
1 VOLUME 11, 2023  

 
 

 
 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2024.0429000 
 
 

 

SN-FPN: Self-attention Nested Feature Pyramid 
Network for Digital Pathology Image 
Segmentation 
SANGHOON LEE1, (Member, IEEE), KAZI A. ISLAM1, SAI C. KOGANTI1, VARSHINI YAGANTI1, 
SAI R. S. MAMILLAPALLI1, HANNAH VITALOS2, and DREW F. WILLIAMSON3, 
1Department of Computer Science, Kennesaw State University, Marietta, GA 30060 USA 
2Department of Computer Science, Marshall University, Huntington, WV 25755 USA 
3Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322 USA 

Corresponding author: Sanghoon Lee (slee297@kennesaw.edu) 

This research was partially supported by the National Science Foundation under Grant No. 2409704 and Grant No. 2409705. 
 
 

 ABSTRACT Digital pathology has played a key role in replacing glass slides with digital images, enhancing 
various pathology workflows. Whole slide images are digitized pathological images improving the capabili- 
ties of digital pathology and contributing to the overall turnaround time for diagnoses. The digitized images 
have been successfully integrated with artificial intelligence algorithms assisting pathologists in many tasks, 
but there are still demands to develop a new algorithm for a better diagnosis process. In this paper, we 
propose a new deep convolutional neural network model integrating a feature pyramid network with a self- 
attention mechanism in three pathways: encoder, decoder, and self-attention nested for providing accurate 
tumor region segmentation on whole slide images. The encoder pathway adopts ResNet50 architecture for 
the bottom-up network. The decoder pathway adopts the feature pyramid network for the top-down network. 
The self-attention nested pathway forms the attention map represented by the distribution of attention scores 
focusing on localizing tumor regions and avoiding irrelevant information. The results of our experiment 
show that the proposed model outperforms the state-of-the-art deep convolutional neural network models in 
terms of tumor and stromal region segmentation. Moreover, various encoder networks were equipped with 
the proposed model and compared with each other. The results indicate that the ResNet series using the 
proposed model outperforms other encoder networks. 

 
 INDEX TERMS Digital pathology images, deep learning, encoder, decoder, image segmentation 

 

I. INTRODUCTION 

RADITIONAL pathology examines tissue samples us- 
ing a microscope by a pathologist to diagnose diseases 

such as cancer, infectious diseases, and hematologic disor- 
ders, determining the characteristics of their development of 
abnormal cells [1], [2]. However, these examinations have 
been limited to manual examination of slides, subjective in- 
terpretation, and not easily shareable slides, causing time- 
consuming, subjective, and collaborative challenges. Digi- 

tal pathology is a branch of pathology assisting traditional 
pathology by providing high-resolution digital slide images 
through digital slide scanners and image analysis tools quan- 
tifying and interpreting pathology data [3], [4]. Adopting 
digital pathology can enable pathologists to improve their 
workflow efficiency, accessibility, and quantitative analysis, 
advancing biomedical knowledge and research. 

Whole slide images (WSIs) are digital slides representing 
entire pathology slides with high resolutions approximately 
1.5 gigabytes per slide allowing detailed examination of tissue 
structures [5]. WSIs are typically obtained by a process of dig- 
ital slide scanning converting glass pathology slides stained 
using various histological stains (i.e., hematoxylin and eosin 
(H&E)) into digital images at high magnification [6]. Since 
WSIs are the digitized representation of entire pathology 
slides, they enable pathologists to explore the detailed infor- 
mation of tissue samples across the entire image, enhancing 
the examination process of pathology images by collaborating 
with other pathologists and integrating with image analysis 
techniques [7]. As WSIs become a key component of digital 
pathology, it is necessary to develop a new methodology to 
enhance the whole slide image analysis. 

The analysis of WSIs to facilitate research in digital pathol- 
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ogy has been developed through advanced image analysis 
techniques such as object detection, image classification, and 
image segmentation [8]. Object detection techniques in dig- 
ital pathology have been utilized for automatically detecting 
regions of interest such as tumors, immune cells, and nuclei 
[9], [10]. A typical object detection process includes data pre- 
processing, training a model, validating a model, indicating 
the spatial location (i.e., bounding box), and post-processing. 
Image classification techniques in digital pathology have 
been utilized for automatically categorizing or classifying en- 
tire images into a set of labels [11], [12]. Image classification 
techniques are very similar to object detection techniques 
but assign a single label to the entire patch or image. Image 
segmentation techniques have been used in digital pathology 
to delineate different regions based on visual context. While 
object detection and image classification aim to obtain the 
object or class label, image segmentation is interested in 
partitioning an image pixel into meaningful or homogeneous 
regions [13], [14]. In this paper, we focus on image segmen- 
tation techniques in digital pathology. 

