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Harnessing Deep Learning of Point Clouds for Morphology
Mimicking of Universal 3D Shape-Morphing Devices

Jue Wang, Dhirodaatto Sarkar, Jiaqi Suo, and Alex Chortos

Shape-morphing devices, a crucial branch in soft robotics, hold significant
application value in areas like human—machine interfaces, biomimetic robotics,
and tools for biological systems. To achieve 3D programmable shape morphing
(PSM), the deployment of array-based actuators is essential. However, a critical
knowledge gap in 3D PSM is controlling the complex systems formed by these
soft actuator arrays to mimic the morphology of the target shapes. This study, for
the first time, represents the configuration of shape-morphing devices using
point cloud data and employing deep learning to map these configurations to
control inputs. Shape Morphing Net (SMNet), a method that realizes the
regression from point cloud to high-dimensional control input vectors, is pro-
posed. It has been applied to 3D PSM devices with three different actuator
mechanisms, demonstrating its universal applicability to inversely reproduce the
target shapes. Further, applied to previous 2D PSM devices, SMNet significantly
enhances control precision from 82.23% to 97.68%. In the demonstrations of
morphology mimicking, 3D PSM devices successfully replicate arbitrary target
shapes obtained either through 3D scanning of physical objects or via 3D
modeling software. The results show that within the deformable range of 3D PSM
devices, accurate reproduction of the desired shapes is achievable.

e
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devices,?! haptic technology,™ optical and
acoustic metamaterials,” and devices for
manipulating biology.*™®!

The most commonly investigated shape-
morphing devices morph between two dis-
tinct shapes, driven by the material design
or structural configurations.’™* We refer
to these devices as pattern-to-pattern shape
morphing. Many emerging applications
require controllable and reversible transfor-
mations, which has stimulated the develop-
ment of devices that can transform their
structure on demand, which we refer to
as programmable shape morphing
(PSM).'H16=21) Sych devices consist of an
array of actuators, enabling a singular
device to transform into various configura-
tions as necessitated.

Early PSM systems were composed of
arrays of solid linear actuators that could
reproduce surfaces on demand.*%%’!
Since all actuators were mechanically

1. Introduction

Shape-morphing devices, a pivotal subset of soft robotics, aspire
to achieve programmable, controllable, and reversible transfor-
mations reminiscent of biological systems such as octopi and
growing plants."?) They exhibit potential in realms such as
human-machine interfaces for augmented and virtual reality
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decoupled, the control algorithms were rel-
atively simple. However, the bulky and
cumbersome nature of the linear actuators

and their control equipment!***! limited their applications.
Recent advancements in materials and fabrication techniques
have led to the emergence of flexible actuators,”® substantially
reducing the size of actuator arrays and enabling the creation
of entirely continuous surfaces.”®*" This has revitalized interest
in PSM. Given the intricate coupling that exists between the
deformations of different actuators, the control algorithm plays
an important role in continuous PSM devices. For the works
whose deformation is generated by rod-shaped actuators con-
nected by points,”?! the construction of analytical models is
feasible, albeit necessitating certain simplifications. However,
the reliance on simplifying assumptions restricts the design free-
dom of devices. Continuum actuators that actuate throughout
their surface or volume!’®*"*”) present a more generalized
approach to deformation and mimic the continuous nature of
biological systems. Yet, the pronounced geometric coupling
inherent to arrays of continuous actuators presents significant
hurdles for traditional analytical models. Machine learning
has recently emerged as a strategy to achieve model-free control
of these complex systems.??”) The approach uses finite element
modeling to generate the dataset for machine learning. Finite
element modeling is effective for forward simulations, which cal-
culate the expected deformation of a PSM based on given control
inputs. A dataset is created by performing thousands of these
forward simulations with random control inputs. A machine

© 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH
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learning model then correlates the deformed state of the actuator
with the control inputs. The machine learning model can then be
executed to determine the control inputs that are required to
achieve a target deformation (inverse control).

Currently, research on shape-morphing devices has predomi-
nantly centered around 2D arrays of actuators that are capable of
transforming into 3D surfaces??®*"*¥! due to the availability of 2D
fabrication approaches. With the increasing development of
3D fabrication techniques,*®?% 3D arrays of actuators have
become viable. However, for controlling these 3D arrays of
coupled actuators, their complexity increases exponentially
compared to the existing 2D arrays. Consequently, the control
algorithms are the crucial knowledge gap in achieving 3D shape
morphing.

For soft robots with serial structures, it is possible to use
parametric representation of the deformed geometry to accom-
plish machine learning-based model-free control.**** For
shape-morphing devices with 2D arrays of actuators, 1D data are
sufficient to describe their deformation.!'?**""*”) However, for
the highly complex 3D arrays of actuators, neither parametric
representation nor 1D data can adequately capture their intricate
deformations in 3D space. Therefore, point cloud data are the
most direct and specific methods for representing these
deformed geometries.

The versatility of point clouds is reflected by their widespread
adoption in fields that rely on 3D representations, including the
construction industry,**! autonomous navigation,[34] computer
vision,*! and robot sensing.***”! Building upon this, the appli-
cation of machine learning to point cloud data has opened new
frontiers. Machine learning tasks for point clouds primarily
encompass segmentation,?®?? classification,***"! and recon-
struction.[*>**! These methodologies have found prolific applica-
tions in areas such as robotic sensing, autonomous driving, and
geoscience. While regression tasks with point clouds are less
prevalent, they have garnered attention in niche domains
including forest biomass estimation,** reconstruction of
deformable objects,*” and hand pose recognition."®
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Morphology mimicking of 3D shape morphing, which involves
controlling their deformation based on inputted target shapes,
can be described as a mapping between the target shape,
expressed in the point cloud, and the control inputs. It can be
considered a typical point cloud regression task.

