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Abstract—Many deep learning algorithms have been

successfully adopted to extract meaningful information from
histopathology images, but they have been untapped in semantic
image segmentation. In this paper, we propose a deep
convolutional neural network model that strengthens Atrous
separable convolutions with a high rate within spatial pyramid
pooling for histopathology image segmentation. We adopted
DeepLabV3Plus for the encoder and decoder process. ResNet50
was used as the encoder block of the model for taking advantage
of attenuating the problem of the increased depth of the network
by using skip connections. Three Atrous separable convolutions
with higher rates were added to the existing Atrous separable
convolutions. We conducted a performance evaluation on three
tissue types: tumor, tumor-infiltrating lymphocytes, and stroma
for comparing the proposed model with the eight state-of-the-art
deep learning models: DeepLabV3, DeepLabV3Plus, LinkNet,
MANet, PAN, PSPnet, UNet, and UNet++. The performance
results show that the proposed model outperforms the eight
models on mIOU (0.8058/0.7792) and FSCR (0.8525/0.8328) for
both tumor and tumor-infiltrating lymphocytes.
Keywords— Deep learning, Image Segmentation, Tumor,
Histopathology, Hematoxylin and eosin-stained images.

I. INTRODUCTION

Advances in artificial intelligence (AI) have provided
evidence regarding the efficiency and effectiveness of data-
driven predictive modeling in many fields of research [1].
Recently, deep learning models as part of Al have received
much attention in biomedical image analysis tasks because of
their highly accurate performance and versatilities for a
comprehensive analysis through multimodal integration [2].
These deep learning models enable the exploration of complex
patterns providing clinical decision support and contributing to
additional insights based on the biomedical image data.

Many deep-learning models have been proposed for image
classification, object detection, and image segmentation. LeNet
is the earliest deep convolutional neural network (CNN) with a
7-layered neural network [3] and AlexNet is a deeper version of
CNNs with an 8-layered neural network demonstrating the
effectiveness of the network on two GPUs on Large Scale Visual
Recognition Challenge (LSVRC) [4]. VGG network series as a
very deep convolutional network for large-scale image
recognition has been highlighted as a leading deep CNN [5].

T - lm /TP“ Ut

LEr L e
e | w '/""sz/ <

< o 4 }

=

H&E image Prediction H&E image Prediction

H&E image

Prediction

Encoder-Decoder DeepLabV3 Atrous Conv.  Proposed rate emphasized DeepLabV3

Fig. 1. The proposed rate emphasized DeepLabV3Plus. Traditional encoder-
decoder model reserves the spatial information through skip connection for each
output of the encoder (Left) [8]. DeepLavV3Plus reserves the spatial
information through Atrous convolution reducing skip connections (Middle)
[8]. Rate emphasized DeepLabV3Plus emphasizes the spatial information
through Atrous convolution reducing skip connections (right).

However, there has been a potential issue associated with
increasing the depth of neural networks. ResNet series has been
considered as a solution for the problem of increased depth of
the network by using skip connections [6]. While these deep
CNNs mainly focus on classifying images into a set of
categories, some models have been segmenting images into
categories. Image segmentation is crucial in biomedical image
analysis because segmentation helps in accurately identifying
regions of interest within medical images and the segmented
regions can be used for understanding the size, shape, and
volume of different structures, facilitating the analysis of the
target region for treatment. DeepLabV3 is one of the advanced
versions of deep CNNs and is mainly used to perform semantic
segmentation of images [7]. DeepLabV3 wuses dilated
convolution called Atrous spatial pyramid pooling to capture
multi-scale contextual information in images with reduced
computational burden. DeepLabV3Plus is the extended version
of DeepLabV3 [8], providing an encoder-decoder architecture
that captures more detailed contextual information.

In this paper, we propose a rate-emphasized DeepLabV3Plus
that emphasizes depth-wise convolutions with higher rates in
spatial pyramid pooling, improving the performance of the
semantic segmentation in breast cancer-related hematoxylin and
eosin images. The proposed method uses ResNet50 as a
backbone network of the encoder and utilizes DeepLabV3Plus
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Fig. 2. The overall process of proposed model. This paper obtained 600 hematoxymin and eosin stained images of tumor, tumer-infiterating lymphocytes, and
strom extracted from whole slide images for image segmentation. ResNet50 was used as a encoder of the model. Atrous separable convolution was performed on
the top of the ReaNet50, emphasizing the features with the larger field of view filters with rate 12 (R12), 24 (R24), and 36 (R36). Binlear upsampling with a factor
of 4 (U4) was performed after completing the 1x1 convolution. Another binlear upsampling with a factor of 4 (U4) was performed to be activated for the prediction.

equipped with the proposed rate-emphasized module on the
decoder. The detail of the proposed model is shown in Figure 1.

