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ABSTRACT Digital pathology has played a key role in replacing glass slides with digital images, enhancing
various pathology workflows. Whole slide images are digitized pathological images improving the capabili-
ties of digital pathology and contributing to the overall turnaround time for diagnoses. The digitized images
have been successfully integrated with artificial intelligence algorithms assisting pathologists in many tasks,
but there are still demands to develop a new algorithm for a better diagnosis process. In this paper, we
propose a new deep convolutional neural network model integrating a feature pyramid network with a self-
attention mechanism in three pathways: encoder, decoder, and self-attention nested for providing accurate
tumor region segmentation on whole slide images. The encoder pathway adopts ResNet50 architecture for
the bottom-up network. The decoder pathway adopts the feature pyramid network for the top-down network.
The self-attention nested pathway forms the attention map represented by the distribution of attention scores
focusing on localizing tumor regions and avoiding irrelevant information. The results of our experiment
show that the proposed model outperforms the state-of-the-art deep convolutional neural network models in
terms of tumor and stromal region segmentation. Moreover, various encoder networks were equipped with
the proposed model and compared with each other. The results indicate that the ResNet series using the

proposed model outperforms other encoder networks.

INDEX TERMS Digital pathology images, deep learning, encoder, decoder, image segmentation

I. INTRODUCTION

RADITIONAL pathology examines tissue samples us-
Tng a microscope by a pathologist to diagnose diseases
such as cancer, infectious diseases, and hematologic disor-
ders, determining the characteristics of their development of
abnormal cells [1], [2]. However, these examinations have
been limited to manual examination of slides, subjective in-
terpretation, and not easily shareable slides, causing time-
consuming, subjective, and collaborative challenges. Digi-
tal pathology is a branch of pathology assisting traditional
pathology by providing high-resolution digital slide images
through digital slide scanners and image analysis tools quan-
tifying and interpreting pathology data [3], [4]. Adopting
digital pathology can enable pathologists to improve their
workflow efficiency, accessibility, and quantitative analysis,
advancing biomedical knowledge and research.
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Whole slide images (WSIs) are digital slides representing
entire pathology slides with high resolutions approximately
1.5 gigabytes per slide allowing detailed examination of tissue
structures [5]. WSIs are typically obtained by a process of dig-
ital slide scanning converting glass pathology slides stained
using various histological stains (i.e., hematoxylin and eosin
(H&E)) into digital images at high magnification [6]. Since
WSIs are the digitized representation of entire pathology
slides, they enable pathologists to explore the detailed infor-
mation of tissue samples across the entire image, enhancing
the examination process of pathology images by collaborating
with other pathologists and integrating with image analysis
techniques [7]. As WSIs become a key component of digital
pathology, it is necessary to develop a new methodology to
enhance the whole slide image analysis.

The analysis of WSIs to facilitate research in digital pathol-
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ogy has been developed through advanced image analysis
techniques such as object detection, image classification, and
image segmentation [8]. Object detection techniques in dig-
ital pathology have been utilized for automatically detecting
regions of interest such as tumors, immune cells, and nuclei
[9], [10]. A typical object detection process includes data pre-
processing, training a model, validating a model, indicating
the spatial location (i.e., bounding box), and post-processing.
Image classification techniques in digital pathology have
been utilized for automatically categorizing or classifying en-
tire images into a set of labels [11], [12]. Image classification
techniques are very similar to object detection techniques
but assign a single label to the entire patch or image. Image
segmentation techniques have been used in digital pathology
to delineate different regions based on visual context. While
object detection and image classification aim to obtain the
object or class label, image segmentation is interested in
partitioning an image pixel into meaningful or homogeneous
regions [13], [14]. In this paper, we focus on image segmen-
tation techniques in digital pathology.

Traditional image segmentation approaches have mainly
utilized hand-engineered models grouping pixels with similar
properties or identifying boundaries between regions [15],
[16]. These models highly rely on handcrafted features such
as edges, corners, and even entropy, which are computation-
ally simple but struggle with scalability and effectiveness on
complex features. To remedy these issues on hand-engineered
models, deep learning-based models have been introduced for
capturing complex representations and contextual informa-
tion from raw data aiming at accurate segmentation of regions
[17], [18].

Deep-learning models, particularly convolutional neural
networks (CNNs), have significantly contributed to image
segmentation [19], [20]. The convolutional layers in CNNs
can enable the deep-learning model to identify local patterns
of spatial information in specific regions, the down-sampling
layers interspersed between the convolutional layers can
down-sample the spatial dimension of the prior map, reducing
computational complexity and building spatial hierarchies of
features, and the up-sampling layers recover the spatial reso-
lution equal to the input image. CNNs automatically excel at
learning hierarchical and spatial features from input images
through the combination of convolutional, down-sampling,
and up-sampling layers.