Traditional image segmentation approaches have mainly 
utilized hand-engineered models grouping pixels with similar 
properties or identifying boundaries between regions [15], 
[16]. These models highly rely on handcrafted features such 
as edges, corners, and even entropy, which are computation- 
ally simple but struggle with scalability and effectiveness on 
complex features. To remedy these issues on hand-engineered 
models, deep learning-based models have been introduced for 
capturing complex representations and contextual informa- 
tion from raw data aiming at accurate segmentation of regions 
[17], [18]. 

Deep-learning models, particularly convolutional neural 
networks (CNNs), have significantly contributed to image 
segmentation [19], [20]. The convolutional layers in CNNs 
can enable the deep-learning model to identify local patterns 
of spatial information in specific regions, the down-sampling 
layers interspersed between the convolutional layers can 
down-sample the spatial dimension of the prior map, reducing 
computational complexity and building spatial hierarchies of 
features, and the up-sampling layers recover the spatial reso- 
lution equal to the input image. CNNs automatically excel at 
learning hierarchical and spatial features from input images 
through the combination of convolutional, down-sampling, 
and up-sampling layers. 

Feature map generation at different scales using CNNs has 
been a widely accepted approach for deep learning-guided 
applications such as object detection, image classification, 
and image segmentation [21]–[23]. Feature maps obtained 
from multi-resolution representations of image pyramids can 
be independently used for image prediction or the feature 
maps can be combined with the skip connections producing 
a single-level feature map through a top-down architecture 
called Feature Pyramid Network (FPN) [24]. However, using 
feature maps for every prediction requires a large amount of 
computation and the top-down model with the skip connec- 
tions remains to improve the effectiveness of the applications. 

 

 
FIGURE 1. Comparision of Image Pyramid, Feature Pyramid Network, and 
the Proposed Self-attention Nested Feature Pyramid Network 

 

 
In this paper, we propose a feature pyramid network com- 

bined with a concept of a self-attention model equipped 
over the last state of the encoder creating an attention map 
for the first state of the decoder. We named it the Self- 
attention Nested Feature Pyramid Network (SN-FPN) for dig- 
ital pathology image segmentation. SN-FPN takes advantage 
of self-attention mechanisms handling irregular shapes or 
contours of image regions and capturing contextual relevance 
and spatial relationships between pixels in an image. The 
differences between the proposed model with other models 
are briefly shown in Fig 1. Features are merely extracted 
from each image pyramid for predictions (left). Features are 
extracted by using the feature pyramid network through the 
bottom-up and top-down pathways; the features on the top- 
down pathway are merged with the corresponding features on 
the bottom-up pathway (middle). The proposed self-attention 
mechanism is nested between the bottom-up and the top- 
down pathway (right). We describe the details of the proposed 
SN-FPN model in Section III. 

 
II. RELATED WORKS 
FPN is a multi-resolution feature pyramid network that has 
been widely studied in various types of models. Mask Region- 
based Convolutional Neural Network (R-CNN) adopted the 
concept of multi-scale feature maps of FPN to improve its 
performance in object detection tasks by capturing object 
information at different scales [25]. RetinalNet is an object 
detection model that aims to solve the class imbalance prob- 
lem by assigning different weights on different scale objects 
using the Focal Loss [26]. To address the problem, RetinalNet 
employed FPN as a backbone architecture to enable the top- 
down architecture with lateral connections thereby capturing 
multi-resolution semantic information. Cascade R-CNN is an 
extended version of Faster-RCNN, using a series of detection 
branches in a cascaded manner refining the results of the 
prior stage [27]. Both FPN and Cascade R-CNN are similar 
in terms of multiple stages but Cascade R-CNN follows a cas- 
caded structure. Neural Architecture Search for FPN (NAS- 
FPN) is an extended version of FPN combined with the con- 
cept of Neural Architecture Search. NAS-FPN aims to auto- 
matically design feature pyramid architecture through the op- 
timization of the FPN architecture [28]. High-Resolution Net- 
work (HRNet) is a multi-scale convolutional neural network 
that maintains high-resolution images through parallel multi- 
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FIGURE 2. The Overview of the Self-attention Nested Feature Pyramid Network (SN-FPN) for Whole Slide Image Segmentation 

 
resolution convolutions and repeated-resolution fusions [29]. 
Path Aggregation Network (PANet) is an instance segmen- 
tation deep convolutional neural network aiming to improve 
the feature pyramid network by taking accurate localization 
information at low levels [30]. However, these related works 
mainly focus on object detection or pose estimation and do 
not handle attention mechanisms. 

Attention Aggregation-based Feature Pyramid Network 
(A2-FPN) utilized the attention mechanism for its network 
pipeline to improve the multi-scale feature aggregation [31]. 
Multi-attention Object Detection Model (MA-FPN) took 
the advantage of attention mechanism by adding pixel fea- 
ture attention structure through the multi-scale convolution 
branches [32]. Position Attention Guided Connection Net- 
work (PAC-Net) emphasized position attention by captur- 
ing salient dependencies with accurate location information 
for an effective 3D image detection model [33]. Although 
these methods utilized attention mechanisms and improved 
FPN, their approaches have been limited to adopting atten- 
tion at multi-resolution. Moreover, the demonstration of the 
effectiveness of attention-equipped FPN is also limited for 
histopathology image segmentation. 

