generate training data, a finite element analysis (FEA) simulation 
model was developed. In the FEA, the device was prestretched, followed by the random assignment of 
voltages to each pixel, yielding 10,000 distinct output strain field images for the training set. For inverse 
control, a multilayer perceptron (MLP) is utilized to predict control inputs from images, whereas, for forward 
control, MLP maps control inputs to low-resolution images, which are then upscaled to high-resolution 
outputs through a super-resolution generative adversarial network (SRGAN). Demonstrations include 
inputting biomechanically significant strain fields, where the method successfully replicated the intended 
fields. Additionally, by using various tumor–stroma interfaces as inputs, the bioreactor demonstrated its 
ability to customize strain fields accordingly, showcasing its potential as an advanced testbed for tumor 
biomechanics research.

Introduction

Cell behavior is governed by a combination of internal and 
external factors, including both chemical and mechanical signals. 
The design and implementation of bioreactors, particularly 
cell stretchers, are pivotal in applying physical biomechanical 
stimuli—stretching, compression, or torsion—to cells or tissues 
[1]. Such devices are adept at replicating the mechanical envi-
ronments experienced during physiological activities like 
heartbeats, vascular pulsation, and respiratory movements. 
Understanding the complex mechanical stimuli is essential for 
unraveling mechanobiology’s role in maintaining healthy tissues 
and investigating diseases like cardiac fibrosis [2–5], idiopathic 
pulmonary fibrosis [6,7], musculoskeletal disorders [8], and 
connective tissue diseases [9]. Moreover, these devices facili-
tate studies on how cells alter their morphology, structure, and 
function under varying mechanical stimuli and how these trans-
formations impact cell growth, differentiation, and apoptosis 
[10].

Current bioreactors are typically powered by pneumatic 
actuators [11–13], motors [14–16], dielectric elastomer actuators 
(DEAs) [17,18], or shape memory alloys (SMAs) [19], with 

a common limitation being the scarcity of independently 
drivable actuators. This constraint restricts them to generat-
ing simple uniaxial [20,21], equibiaxial [22–25], and non-
equibiaxial [11] stretching. However, the demand in fields 
such as cardiovascular biomechanics [26], tissue engineering 
and regenerative medicine [27], and tumor biomechanics [28] 
necessitates bioreactors capable of producing more complex 
and customized strain fields. These advanced strain fields 
serve as testbeds for in vitro cellular experiments, requiring 
a bioreactor with an actuator array where each actuator can 
be independently controlled. Given the size constraints of 
pneumatic actuators and motors for centimeter-scale bioreac-
tors and the slow response time of SMAs, DEA arrays emerge 
as the optimal solution for achieving the desired complexity 
and customization of strain fields.

With the advent of smart materials and cutting-edge fabrica-
tion technologies, the creation of DEA arrays has become 
feasible. Hajiesmaili and Clarke [29] achieved an optically 
addressable 6 × 6 DEA array using embedded percolative net-
works of zinc oxide nanowires with each actuator independently 
controlled. The DEA arrays have been applied to tactile display 
[30] and single-cell mechanotransduction to generate uniaxial 
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strain [31]. However, controlling these DEA arrays to achieve 
customized strain fields presents a significant challenge. The non-
linear characteristics of DEAs, coupled with the inter-actuator 
interactions, are complex to encapsulate within an analytical 
model. In recent years, the emergence of machine learning tech-
nology has revolutionized control and sensing within the soft 
robotics domain [32,33]. This evolution has introduced sophis-
ticated methods for enhancing robotic responsiveness and 
adaptability. Subsequently, within the subset of soft robotics, the 
shape morphing devices, the relationship between the inputs to 
an array of actuators, and their 2.5-dimensional (2.5D) or 3D 
deformations can be delineated through 1D vector regression 
[34,35] or 3D point cloud regression [36]. Inspired by these 
advancements, for 2D deformations in DEA arrays, the mapping 
between strain field images and input arrays can be effectively 
established through image regression. Yang et al. [37] proposed 
the utilization of generative adversarial networks (GANs) for 
the direct prediction of stress and strain fields. Park et al. [38] 
utilized the multiscale kernel neural network to achieve similar 
functionality. However, for the application described previously, 
predicting control inputs based on stress and strain fields plays 
a more important role.