Therefore, in this study, we present a universal approach to
inversely control 3D PSM devices with different actuation
principles. For the first time, we express the deformation of
shape-morphing devices using 3D point cloud data and propose
a novel machine learning model to correlate this representation
with the input vector that represents the control inputs to an
array of actuators (Figure 1A). This methodology can determine
the control signals necessary to achieve an input target shape,
which can then be used to reproduce the desired configuration.
The process can be applied to any actuating system for which a
finite element model can be created, thus providing a universal
control method for 3D PSM devices with any deformation
principle.

Our training data are derived from finite element analysis
(FEA) simulations. We initiated our research by establishing a
simulation model for the 3D PSM devices. Subsequently, large
numbers of FEA simulations were run with random control
inputs to procure the deformed 3D point cloud data. To correlate
the deformed state (point cloud data) with the control inputs
(continuous high-dimensional vectors), we introduce a new train-
ing architecture, named Shape Morphing Net (SMNet), that is
uniquely well suited for this task. In this model, we initially
employ Kernel Point Convolution (KPConv) to extract hidden fea-
tures from the point cloud, which are then merged with the orig-
inal data to enhance it. Subsequently, the augmented data are
processed through PointNet-++4- to transform it into feature vec-
tors, which is then used for regression analysis against the
control signals of actuator arrays (the output of this model).
This model not only achieves the morphology mimicking for
3D PSM devices but also significantly enhances the control pre-
cision of 2D PSM device. To verify its universality, we applied it
to three 3D PSM devices based on different deformation
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Figure 1. A universal method for controlling 3D PSM devices by mapping the point cloud of the deformed configuration with the control inputs of devices.
A) Utilizing the point cloud to express the configurations of shape-morphing devices, using an octopus to symbolize a shape-morphing device. B) The
rendering for 3D PSM devices based on ionic actuator arrays. C) The rendering for 3D PSM devices based on pneumatic actuator arrays. D) The rendering
for 3D PSM devices based on thermal actuator arrays. E) The demonstration procedures by which 3D PSM devices reproduce the shape of physical
objects in simulations.
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principles, and the results achieved high-precision inverse con-
trol in all cases (Figure 1B-D). To validate the efficacy of our
method in mimicking the morphology of real-world objects,
we captured point cloud data of a physical object using a 3D scan-
ner. The data were processed and input into a pretrained model,
generating a control input array for 3D PSM devices.
Subsequently, using these control inputs, all mechanisms were
able to accurately replicate the object’s shape (Figure 1E).
Additionally, we demonstrated that our proposed method is
equally capable of reproducing the target shapes derived from
more complex virtual 3D models.

2. Results

2.1. Data Collection and Preprocessing of Point Cloud Data

In this study, we employed four datasets for training. One dataset
originates from our group’s prior work,*!! on continuous actua-
tor arrays made of ionic actuators. The other three datasets are
created from 3D PSM devices with three different actuation
mechanisms. All data are derived from FEA simulations, with

www.advintellsyst.com

detailed simulation processes delineated in the Section 4.
When generating the training data from FEA simulations, we
needed a large amount of data that are not directly correlated with
each other. Therefore, all the control signals were generated ran-
domly and were uniformly distributed. These control signals
were then sequentially applied to the actuators in the simulation
to produce different deformation data, which were used as the
training set. Then, for postsimulation, we extracted the “XYZ”
displacement data for nodes, encompassing two segments: pre-
deformation node positions and postdeformation node displace-
ments. Summing them yielded the 3D point cloud data for the
postdeformation state. Given the variability in mesh and 3D
models across simulations, we implemented a standardized pre-
processing routine for the point clouds. The process of reproduc-
ing a 3D structure begins with a 3D scan (Figure 1E) that
provides the external points of the structure. Consequently,
the first step of preprocessing the data from FEA simulations
involved eliminating internal points (Figure 2A). Owing to the
heterogeneity introduced by the tetrahedral mesh, the point
cloud distribution lacked uniformity. We first employed a grid
average method for downsampling, which ensured uniform
point distribution. However, the resultant number of points
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Figure 2. The framework of mapping point cloud from simulation results with the control inputs by using SMNet. A) The procedures of extracting point

cloud data from simulations. B) The downsampling strategy for point cloud data: including grid average downsampling to avoid the point concentration
and random downsampling to ensure the number of points is the same. C) The point cloud rotation and normalization for training requirements. D) The

architecture of SMNet for regression problems.
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varied, prompting us to further employ a random downsampling
technique, adjusting all point cloud counts to “N” (the smallest
count postgrid average downsampling within the dataset, ensur-
ing minimal random deletions) (Figure 2B). The detailed expla-
nation of the point cloud downsampling is shown in Section S1,
Supporting Information. Subsequently, using the predeforma-
tion node positions, we centered and rotated the point cloud.
This ensured that for 2D models, the point (0, 0) was centered
within a square aligned parallel to the x—y plane, and for 3D mod-
els, the point (0, 0,0) was central within a cube, with each face
aligned parallel to the x—y, y-z, or x—z planes. Finally, we normal-
ized the postdeformation point cloud data, constraining its range
between —0.5 and 0.5 (Figure 2C).