III. SELF-ATTENTION NESTED FPN FOR DIGITAL 
PATHOLOGY IMAGE SEGMENTATION 
In this section, we describe the proposed SN-FPN model for 
digital pathology image segmentation. First, we will describe 
the preprocessing steps for whole slide image segmentation. 
This step will explain how the input source of the SN-FPN 
can be obtained from whole slide images. Second, we will 
present the encoder pathway of the SN-FPN. Third, we will 
explain how the self-attention mechanism can be nested over 
the output of the encoder pathway. Last, we will show the 
decoder pathway of the SN-FPN. 

A. WHOLE SLIDE IMAGE SEGMENTATION 
Whole slide images are high-resolution digital images of 
entire tissue cells. Segmenting whole slide images can be 
done by partitioning the images into regions of interest. Since 
the typical size of whole slide images is approximately 1.5 
gigabytes, these images are commonly divided into smaller, 
distinct regions to make processing feasible. In this paper, 

151 hematoxylin and eosin-stained (H&E) whole slide im- 
ages provided by the Breast Cancer Semantic Segmentation 
(BCSS) dataset were used for the input source of the SN-FPN. 
2,355 H&E images were cropped from 151 large regions of 
interest images obtained at 20x magnification [34]. Since 
these H&E images were created by different laboratories 
using different scanners, it is necessary to perform a color nor- 
malization reducing variations in color and intensity. Color 
normalization is a process of standardizing image color to 
avoid irrelevant color variability and is a critical part of whole 
slide image segmentation. This process ensures that whole 
slide images are more interpretable when training a deep- 
learning model, improving the generalization of the model for 
a new dataset. 

Reinhard color normalization was adopted for whole slide 
image segmentation [35]. First, we converted the RGB image 
to Ruderman’s LAB color space to compute the mean and 
standard deviation of the image intensities for each channel. 
Since the source image is the RGB image, the number of 
channels is three. Next, the mean and standard deviation 
obtained in the LAB color space were used for transforming 
the image color characteristics to the standard color charac- 
teristics for normalization. In this step, the LAB color space 
was scaled to unit variance with zero mean and rescaled and 
recentered to match the reference image mean and standard 
deviation [36]. 2,355 H&E images were cropped from 151 
large image regions of interest and used as the input source 
of the SN-FPN. The scaled pixel value P---ij to unit variance for 
each channel is defined as: 

P---ij = (Pij − µj)/σj (1) 

Pij is the i-th pixel value of the j-th channel in the LAB 
color space. µ is the mean of the j-th channel. σ is the standard 
deviation of the j-th channel. The color-normalized image 
patches were then used as the input source of the encoder 
pathway. The patches were down-sampled by a factor of 2 
for each stage of the encoder pathway and the output of the 
encoder pathway was used as the input source of the self- 
attention nested pathway. In the self-attention nested path- 
way, an attention map was created by using a softmax max 
function normalizing the attention scores computed by the 
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multiplication of the two feature maps convolved by the filter 
of 1 by 1 from the output of the encoder pathway. Another 
feature map convolved by the filter of 1 by 1 was then merged 
by the attention map multiplied by the convolved feature 
map. The output of the self-attention nested pathway was 
used as the input feature map of the decoder pathway. The 
input feature maps obtained by the attention mechanism were 
up-sampled by a factor of 2 for each stage of the decoder 
pathway. These up-sampled feature maps were then merged 
with the corresponding feature maps with the same resolution 
convolved by the filter of 1 by 1 in the encoder pathway. These 
merged feature maps are then used to generate additional 
feature maps to be merged for the prediction. The details of 
the whole slide image segmentation using SN-FPN are shown 
in Fig. 2. 

 
B. ENCODER PATHWAY 
The encoder pathway is the bottom-up network extending 
from one feature map to another. This bottom-up network per- 
forms the feed-forward process consisting of several stages 
where each stage consists of convolutional layers increasing 
the number of channels followed by pooling layers which 
reduce the spatial dimension of the prior feature map, avoid- 
ing computational complexity. The output feature map is 
produced at the last stage of the feed-forward process. 

We have adopted ResNet50 [37] for our encoder pathway 
to produce the output feature map which will later be used 
as the input source of the self-attention nested pathway. Each 
stage in the encoder pathway consists of image convolutions 
followed by pooling or down-sampling by a factor of 2. The 
number of image convolutions performed in five stages is 1, 
3, 4, 6, and 3 respectively. Down-samplings were performed 
in the four blocks generating 256, 512, 1024, and 2048 feature 
maps respectively. The details of the encoder pathway are 
shown in the leftmost blocks in Fig. 3. 