II. HIGHER RATE-EMPHASIZED DEEPLABV3PLUS FOR
SEMANTIC SEGMENTATION

The proposed model uses ResNet50 as a backbone network
of the encoder, facilitating skip connections and reducing the
deep network burden. Since ResNet50 including a 50-layer deep
residual neural network has demonstrated its effectiveness in the
architecture of biomedical image analysis, we used ResNet50 to
capture complex patterns of spatial information within images
during the encoding. Atrous separable convolution involving
both the depthwise convolution and the pointwise convolution
was employed in the last layer of ResNet50.

Rate emphasized Atrous separable convolution. While
DeepLabV3Plus uses Atrous separable convolution with
different rates at multiple scales, our paper emphasizes spatial
information of Atrous separable convolution with large rates
where the field-of-view of the filter is large. The intuition of the
idea of the proposed method is that the larger Atrous separable
convolution with a large rate is, the less its effect will be. We
performed six Atrous separable convolutions using 3x3 kernels
with 12, 24, 24, 36, 36, and 36 rate values. After completing
Atrous separable convolutions, we applied 1x1 convolution to
perform bilinear upsampling with a factor of 4, and the
unsampled features were concatenated with the corresponding
features in the ResNet50 followed by 3x3 convolutions and one
more bilinear upsampling with a factor of 4 to be activated for
the prediction of the image. We followed the decoder process of
DeepLabV3Plus. The details of the overall process of the
proposed model are shown in Figure 2.

III. EXPERIMENTS

Datasets. Our experiment was performed by the Breast Cancer
Semantic Segmentation (BCSS) dataset. BCSS dataset is a
large breast cancer-related image dataset that consists of 151
hematoxylin and eosin-stained images extracted from whole
slide images in the Genomic Data Commons Data Portal [9].
These images include various tissue types such as tumors,
stroma, lymphocytic infiltrate, necrosis, glandular secretions,
blood, fat, and plasma cells. All the images in the BCSS dataset
were annotated by senior residents, junior residents, and

medical students of pathology through the annotation review
process. In this paper, we randomly selected 600 tumors,
stroma, and tumor-infiltrating lymphocytes (TILs) related
images with 256x256-sized cropped from the 151 images,
creating three datasets: 200 images for tumor, 200 images for
stroma, and 200 images for TILs. Since it is critical to reduce
the impact of variation in color balance that affects the
appearance of images, we performed color normalization by
using Reinhard normalization ensuring that similar spatial
information is represented consistently. Each dataset was split
into training, validation, and test sets with 60%, 20%, and 20%
of images respectively.

Baselines and Metrics. The proposed model was compared
with eight state-of-the-art deep learning-based segmentation
models including UNet [10], UNet++ [11], MANet [12],
LinkNet [13], PSPNet [14], PAN [15], DeepLabV3 [7], and
DeepLabV3Plus [8]. We used Adam optimizer with a 0.0001
learning rate for training. The evaluation metrics used in this
experiment include Precision (PREC.), Recall (RECL.),
Accuracy (ACC.), F score (FSCR), and mean Intersection Over
Union (mloU) to evaluate the performance of the deep learning-
based segmentation models. A confusion matrix (true positive:
TP, false positive: FP, false negative: FN, and true negative:
TN) was created for the evaluation matrix as follows: loU =
TP/(TP+FP+FN), PREC. = TP/(TP+FP), REC.= TP/(TP+FN),
ACC. = (TP+TN) / (TP+FP+FN+TN), FSCR =((1+p2) xTP)/
(((1+B?) XTP)+ (B? XFN)+FP).

Results. The experiment results on tumor, tumor-infiltrating
lymphocytes, and stroma using deep learning models are shown
in Table 1. For tumor, Table 1 shows that the proposed model
outperforms traditional deep CNNs in terms of m/loU (0.8058)
and FSCR. (0.8525). For TILs, Table 1 shows that the proposed
model outperforms traditional deep CNNs in terms of mloU
(0.7792) and FSCR. (0.8328). For stroma, Table 1 shows that
the proposed model outperforms traditional deep CNNs in
terms of RECL. (0.7686). Our experiment indicates that
DeepLabV3Plus outperforms other deep learning models on
ACC. (0.9153) for both tumor and stroma. ACC. typically refers
to the ratio of correctly predicted pixels to the total pixels in the
image segmentation and it may be sensitive to label noise and
mislabeled pixel information. Therefore, it will be more



informative to consider other metrics such as m/OU, FSCR.,
RECL., and PREC. UNet++ shows better performance results
on both m/OU (0.6069) and FSCR. (0.6830) for stroma, RECL.
(0.9441) for tumor, PREC. (0.9275) for TILs. However, the
overall performance results on UNet++ are very vulnerable
(i.e., for tumor, RECL. is 0.9441 but PREC. is 0.5824)
suggesting the model is not robust or reliable compared with
the proposed model. Examples of the predicted images based
on eight deep learning models as well as the proposed model
are shown in Figure 3.