2.2. Architecture of SMNet

SMNet finds the regression between the control inputs of the
structure and the resulting deformed geometry, which is repre-
sented as a point cloud. The first step of model training consists
of processing the point cloud data P € RN*3 through a KPConv
layer to identify the hidden features of the point cloud
(Figure 2D). We construct a 1D feature vector composed entirely
of ones {F € RN*!|F,, = 1}, which serves as an initial feature
for convolution with the point cloud. The whole KPConv part is
built upon the foundational U-Net architecture, which comprises
a sequence of encoding (downsampling) layers followed by a
symmetrical set of decoding (upsampling) layers. Crucial to this
structure are skip connections that directly link layers from the
encoder to their counterpart layers in the decoder, ensuring the
preservation and fusion of multiscale features. Within its inter-
mediate layers, unlike traditional convolutional operations that
operate on standardized grids, KPConv is distinctively equipped
with deformable kernels, allowing the convolutional kernels to
adapt to more complex and varying geometric patterns, thereby
enhancing the model’s capacity to represent intricate spatial rela-
tionships in the data. This convolution process yields point cloud
features as F oy, € RN*C,

Subsequent to this, we combine the newly generated features
Four € RN*® with the original point cloud P € RN*3 to a new
dataset Py € R"*? and then input to the advanced PointNet++
architecture. The base architecture of PointNet++ is also built
upon U-Net architecture similar to the KPConv. In each encod-
ing and decoding layer, there is a sampling process by using
spheres to reorganize the point set followed by a grouping pro-
cess to integrate the centroid points of each sphere with the
points in the neighborhood of centroid points. Subsequently,
the aggregated data pass through a mini-PointNet network con-
sisting of convolution, normalization, and ReLU activations for
each layer.

After progressing through the PointNet++ framework, the
output feature Fh, € RN*192* ig gubjected to average pooling.
Here, given that the point cloud data are extracted from simula-
tion results, it is inherently devoid of noise. Moreover, the defor-
mations present are rather continuous, lacking in pronounced
local detail features. Consequently, we opt for average pooling
over max pooling. Then, fully connected layers are used to con-
nect the feature vector from pooling to the target 152-
dimensional (216 in 3D ionic case) output vector with the
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ReLU as activation function of each layer. Since the model’s pre-
dictions are continuous number from —1 to 1, the mean squared
error (MSE) is employed as the pivotal loss function. The gra-
dients of this loss with respect to the model parameters are com-
puted and used to update the model’s weights (The detailed
description of SMNet is introduced in the Section 4.).

2.3. Model Performance of lonic 2D PSM and 3D PSM Devices

For the 2D ionic PSM device, it is integrated with a 6 x 6 array of
square-shaped ionic actuators as shown in Figure 3A. In experi-
mental systems,*!! each of these actuators can be independently
controlled. Intriguingly, these ionic actuators exhibit bidirec-
tional deformation; they bend downward upon the application
of a positive voltage to the upper electrode and vice versa. The
data employed herein derive from the simulation results in
Abaqus, as previously published by our group. In both simula-
tions and physical experiments of the ionic 2D PSM, the central
point of the square is held fixed, a strategy employed to maximize
deformation amplitude. This fixation method, however, induces
a pronounced x-y shift in the postdeformation point cloud, mak-
ing the reliance solely on z-axis data inadequate for learning. For
detailed simulation configurations and data extraction protocols,
readers are directed to our earlier work.2! Concerning this PSM,
we have amassed a training set of 5000 samples and a test set
comprising 100 samples. To shed light on model performance
and error distribution, an error map of the 100 ground-truth
input vectors for PSM control with the model’s predicted vectors
was executed. These disparities were visually conveyed through a
6 x 6 color map, where each section indicates the input error of
the corresponding actuator on the actual PSM, as depicted in
Figure 3B. In subsequent analyses, the predicted vectors were
injected into the simulation model to recreate the PSM shapes.
A comparative assessment between the point cloud data of these
reproduced shapes and the test set unveiled the error cloud map,
showcased in Figure 3C. This error cloud map, with a resolution
of 30 x 30, aggregates and averages the error within each grid,
color-coded to represent varying magnitudes of discrepancies. As
evident from Figure 3C, due to the centrality of the fixed point,
discrepancies predominantly amass in the upper right and lower
left quadrants, while the central region showcases minimal error.

It is worth mentioning that beyond the SMNet model pro-
posed in this study, we have also adapted prevalent point cloud
segmentation and classification architectures like 3DCNN, 748l
PointNet,**) PointNet++,*% KPConv,”" and RSConvP®? for our
regression task, serving as benchmarks. Unlike these models,
SMNet demonstrates a distinctive advantage in handling
shape-morphing 3D point cloud data. This data, derived from
simulation nodes, consists solely of coordinate information
and is stable with no noise. As this 3D data lacks additional
features, SMNet initially employs KPConv to acquire local shape
features of the point cloud beyond coordinates. Subsequently, it
utilizes PointNet++- to integrate and learn from both coordinates
and local shape features, making it particularly effective for this
specific application. Upon completing training, the coefficient of
determination, R2 score, gleaned from the test set, was selected
as the performance metric. The bar figure of models’ R2 scores is
portrayed in Figure 3D, and the multilayer percepton (MLP)
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Figure 3. The model performance of ionic 2D PSM and 3D PSM device. A) The physical image of ionic 2D PSM device proposed in ref. [21]. B) The error
map between model predictions and the ground-truth control input vectors of ionic 2D PSM device. C) The error map of ionic 2D PSM device showcasing
the point cloud of reproduced shapes with the ground-truth point cloud. D) The comparison of R2 score across various training models for ionic 2D PSM
device. E) The exploded image of ionic 3D PSM device assembled by six pieces of ionic 2D PSM device. F) The unfolded error map between model
predictions and the ground-truth control input vectors of ionic 3D PSM device. G) The 3D error map of ionic 2D PSM device showcasing the point cloud
of reproduced shapes with the ground-truth point cloud. There are two angles of view to show the entire six surfaces of the cube. H) The comparison of R2

score across various training models for ionic 3D PSM device.