In this study, we designed a bioreactor equipped with a 
9 × 9 array of independently controllable DEAs. Our goal 
was to predict the strain fields generated by this bioreactor or 
replicate given target strain fields using a machine learning-
based image regression approach. Initially, we collected data 
through the establishment of a finite element analysis (FEA) 
simulation model. In the FEA, the device was prestretched, 
followed by the random assignment of voltages to each pixel, 
yielding 10,000 distinct output strain field images for the train-
ing set. In the training phase, we employed a multilayer per-
ceptron (MLP) to achieve inverse control, enabling the device 
to replicate a specified target strain field based on input 
images. Furthermore, we combined MLP with super-resolution 
generative adversarial network (SRGAN) to facilitate rapid 
prediction of strain field images from input voltage arrays. In 
the demonstration section, we input 2 biomechanically significant 
strain fields, and the proposed method successfully enabled the 
virtual device to replicate these fields. Subsequently, introduc-
ing various tumor–stroma interfaces as inputs, the virtual device 
adeptly replicated these strain fields as well, demonstrating its 
capacity to customize strain fields based on different tumor–
stroma interfaces.

The key novel contributions are summarized as follows:

• This paper innovatively proposes the use of an image regres-
sion method to achieve control over the strain field, enabling 
the replication of strain fields based on input images.

• The forward control implemented in this paper can rapidly 
and accurately predict strain field images based on control input.

• The inverse control implemented in this paper enables the 
customization of strain fields according to the practical require-
ments of biomechanics applications, particularly by replicating 
identical strain fields based on tumor–stroma interfaces.

Materials and Methods

Design of the bioreactor with DEA array
In this study, we introduce the design of a bioreactor capable 
of generating complex strain fields for the sophisticated stretch-
ing of cells or tissues. This system features a 9 × 9 array of inde-
pendently controllable DEAs spread over a 100 mm × 100 mm 
dielectric elastomer membrane. The 9 × 9 array is large enough 
to demonstrate the value of machine learning (it would be chal-
lenging to find an analytical solution) and is sufficient for the 
envisioned application in bioreactors. The varied actuation of 
individual DEAs, combined with intricate coupling between 
actuators, enables the creation of complex strain fields. As illus-
trated in Fig. 1, the primary objective of this work is to develop 
an image regression-based machine learning model to predict 
and customize complex strain fields.

In physical devices, gaps between pixels will be necessary 
for electrical isolation. However, the core of our work focuses 
on customizing the strain field using machine learning-based 
methods. The essence of these machine learning approaches 
is to decipher the mutual coupling between pixels during 
actuation. Greater coupling presents significant challenges for 
analytical modeling, making machine learning approaches 
particularly valuable. By maximizing this coupling, we not only 
underscore the significance of using machine learning but also 
ensure that our method can handle cases with less coupling 
more effectively. As shown in Fig. 2A, smaller gaps allow the 
deformation of one pixel to more significantly affect its neigh-
bors, thereby maximizing coupling and achieving the objec-
tives mentioned earlier.

Data collection from simulation results
Data collection from a physical device might appear as the 
most direct approach. Yet, the repeatability of actuator arrays 
is limited, as they are prone to accumulate errors after thousands 

Fig. 1. The bioreactor with DEA array can achieve strain field prediction and customization by using image regression-based machine learning.
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of actuations. Moreover, inherent fabrication and systematic 
errors of the physical device can also diminish training preci-
sion. An alternative data collection method involves construct-
ing an accurate FEA model for the device and harvesting 
training data from simulation results. This technique not only 
yields a substantial volume of training data swiftly but also 
ensures greater data stability, resulting in a more precise model.

Here, we utilize Abaqus to model our DEA array. The simu-
lation process is divided into 2 steps. The initial step involves 
prestretching the DEAs, which significantly enhances the actua-
tors’ strain capability. This prestretch is necessary for the devices 
to remain planar during actuation since the actuation in each 
pixel causes in-plane expansion. Without prestretch, the devices 
would exhibit complex deformations such as out-of-plane buck-
ling. We configure the first step with the “general, static” preset, 
applying a displacement in both the X and Y directions. This 
displacement equals the original length of the devices in the X 
and Y directions. This step provides a 100% engineering strain 
on both directions, and the true stain is 69.31%. The results of 
this first step are then used as the starting point for the subse-
quent step in the simulation process. In the real devices, the 
prestretch will be done in the fabrication process before the 
membrane is mounted to the base. The cells will be cultured on 
the membrane after the membrane has been prestretched, so 
the prestretch strain will not be counted in the strain applied 
to the cells (Fig. 2A and B).