C. DECODER PATHWAY 
The decoder pathway is the top-down network extending 
from one feature map to another. While the encoder path- 
way down-samples features, the decoder pathway up-samples 
features mitigating the potential loss of spatial information 
during down-sampling and facilitating the generation of out- 
put images. We have adopted the top-down pathway of the 
FPN [24], but the output features of the self-attention nested 
pathway are used as the input features of the decoder path- 
way. These input features are up-sampled by a factor of 
2 and merged with the features of the same size from the 
encoder pathway. The same-sized features are generated by 
convolving the filter of size 1 by 1 across the corresponding 
features from the encoder pathway. The middle blocks in 
Fig. 3 represent the merged maps with the output of the self- 
attention nested pathway and corresponding feature maps in 
the encoder pathway. 

While iterating this process until we reach the second 
feature map, four additional feature maps are generated by 
convolving the filter of size 3 by 3 across the merged fea- 

 

 
 

FIGURE 3. Self-attention Architecture Nested in the Encoder and Decoder 
Pathways 

 

 
ture maps in the decoder pathway. Because these additional 
feature maps are intentionally to be the same sizes, they are 
merged into one feature map for prediction. These additional 
feature maps are shown as four blocks on the right side of 
Fig. 3. The rightmost block in Fig. 3 shows the last feature 
map merged through the four additional feature maps. The 
last feature map is then up-sampled to be the same resolution 
as the input image for the prediction. 

 
D. SELF-ATTENTION NESTED PATHWAY 
Self-attention nested pathway is the middle network between 
the encoder pathway and the decoder pathway. Since the 
semantic feature values increase as the spatial resolution 
decreases, we assume that it is necessary to train the model 
to focus on relevant information rather than on redundant or 
irrelevant information from the input source thereby leading 
to accurate and more context-aware prediction results. This 
process can be done by forming an attention map providing 
the relatedness of each pixel information in the self-attention 
nested pathway. The attention map is generated from the 
attention weights representing the distribution of attention 
created from the raw attention scores. 

To compute the raw attention scores the feature maps in 
the last block of the encoder pathway were used to derive 
three feature maps convolved by the filter of size 1 by 1, 
corresponding to the concepts of query, key, and value in 
the attention mechanism. The raw attention scores were then 
computed by matrix multiplication of two feature maps: query 
and key. After obtaining the raw attention scores, we com- 
puted the attention weights by using a softmax function across 
all feature maps forming an attention map. The attention map 
was then multiplied by the feature map called value and the 
results of the multiplication were merged with the value to 
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create the merged feature map used as the input source of 
the decoder pathway. The merged feature map Fm in the self- 
attention nested pathway is defined as: 

extended version of the UNet model [38] used for captur- 
ing contextual information through the encoder and decoder 
networks. UNet++ typically uses an adaptive feature selec- 
tion technique for dynamically selecting relevant features at 

Fm = Fv + softmax(FqFT ) × FT (2) different resolutions, while LinkNet uses the encoder and 
k v decoder networks to refine high-resolution information by 

where Fv represents a feature map that plays a role as a 
value, Fq represents a feature map that plays a role as a query, 
and Fk represents a feature map that plays a role as a key. The 
details of the self-attention nested pathway are shown at the 
top of Fig. 3 

 
IV. EXPERIMENT RESULTS 
In this section, we will perform experiments to verify the 
effectiveness of the proposed SN-FPN model by comparing it 
with the baseline of the model and the state-of-the-art models. 
Moreover, we will explore the effectiveness of the various 
encoder pathways by adopting deep-learning networks. 

 
A. H&E IMAGE SEGMENTATION FOR TUMOR REGIONS 
Dataset: The Breast Cancer Semantic Segmentation (BCSS) 
dataset is a H&E image dataset that contains more than 20,000 
segmentation annotations of tissue regions obtained from 
breast cancer whole slide images provided by The Cancer 
Genome Atlas (TCGA) [34]. The BCSS dataset was built on 
the collaborative effort of pathologists including senior and 
junior regents, and medical students of pathology by using 
the Digital Slide Archive, a web-based platform for whole- 
slide digital pathology images. 151 large ROIs of whole-slide 
images were annotated by them enabling the generation of ac- 
curate deep-learning models for tissue region segmentation. 

We obtained 151 large ROIs extracted at 20x magnification 
from the BCSS dataset. A total of 2,355 H&E images were 
cropped to 256x256 size and resolution from the 151 large 
image ROIs. These H&E images were used as the dataset for 
validating the performance of the proposed SN-FPN on the tu- 
mor and stroma region segmentation. To perform a tumor re- 
gion segmentation, we labeled all the pixels as ‘non-tumor’ if 
the pixels are not annotated as a tumor. For training SN-FPN, 
the 2,355 H&E images were randomly divided into three 
datasets: training, validating, and testing, with 1,413(60%), 
417(20%), and 471(20%) respectively. 