model and SMNet model are highlighted (Figure 3D). In previ-
ous endeavors where merely z-displacement was employed—
eschewing 3D point cloud data—the MLP achieved a modest
accuracy of 0.8223.2%%*! A paradigm shift to utilizing point cloud
data saw every model subjected to five independent training ses-
sions. The resultant mean accuracies were as follows: 3DCNN at
0.8403, PointNet at 0.8655, KPConv at 0.9064, RSConv at 0.9319,
and PointNet++ at 0.9336. Notably, our newly introduced
SMNet culminated in an impressive accuracy of 0.9768—a surge
of 15.45% in the R2 score (Figure 3D). The details of MSE and
mean absolute error (MAE) are shown in Table S1, Supporting
Information. We can find that the MSE of SMNet at 0.0078 mm
is merely 13% of the previous MLP’s 0.0595 mm, indicating a
significant decrease of more than 7.5 times.

To validate the performance of SMNet for 3D PSM devices, we
implemented a virtual model of a cube composed of six 2D PSM
devices, with each face featuring an independent 6 x 6 array of
ionic actuators (Figure 3E). The simulation principle for this 3D
PSM device echoes that of the 2D counterpart. Through
COMSOL, we conducted simulations with 20 000 randomized
control vectors and extracted the corresponding postdeformation
point cloud data. Additionally, another 100 simulations were exe-
cuted to serve as the test set. We compared the 100 input vectors
from the test set with the model’s predicted vectors. To offer an
unambiguous view of the error for each actuator on every face,
Figure 3F unfolds the cube, with the topmost layer representing
the cube’s upper face, the four intermediary layers showcasing
the lateral faces, and the bottommost layer representing the
cube’s base. Furthermore, the predicted control vectors were
fed into the simulation model to recreate the PSM deformations.
The disparity between the point cloud data of these reproduced

Adv. Intell. Syst. 2024, 2400550 2400550 (5 of 12)

shapes and the test set materialized as an error cloud map, as
depicted in Figure 3G. Given our data’s simulation origin, we
possessed point cloud coordinates both pre- and postdeforma-
tion. Based on the predeformation cube coordinates, each face
was segmented into 30 x 30 smaller squares. The average error
between the reproduced data and test set data within each square
was computed and color-coded on the error cloud map. As illus-
trated in Figure 3G, we presented the cubic error cloud map from
two distinct angles, ensuring visibility of the discrepancies across
all six faces. Given that the eight vertices of the ionic 3D PSM
device were held fixed during simulation, the peripheral errors
were minimal, with the bulk of discrepancies centralized on the
squares’ central regions. The average deformation magnitude for
each face was around 0.4, while the peak error value was 0.03.
A comparative assessment with other models was also under-
taken, with R2 scores illustrated in Figure 3H. The details of
MSE and MAE of each model are shown in Table S2,
Supporting Information.

2.4. Model Performance of Pneumatic 3D PSM and Thermal
3D PSM Devices

In this study, we aim to propose a universally applicable, model-
free technique for controlling all 3D PSM devices. To demon-
strate this generality, we investigated two additional actuation
mechanisms that are common in soft robotics: thermal actuation
and pneumatic actuation.

First, we investigated thermal actuator arrays whose deforma-
tion principle is based on volume change, with paraffin wax serv-
ing as the primary material due to its linear and significant

© 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH
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thermal expansion and contraction within certain temperature
bounds.”® In our demonstration, each thermal actuator was
fashioned as a 1 x 1 x 1 cube, with 152 of these units adorning
the surface of a larger 6 X 6 x 6 cube. Notably, the core of this
assembly was a static 4 x 4 x 4 passive cube unaffected by
temperature-driven volume alterations. The design choice to
place actuators solely on the surface stemmed from our focus
on capturing the external point cloud transformations, as real-
world data predominantly provides external surface point clouds.
Internal actuator modifications were deemed to have limited and
unclear impacts on this external point cloud. Each of the
152 surface actuators could be individually temperature-
controlled, with thermal cross-talk negated by a thin insulative
layer ensuring no inadvertent temperature-driven effects on
adjacent units (Figure 4A).

Second, we delved into pneumatic soft actuator arrays operat-
ing on a bulking deformation principle. Similarly, 1521 x 1 x 1
pneumatic chambers were placed on the 6 x 6 x 6 cm cube’s
surface, each capable of independent pressure modifications.
Detailed simulation setups for both mechanisms will be elabo-
rated upon in the Section 4 (Figure 4B).