Feature map generation at different scales using CNNs has
been a widely accepted approach for deep learning-guided
applications such as object detection, image classification,
and image segmentation [21]-[23]. Feature maps obtained
from multi-resolution representations of image pyramids can
be independently used for image prediction or the feature
maps can be combined with the skip connections producing
a single-level feature map through a top-down architecture
called Feature Pyramid Network (FPN) [24]. However, using
feature maps for every prediction requires a large amount of
computation and the top-down model with the skip connec-
tions remains to improve the effectiveness of the applications.
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FIGURE 1. Comparision of Image Pyramid, Feature Pyramid Network, and
the Proposed Self-attention Nested Feature Pyramid Network

In this paper, we propose a feature pyramid network com-
bined with a concept of a self-attention model equipped
over the last state of the encoder creating an attention map
for the first state of the decoder. We named it the Self-
attention Nested Feature Pyramid Network (SN-FPN) for dig-
ital pathology image segmentation. SN-FPN takes advantage
of self-attention mechanisms handling irregular shapes or
contours of image regions and capturing contextual relevance
and spatial relationships between pixels in an image. The
differences between the proposed model with other models
are briefly shown in Fig 1. Features are merely extracted
from each image pyramid for predictions (left). Features are
extracted by using the feature pyramid network through the
bottom-up and top-down pathways; the features on the top-
down pathway are merged with the corresponding features on
the bottom-up pathway (middle). The proposed self-attention
mechanism is nested between the bottom-up and the top-
down pathway (right). We describe the details of the proposed
SN-FPN model in Section III.

II. RELATED WORKS

FPN is a multi-resolution feature pyramid network that has
been widely studied in various types of models. Mask Region-
based Convolutional Neural Network (R-CNN) adopted the
concept of multi-scale feature maps of FPN to improve its
performance in object detection tasks by capturing object
information at different scales [25]. RetinalNet is an object
detection model that aims to solve the class imbalance prob-
lem by assigning different weights on different scale objects
using the Focal Loss [26]. To address the problem, RetinalNet
employed FPN as a backbone architecture to enable the top-
down architecture with lateral connections thereby capturing
multi-resolution semantic information. Cascade R-CNN is an
extended version of Faster-RCNN, using a series of detection
branches in a cascaded manner refining the results of the
prior stage [27]. Both FPN and Cascade R-CNN are similar
in terms of multiple stages but Cascade R-CNN follows a cas-
caded structure. Neural Architecture Search for FPN (NAS-
FPN) is an extended version of FPN combined with the con-
cept of Neural Architecture Search. NAS-FPN aims to auto-
matically design feature pyramid architecture through the op-
timization of the FPN architecture [28]. High-Resolution Net-
work (HRNet) is a multi-scale convolutional neural network
that maintains high-resolution images through parallel multi-
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FIGURE 2. The Overview of the Self-attention Nested Feature Pyramid Network (SN-FPN) for Whole Slide Image Segmentation

resolution convolutions and repeated-resolution fusions [29].
Path Aggregation Network (PANet) is an instance segmen-
tation deep convolutional neural network aiming to improve
the feature pyramid network by taking accurate localization
information at low levels [30]. However, these related works
mainly focus on object detection or pose estimation and do
not handle attention mechanisms.

Attention Aggregation-based Feature Pyramid Network
(42-FPN) utilized the attention mechanism for its network
pipeline to improve the multi-scale feature aggregation [31].
Multi-attention Object Detection Model (MA-FPN) took
the advantage of attention mechanism by adding pixel fea-
ture attention structure through the multi-scale convolution
branches [32]. Position Attention Guided Connection Net-
work (PAC-Net) emphasized position attention by captur-
ing salient dependencies with accurate location information
for an effective 3D image detection model [33]. Although
these methods utilized attention mechanisms and improved
FPN, their approaches have been limited to adopting atten-
tion at multi-resolution. Moreover, the demonstration of the
effectiveness of attention-equipped FPN is also limited for
histopathology image segmentation.

III. SELF-ATTENTION NESTED FPN FOR DIGITAL
PATHOLOGY IMAGE SEGMENTATION

In this section, we describe the proposed SN-FPN model for
digital pathology image segmentation. First, we will describe
the preprocessing steps for whole slide image segmentation.
This step will explain how the input source of the SN-FPN
can be obtained from whole slide images. Second, we will
present the encoder pathway of the SN-FPN. Third, we will
explain how the self-attention mechanism can be nested over
the output of the encoder pathway. Last, we will show the
decoder pathway of the SN-FPN.