Baseline and metrics: We compare the proposed SN-FPN 
with the state-of-the-art deep learning-based semantic seg- 
mentation models including DeepLabV3Plus [45], UNet++ 
[39], LinkNet [41], MANet [40], PAN [43], PSPNet [42], 
and FPN [24], using ResNet50 as an encoder pathway. We 
use them as the baselines to validate the effectiveness of 
the proposed model. We used a training epochs of 20, batch 
size of 8, and learning rate of 0.0001 DeepLabV3Plus is an 
extended version of the DeepLabV3 model [44] developed by 
Google Research teams and used for semantic segmentation. 
DeepLabV3Plus is well-known for capturing multi-scale con- 
textual information by using dilated convolutions integrating 
with an atrous spatial pyramid pooling [45]. UNet++ is an 

providing an efficient upsampling method. MANet is a multi- 
scale attention network model developed by Tongle et al [40], 
using a self-attention mechanism for integrating local features 
by capturing contextual dependencies. PAN is a pyramid 
attention network model that can be used for capturing global 
contextual information in semantic image segmentation [43]. 
PSPNet is a pyramid scene-parsing network model applicable 
for aggregating multi-region context information and provid- 
ing pyramid pooling models [42]. We use these models for 
our baselines. We use well-known evaluation metrics such 
as Intersection over Union (IoU ), F score (F 1), Accuracy 
(ACC), Precision (PREC), and Recall (REC). IoU is defined 
as (I + ϵ)/U where I represents the number of pixels over- 
lapped between the ground truth pixels and the predicted 
pixels. ϵ is set to 1e − 7 and added to avoid zero division. 
U represents the encompassed area by both the ground truth 
pixels and the predicted pixels. U is defined as Ng +Np −I +ϵ 
where Ng is the number of the ground truth pixels and Np 
the number of predicted pixels. We use a confusion matrix 
including true positive: TP, false positive: FP, false negative: 
FN, and true negative: TN, to compute the F 1, ACC, PREC, 
and REC. PREC is defined as (TP+ϵ)/(TP+FP+ϵ), REC is 
defined as (TP+ϵ)/(TP+FN+ϵ), ACC is defined as (TP+TN) 
/ (TP+FP+FN+TN), and F 1 is defined as ((1 + β2) * TP + 
β2) / ((1 + β2) * TP + β2 * FN + FP + ϵ) where β is set to 1. 

TABLE 1. Performance Results on Tumor Region Segmentation 

 
Types IoU F1 ACC PREC REC 

DeepV3Plus [45] 0.7466 0.8067 0.9116 0.8500 0.8539 

Linknet [41] 0.7450 0.8051 0.9095 0.8532 0.8555 

MANet [40] 0.7370 0.7976 0.9029 0.8109 0.8953 

PAN [43] 0.7425 0.8023 0.9097 0.8866 0.8220 

PSPNet [42] 0.7383 0.7991 0.9087 0.8388 0.8658 

Unet++ [39] 0.7483 0.8085 0.9154 0.8575 0.8510 

FPN [24] 0.7564 0.8152 0.9140 0.8403 0.8913 

SN-FPN 0.7740 0.8317 0.9156 0.8478 0.9019 

 
Results: The performance results on tumor region segmen- 

tation comparing the proposed SN-FPN with baseline models 
are shown in TABLE 1. The results indicate that the SN- 
FPN outperforms other models in terms of IoU (77.40%), 
F 1(83.17%), ACC(91.56%), and REC(90.19%), and the 
PAN outperforms other models in terms of PREC(88.66%). 
UNet++ shows a similar ACC (91.54%) compared with SN- 
FPN but shows a higher PREC(85.75%) than SN-FPN on 
tumor region segmentation. Since the precision aims to mea- 
sure the accuracy of the positive predictions indicating the 
model produces a lower false positive or a higher true pos- 
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FIGURE 4. Examples of Tumor Region Predictions using DeepV3Plus, Linknet, MANet, PAN, PSPNet, Unet++, FPN, and SN-FPN 

 
itive, it may not be agreeable for other situations where the 
model requires a lower false negative. Thus, it is necessary 
to consider the harmonic averages of prediction and recall 
including both false positive and false negative. To address 
this consideration we computed the F score in this experiment 
and the proposed SN-FPN model showed the best result on 
tumor region segmentation in terms of F 1. Moreover, the 
result of the higher IoU on the proposed SN-FPN model 
indicates that the predicted tumor segmentation regions are 
more aligned with the ground-truth tumor regions showing 
the best localization and accurately delineating the target 
tumor regions. The examples of the performance comparison 
on tumor region segmentation are shown in Fig. 4. 

 
B. H&E IMAGE SEGMENTATION FOR STROMA REGIONS 
Dataset: The 151 large H&E images from the BCSS dataset 
were used for stroma region segmentation. As we used in the 
tumor region segmentation, we randomly split the 2,355 H&E 
images of 256x256 size into 1,413(60%), 417(20%), and 
417(20%) H&E images for training, validating, and testing 
respectively. 

Baseline and metrics: The baseline models are the same 
as the models used in the previous section. We compare the 
models: DeepLabV3Plus [45], UNet++ [39], LinkNet [41], 
MANet [40], PAN [43], PSPNet [42], and FPN [24] with the 
proposed SN-FPN model using the same evaluation metrics: 
IoU , F 1, ACC, PREC, and REC. 