In the second step of the simulation, we employ a custom 
user element (UEL) subroutine that uses temperature as a proxy 
for voltage for DEA simulation [39]. The subroutine calculates 
the material’s strain and electric field (input as temperature) 
based on nodal displacements and electric potential. It then 
computes the Maxwell stress, reflecting the contribution of the 
electric field to the stress and demonstrating the electrome-
chanical coupling effect. These calculated values of strain and 
Maxwell stress are used to update the residual vectors and the 
stiffness matrix, effectively simulating the electromechanical 
behavior of the DEA material.

The UEL subroutine introduces the effect of voltage input 
on mechanical deformations by incorporating this coupling 
into the stiffness matrix and residual vectors of the finite 

element formulation. Implementing this in Abaqus requires 
a step where mechanical deformation depends on another 
parameter. Since we define the element’s behavior, the param-
eter’s label in the software is irrelevant; it merely serves as a 
method for data transfer. The coupled temperature–displace-
ment step in Abaqus allows this process, where “temperature” 
acts as a variable that the UEL treats as voltage, yielding the 
desired outputs.

Since the simulation does not account for the material’s 
viscoelastic properties, it represents the quasi-static deforma-
tion of the DEA rather than a dynamic process. The material 
we choose for DEA is Ecoflex. In Abaqus setting-ups, the mate-
rial stress–strain model is set to neo-Hookean model with 
C10 = 0.207, D1 = 0.05 [40]. Since our final strain, including 
prestretch and DEA actuation, is at most around 95%, we do 
not need more complex and higher-order hyperelastic models 
such as Mooney–Rivlin or Ogden 3rd order. These models 
show minimal differences compared to the neo-Hookean 
model within 100% strain, and the complex models would 
also increase computation time. While the time saved for a 
single simulation may be limited, we need to generate 10,000 
simulation datasets for training, making the overall reduction 
in computation time substantial. The environment is set to 
“coupled temp-displacement”. We sequentially assign a volt-
age array as temperature boundary conditions to each pixel’s 
top electrode, while the bottom electrode is uniformly set to 
0 degrees. Subsequently, fixed constraints are applied to the 
device to keep one endpoint static and both lateral faces paral-
lel to the X–Z and Y–Z planes, respectively, with the bottom 
face parallel to the X–Y plane. For meshing, we opt for ele-
ment type C3D8T—an 8-node thermally coupled brick with 
trilinear displacement and temperature.

In our research, the goal is to gather training data through 
simulations by ensuring a random strain field in each case. 
Additionally, we aim for a uniform strain distribution in every 
case, meaning that it should consistently encompass all strain 
levels from the lowest to the highest value. A model trained 
with a training set distributed in this manner can achieve better 
generalization, meaning that when a new data or image (not 
part of the training set) is used as input, its output can have 

Fig. 2. The FEA simulation of the proposed bioreactor for training data collection. (A) Original mechanism with no gap between pixels to maximize the actuation coupling 
between actuators. (B) The device is prestretched for 100% before assigning the voltage to the pixels. (C to F) Re-distributing the voltage inputs to make sure the strain 
distribution in the simulation result can be uniform, where (C) is the voltage and strain distribution before the voltage redistribution, (D) is one of the simulation results with 
nonuniform strain distribution, (E) is the voltage and strain distribution after the voltage redistribution, and (F) is one of the simulation results with uniform strain distribution.
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higher accuracy. The relationship between voltage and strain for 
DEA is not linear. We cannot use uniform voltage distribution 
to get a uniform strain distribution. To address this, we first apply 
various voltages to a single pixel to establish a nonlinear voltage–
strain curve. We then employ a dual Gaussian fit to precisely 
define the relationship between voltage and strain by using Matlab 
Curve Fitting Toolbox, as shown in the following:

where ϵ and V refer to the strain and voltage, respectively. The 
fitting parameters are: a1 = 7.756e + 15; b1 = 24.1; c1 = 2.964; 
a2 = 47.69; b2 = 10.18; c2 = 4.401. This fitting achieved within 
our operational range resulted in an R2 value of 0.9998.