A. WHOLE SLIDE IMAGE SEGMENTATION

Whole slide images are high-resolution digital images of
entire tissue cells. Segmenting whole slide images can be
done by partitioning the images into regions of interest. Since
the typical size of whole slide images is approximately 1.5
gigabytes, these images are commonly divided into smaller,
distinct regions to make processing feasible. In this paper,
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151 hematoxylin and eosin-stained (H&E) whole slide im-
ages provided by the Breast Cancer Semantic Segmentation
(BCSS) dataset were used for the input source of the SN-FPN.
2,355 H&E images were cropped from 151 large regions of
interest images obtained at 20x magnification [34]. Since
these H&E images were created by different laboratories
using different scanners, it is necessary to perform a color nor-
malization reducing variations in color and intensity. Color
normalization is a process of standardizing image color to
avoid irrelevant color variability and is a critical part of whole
slide image segmentation. This process ensures that whole
slide images are more interpretable when training a deep-
learning model, improving the generalization of the model for
a new dataset.

Reinhard color normalization was adopted for whole slide
image segmentation [35]. First, we converted the RGB image
to Ruderman’s LAB color space to compute the mean and
standard deviation of the image intensities for each channel.
Since the source image is the RGB image, the number of
channels is three. Next, the mean and standard deviation
obtained in the LAB color space were used for transforming
the image color characteristics to the standard color charac-
teristics for normalization. In this step, the LAB color space
was scaled to unit variance with zero mean and rescaled and
recentered to match the reference image mean and standard
deviation [36]. 2,355 H&E images were cropped from 151
large image regions of interest and used as the input source
of the SN-FPN. The scaled pixel value £ to unit variance for
each channel is defined as:

B =(P; — w)/o )

Py is the i-th pixel value of the j-th channel in the LAB
color space. u is the mean of the j-th channel. o is the standard
deviation of the j-th channel. The color-normalized image
patches were then used as the input source of the encoder
pathway. The patches were down-sampled by a factor of 2
for each stage of the encoder pathway and the output of the
encoder pathway was used as the input source of the self-
attention nested pathway. In the self-attention nested path-
way, an attention map was created by using a softmax max
function normalizing the attention scores computed by the
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multiplication of the two feature maps convolved by the filter
of 1 by 1 from the output of the encoder pathway. Another
feature map convolved by the filter of 1 by 1 was then merged
by the attention map multiplied by the convolved feature
map. The output of the self-attention nested pathway was
used as the input feature map of the decoder pathway. The
input feature maps obtained by the attention mechanism were
up-sampled by a factor of 2 for each stage of the decoder
pathway. These up-sampled feature maps were then merged
with the corresponding feature maps with the same resolution
convolved by the filter of 1 by 1 in the encoder pathway. These
merged feature maps are then used to generate additional
feature maps to be merged for the prediction. The details of
the whole slide image segmentation using SN-FPN are shown
in Fig. 2.

B. ENCODER PATHWAY

The encoder pathway is the bottom-up network extending
from one feature map to another. This bottom-up network per-
forms the feed-forward process consisting of several stages
where each stage consists of convolutional layers increasing
the number of channels followed by pooling layers which
reduce the spatial dimension of the prior feature map, avoid-
ing computational complexity. The output feature map is
produced at the last stage of the feed-forward process.

We have adopted ResNet50 [37] for our encoder pathway
to produce the output feature map which will later be used
as the input source of the self-attention nested pathway. Each
stage in the encoder pathway consists of image convolutions
followed by pooling or down-sampling by a factor of 2. The
number of image convolutions performed in five stages is 1,
3,4, 6, and 3 respectively. Down-samplings were performed
in the four blocks generating 256, 512, 1024, and 2048 feature
maps respectively. The details of the encoder pathway are
shown in the leftmost blocks in Fig. 3.

C. DECODER PATHWAY
The decoder pathway is the top-down network extending
from one feature map to another. While the encoder path-
way down-samples features, the decoder pathway up-samples
features mitigating the potential loss of spatial information
during down-sampling and facilitating the generation of out-
put images. We have adopted the top-down pathway of the
FPN [24], but the output features of the self-attention nested
pathway are used as the input features of the decoder path-
way. These input features are up-sampled by a factor of
2 and merged with the features of the same size from the
encoder pathway. The same-sized features are generated by
convolving the filter of size 1 by 1 across the corresponding
features from the encoder pathway. The middle blocks in
Fig. 3 represent the merged maps with the output of the self-
attention nested pathway and corresponding feature maps in
the encoder pathway.

While iterating this process until we reach the second
feature map, four additional feature maps are generated by
convolving the filter of size 3 by 3 across the merged fea-
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FIGURE 3. Self-attention Architecture Nested in the Encoder and Decoder
Pathways

ture maps in the decoder pathway. Because these additional
feature maps are intentionally to be the same sizes, they are
merged into one feature map for prediction. These additional
feature maps are shown as four blocks on the right side of
Fig. 3. The rightmost block in Fig. 3 shows the last feature
map merged through the four additional feature maps. The
last feature map is then up-sampled to be the same resolution
as the input image for the prediction.