For both mechanisms, we generated 20 000 sets of point cloud
data through FEA simulations as training dataset by inputting
randomly generated control signal arrays, while designating
100 sets as our test dataset. After getting the pretrained model,
we employed it to forecast our test dataset, resulting in 100
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predictions. These predicted values were then integrated into
their respective FEA models to generate point clouds of the
reproduced shapes. A comparative analysis, akin to the method-
ology outlined in the previous section, was conducted between
the predictions and test dataset, as well as input point clouds
and reproduced point clouds. The findings from this comparative
study are depicted in Figure 4C-F. In the case of the thermal
mechanism, the fixed point is situated at the model’s center,
allowing for an unhindered movement of all points on the sur-
face. Consequently, the errors of predictions and the reproduced
point clouds in relation to the ground truth exhibit a uniform
distribution across the surface (Figure 4C,D). Figure S1A,
Supporting Information shows an example of a comparison
between ground truth and reproduced point cloud. However,
for the pneumatic mechanism, its fixed points align with those
of the ionic mechanism, situated at the eight vertices of the cube.
However, unlike the ionic mechanism where each actuator
deforms relatively independently, the bulking deformation prin-
ciple inherent to the pneumatic mechanism results in substantial
coupling between the deformations of actuators. As a conse-
quence, the deformation near the 12 edges is relatively limited,
leading to a slight decline in prediction accuracy for the edge
chambers compared to the central chambers (Figure 4E).
Nevertheless, for the reproduced point clouds, given the negligi-
ble deformation along the edges, the primary deviations are pre-
dominantly centered but remain minimal (Figure 4F). Also, the
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Figure 4. The model performance of thermal 3D PSM device and pneumatic 3D PSM device and the comparison between the model performance of
SMNet with KPConv and PointNet++. A) Expanding from ionic 3D PSM device based on the bending principle to thermal 3D PSM device based on
volume change. B) Expanding from ionic 3D PSM device based on the bending principle to pneumatic 3D PSM device based on surface buckling. C,E) The
unfolded error map between model predictions and the ground-truth control input vectors of thermal 3D PSM device and pneumatic 3D PSM device,
respectively. D,F) The 3D error map of thermal 3D PSM device and pneumatic 3D PSM device showcasing the point cloud of reproduced shapes with the
ground-truth point cloud. There are two angles of view to show the entire 6 surfaces of the cube. G) The model performance comparison between
KPConv, PointNet++, and SMNet. We laid out the error maps of the reproduced point cloud and the ground-truth point cloud into six faces, arranged
in two rows. Additionally, we compared each dimension of the predicted input vector with the ground-truth input vector, and linearly displayed the error of
each dimension below the point cloud error maps.
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overall deformation of the pneumatic mechanism possesses
lower surface complexity compared with the other two mecha-
nisms. An example of a comparison between ground truth
and reproduced point cloud is shown in Figure S1B,
Supporting Information.

Given that KPConv and PointNet++ are sublayers of SMNet,
we specifically compared the performance of these three models
across different mechanisms. As shown in Figure 4G, we laid out
the error color maps of the reproduced point cloud and the
ground-truth point cloud into six faces, arranged in two rows.
We divided each face of the cube into a 30 x 30 grid, and then
calculated the average error between the reproduced point cloud
and the ground-truth point cloud within each grid. Different
error values were represented using different colors. Through
the color map, it can be clearly seen that SMNet has a signifi-
cantly lower average error compared to the other two methods.
Additionally, we compared each dimension of the predicted
input vector with the ground-truth input vector, and linearly dis-
played the error of each dimension below the point cloud error
maps. Since all the figures are of the same scale, it is evident that
SMNet demonstrates the best performance in terms of predic-
tion accuracy. The specific training data (MSE, MAE, R2 score)
for the three models across the three mechanisms are shown in
Table S3, Supporting Information.

We also evaluated the number of trials required for training,
as shown in Figure S2A, Supporting Information. For 2D PSM
device, a dataset of 5000 trials proved sufficient for different
models to achieve high prediction accuracy. The significant
improvement in prediction accuracy was observed between
1000 and 3000 trials. For 3D PSM devices as depicted in
Figure S2B, Supporting Information, which entail higher com-
plexity, larger training sets are necessary. In the case of the ther-
mal mechanism, where actuator coupling is relatively low, a
dataset of 10000 trials suffices to meet training requirements.
However, for the Ionic mechanism, an example of high actuator
coupling requiring the most inputs, a training set of 20 000 trials
is needed to reach an acceptable accuracy level.

2.5. Inverse Demos for 3D PSM Devices

In the context of shape-morphing devices, the paramount capa-
bility is to mimic the morphology of target shape which is also
called the inverse control. To validate the broad applicability of
our SMNet for 3D PSM devices, it is imperative for the system
to adapt to any physical shape found in the real world. This aspi-
ration aligns with one of the ultimate objectives in the domains of
soft robotics, biomimetic robots, and haptic devices.

To facilitate this, we manually molded clay to create a target 3D
shape. Using a 3D scanner, we captured the resultant shape of
the clay in the form of point cloud data. After preprocessing the
data as illustrated in Figure 54, it was input into our pretrained
model. The output prediction from this model is the control
vector for the 3D PSM devices. For instance, under the ionic
mechanism, the output represents voltage values of each pixel
(216-dimensional vector), for the thermal mechanism, it is the
temperature values for each small cube (152-dimensional vector),
and for the pneumatic mechanism, it is the air pressure values
within each chamber (152-dimensional vector). These control

Adv. Intell. Syst. 2024, 2400550 2400550 (7 of 12)

www.advintellsyst.com

vectors are then separately input into the FEA models of these
mechanisms, revealing the morphed outcomes upon specifying
a target shape.

Demos 1 and 2 present two shapes of varying complexities
formed by manually molding the clay. The 3D scanned images
of these physical shapes and the reproduced point cloud repre-
sentations from the three mechanisms are showcased in
Figure 5B. To elucidate the deformation effect in the reproduced
point cloud images, we calculated the displacement values of
each point before and after deformation and represented this
using a color gradient. Through the colored point cloud, it
can be seen that all three mechanisms are capable of reproducing
the main features of demos 1 and 2.