IV. CONCLUSION

In this paper, we presented a high rate emphasized
DeepLabV3Plus that strengthens Atrous separable convolutions
with a high rate in spatial pyramid pooling for histopathology
image segmentation. ResNet50 was used as the encoder block
of the model for taking advantage of attenuating the problem of
the increased depth of the network by using skip connections.
Three Atrous separable convolutions with higher rates were
added to the existing Atrous separable convolutions. We
followed the process of the decoder block in DeepLabV3Plus.
The performance evaluation of the proposed model was
conducted based on tumor, TILs, and stroma, comparing with
the eight state-of-the-art deep learning models: DeepLabV3,
DeepLabV3Plus, LinkNet, MANet, PAN, PSPnet, UNet, and
UNet++. The performance results show that the proposed model
outperforms the eight models on m/IOU and FSCR for both
tumor and TILs, as well as RECL. for stroma. We plan to extend
the proposed model not only to radiology images but also to
other types of cancer types in the future.
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TABLE L. RESULTS OF TUMOR IMAGE CLASSIFICATION
Models Tumor/ Tumor-infiltrating Lymphocytes / Stroma
mloU FSCR. ACC. RECL. PREC.
DeepLabV3 [7] 0.7877/0.7736/ 0.5727 | 0.8324/0.8198/0.6519 | 0.9143/0.8901/0.8436 0.8712/0.8886/ 0.7196 0.9093/ 0.8460/ 0.7145

DeeLabV3Plus [8]

0.8005/0.7441/ 0.5702

0.8498/0.7835/ 0.6450

0.9153/ 0.8654/ 0.8596

0.8943/ 0.8250/ 0.6949

0.8985/ 0.8756/ 0.7299

LinkNet [13] 0.5419/0.4605/ 0.5809 | 0.5905/0.5069/0.6611 | 0.8944/0.8456/ 0.8356 | 0.9250/0.9362/ 0.7525 | 0.5649/0.4882/ 0.7164
MANet [12] 0.5642/ 0.4885/ 0.5870 | 0.6092/0.5290/ 0.6669 | 0.8968/0.8617/ 0.8470 | 0.9325/0.8086/ 0.7503 | 0.5765/0.6343/ 0.6550
PAN [15] 0.7474/0.7731/ 0.5820 | 0.7892/0.8187/0.6539 | 0.9052/0.8817/ 0.8562 | 0.8746/0.8543/0.7059 | 0.8554/0.8818/ 0.7456
PSPNet [14] 0.7562/0.7305/ 0.5225 | 0.8021/0.7755/0.5960 | 0.8959/0.8732/ 0.8162 | 0.8938/0.8740/ 0.6496 | 0.8154/0.8275/ 0.7529
UNet [10] 0.7622/ 0.6745/ 0.5600 | 0.8080/0.7238/0.6453 | 0.9129/0.8543/ 0.8458 | 0.9072/0.8439/ 0.6838 | 0.8198/0.7639/ 0.7159
UNet++ [11] 0.5582/0.7747/0.6069 | 0.6085/0.8260/ 0.6830 | 0.8879/0.8582/ 0.8521 | 0.9441/0.8204/ 0.7462 | 0.5824/0.9275/ 0.6816
Proposed model | 0.8058/0.7792/0.5905 | 0.8525/0.8328/0.6585 | 0.9006/0.8781/ 0.8357 | 0.9255/0.8757/ 0.7686 | 0.8750/0.8682/ 0.7257
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Fig. 3. Examples of the predicted images based on eight deep learning models: DeepLabV3, DeepV3Plus, LinkNet, MANet, PAN, PSPNet, UNet, and UNet++,
as well as the proposed model. A color normalized tumor-related hematoxylin and eosin stained image, the predicted images on DeepLabV3, DeepV3Plus, LinkNet,
MANet, PAN, PSPNet, UNet, UNet++, and the proposed model, the probability heatmap of the proposed model, and the ground truth image (Left to right on the
top). A color normalized stroma-related hematoxylin and eosin stained image, the predicted images on the eight models and the proposed model, and the probability
heatmap of the proposed model, and the ground truth image (Left to right on the middle). A color normalized tumor-infiltrating lymphocyte-related hematoxylin
and eosin stained image, the predicted images on the eight models and the proposed model, and the probability heatmap of the proposed model, and the ground
truth image (Left to right on the bottom)