Results: The performance results on stroma region seg- 
mentation are shown in TABLE 2. The results indicate that the 
SN-FPN outperforms other models in terms of IoU (54.52%), 
F 1(62.19%), and PREC(71.79%). The FPN outperforms 
other models in terms of ACC(86.77%) and the PAN out- 
performs other models in terms of REC(77.93%). UNet++ 
shows a higher ACC (86.47%) compared with SN-FPN but 
shows a lower PREC(69.97%) than SN-FPN on stroma region 
segmentation. Since the accuracy aims to mainly measure the 
proportion of correctly predicted samples over the total sam- 
ples, the ACC on FPN may not properly provide information 
about mispredicted samples determined by false positives and 
false negatives. Moreover, Although REC on PAN can pro- 
vide information about both true positive and false negative 
samples, it is difficult to mention that PAN outperforms other 
models because the models should consider the harmonic 

averages of both prediction and recall. The SN-FPN showed 
the best F 1 score combining precision and recall, indicating 
that the proposed model outperforms other models on stroma 
region segmentation using the BCSS dataset. Moreover, the 
IoU score obtained from the SN-FPN represents the proposed 
model outperforms other models in terms of localization and 
delineation of the stroma region prediction. The examples of 
the performance comparison on stroma region segmentation 
are shown in Fig. 5. 

 
C. COMPARISON OF THE ENCODER PATHWAYS ON 
TUMOR REGION SEGMENTATION 
Dataset: We used the same dataset of the tumor region seg- 
mentation described in Section IV.A. The 2,355 H&E images 
were used for the comparison of the encoder pathways on 
tumor region segmentation and divided into three datasets 
for training 1,413(60%), validating 417(20%), and testing 
417(20%) respectively. 

 
TABLE 2. Performance Results on Stroma Region Segmentation 

 
Types IoU F1 ACC PREC REC 

DeepV3Plus [45] 0.5404 0.6162 0.8673 0.6884 0.7632 

Linknet [41] 0.5372 0.6167 0.8646 0.7108 0.7089 

MANet [40] 0.5221 0.5982 0.8534 0.6705 0.7577 

PAN [43] 0.5205 0.5908 0.8659 0.6566 0.7793 

PSPNet [42] 0.5382 0.6173 0.8657 0.7057 0.7193 

Unet++ [39] 0.5443 0.6199 0.8647 0.6997 0.7508 

FPN [24] 0.5359 0.6097 0.8677 0.6701 0.7788 

SN-FPN 0.5452 0.6219 0.8533 0.7179 0.7284 

 
Baseline and metrics: We conduct experiments on tu- 

mor region segmentation using various encoder pathways 
containing ResNet50 [37], ResNet101 [37], ResNet152 [37], 
MobileNetv2 [47], EfficientNet-b0, b1, b2, b3, b4, b5, b6, 
and b7 [46], VGG16 [48], and VGG19 [48]. ResNet101 
and ResNet152 are deeper versions of ResNet50 extending 
layers to 101 and 152 respectively. MobileNet-v2 is an ex- 
tended version of MobileNet providing an efficient inverted 
residual block using lightweight depthwise convolutions [47]. 
EfficientNet is a scaling-emphasized architecture addressing 
network balance based on different depths, widths, and reso- 
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FIGURE 5. Examples of Stroma Region Predictions using DeepV3Plus, Linknet, MANet, PAN, PSPNet, Unet++, FPN, and SN-FPN 

 
lutions thereby leading to better performance [46]. This archi- 
tecture provides different variants such as b0, b1, b2, b3, b4, 
b5, b6, and b7. VGG16 and VGG19 are both representative 
deep convolutional neural network architectures presented by 
the Visual Geometry Group. VGG16 consists of 16 layers 
while VGG19 consists of 19 layers [48]. We compare them 
each other using the tumor region segmentation dataset. We 
use the same evaluation metrics: IoU , F 1, ACC, PREC, and 
REC. 

Results: The experiment results on the comparison of 
the tumor region segmentation using different encoder path- 
ways are shown in TABLE 3. The results on the tumor 
region segmentation indicate that ResNet50 outperforms 
other pathways in terms of IoU (77.40%), F 1(83.17%), and 
REC(90.19%). VGG16 outperforms other encoder pathways 
in terms of PREC(88.22%) and EfficientNet-b6 outperforms 
other encoder pathways in terms of ACC(91.60%). However, 
the harmonic average F 1 of the precision and recall represents 
that ResNet50 shows better performance on the tumor region 
segmentation than other pathways in regards to the BCSS 
dataset. 

 
D. COMPARISON OF THE ENCODER PATHWAYS ON 
STROMA REGION SEGMENTATION 
Dataset: We used the same dataset (2,355 H&E images) of 
the stroma region segmentation described in Section IV.B. for 
the comparison of the encoder pathways on stroma region 
segmentation. The images were divided into three datasets 
for training 1,413(60%), validating 417(20%), and testing 
417(20%) respectively. 