However, since manually molded clay might lack intricate
detail, in demo 3, we employed Autodesk Maya software to create
a 3D model, which prominently features the word “PURDUE”
protruding on its six faces. The reproduced point cloud results
of the three mechanisms for this design are depicted in the third
column of Figure 5B. It is evident from these reproduced point
clouds that the ionic and thermal mechanisms, owing to the rela-
tive independence of each actuator and minimal mechanical cou-
pling with adjacent actuators, offer superior programmability. The
shapes from all three demos were impeccably replicated by these
mechanisms. Conversely, the pneumatic mechanism, character-
ized by significant mechanical coupling between actuators, could
only reproduce a relatively simple shape (demo 1). It manifested
discernible deviations from the target shape in demo 2, and demo
3 was entirely beyond its morphing capacity, resulting in a shape
bearing scant resemblance to the original. The detailed procedures
of demos are shown in Movie S1-S3, Supporting Information.

To quantitatively assess the fidelity of the three mechanisms in
replicating the three demos, we subjected the original point
clouds and their respective reproductions to a similarity analysis.
In the realm of point cloud similarity metrics, three primary
distances are prominently employed: chamfer distance
(CD)," standard deviation of distance, and Hausdorff distance
(HD).”® The detailed explanation of these metrics is illustrated
in Section S2, Supporting Information. The specific data for
these three metrics are displayed in Figure 5C. Due to the pneu-
matic mechanism’s demo 3 failing to achieve the target shape, its
error significantly exceeds that of the other cases.

We also explored the feasibility of achieving real-time control
with our developed models. To this end, we compared the train-
ing duration and demonstration execution times for three dis-
tinct models, as detailed in Table S4, Supporting Information.
While the training time of these models necessitates a consider-
able time investment, executing pretrained models requires just
over one second. This response time falls below the actuation
times of both ionic and thermal actuators. Since the control exe-
cution is faster than the physical actuation of the device, the
model can be used for real-time control.

Furthermore, our analysis revealed that predicting outcomes
for 100 sets of data in parallel only incurs an additional delay of
~0.5 s compared to processing a single dataset. This suggests
that if a series of target shapes can be input simultaneously,
the real-time responsiveness of the control system could be sig-
nificantly enhanced. Therefore, the results lay a solid foundation
for implementing real-time control in 3D PSM devices, thereby
expanding their practical applications in various domains.

© 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH
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point cloud of 3 different mechanisms. “Demo 1" and “demo 2" present two shapes formed by manually molding the clay. “Demo 3" is made by software
with high surface complexity. C) The similarity between the reproduced point cloud with the target point cloud by using CD, standard deviation of
distance, and HD. All of the data have been normalized to 1. To facilitate a better comparison among the other cases, the bars for pneumatic actuators
employ a truncated axis.
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3. Discussion

This study introduces a universal approach to control 3D PSM
devices across various actuation principles. By leveraging point
cloud to describe the deformation and deep learning techniques,
we have developed a point cloud regression model, SMNet, to
map desired 3D shapes to the high-dimensional input vectors
that represent control inputs, providing a model-free control
methodology that can be applied to shape-morphing devices with
various actuation mechanisms. SMNet’s ability to handle intri-
cate geometric couplings and deformations enables superior per-
formance over shape-morphing devices when comparing it with
existing models. Additionally, in this work, we demonstrated our
proposed method enables morphology mimicking of physical
objects and complex virtual 3D models with high fidelity on dif-
ferent actuation mechanisms.

In this article, the training data were generated from FEA
models because it offers an automated approach to generate large
datasets that are free from noise and nonidealities such as
manufacturing variations. Our approach is enabled by advance-
ments in FEA that have significantly improved the accuracy of
simulations.”®*”) However, our proposed method would also
be compatible with source data from physical devices, with
the drawback of long times required to collect the training data.

Compared to traditional mathematical modeling, our method
offers significant advantages. Mathematical models become
increasingly challenging as the coupling between actuators
increases and as the shapes become more complex, such as mov-
ing from 2D to 3D shape morphing. The development of math-
ematical models is time-consuming and often requires
numerous assumptions that can diminish the precision of
inverse control. Our proposed methodology simplifies this pro-
cess by requiring only the creation of a simulation model, which
is then used to generate a dataset through repeated computations
with different inputs. This dataset is subsequently trained using
our SMNet. For instance, in the case of the ionic 3D PSM device
explored in this article, the simulation time for a single result was
~5 min. We utilized a server powered by two AMD 7H12 CPUs
for parallel computations, acquiring 20 000 datasets within 5
days. The training phase, when conducted using multiple
H100 parallel processors, could be condensed to ~3—4 days.
As such, a fully operational control model for a highly complex
3D PSM device can be developed in around 10 days, significantly
streamlining the process compared to traditional methods.

In an inverse prediction task, the error includes a contribution
from the accuracy of the prediction model as well as a contribu-
tion from the limitations of the actuator mechanism. For exam-
ple, an actuator that can only achieve a small bending
deformation will not be able to produce a shape that requires
sharp features. The demos that were prepared with three differ-
ent actuator mechanisms (ionic, thermal, and pneumatic) there-
fore have different abilities to reproduce the target shapes based
on the limitations of their actuation mechanisms. The complexity
of a surface can be quantified by the variance in normal vectors,
as described in Section S3 and Figure S4, Supporting
Information. The surface complexity of the demos and the repro-
duced shapes are included in Table S5, Supporting Information.
The pneumatic actuation mechanism consistently achieves a sur-
face complexity that is significantly lower than the target shape.
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This emphasizes a key advantage of this generalized approach for
shape-morphing control: it allows comparison of different actu-
ation mechanisms to facilitate the selection of an appropriate
actuation mechanism for the target geometry.