D. SELF-ATTENTION NESTED PATHWAY

Self-attention nested pathway is the middle network between
the encoder pathway and the decoder pathway. Since the
semantic feature values increase as the spatial resolution
decreases, we assume that it is necessary to train the model
to focus on relevant information rather than on redundant or
irrelevant information from the input source thereby leading
to accurate and more context-aware prediction results. This
process can be done by forming an attention map providing
the relatedness of each pixel information in the self-attention
nested pathway. The attention map is generated from the
attention weights representing the distribution of attention
created from the raw attention scores.

To compute the raw attention scores the feature maps in
the last block of the encoder pathway were used to derive
three feature maps convolved by the filter of size 1 by 1,
corresponding to the concepts of query, key, and value in
the attention mechanism. The raw attention scores were then
computed by matrix multiplication of two feature maps: query
and key. After obtaining the raw attention scores, we com-
puted the attention weights by using a softmax function across
all feature maps forming an attention map. The attention map
was then multiplied by the feature map called value and the
results of the multiplication were merged with the value to
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create the merged feature map used as the input source of
the decoder pathway. The merged feature map F,, in the self-
attention nested pathway is defined as:

F, = F, + softmax(F,FT) x FT )
k v

where F, represents a feature map that plays a role as a
value, F, represents a feature map that plays a role as a query,
and F} represents a feature map that plays a role as a key. The
details of the self-attention nested pathway are shown at the
top of Fig. 3

IV. EXPERIMENT RESULTS

In this section, we will perform experiments to verify the
effectiveness of the proposed SN-FPN model by comparing it
with the baseline of the model and the state-of-the-art models.
Moreover, we will explore the effectiveness of the various
encoder pathways by adopting deep-learning networks.

A. H&E IMAGE SEGMENTATION FOR TUMOR REGIONS

Dataset: The Breast Cancer Semantic Segmentation (BCSS)
dataset is a H&E image dataset that contains more than 20,000
segmentation annotations of tissue regions obtained from
breast cancer whole slide images provided by The Cancer
Genome Atlas (TCGA) [34]. The BCSS dataset was built on
the collaborative effort of pathologists including senior and
junior regents, and medical students of pathology by using
the Digital Slide Archive, a web-based platform for whole-
slide digital pathology images. 151 large ROIs of whole-slide
images were annotated by them enabling the generation of ac-
curate deep-learning models for tissue region segmentation.

We obtained 151 large ROIs extracted at 20x magnification
from the BCSS dataset. A total of 2,355 H&E images were
cropped to 256x256 size and resolution from the 151 large
image ROIs. These H&E images were used as the dataset for
validating the performance of the proposed SN-FPN on the tu-
mor and stroma region segmentation. To perform a tumor re-
gion segmentation, we labeled all the pixels as ‘non-tumor’ if
the pixels are not annotated as a tumor. For training SN-FPN,
the 2,355 H&E images were randomly divided into three
datasets: training, validating, and testing, with 1,413(60%),
417(20%), and 471(20%) respectively.

Baseline and metrics: We compare the proposed SN-FPN
with the state-of-the-art deep learning-based semantic seg-
mentation models including DeepLabV3Plus [45], UNet++
[39], LinkNet [41], MANet [40], PAN [43], PSPNet [42],
and FPN [24], using ResNet50 as an encoder pathway. We
use them as the baselines to validate the effectiveness of
the proposed model. We used a training epochs of 20, batch
size of 8, and learning rate of 0.0001 DeepLabV3Plus is an
extended version of the DeepLabV3 model [44] developed by
Google Research teams and used for semantic segmentation.
DeepLabV3Plus is well-known for capturing multi-scale con-
textual information by using dilated convolutions integrating
with an atrous spatial pyramid pooling [45]. UNet++ is an
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extended version of the UNet model [38] used for captur-
ing contextual information through the encoder and decoder
networks. UNet++ typically uses an adaptive feature selec-
tion technique for dynamically selecting relevant features at
different resolutions, while LinkNet uses the encoder and
decoder networks to refine high-resolution information by
providing an efficient upsampling method. MANet is a multi-
scale attention network model developed by Tongle et al [40],
using a self-attention mechanism for integrating local features
by capturing contextual dependencies. PAN is a pyramid
attention network model that can be used for capturing global
contextual information in semantic image segmentation [43].
PSPNet is a pyramid scene-parsing network model applicable
for aggregating multi-region context information and provid-
ing pyramid pooling models [42]. We use these models for
our baselines. We use well-known evaluation metrics such
as Intersection over Union (loU ), F score (F 1), Accuracy
(ACC), Precision (PREC), and Recall (REC). loU is defined
as (I + €)/U where I represents the number of pixels over-
lapped between the ground truth pixels and the predicted
pixels. € is set to 1e — 7 and added to avoid zero division.
U represents the encompassed area by both the ground truth
pixels and the predicted pixels. U is defined as Ny +N, —1 +€
where N, is the number of the ground truth pixels and N,
the number of predicted pixels. We use a confusion matrix
including true positive: TP, false positive: FP, false negative:
FN, and true negative: TN, to compute the /'1, ACC, PREC,
and REC. PREC is defined as (TP+e€)/(TP+FP+e), REC is
defined as (TP+€)/(TP+FN+e€), ACC is defined as (TP+TN)
/ (TP+FP+FN+TN), and F1 is defined as ((1 + 8?) * TP +