If we want to achieve a uniformly distributed strain field, the 
voltage distribution we use cannot be uniform. If we use a uni-
formly distributed voltage, as shown by the red bar in Fig. 2C, 
the resulting strain field distribution, indicated by the red and 
blue bars in Fig. 2C, is very uneven. We then adjust the distribu-
tion of voltage inputs to comply with the aforementioned fitting 
equation, as shown by the red bar in Fig. 2E. This distribution 
of voltage inputs results in a very uniform strain field distribu-
tion, as shown by the blue bar in Fig. 2E. Figure 2D and F shows 
the final strain field distribution resulting from the voltage dis-
tributions before and after optimization, respectively.

To quantify the importance of this step for the strain field 
distribution, we generated 10 simulations using the original 
voltage distribution and 10 simulations using the optimized 
voltage distribution. From each resulting strain field image, we 
extracted the strain at the center point of each pixel, creating an 
81D strain array for each image. We then calculated the standard 
deviation of probabilities and entropy of these arrays to quantify 
the uniformity of the strain distributions.

The results show that with the original voltage distribution 
(uniform linear distribution), the standard deviation of prob-
abilities for the strain distribution in the device was 0.165, 
and the entropy was 1.35. With the optimized voltage distribu-
tion, the standard deviation of probabilities decreased to 0.015, 
and the entropy increased to 1.94. The smaller standard devia-
tion indicates a more even distribution, while the higher entropy 
further suggests a more uniform distribution.

To this end, we randomly generate 10,000 sets of 81D voltage 
input arrays, each of which is then assigned to the simulation 
model. This process yields 10,000 corresponding strain field 
images, which, along with the input voltage arrays, form our 
training dataset. Additionally, we generate an extra 100 sets of 
voltage input arrays to serve as a test batch. Once we obtain the 
simulation results for all training and test sets, we export the 
images representing LE11 and LE22, which are the X-direction 
and Y-direction strains, respectively, to form another part of our 
training and testing dataset. Given our intended application of 
customizing strain fields—either reproducing them from image 
inputs or predicting them from voltage inputs—we directly col-
lect these images for our training set and proceed with regression 
training on them. To facilitate the training of our model, we 
ensure that the exported strain field images are in grayscale.

Machine learning-based control
Inverse control for customizing strain field
Prior to initiating the machine learning process, we first pre-
process the image data. This involves cropping the images to 

retain only the central deformed region and then normal-
izing them. Our initial phase of training focuses on inverse 
control, which entails using image inputs to predict the voltage 
inputs that would result in the corresponding X-direction and 
Y-direction strain distributions. Training is conducted sepa-
rately for X-direction and Y-direction strains because the volt-
age inputs required to reproduce target images in X-direction 
strain fields differ from those needed for Y-direction strain 
fields. During training, all images are resized to 60 × 60 pixels 
and then flattened into 3,600D vectors. These vectors are then 
regressed against the 81D voltage input vector using an MLP. 
Our regression model incorporates a hidden layer with 180 
nodes and utilizes the “tanh” activation function. The optimizer 
chosen is stochastic gradient descent (SGD), with a learning 
rate set to 0.001 (Fig. 3A)

Forward control for predicting strain field
In this work, “forward control” refers to predicting the strain 
field that would be formed by a given voltage input array. This 
process is akin to simulation, but while FEA typically requires 
an extended period to simulate a strain field—for our case, 
approximately 2 to 3 min per simulation, which precludes real-
time prediction—the use of a pretrained model can achieve 
image prediction in roughly 0.1 s. This represents a significant 
reduction in time complexity compared to FEA. Our proposed 
machine learning architecture for forward control is a 2-stage 
process. The first stage involves regression from the voltage input 
array to a low-resolution (LR) image. Here, all training set images 
are resized to 60 × 60 pixels and flattened into 3,600D vectors, 
which are then mapped from the 81D input to the 3,600D output 
via an MLP, with parameter settings similar to those in the 
inverse control. Here, in the first step, we employ a single model 
to concurrently predict LR images of both X-direction and 
Y-direction strains. This is achieved by concatenating the two 
3,600D vectors representing x and y strains into a single 7,200D 
vector, which serves as the output during training. The second 
stage involves decoding the 3,600D vector back into a 60 × 60 LR 
image and using an SRGAN to regress it against the original 
480 × 480 high-resolution (HR) images. During the second step 
of the forward control, as shown in Fig. 3B, it is imperative to 
train the X and Y data separately due to the significant differ-
ences in the pixel distribution patterns of their strain field 
images. The combined effect of these 2 stages enables the predic-
tion of a 480 × 480 HR strain field image from an 81D voltage 
input array.