In this work, we use SMNet to find the relationship between
the input control parameters of a 3D actuator array and the point
cloud describing the deformed geometry. Modified versions of
SMNet may find widespread value in predicting the deformation
of other soft continuum structures, such as the deformation of
biological systems during growth based on input parameters
such as the location and type of cells. Future work can therefore
investigate the use of SMNet with cloud point datasets that
include points within the interior of a structure that can be
extracted from 3D imaging techniques.

4. Experimental Section

FEA Simulation of Actuation Mechanisms: The simulation of ionic actua-
tors is described in detail in our previous work.?" The architecture of the
ionic actuator adopts a sandwich configuration. The outer layers are com-
posed of a conductive electrode that swells in response to a voltage, for
which we use the materials properties of polypyrrole (PPy). The middle
layer is an ionic conductor and electrical insulator, for which we use
the materials properties of porous poly(vinylidene fluoride) (PVDF). In
our simulation, the thickness of the central PVDF layer is set at 110
microns and that of the electrode is 20 microns. Material-wise, the
Young's modulus for PVDF is 2.45 GPa and for PPy it is 2 GPa.
A Poisson Ratio of 0.25 was uniformly assigned to both materials. For
the sake of simulation in ionic actuators, thermal expansion is convention-
ally used as a surrogate for its electrical expansion. Drawing from our prior
experimental data,”"] the thermal expansion coefficient for PPy is defined
as 0.05, while for PVDF it is established at 1.2e-6 based on its inherent
properties. Both materials have their specific heat capacities set at
4200 Jkg~" K=, Structurally, the cubic framework is assembled from six
individual square panels, each hosting a 6 x 6 array of discrete ionic actua-
tors. Every standalone ionic actuator is square-shaped, with a side-to-gap
ratio of 10:1. This simulation was conducted in COMSOL, opting for a
tetrahedral mesh with the default coarser size setting. The applied voltage
on a pixel was assigned as a boundary condition with half of the requisite
voltage applied to the outer PPy regions and half to the inner sections. For
instance, if a pixel’s target voltage is —0.6 V, the distribution would be
—0.3 V at the outer surface and 0.3 V at the inner surface. Mechanical
boundary conditions consisted of fixed constraints at the eight vertices
of the cube.

As to the thermal actuator array, we chose Abaqus as the simulation
software. In this case, we aim to simulate the shape morphing caused by
temperature-induced volume changes. The structure consists of a cubic
geometry with each face consisting of 6 x 6 addressable pixels. Given
our focus on surface deformations, only the pixels on the cube’s surface
are actuated, while the interior of the cube is made of an undeformable
and temperature-insensitive material. For the thermal actuators on the
surface layer, we employed materials exhibiting linear thermal expansion
properties, exemplified by paraffin wax actuators. The thermal expansion
coefficient of the actuating material was chosen as 0.4 to normalize the
deformation range to input temperatures in the bound of £1 °C, and we
assume it has high thermal conductivity that allows the temperature in this
cube to be uniform. To ensure that the temperature of each actuating pixel
is independent, we added a very thin layer of material with super-low ther-
mal conductivity between the pixels. Those intersecting sheets have a
thickness of 0.5% of the thermal actuator length. To simulate the thermal
expansion of this actuator array with unique temperatures assigned to
each actuating pixel, a “coupled temperature-displacement” step was cre-
ated in Abaqus to analyze the steady-state response, with automatic incre-
mentation, maximum number of increments set to 100, and a minimum
increment size of 1e-5, with other setting being defaulted. The unique
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temperatures informing the thermally isolated expansion of each actuator
were addressed by iterating over each actuator’s surfaces normal to the Z
direction in the script and applying the chosen randomized temperatures
as “temperature boundary conditions” in Abaqus. As for mechanical
boundary conditions, we apply an “encastre boundary condition” at the
very central nonactuating point of the 6 X 6 x 6 grid, thus constraining
the location without affecting the deformation due to the outer actuators.
A very coarse mesh size of a quarter of the actuator length was chosen to
reduce the time of a single simulation since the training requires 20 000
trials, and the element type is chosen as “C3D8T.”

Within the pneumatic actuator array, we implemented a hollow struc-
ture in the core. Chambers are only established on the surfaces of the cube
(6 x 6 in each surface). Owing to the shared chambers at the edges and
corners, the total number of independently controlled chambers is 152.
We used the materials properties of Sylgard 184, a common silicone elas-
tomer used in soft robotics. Sylgard 184 has a typical Young's modulus of
2 MPa and a Poisson’s ratio of 0.48. As this simulation was also executed
in COMSOL, the mesh choice remained a tetrahedral mesh with the
default coarser size. The pneumatic inputs were normalized to a range
between —1 and 1 to prevent gradient explosions during subsequent
machine learning training phases. Additionally, constraints were affixed
at the eight vertices of the cube.

The examples of training datasets for three different mechanisms col-
lected from simulation results are shown in Figure S3, Supporting
Information.

