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Abstract—Many deep learning algorithms have been 
successfully adopted to extract meaningful information from 
histopathology images, but they have been untapped in semantic 
image segmentation. In this paper, we propose a deep 
convolutional neural network model that strengthens Atrous 
separable convolutions with a high rate within spatial pyramid 
pooling for histopathology image segmentation. We adopted 
DeepLabV3Plus for the encoder and decoder process. ResNet50 
was used as the encoder block of the model for taking advantage 
of attenuating the problem of the increased depth of the network 
by using skip connections. Three Atrous separable convolutions 
with higher rates were added to the existing Atrous separable 
convolutions. We conducted a performance evaluation on three 
tissue types: tumor, tumor-infiltrating lymphocytes, and stroma 
for comparing the proposed model with the eight state-of-the-art 
deep learning models: DeepLabV3, DeepLabV3Plus, LinkNet, 
MANet, PAN, PSPnet, UNet, and UNet++. The performance 
results show that the proposed model outperforms the eight 
models on mIOU (0.8058/0.7792) and FSCR (0.8525/0.8328) for 
both tumor and tumor-infiltrating lymphocytes. 
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I. INTRODUCTION 
Advances in artificial intelligence (AI) have provided 

evidence regarding the efficiency and effectiveness of data-
driven predictive modeling in many fields of research [1]. 
Recently, deep learning models as part of AI have received 
much attention in biomedical image analysis tasks because of 
their highly accurate performance and versatilities for a 
comprehensive analysis through multimodal integration [2]. 
These deep learning models enable the exploration of complex 
patterns providing clinical decision support and contributing to 
additional insights based on the biomedical image data. 

Many deep-learning models have been proposed for image 
classification, object detection, and image segmentation. LeNet 
is the earliest deep convolutional neural network (CNN) with a 
7-layered neural network [3] and AlexNet is a deeper version of 
CNNs with an 8-layered neural network demonstrating the 
effectiveness of the network on two GPUs on Large Scale Visual 
Recognition Challenge (LSVRC) [4]. VGG network series as a 
very deep convolutional network for large-scale image 
recognition has been highlighted as a leading deep CNN [5]. 

However, there has been a potential issue associated with 
increasing the depth of neural networks. ResNet series has been 
considered as a solution for the problem of increased depth of 
the network by using skip connections [6]. While these deep 
CNNs mainly focus on classifying images into a set of 
categories, some models have been segmenting images into 
categories. Image segmentation is crucial in biomedical image 
analysis because segmentation helps in accurately identifying 
regions of interest within medical images and the segmented 
regions can be used for understanding the size, shape, and 
volume of different structures, facilitating the analysis of the 
target region for treatment. DeepLabV3 is one of the advanced 
versions of deep CNNs and is mainly used to perform semantic 
segmentation of images [7]. DeepLabV3 uses dilated 
convolution called Atrous spatial pyramid pooling to capture 
multi-scale contextual information in images with reduced 
computational burden. DeepLabV3Plus is the extended version 
of DeepLabV3 [8], providing an encoder-decoder architecture 
that captures more detailed contextual information. 

In this paper, we propose a rate-emphasized DeepLabV3Plus 
that emphasizes depth-wise convolutions with higher rates in 
spatial pyramid pooling, improving the performance of the 
semantic segmentation in breast cancer-related hematoxylin and 
eosin images. The proposed method uses ResNet50 as a 
backbone network of the encoder and utilizes DeepLabV3Plus 

Fig. 1. The proposed rate emphasized DeepLabV3Plus. Traditional encoder-
decoder model reserves the spatial information through skip connection for each 
output of the encoder (Left) [8]. DeepLavV3Plus reserves the spatial 
information through Atrous convolution reducing skip connections (Middle) 
[8]. Rate emphasized DeepLabV3Plus emphasizes the spatial information 
through Atrous convolution reducing skip connections (right).  



equipped with the proposed rate-emphasized module on the 
decoder. The detail of the proposed model is shown in Figure 1. 