In the SRGAN, the model comprises 2 key components. The 
first is the generator, which is tasked with creating HR images. 
It features a succession of residual blocks that learn the mapping 
from LR to HR, capped with upsampling blocks to enhance the 
resolution of the input images. The generator’s goal is to fabri-
cate high-quality HR images from LR inputs. The second 
component is the discriminator, designed to discern between 
authentic HR images and the synthetic HR images fabricated 
by the generator. This is achieved through a sequence of con-
volutional blocks, each succeeded by a LeakyReLU activation 
to introduce nonlinearity, and batch normalization to ensure 
stability. Throughout the training phase, we utilize an NVIDIA 
RTX 3090 graphics card for computation and adopt binary 
cross-entropy (BCE) as the loss function for GAN training. 
The optimizer of choice is Adam. To align the training pace 
of the generator and discriminator, we set the learning rate for 
the generator at 0.00025 and for the discriminator at 0.0001. We 
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fix the batch size at 8 and run the model for a total of 50 epochs. 
On average, each epoch takes about 11 min to complete. Optimal 
training precision is generally achieved around the 20th epoch 
and maintains consistency thereafter.

In our forward control strategy, we avoid directly regressing 
the 81D voltage input array against HR images due to the sub-
stantial increase in vector dimensions when HR images are 
flattened. This approach would require significant memory 
allocation and extend training durations, making it impractical 
without access to high-performance computing resources.

Results

Model performance of inverse control
In the inverse control, we applied test datasets to their 2 respec-
tive pretrained models. We achieved a prediction accuracy of 
88.79% with a mean squared error (MSE) of 0.189 kV for the 
X-direction strain, and an accuracy of 87.31% with an MSE of 
0.211 kV for the Y-direction strain. Considering our input volt-
age range of 0 to 7.1 kV, these errors are remarkably low.

To visualize the model performance of the inverse control, 
we converted the predicted voltage arrays and the ground 
truths (data collected from simulation) from the 100 test sets 
into 9 × 9 matrices to compute their corresponding error matri-
ces. These error matrices were then visualized as 9 × 9 grid maps, 
as illustrated in Fig. 4, where darker squares indicate smaller 
errors and lighter squares signify larger errors. It was observed 
that, aside from a few pixels with an average error exceeding 
0.3, most errors fell within the range of 0.18 to 0.3. Interestingly, 
the error performance of pixels at the edges was better com-
pared to other areas. This could be attributed to the edge pixels 
being less influenced by the coupling effect of an actuator on 
one side, thereby allowing their characteristics to be learned 
with greater precision.

Model performance of forward control
For the evaluation of our forward control’s performance, visu-
alization of the similarity between the generated images and 

the ground truth is essential. To assess the degree of similarity 
between images, we employed the structural similarity index 
measure (SSIM), which aims to provide an image quality assess-
ment that more closely aligns with human visual perception 
than traditional pixel-based metrics, such as MSE. Unlike MSE, 
SSIM takes into account factors like image structure, bright-
ness, and contrast, offering a more comprehensive and accurate 
evaluation of image quality. The principle behind its calculation 
for 2 images, x and y, is defined as follows [41]:

where μx and μy are the average luminance of image x and y, 
respectively; �2x and �2y are the pixel variance of image x and 
y, respectively; σxy is the pixel covariance of image x and y; 
and C1, C2, C3 are small constants added to avoid division by 
zero with C3 typically set to C2/2. The above formula can be 
decomposed into 3 parts. The luminance comparison function 
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Fig. 3. The machine learning architecture for customizing and predicting the strain field in bioreactor with DEA array. (A) Inverse control architecture, which can reproduce 
the strain field by inputting target strain field images. (B) Forward control architecture, which can predict the strain field by inputting the voltage input array for DEA array.