6% /((1+ 82 * TP + 8% * FN + FP + €) where 8 is set to 1.

TABLE 1. Performance Results on Tumor Region Segmentation

Types IoU Fl1 ACC | PREC | REC

DeepV3Plus [45] | 0.7466 | 0.8067 | 0.9116 | 0.8500 | 0.8539
Linknet [41] 0.7450 | 0.8051 | 0.9095 | 0.8532 | 0.8555
MANet [40] 0.7370 | 0.7976 | 0.9029 | 0.8109 | 0.8953
PAN [43] 0.7425 | 0.8023 | 0.9097 | 0.8866 | 0.8220
PSPNet [42] 0.7383 | 0.7991 | 0.9087 | 0.8388 | 0.8658
Unet++[39] 0.7483 | 0.8085 | 0.9154 | 0.8575 | 0.8510
FPN [24] 0.7564 | 0.8152 | 0.9140 | 0.8403 | 0.8913
SN-FPN 0.7740 | 0.8317 | 0.9156 | 0.8478 | 0.9019

Results: The performance results on tumor region segmen-
tation comparing the proposed SN-FPN with baseline models
are shown in TABLE 1. The results indicate that the SN-
FPN outperforms other models in terms of loU (77.40%),
F1(83.17%), ACC(91.56%), and REC(90.19%), and the
PAN outperforms other models in terms of PREC(88.66%).
UNet++ shows a similar ACC (91.54%) compared with SN-
FPN but shows a higher PREC(85.75%) than SN-FPN on
tumor region segmentation. Since the precision aims to mea-
sure the accuracy of the positive predictions indicating the
model produces a lower false positive or a higher true pos-
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FIGURE 4. Examples of Tumor Region Predictions using DeepV3Plus, Linknet, MANet, PAN, PSPNet, Unet++, FPN, and SN-FPN

itive, it may not be agreeable for other situations where the
model requires a lower false negative. Thus, it is necessary
to consider the harmonic averages of prediction and recall
including both false positive and false negative. To address
this consideration we computed the F score in this experiment
and the proposed SN-FPN model showed the best result on
tumor region segmentation in terms of F' 1. Moreover, the
result of the higher loU on the proposed SN-FPN model
indicates that the predicted tumor segmentation regions are
more aligned with the ground-truth tumor regions showing
the best localization and accurately delineating the target
tumor regions. The examples of the performance comparison
on tumor region segmentation are shown in Fig. 4.

B. H&E IMAGE SEGMENTATION FOR STROMA REGIONS

Dataset: The 151 large H&E images from the BCSS dataset
were used for stroma region segmentation. As we used in the
tumor region segmentation, we randomly split the 2,355 H&E
images of 256x256 size into 1,413(60%), 417(20%), and
417(20%) H&E images for training, validating, and testing
respectively.

Baseline and metrics: The baseline models are the same
as the models used in the previous section. We compare the
models: DeepLabV3Plus [45], UNet++ [39], LinkNet [41],
MANet [40], PAN [43], PSPNet [42], and FPN [24] with the
proposed SN-FPN model using the same evaluation metrics:
IoU, F1, ACC, PREC, and REC.

Results: The performance results on stroma region seg-
mentation are shown in TABLE 2. The results indicate that the
SN-FPN outperforms other models in terms of loU (54.52%),
F 1(62.19%), and PREC(71.79%). The FPN outperforms
other models in terms of ACC(86.77%) and the PAN out-
performs other models in terms of REC(77.93%). UNet++
shows a higher ACC (86.47%) compared with SN-FPN but
shows a lower PREC(69.97%) than SN-FPN on stroma region
segmentation. Since the accuracy aims to mainly measure the
proportion of correctly predicted samples over the total sam-
ples, the ACC on FPN may not properly provide information
about mispredicted samples determined by false positives and
false negatives. Moreover, Although REC on PAN can pro-
vide information about both true positive and false negative
samples, it is difficult to mention that PAN outperforms other
models because the models should consider the harmonic

6

averages of both prediction and recall. The SN-FPN showed
the best /1 score combining precision and recall, indicating
that the proposed model outperforms other models on stroma
region segmentation using the BCSS dataset. Moreover, the
IoU score obtained from the SN-FPN represents the proposed
model outperforms other models in terms of localization and
delineation of the stroma region prediction. The examples of
the performance comparison on stroma region segmentation
are shown in Fig. 5.