II. HIGHER RATE-EMPHASIZED DEEPLABV3PLUS FOR 
SEMANTIC SEGMENTATION 

The proposed model uses ResNet50 as a backbone network 
of the encoder, facilitating skip connections and reducing the 
deep network burden. Since ResNet50 including a 50-layer deep 
residual neural network has demonstrated its effectiveness in the 
architecture of biomedical image analysis, we used ResNet50 to 
capture complex patterns of spatial information within images 
during the encoding. Atrous separable convolution involving 
both the depthwise convolution and the pointwise convolution 
was employed in the last layer of ResNet50.  
Rate emphasized Atrous separable convolution. While 
DeepLabV3Plus uses Atrous separable convolution with 
different rates at multiple scales, our paper emphasizes spatial 
information of Atrous separable convolution with large rates 
where the field-of-view of the filter is large. The intuition of the 
idea of the proposed method is that the larger Atrous separable 
convolution with a large rate is, the less its effect will be. We 
performed six Atrous separable convolutions using 3x3 kernels 
with 12, 24, 24, 36, 36, and 36 rate values. After completing 
Atrous separable convolutions, we applied 1x1 convolution to 
perform bilinear upsampling with a factor of 4, and the 
unsampled features were concatenated with the corresponding 
features in the ResNet50 followed by 3x3 convolutions and one 
more bilinear upsampling with a factor of 4 to be activated for 
the prediction of the image. We followed the decoder process of 
DeepLabV3Plus. The details of the overall process of the 
proposed model are shown in Figure 2. 

III. EXPERIMENTS 
Datasets. Our experiment was performed by the Breast Cancer 
Semantic Segmentation (BCSS) dataset. BCSS dataset is a 
large breast cancer-related image dataset that consists of 151 
hematoxylin and eosin-stained images extracted from whole 
slide images in the Genomic Data Commons Data Portal [9]. 
These images include various tissue types such as tumors, 
stroma, lymphocytic infiltrate, necrosis, glandular secretions, 
blood, fat, and plasma cells. All the images in the BCSS dataset 
were annotated by senior residents, junior residents, and 

medical students of pathology through the annotation review 
process. In this paper, we randomly selected 600 tumors, 
stroma, and tumor-infiltrating lymphocytes (TILs) related 
images with 256x256-sized cropped from the 151 images, 
creating three datasets: 200 images for tumor, 200 images for 
stroma, and 200 images for TILs. Since it is critical to reduce 
the impact of variation in color balance that affects the 
appearance of images, we performed color normalization by 
using Reinhard normalization ensuring that similar spatial 
information is represented consistently. Each dataset was split 
into training, validation, and test sets with 60%, 20%, and 20% 
of images respectively. 
Baselines and Metrics. The proposed model was compared 
with eight state-of-the-art deep learning-based segmentation 
models including UNet [10], UNet++ [11], MANet [12], 
LinkNet [13], PSPNet [14], PAN [15], DeepLabV3 [7], and 
DeepLabV3Plus [8]. We used Adam optimizer with a 0.0001 
learning rate for training. The evaluation metrics used in this 
experiment include Precision (PREC.), Recall (RECL.), 
Accuracy (ACC.), F score (FSCR), and mean Intersection Over 
Union (mIoU) to evaluate the performance of the deep learning-
based segmentation models. A confusion matrix (true positive: 
TP, false positive: FP, false negative: FN, and true negative: 
TN) was created for the evaluation matrix as follows: IoU = 
TP/(TP+FP+FN), PREC. = TP/(TP+FP), REC.= TP/(TP+FN), 
ACC. = (TP+TN) / (TP+FP+FN+TN), FSCR =((1+β!)	×TP)/ 
(((1+β!)	×TP)+ (β! ×FN)+FP). 
Results. The experiment results on tumor, tumor-infiltrating 
lymphocytes, and stroma using deep learning models are shown 
in Table 1. For tumor, Table 1 shows that the proposed model 
outperforms traditional deep CNNs in terms of mIoU (0.8058) 
and FSCR. (0.8525). For TILs, Table 1 shows that the proposed 
model outperforms traditional deep CNNs in terms of mIoU 
(0.7792) and FSCR. (0.8328). For stroma, Table 1 shows that 
the proposed model outperforms traditional deep CNNs in 
terms of RECL. (0.7686). Our experiment indicates that 
DeepLabV3Plus outperforms other deep learning models on 
ACC. (0.9153) for both tumor and stroma. ACC. typically refers 
to the ratio of correctly predicted pixels to the total pixels in the 
image segmentation and it may be sensitive to label noise and 
mislabeled pixel information. Therefore, it will be more 

Fig. 2. The overall process of proposed model. This paper obtained 600 hematoxymin and eosin stained images of tumor, tumer-infiterating lymphocytes, and 
strom extracted from whole slide images for image segmentation. ResNet50 was used as a encoder of the model. Atrous separable convolution was performed on 
the top of the ReaNet50, emphasizing the features with the larger field of view filters with rate 12 (R12), 24 (R24), and 36 (R36). Binlear upsampling with a factor 
of 4 (U4) was performed after completing the 1x1 convolution. Another binlear upsampling with a factor of 4 (U4) was performed to be activated for the prediction. 



informative to consider other metrics such as mIOU, FSCR., 
RECL., and PREC. UNet++ shows better performance results 
on both mIOU (0.6069) and FSCR. (0.6830) for stroma, RECL. 
(0.9441) for tumor, PREC. (0.9275) for TILs. However, the 
overall performance results on UNet++ are very vulnerable 
(i.e., for tumor, RECL. is 0.9441 but PREC. is 0.5824) 
suggesting the model is not robust or reliable compared with 
the proposed model. Examples of the predicted images based 
on eight deep learning models as well as the proposed model 
are shown in Figure 3. 