Baseline and metrics: We use the same encoder path- 
ways: ResNet50 [37], ResNet101 [37], ResNet152 [37], Mo- 
bileNetv2 [47], EfficientNet-b0, b1, b2, b3, b4, b5, b6, and 
b7 [46], VGG16 [48], and VGG19 [48] for stroma region 
segmentaion and the same methods: IoU , F 1, ACC, PREC, 
and REC will be used as the evaluation metrics. 

Results: The experiment results on the comparison of the 
stroma region segmentation using different encoder path- 
ways are shown in TABLE 4. The results on the stroma 
region segmentation indicate that ResNet152 outperforms 
other pathways in terms of IoU (54.95%), ACC(87.40%), and 
REC(80.93%) and ResNet50 outperforms other pathways 
in terms of F 1(62.19%). VGG16 shows the best results on 

TABLE 3. Experiment Results on Tumor Region Segmentation with 
Different Encoder Pathways 

 
SN-FPN + IoU F1 ACC PREC REC 

ResNet50 [37] 0.7740 0.8317 0.9156 0.8478 0.9019 

ResNet101 [37] 0.7630 0.8189 0.9138 0.8565 0.8751 

ResNet152 [37] 0.7633 0.8204 0.9141 0.8313 0.9019 

Effit.Net-b0 [46] 0.7537 0.8147 0.9103 0.8445 0.8639 

Effit.Net-b1 [46] 0.7616 0.8195 0.9103 0.8421 0.8915 

Effit.Net-b2 [46] 0.7530 0.8110 0.9071 0.8580 0.8654 

Effit.Net-b3 [46] 0.7659 0.8220 0.9146 0.8489 0.8899 

Effit.Net-b4 [46] 0.7699 0.8276 0.9144 0.8596 0.8873 

Effit.Net-b5 [46] 0.7504 0.8098 0.9128 0.8522 0.8673 

Effit.Net-b6 [46] 0.7662 0.8248 0.9160 0.8628 0.8706 

Effit.Net-b7 [46] 0.7611 0.8191 0.9137 0.8350 0.8904 

Mobl.Netv2 [47] 0.7596 0.8166 0.9105 0.8343 0.8994 

VGG16 [48] 0.7619 0.8214 0.9051 0.8822 0.8562 

VGG19 [48] 0.7588 0.8179 0.9066 0.8560 0.8751 
 
 
 

PREC(76.44%). Assuming that the overall performance is 
measured by F 1 score demonstrating the balance between 
the precision and the recall, we can determine that ResNet50 
shows better performance on the stroma region segmentation 
than other encoder pathways in regards to the BCSS dataset. 

 
E. EXPLAINABLE-AI PERFORMANCE IN PATHOLOGICAL 
IMAGES 
Machine learning models are considered black box models 
due to their ambiguity in the decision-making process. Ex- 
plainable AI methods are developed to understand the ratio- 
nale behind a model decision for prediction. We can also 
understand whether models are learning key features that 
might be related to objects or unrelated spurious features of 
input datasets. Overall, an explainable AI model can help us 
debug a machine learning model to improve and verify its 
performance. Explainable AI methods play critical roles in 
medical images as they can justify the decision provided by 
machine learning models. Doctors can verify the Machine 
learning model’s prediction before making crucial patient 
decisions. 
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TABLE 4. Experiment Results on Stroma Region Segmentation with 
Different Encoder Pathways 

 
SN-FPN + IoU F1 ACC PREC REC 

ResNet50 [37] 0.5452 0.6219 0.8533 0.7179 0.7284 

ResNet101 [37] 0.5357 0.6109 0.8603 0.7082 0.7281 

ResNet152 [37] 0.5495 0.6218 0.8740 0.6617 0.8093 

Effit.Net-b0 [46] 0.5435 0.6172 0.8654 0.6790 0.7602 

Effit.Net-b1 [46] 0.5369 0.6104 0.8674 0.6768 0.7660 

Effit.Net-b2 [46] 0.5318 0.6055 0.8553 0.6888 0.7418 

Effit.Net-b3 [46] 0.5360 0.6080 0.8688 0.6683 0.7694 

Effit.Net-b4 [46] 0.5462 0.6216 0.8659 0.6809 0.7540 

Effit.Net-b5 [46] 0.5340 0.6070 0.8667 0.6599 0.7731 

Effit.Net-b6 [46] 0.5479 0.6202 0.8665 0.6746 0.7754 

Effit.Net-b7 [46] 0.5361 0.6089 0.8674 0.6854 0.7541 

Mobl.Netv2 [47] 0.5388 0.6166 0.8712 0.6922 0.7440 

VGG16 [48] 0.5358 0.6155 0.8329 0.7644 0.6877 

VGG19 [48] 0.5306 0.6021 0.8497 0.6737 0.7640 
 
 
 