Principle of SMNet: In the KPConv layer, we have the point coordinates
{x;} drawn from a point cloud P € RN*3. Correspondingly, we construct a
feature vector f; for each point, initially filled with ones, denoted by the set
{F € RM|f; =1}. We introduce a kernel within a predefined radius
r € R, and define the neighborhood N of a point x within this radius
as N = {x; € P||x; — x|| < r}, where x; and x denote the coordinates used
to calculate Euclidean distances. The convolution of feature f by the kernel
g centered at x is thus formulated as

(Fxg)x) =D gl —x)f; U]

x; €N

The kernel function g operates on the relative positions of neighboring
points, which are computed as y; = x; — x. Its domain is the sphere
B3 = {y; € R3}|||di|| < r}. We represent kernel points as {%} with the
constraint {% |k < K} C 93, where K signifies the total number of kernel
points. The associated weight matrices that project features from the input
dimension, which is 4 (considering a supplementary 1D feature vector of
one’s appended to the point coordinates), to an output dimension D, are
expressed as {W,|k < K} € R**Pot. Accordingly, the kernel function g can
be formulated asP"!

gly) = D _h(y, %) Wi @

k<K

Here, h signifies the correlation between kernel points %, and the
relative position y;. A linear correlation function is applied as

h(y;, %) = max(O,] _ M) o

o

where ¢ denotes the influence distance of the kernel points. In this study,
Kis selected to be 15, and o is chosen as 1.5. Typically, the larger the kernel
size, the more local geometric information the convolutional kernel can
capture. However, if the geometric details of the point cloud are not highly
intricate, it is unnecessary to select a very large kernel size. A common
choice ranges between 8 and 16. After fine-tuning, we found that a kernel
size of 15 is a parameter that balances training accuracy with a reasonable
training time. o is related to the kernel radius r, where r equals to o multiply
the grid size. This parameter varies across layers. We set the initial grid
size to 0.02 and ¢ as 1.5, so the radius of the first layer is
0.02 x 1.5 = 0.03. The subsequent grid sizes are 0.04, 0.08, 0.16, and
0.32, leading to radii of 0.06, 0.12, 0.24, and 0.48 in the following layers.
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As mentioned above, the base architecture of KPConv is U-Net, which
contains three encoding layers and two decoding layers, and there is a
KPConv in each layer. In each encoding layer, multiscale precomputed
data would go through the down convolution while in each decoding layer,
upsample precomputed data would take the upconvolution. The final out-
put of KPConv | is a 6D feature F,, € RN*6.

In the layers processing PointNet++, the input is a point set P €
RN*® combined the newly generated features %, € RV*6 with the origi-
nal point cloud P € R"*3 to a new point sets Py € RV As aforemen-
tioned, the PointNet++ layer contains the sampling, grouping, and
PointNet process. In sampling process, the input point set is Py €
RN*® By utilizing the iterative farthest point sampling (FPS), a subset
of points with number of Ny, P, = {X,|n < N;} C Py, can be chosen.
In this subset, the point x,; is the most distant point (in metric distance)
from the set P = {anU < i} € P, with regard to the rest points.’¥! The
pseudocode is shown below Algorithm 1

In the grouping stage, we group the original point Py € RN*? set and
the coordinates the centroids of the subset C € RN:"3. The output of
grouping could be G € RV*M*% where M is the number of points in
the neighborhood of centroid points.”® Given that our point clouds con-
tain ~5,000-7,000 points, we set N, to 2,048 in the first layer, and then
reduce it progressively to 1,024, 512, and 256 in subsequent layers. The
radii of grouping are 0.2, 0.4, 0.8, and 1.2 and M is 64, 32, 16, and 16.

In the PointNet layer, the coordinates of points in a local region are first
translated into y; = x; — x where x is the coordinates of the central points.

Fn¥2, -1 ¥n) = MLP(max(MLP(y;))) “)
where MLP refers to MLP networks.

After going through multiple aforementioned steps, the final output is
the feature vector %, = (fy,f,, ...,f,) with dimensional of 1024
(Foue € RN¥1024) e utilize average pooling for these output feature vec-
tors.

_ 1
f= f, 5
PN Gl

N(x;)

where N(x;) is the number of neighborhood points of point x;.

The final step of SMNet is the fully connected layer to map the
abstracted features of point cloud to the ground-truth features. The loss
function of the regression procedure is chosen as MSE:

Algorithm 1. Farthest point sampling (FPS).

procedure FPS (Pf, N;)
Pno
Select a random point x; from Pr and add it to P,
for all x € P; do
(d][lx; — x|
end for
while |P,| < N do
Xfarthest < arg max([d)] (x € Py \ P,)
Add Xgyrtnest t0 22,
for all x € Pr\ P, do
[d] = min([d], [[Xfarthest — xII)
end for
end while
return P,

end procedure =0

© 2024 The Author(s). Advanced Intelligent Systems published by Wiley-VCH GmbH

a0 ‘L9SYOr9T

:sdny woiy papeoy

AsUdIT Suowwo)) dAnear) djqedijdde ayy Aq pautaaod are saonIe () Lash Jo sa[nl 10j AIeIqiT auluQ) A3[IA\ UO (SUONIPUOI-PUE-SULId}/ W00 Aa[1m " KIeqijaut[uoy/:sdiy) suonipuo) pue swia |, ay1 23S *[$70z/S0/8¢] uo Areiqry aurjuQ Lafip ‘(anakeje 1sap) Ansiaatun anpang £q 0SS00FZ0T AS1e/Z001°01/10p/wod Ka[im.


http://www.advancedsciencenews.com
http://www.advintellsyst.com

ADVANCED
SCIENCE NEWS

www.advancedsciencenews.com

L) = > -2 ©

Z|

where v; is the output features from SMNet and V; is the ground-truth
features.

Training Setting-Ups: In our study, the training architecture was con-
structed using PyTorch. The model was trained on an RTX 3090 GPU.
Due to memory constraints associated with the RTX 3090, we set the batch
size to 8. For ionic 2D low-profile PSM, the epochs of training are 200 while
for all 3D PSM cases, the epochs of training are 600. The optimization was
performed using Stochastic Gradient Descent (SGD) with a learning rate
of 0.1 and a momentum of 0.9.

Supporting Information
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