Fig. 4. The model performance of the inverse control. (A) Comparing the predicted 
voltage map with the ground truth for the model of X-direction strain. (B) Comparing 
the predicted voltage map with the ground truth for the model of Y-direction strain.
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is as follows: 
2�x�y +C1

�2x +�2y +C1
, which compares the brightness of the 

2 images. The contrast comparison function is as follows: 
2�x�y +C2

�2x +�2y +C2
, which compares the contrast of the 2 images. The 

structure comparison function is as follows: 
�xy+C3

�x�y +C3
, which 

compares the structural information of the 2 images.
In our computations, we initially set a Gaussian window of 

size 11. For every local region within the image, convolution 
with the Gaussian window allows for the calculation of the 
region’s weighted average luminance, variance, and covariance. 
The Gaussian window ensures that the contribution of center 
pixels to the outcome is greater than that of edge pixels, mir-
roring the characteristics of human visual perception, which 
tends to focus more on details around the focal point. Within 
each local window, the SSIM value for the 2 images is calculated 
based on the derived weighted average luminance, variance, 
and covariance. The Gaussian window is then slid across the 
entire image, repeating the aforementioned steps for every pos-
sible local area, thereby generating a collection of local SSIM 
values across the image. Finally, an overall SSIM value for the 
2 images is obtained by averaging all the local SSIM values.

For the prediction of strain images in both the X-direction 
and Y-direction, the SSIM achieved values of 0.9664 and 0.9673, 
respectively, indicating a predictive accuracy to a level where 
differences are barely discernible to the naked eye. Subsequently, 
we aggregated all the local SSIM values into a matrix, which 
was visualized in Fig. 5. It was observed that, aside from the 
nondeformed edge areas where the SSIM was below 0.9, the 
SSIM values in other regions exceeded 0.95.

Reproducing complex strain field with image input
Current bioreactors primarily generate uniaxial, equibiaxial, and 
non-equibiaxial strains, lacking the capability to produce more 
complex strain fields. However, in practical applications, as illus-
trated in Fig. 6, strain fields with multiple annuli of varying strains 
and unidirectional gradient variations hold significant biological 
relevance. For instance, multi-annular strain fields with varying 
strains across different rings can simulate the strain distribution 
in circular tissue structures like blood vessels, intestines, or certain 

cartilaginous tissues. Similarly, strain fields with unidirectional 
gradient changes can mimic the strain distribution in muscular 
tissues, tendons, and some connective tissues, as well as study 
cell migration under different strain gradients, which is crucial 
for understanding how cells respond to varying strain environ-
ments during wound healing. Yet, contemporary bioreactors are 
unable to generate such complex strain fields. Thus, we designed 
2 target images representing these scenarios and input them into 
the inverse control pretrained models for the X-direction and 
Y-direction. The voltage input arrays obtained were then applied 
to our virtual device, successfully generating the strain fields 
depicted in Fig. 6. We compared the similarity between the target 
complex strain field with the reproduced strain field by using 
SSIM, and the result is shown in Table.

Comparing Fig. 6B and D with Fig. 6A and C, it is evident 
that the virtual device, within its resolution constraints, can 
accurately replicate the target strain fields as proposed by our 
inverse control method. However, it is important to note that 
the range of strain fields the device can generate is limited. For 
instance, in the case of X-direction strain, the device can per-
fectly replicate strain fields with horizontal gradient distribu-
tions, but it struggles to ideally generate strain fields with vertical 
gradient distributions. Similarly, for Y-direction strain, achiev-
ing horizontal distributions poses a challenge.

Fig. 5. The model performance of the forward control. (A) SSIM between the predicted 
X-direction strain field image and the ground truth. (B) SSIM between the predicted 
Y-direction strain field image and the ground truth.

Fig. 6. Demonstrations of inverse control to reproduce strain fields with multiple annuli of varying strains and unidirectional gradient variations. (A) Target strain fields with 
multiple annuli of varying strains and horizontal gradient variations for reproducing X-direction strain field. (B) Reproduced X-direction strain field. (C) Target strain fields with 
multiple annuli of varying strains and horizontal gradient variations for reproducing Y-direction strain field. (D) Reproduced Y-direction strain field.
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Mimicking the shape of tumor–stroma interface for 
cancer cell testbed
Another meaningful application of the method proposed in this 
paper is the generation of strain fields corresponding to the 2D 
shape of tumor–stroma interface. This type of bioreactor holds 
significant promise for tumor biology and cancer treatment 
research. Tumor tissues are subject to a unique biomechanical 
environment that differs significantly from the uniaxial or 
biaxial stretching typically experienced by heart or lung cells. 