C. COMPARISON OF THE ENCODER PATHWAYS ON
TUMOR REGION SEGMENTATION

Dataset: We used the same dataset of the tumor region seg-
mentation described in Section IV.A. The 2,355 H&E images
were used for the comparison of the encoder pathways on
tumor region segmentation and divided into three datasets
for training 1,413(60%), validating 417(20%), and testing
417(20%) respectively.

TABLE 2. Performance Results on Stroma Region Segmentation

Types IoU Fl1 ACC | PREC | REC

DeepV3Plus [45] | 0.5404 | 0.6162 | 0.8673 | 0.6884 | 0.7632
Linknet [41] 0.5372 | 0.6167 | 0.8646 | 0.7108 | 0.7089
MANet [40] 0.5221 | 0.5982 | 0.8534 | 0.6705 | 0.7577
PAN [43] 0.5205 | 0.5908 | 0.8659 | 0.6566 | 0.7793
PSPNet [42] 0.5382 | 0.6173 | 0.8657 | 0.7057 | 0.7193
Unet++[39] 0.5443 | 0.6199 | 0.8647 | 0.6997 | 0.7508
FPN [24] 0.5359 | 0.6097 | 0.8677 | 0.6701 | 0.7788
SN-FPN 0.5452 | 0.6219 | 0.8533 | 0.7179 | 0.7284

Baseline and metrics: We conduct experiments on tu-
mor region segmentation using various encoder pathways
containing ResNet50 [37], ResNet101 [37], ResNet152 [37],
MobileNetv2 [47], EfficientNet-b0, b1, b2, b3, b4, b5, b6,
and b7 [46], VGG16 [48], and VGG19 [48]. ResNetl01
and ResNet152 are deeper versions of ResNet50 extending
layers to 101 and 152 respectively. MobileNet-v2 is an ex-
tended version of MobileNet providing an efficient inverted
residual block using lightweight depthwise convolutions [47].
EfficientNet is a scaling-emphasized architecture addressing
network balance based on different depths, widths, and reso-
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FIGURE 5. Examples of Stroma Region Predictions using DeepV3Plus, Linknet, MANet, PAN, PSPNet, Unet++, FPN, and SN-FPN

lutions thereby leading to better performance [46]. This archi-
tecture provides different variants such as b0, b1, b2, b3, b4,
b5, b6, and b7. VGG16 and VGG19 are both representative
deep convolutional neural network architectures presented by
the Visual Geometry Group. VGG16 consists of 16 layers
while VGG19 consists of 19 layers [48]. We compare them
each other using the tumor region segmentation dataset. We
use the same evaluation metrics: loU , F'1, ACC, PREC, and
REC.

Results: The experiment results on the comparison of
the tumor region segmentation using different encoder path-
ways are shown in TABLE 3. The results on the tumor
region segmentation indicate that ResNet50 outperforms
other pathways in terms of loU (77.40%), F 1(83.17%), and
REC(90.19%). VGG16 outperforms other encoder pathways
in terms of PREC(88.22%) and EfficientNet-b6 outperforms
other encoder pathways in terms of ACC(91.60%). However,
the harmonic average F'1 of the precision and recall represents
that ResNet50 shows better performance on the tumor region
segmentation than other pathways in regards to the BCSS
dataset.

D. COMPARISON OF THE ENCODER PATHWAYS ON
STROMA REGION SEGMENTATION

Dataset: We used the same dataset (2,355 H&E images) of
the stroma region segmentation described in Section I'V.B. for
the comparison of the encoder pathways on stroma region
segmentation. The images were divided into three datasets
for training 1,413(60%), validating 417(20%), and testing
417(20%) respectively.

Baseline and metrics: We use the same encoder path-
ways: ResNet50 [37], ResNet101 [37], ResNet152 [37], Mo-
bileNetv2 [47], EfficientNet-b0, b1, b2, b3, b4, b5, b6, and
b7 [46], VGGI16 [48], and VGG19 [48] for stroma region
segmentaion and the same methods: loU , F'1, ACC, PREC,
and REC will be used as the evaluation metrics.