GradCAM [48] is a popular class activation mapping 
(CAM) method that uses gradients of the last convolution 
layer to identify essential regions for a given class. Grad- 
CAM feeds the image to the well-trained deep convolutional 
network (DCNN) based model to generate the explanation 
map for an image by using activation functions for the tar- 
get class. We also use the ScoreCAM [49] method, which 
uses confidence weights of the activation maps of the last 
convolution layers instead of unstable gradients to generate 
explanation maps. Once we create the explainable AI maps 
of each class for the trained model, we use metrics to com- 
pare the performances of explainable AI methods instead of 
relying on human evaluations. Specifically, we used ROAD 
[50] and Infidelity [51] scores to compare the performances 
of GradCAM and ScoreCAM. ROAD method removes the 
features based on the generated saliency maps to identify 
the drop in model performance. The higher percentage of 
accuracy drops indicates a better relationship between the 
dropped features and the model behavior. The infidelity score 
also shows how the saliency map indicated region relates to 
model behavior. A lower score of infidelity indicates higher 
agreement with the saliency maps indicated region for deep 
learning model behavior. 

Dataset: We used 406 and 1007 number of Tumor and 
Non-tumor images to train the Deep learning classifier. We 
randomly balanced the tumor and non-tumor images to train 
the model. Also, we utilized 333 and 138 numbers of non- 
tumor and tumor images for validations. Then, we evaluated 
our explainable AI method and metrics on a separate 341 and 
130 number of non-tumor and tumor images. 

Baseline and metrics: We used a ResNet-50 architecture 
as a backbone to train the deep learning model classifier for 
tumor and non-tumor image detection. We used a training 
epochs of 150, image size 224 × 224 × 3, batch size of 32 

Results: We achieved a test accuracy of 92.36% on the 
testing dataset using the ResNet-50 architecture. Then, we 
fixed the trained model weight to generate the explanation 
maps of tumor and non-tumor classes using gradCAM and 
ScoreCAM methods. To identify the better explainable AI 
maps, we compare them with two explainable AI metrics: 
ROAD and infidelity. We used ROAD metrics to evaluate 
the performance of the explainable AI models in Table 5. 
ScoreCAM performed better than GradCAM after remov- 
ing 20% to 90% of the dataset based on explanation maps. 
Accuracy of the model dropped to 72.82% and 69.64% 
for the GradCAM and ScoreCAM respectively in Table 5. 
We used infidelity to compare GradCAM and ScoreCAM 
methods for tumor detection. We achieved infidelity scores 
of 4.546835771179758e−05 and 7.94731022324413e−05 
for tumor class using GradCAM and ScoreCAM respec- 
tively. We also achieved 1.0336164450563956e−05 and 
9.88344254437834e−05 for the non-tumor class using Grad- 
CAM and ScoreCAM respectively. 

 
TABLE 5. Accuracy of Model After Removing Different Percentages (ROAD 
Metric) for GradCAM and ScoreCAM Methods on Tumor and Non-tumor 
Image Detection 

 
% Removed GradCAM ScoreCAM 

0% 92.36% 92.36% 
10% 89.81% 89.81 % 
20% 87.69% 86.41 % 
30% 85.99% 81.74 % 
40% 83.44% 79.83 % 
50% 82.17 % 78.13 % 
70% 79.41 % 75.80 % 
90% 72.82 % 69.64 % 

 
The ScoreCAM model performed better than the Grad- 

CAM method in ROAD metrics. If we compare the perfor- 
mance of infidelity-based metrics, we find that both methods 
performed similarly, and GradCAM is slightly better than the 
ScoreCAM method. 

 
V. CONCLUSION 
In this paper, we presented a new image segmentation model 
integrating a feature pyramid network with a self-attention 
mechanism using three pathways: the encoder pathway, the 
decoder pathway, and the self-attention nested pathway, and 
providing accurate tumor and stroma region segmentation on 
whole slide images. ResNet50 architecture was used for the 
encoder pathway, while the feature pyramid network was used 
for the decoder pathway. The self-attention nested pathway 
generates the attention map from the distribution of atten- 
tion scores focusing on relevant information of the feature 
maps. The experiment results show that the proposed SN-FPN 
model outperforms the state-of-the-art image segmentation 
models when performing tumor and stroma region segmen- 
tation on the BCSS dataset. Moreover, we compared various 
encoder networks by using the proposed SN-FPN model. The 
results indicate that the ResNet50 outperforms other encoder 
networks on F1 score for the tumor and stroma region seg- 
mentation. However, the proposed method is limited to only 
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characteristics of phenotypes in H&E images, remaining ad- 
ditional experiments to provide biological evidence to verify 
our method using spatial transcriptomics technologies. Also, 
because of its lower computational complexity, time-based 
efficiency on U-Net-like deep learning models is usually 
higher than on FPN-like deep learning models. Thus, the 
proposed method following FPN-like deep learning models 
would require a higher computational burden, but potentially 
offering better performance on complex tasks. 
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