The mechanical environment of tumors is closely related to their 
interaction with surrounding organs or biological tissues at the 
tumor–stroma interface. Simulating the shape of this interface can 
be beneficial for multiple reasons. This allows the study of how 
tumor growth and expansion exert mechanical stress on sur-
rounding tissues, impacting the behavior of adjacent tissues 
and cells. By replicating the strain corresponding to the tumor–
stroma interface shape, experiments can be conducted in vitro 
without the need for actual tumors, providing a highly valuable 
testbed for research [42].

Drawing on the research by Byrd et al. [43] on breast cancer 
tumor–stroma interfaces, we extracted 3 different shapes of 
tumor–stroma interface and created target input images as 
shown in Fig. 7A. These were then input into the inverse con-
trol pretrained models for X-direction and Y-direction strain, 
respectively. The voltage input arrays obtained were applied to 
the virtual device, resulting in the strain replications shown in 
Fig. 7B and C, with Fig. 7B representing the replication of 
X-direction strain and Fig. 7C representing the replication of 
Y-direction strain. Comparing these replications with the tar-
get input images, it is evident that, despite the limitations of 
current resolution, our proposed method successfully repli-
cates the input tumor–stroma interfaces. This offers a valuable 
testbed for biomechanical research on tumors.

We compared the similarity between the target tumor–stroma 
interfaces with the reproduced strain field,, and the result is 
shown in Table.

Table. The SSIM between target strain field with reproduced 
strain field

SSIM between target 
and X-strain field

SSIM between 
target and Y-strain 

field

Circular strain field 0.7500 0.7406

Gradient strain field 0.8335 0.7898

Tumor demo 1 0.8809 0.8915

Tumor demo 2 0.8828 0.8952

Tumor demo 3 0.8682 0.9108

Tumor demo 4 0.9014 0.8903

Fig. 7. Reproducing target strain field derived from tumor–stroma interfaces for cancer cell testbed. (A) Target strain field derived from breast tumor–stroma interfaces. 
(B) Reproduced X-direction strain field. (C) Reproduced Y-direction strain field.
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Discussion
The paper successfully demonstrates the use of a 9 × 9 array of 
independently controllable DEAs to achieve precise control 
over strain fields, overcoming the limitations of traditional bio-
reactor technologies. Through the integration of image regression-
based machine learning, both forward and inverse control 
methods were developed, enabling rapid prediction and repli-
cation of target strain fields. The use of FEA for data collection 
and the novel application of MLP and SRGAN models for 
machine learning-based control underscore the innovative 
methodologies employed in this research. Our proposed bio-
reactor has potentially vast applications, ranging from the study 
of tumor biomechanics to the exploration of cellular responses 
under various mechanical stimuli. By replicating biomechani-
cally significant strain fields and customizing strain fields based 
on tumor–stroma interface, this bioreactor demonstrates its 
potential as an advanced testbed for research in mechanobiol-
ogy, tissue engineering, and regenerative medicine.

This paper primarily focuses on using image-based machine 
learning algorithms to achieve customized control of complex 
strain fields, which is computationally intensive. In addition, it 
is important to note that unlike the study in this paper, the physi-
cal device would require insulation gaps between pixels, thus 
slightly modifying the coupling between pixels. The device would 
then be prestretched and mounted on the base after which cul-
tured cells could be studied under modified strain fields. The 
FEA model corresponding to the physical model of the device 
would then be verified using experimental data, before using 
machine learning (developed on the FEA data) to try and gener-
ate the desired strain fields on the physical device. We are cur-
rently working on replicating the 6 × 6 DEA array proposed in 
previous studies [29] and aim to scale it up to a 9 × 9 array. Our 
goal is to implement our proposed control method to customize 
complex strain fields.

In conclusion, this paper represents a significant step forward 
in the customization of strain fields for biomechanical research, 
showcasing the potential of combining advanced materials, 
machine learning, and simulation techniques to address complex 
challenges in the field of biomechanics and beyond.
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