Results: The experiment results on the comparison of the
stroma region segmentation using different encoder path-
ways are shown in TABLE 4. The results on the stroma
region segmentation indicate that ResNetl52 outperforms
other pathways in terms of loU (54.95%), ACC(87.40%), and
REC(80.93%) and ResNet50 outperforms other pathways
in terms of F'1(62.19%). VGG16 shows the best results on
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TABLE 3. Experiment Results on Tumor Region Segmentation with
Different Encoder Pathways

SN-FPN + ToU F1 ACC | PREC | REC

ResNet50 [37] 0.7740 | 0.8317 | 0.9156 | 0.8478 | 0.9019
ResNet101 [37] | 0.7630 | 0.8189 | 0.9138 | 0.8565 | 0.8751
ResNet152[37] | 0.7633 | 0.8204 | 0.9141 | 0.8313 | 0.9019
Effit.Net-b0 [46] | 0.7537 | 0.8147 | 0.9103 | 0.8445 | 0.8639
Effit.Net-bl [46] | 0.7616 | 0.8195 | 0.9103 | 0.8421 | 0.8915

0.7530 | 0.8110 | 0.9071 | 0.8580 | 0.8654
0.7659 | 0.8220 | 0.9146 | 0.8489 | 0.8899
0.7699 | 0.8276 | 0.9144 | 0.8596 | 0.8873
0.7504 | 0.8098 | 0.9128 | 0.8522 | 0.8673
0.7662 | 0.8248 | 0.9160 | 0.8628 | 0.8706
0.7611 | 0.8191 | 0.9137 | 0.8350 | 0.8904
0.7596 | 0.8166 | 0.9105 | 0.8343 | 0.8994
0.7619 | 0.8214 | 0.9051 | 0.8822 | 0.8562
0.7588 | 0.8179 | 0.9066 | 0.8560 | 0.8751

]
]
Effit.Net-b2 [46]
Effit.Net-b3 [46]
Effit.Net-b4 [46]
Effit.Net-b5 [46]
Effit.Net-b6 [46]
Effit.Net-b7 [46]
Mobl.Netv2 [47]
VGG16 [48]
VGG19 [48]

PREC(76.44%). Assuming that the overall performance is
measured by F 1 score demonstrating the balance between
the precision and the recall, we can determine that ResNet50
shows better performance on the stroma region segmentation
than other encoder pathways in regards to the BCSS dataset.

E. EXPLAINABLE-AI PERFORMANCE IN PATHOLOGICAL
IMAGES

Machine learning models are considered black box models
due to their ambiguity in the decision-making process. Ex-
plainable Al methods are developed to understand the ratio-
nale behind a model decision for prediction. We can also
understand whether models are learning key features that
might be related to objects or unrelated spurious features of
input datasets. Overall, an explainable Al model can help us
debug a machine learning model to improve and verify its
performance. Explainable Al methods play critical roles in
medical images as they can justify the decision provided by
machine learning models. Doctors can verify the Machine
learning model’s prediction before making crucial patient
decisions.
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TABLE 4. Experiment Results on Stroma Region Segmentation with
Different Encoder Pathways

SN-FPN + IoU F1 ACC | PREC | REC
ResNet50 [37] 0.5452 | 0.6219 | 0.8533 | 0.7179 | 0.7284
ResNet101 [37] | 0.5357 | 0.6109 | 0.8603 | 0.7082 | 0.7281
ResNet152[37] | 0.5495 | 0.6218 | 0.8740 | 0.6617 | 0.8093
Effit.Net-b0 [46] | 0.5435 | 0.6172 | 0.8654 | 0.6790 | 0.7602
Effit.Net-b1 [46] | 0.5369 | 0.6104 | 0.8674 | 0.6768 | 0.7660
Effit.Net-b2 [46] | 0.5318 | 0.6055 | 0.8553 | 0.6888 | 0.7418
Effit.Net-b3 [46] | 0.5360 | 0.6080 | 0.8688 | 0.6683 | 0.7694
Effit.Net-b4 [46] | 0.5462 | 0.6216 | 0.8659 | 0.6809 | 0.7540
Effit.Net-b5 [46] | 0.5340 | 0.6070 | 0.8667 | 0.6599 | 0.7731
Effit.Net-b6 [46] | 0.5479 | 0.6202 | 0.8665 | 0.6746 | 0.7754
Effit.Net-b7 [46] | 0.5361 | 0.6089 | 0.8674 | 0.6854 | 0.7541
Mobl.Netv2 [47] | 0.5388 | 0.6166 | 0.8712 | 0.6922 | 0.7440
VGG16 [48] 0.5358 | 0.6155 | 0.8329 | 0.7644 | 0.6877
VGG19 [48] 0.5306 | 0.6021 | 0.8497 | 0.6737 | 0.7640