IV. CONCLUSION 
In this paper, we presented a high rate emphasized 

DeepLabV3Plus that strengthens Atrous separable convolutions 
with a high rate in spatial pyramid pooling for histopathology 
image segmentation. ResNet50 was used as the encoder block 
of the model for taking advantage of attenuating the problem of 
the increased depth of the network by using skip connections. 
Three Atrous separable convolutions with higher rates were 
added to the existing Atrous separable convolutions. We 
followed the process of the decoder block in DeepLabV3Plus. 
The performance evaluation of the proposed model was 
conducted based on tumor, TILs, and stroma, comparing with 
the eight state-of-the-art deep learning models: DeepLabV3, 
DeepLabV3Plus, LinkNet, MANet, PAN, PSPnet, UNet, and 
UNet++. The performance results show that the proposed model 
outperforms the eight models on mIOU and FSCR for both 
tumor and TILs, as well as RECL. for stroma. We plan to extend 
the proposed model not only to radiology images but also to 
other types of cancer types in the future. 
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TABLE I.  RESULTS OF TUMOR IMAGE CLASSIFICATION 

Models Tumor/ Tumor-infiltrating Lymphocytes / Stroma 
mIoU FSCR. ACC. RECL. PREC. 

DeepLabV3 [7] 0.7877/ 0.7736/ 0.5727 0.8324/ 0.8198/ 0.6519 0.9143/ 0.8901/ 0.8436 0.8712/ 0.8886/ 0.7196 0.9093/ 0.8460/ 0.7145 

DeeLabV3Plus [8] 0.8005/ 0.7441/ 0.5702 0.8498/ 0.7835/ 0.6450 0.9153/ 0.8654/ 0.8596 0.8943/ 0.8250/ 0.6949 0.8985/ 0.8756/ 0.7299 

LinkNet [13] 0.5419/ 0.4605/ 0.5809 0.5905/ 0.5069/ 0.6611 0.8944/ 0.8456/ 0.8356 0.9250/ 0.9362/ 0.7525 0.5649/ 0.4882/ 0.7164 

MANet [12] 0.5642/ 0.4885/ 0.5870 0.6092/ 0.5290/ 0.6669 0.8968/ 0.8617/ 0.8470 0.9325/ 0.8086/ 0.7503 0.5765/ 0.6343/ 0.6550 

PAN [15] 0.7474/ 0.7731/ 0.5820 0.7892/ 0.8187/ 0.6539 0.9052/ 0.8817/ 0.8562 0.8746/ 0.8543/ 0.7059 0.8554/ 0.8818/ 0.7456 

PSPNet [14] 0.7562/ 0.7305/ 0.5225 0.8021/ 0.7755/ 0.5960 0.8959/ 0.8732/ 0.8162 0.8938/ 0.8740/ 0.6496 0.8154/ 0.8275/ 0.7529 

UNet [10] 0.7622/ 0.6745/ 0.5600 0.8080/ 0.7238/ 0.6453 0.9129/ 0.8543/ 0.8458 0.9072/ 0.8439/ 0.6838 0.8198/ 0.7639/ 0.7159 

UNet++ [11] 0.5582/ 0.7747/ 0.6069 0.6085/ 0.8260/ 0.6830  0.8879/ 0.8582/ 0.8521 0.9441/ 0.8204/ 0.7462 0.5824/ 0.9275/ 0.6816 
Proposed model 0.8058/ 0.7792/ 0.5905 0.8525/ 0.8328/ 0.6585 0.9006/ 0.8781/ 0.8357 0.9255/ 0.8757/ 0.7686 0.8750/ 0.8682/ 0.7257 



 
 

 

Fig. 3. Examples of the predicted images based on eight deep learning models: DeepLabV3, DeepV3Plus, LinkNet, MANet, PAN, PSPNet, UNet, and UNet++, 
as well as the proposed model. A color normalized tumor-related hematoxylin and eosin stained image, the predicted images on DeepLabV3, DeepV3Plus, LinkNet, 
MANet, PAN, PSPNet, UNet, UNet++, and the proposed model, the probability heatmap of the proposed model, and the ground truth image (Left to right on the 
top). A color normalized stroma-related hematoxylin and eosin stained image, the predicted images on the eight models and the proposed model, and the probability 
heatmap of the proposed model, and the ground truth image (Left to right on the middle). A color normalized tumor-infiltrating lymphocyte-related hematoxylin 
and eosin stained image, the predicted images on the eight models and the proposed model, and the probability heatmap of the proposed model, and the ground 
truth image (Left to right on the bottom) 