GradCAM [48] is a popular class activation mapping
(CAM) method that uses gradients of the last convolution
layer to identify essential regions for a given class. Grad-
CAM feeds the image to the well-trained deep convolutional
network (DCNN) based model to generate the explanation
map for an image by using activation functions for the tar-
get class. We also use the ScoreCAM [49] method, which
uses confidence weights of the activation maps of the last
convolution layers instead of unstable gradients to generate
explanation maps. Once we create the explainable Al maps
of each class for the trained model, we use metrics to com-
pare the performances of explainable Al methods instead of
relying on human evaluations. Specifically, we used ROAD
[50] and Infidelity [51] scores to compare the performances
of GradCAM and ScoreCAM. ROAD method removes the
features based on the generated saliency maps to identify
the drop in model performance. The higher percentage of
accuracy drops indicates a better relationship between the
dropped features and the model behavior. The infidelity score
also shows how the saliency map indicated region relates to
model behavior. A lower score of infidelity indicates higher
agreement with the saliency maps indicated region for deep
learning model behavior.

Dataset: We used 406 and 1007 number of Tumor and
Non-tumor images to train the Deep learning classifier. We
randomly balanced the tumor and non-tumor images to train
the model. Also, we utilized 333 and 138 numbers of non-
tumor and tumor images for validations. Then, we evaluated
our explainable Al method and metrics on a separate 341 and
130 number of non-tumor and tumor images.

Baseline and metrics: We used a ResNet-50 architecture
as a backbone to train the deep learning model classifier for
tumor and non-tumor image detection. We used a training
epochs of 150, image size 224 X 224 X 3, batch size of 32
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Results: We achieved a test accuracy of 92.36% on the
testing dataset using the ResNet-50 architecture. Then, we
fixed the trained model weight to generate the explanation
maps of tumor and non-tumor classes using gradCAM and
ScoreCAM methods. To identify the better explainable Al
maps, we compare them with two explainable Al metrics:
ROAD and infidelity. We used ROAD metrics to evaluate
the performance of the explainable Al models in Table 5.
ScoreCAM performed better than GradCAM after remov-
ing 20% to 90% of the dataset based on explanation maps.
Accuracy of the model dropped to 72.82% and 69.64%
for the GradCAM and ScoreCAM respectively in Table 5.
We used infidelity to compare GradCAM and ScoreCAM
methods for tumor detection. We achieved infidelity scores
of 4.546835771179758¢™ and 7.94731022324413¢7%
for tumor class using GradCAM and ScoreCAM respec-
tively. We also achieved 1.0336164450563956¢ % and
0.88344254437834¢™% for the non-tumor class using Grad-
CAM and ScoreCAM respectively.

TABLE 5. Accuracy of Model After Removing Different Percentages (ROAD
Metric) for GradCAM and ScoreCAM Methods on Tumor and Non-tumor
Image Detection

% Removed | GradCAM | ScoreCAM
0% 92.36% 92.36%
10% 89.81% 89.81 %
20% 87.69% 86.41 %
30% 85.99% 81.74 %
40% 83.44% 79.83 %
50% 82.17 % 78.13 %
70% 79.41 % 75.80 %
90% 72.82 % 69.64 %

The ScoreCAM model performed better than the Grad-
CAM method in ROAD metrics. If we compare the perfor-
mance of infidelity-based metrics, we find that both methods
performed similarly, and GradCAM is slightly better than the
ScoreCAM method.

V. CONCLUSION

In this paper, we presented a new image segmentation model
integrating a feature pyramid network with a self-attention
mechanism using three pathways: the encoder pathway, the
decoder pathway, and the self-attention nested pathway, and
providing accurate tumor and stroma region segmentation on
whole slide images. ResNet50 architecture was used for the
encoder pathway, while the feature pyramid network was used
for the decoder pathway. The self-attention nested pathway
generates the attention map from the distribution of atten-
tion scores focusing on relevant information of the feature
maps. The experiment results show that the proposed SN-FPN
model outperforms the state-of-the-art image segmentation
models when performing tumor and stroma region segmen-
tation on the BCSS dataset. Moreover, we compared various
encoder networks by using the proposed SN-FPN model. The
results indicate that the ResNet50 outperforms other encoder
networks on F1 score for the tumor and stroma region seg-
mentation. However, the proposed method is limited to only
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characteristics of phenotypes in H&E images, remaining ad-
ditional experiments to provide biological evidence to verify
our method using spatial transcriptomics technologies. Also,
because of its lower computational complexity, time-based
efficiency on U-Net-like deep learning models is usually
higher than on FPN-like deep learning models. Thus, the
proposed method following FPN-like deep learning models
would require a higher computational burden, but potentially
offering better performance on complex tasks.
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