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Abstract— Soccer kicking is a complex whole-body motion
that requires intricate coordination of various motor actions.
To accomplish such dynamic motion in a humanoid robot, the
robot needs to simultaneously: 1) transfer high kinetic energy
to the kicking leg, 2) maintain balance and stability of the entire
body, and 3) manage the impact disturbance from the ball dur-
ing the kicking moment. Prior studies on robotic soccer kicking
often prioritized stability, leading to overly conservative quasi-
static motions. In this work, we present a biomechanics-inspired
control framework that leverages trajectory optimization and
imitation learning to facilitate highly dynamic soccer kicks in
humanoid robots. We conducted an in-depth analysis of human
soccer Kkick biomechanics to identify key motion constraints.
Based on this understanding, we designed kinodynamically
feasible trajectories that are then used as a reference in
imitation learning to develop a robust feedback control policy.
We demonstrate the effectiveness of our approach through a
simulation of an anthropomorphic 25 DoF bipedal humanoid
robot, named PresToe, which is equipped with 7 DoF legs,
including a unique actuated toe. Using our framework, PresToe
can execute dynamic instep kicks, propelling the ball at speeds
exceeding 11 m/s in full dynamics simulation.

I. INTRODUCTION

The RoboCup Federation has established an ambitious
goal for 2050: to develop a humanoid soccer team capable
of defeating the human FIFA World Cup champions of that
year [1], [2]. For this dream to become a reality and to
effectively compete with humans, the robots must not only
walk, run, and leap, but also master the art of kicking a ball
as swiftly and as accurately as humans. Achieving a powerful
and accurate kick in bipedal robots is a complex endeavor.
It requires the substantial transfer of kinetic energy to the
kicking leg, all while maintaining balance with only one foot
grounded, and ensuring effective recovery after ball impact.
However, existing studies on robotic soccer kicks have not
addressed the full spectrum of the challenges associated with
such dynamic motion. For example, [3]-[5] anchored the
robot to the ground, thereby circumventing the challenges of
balance and post-kick recovery. While this allows researchers
to concentrate on the dynamic interaction between the foot
and ball during impact, the results are hard to extend to biped
robots with significant under-actuation. In contrast, [6]-[10]
explore soccer kick motions using fully mobile humanoid
robots. However, these approaches tend to favor conservative
stationary kick movements, resulting in less powerful kicks
to guarantee stability both before and after ball contact.
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Fig. 1. Phases of an in-step soccer kick: (a) Approach/Run-up, (b) Plant-
ing/Support, (¢) Wind-up/Backswing, (d) Cocking, (e) Swing/Acceleration,
and (f) Follow-through. Adapted from [15].

One common missing perspective in both approaches is
the lack of focus on momentum-building preparatory steps
before a kick. In human soccer, players use such steps
to accumulate momentum, enabling more powerful strikes.
Many robotic approaches overlook this critical aspect, often
keeping the robot’s supporting leg stationary, which limits
the kinetic energy transferred to the ball at impact. There
exists only a handful of research utilizing stepping before
kicking [11]-[13]. However, [11], [12] used the walking step
mainly to reposition the robot rather than to build momentum
for a stronger kick. A video demonstration by Honda Re-
search featuring the Asimo robot [13] shows more powerful
kicks achieved in part through preparatory steps. However,
the robot’s motion lacks key human-like traits of an instep
kick: it omits arm and torso movements crucial for angular
momentum regulation and balance, and follows a straight-
line trajectory instead of a human’s typical curved path that is
associated with more powerful kicks [14]. Consequently, the
kick resembles a walk-and-kick motion rather than a dynamic
human instep kick.

Often, Biomechanics provides interesting perspectives and
useful information for robot control. The previous studies
of soccer kick biomechanics identified several key attributes
that determine the power and quality of a kick [14], [16].
Among these, the foremost determinant of kick power is the
kinodynamic whip action [14], [16]. This action results from
the initial loading of the trunk, hip, and knee joints, often
referred to as the tension arc [14], [16]. Potential energy
stored in the hip flexors, quadriceps, hamstrings, and calf
muscles is then quickly released in a coordinated manner,
moving from proximal to distal parts. This sequential action,
resembling a whip, transfers large kinetic energy to the
kicking foot and subsequently to the ball.

Another key attribute is the approach angle towards the
ball, which for professional players typically ranges between
24 © and 43 ° [14], [16], [17]. This approach angle enhances
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kicking power by permitting a greater range of motion for
trunk rotation, thus leading to a more substantial loading of
the trunk prior to the whip action’s onset [16]. Furthermore,
an equally pivotal attribute is the placement of the supporting
foot. In this regard, expert advice emphasizes positioning
the foot next to and slightly behind the ball, parallel to the
desired kick direction. Moreover, the length of the step taken
immediately before planting the foot strongly correlates with
kick power, with longer strides resulting in more powerful
kicks [14], [16]. Lastly, the ankle locks before impact to
ensure a firmer surface contact, which, in turn, correlates
with greater power transfer [18].

In this work, we focus on the instep soccer kick which is,
a powerful and widely studied skill, comprises six stages as
illustrated in Fig. 1: (a) the approach or run-up, where the
player advances towards the ball; (b) the planting or support
phase, involving placement of the non-kicking foot; (c) the
wind-up or backswing, where the kicking leg is retracted; (d)
the cocking phase, characterized by forward thigh motion
with a flexed knee; (e) the swing or acceleration phase,
involving rapid hip flexion and knee extension; and (f) the
follow-through, continuing the leg’s forward motion after
ball impact [14], [16], [18]-[22].

Our strategy to implement the principles learned from
biomechanics into robot control is developing a novel mo-
tion planning and control framework that combines motion
retargeting, kino-dynamic trajectory optimization, and imi-
tation learning. Our framework is divided into two parts:
1) motion planning based on human motion capture data,
and 2) imitation learning to find robust control policy using
the found motions as reference. In the motion planning
phase, we use kinodynamic trajectory optimization [23] to
properly account for the system’s physical limits, which are
often ignored in human-to-robot motion retargeting stud-
ies [24]-[27]. Considering the robot’s dynamics is crucial
not only because the resultant motions are within the joint
torque/velocity/position limits, but also due to the balance
stability. [28] demonstrated effective retargeting of human
dance motion by using a Linear Inverted Pendulum Model
(LIPM) of the robot and enforcing Zero Moment Point
(ZMP) constraints. Furthermore, [29] showed that incorpo-
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rating dynamics leads to more realistic-looking retargeting of
human motion to animated characters. Their approach uses
a two-stage process: first, obtaining a trajectory based on a
Single Rigid Body (SRB) model, then performing inverse
kinematics to recover a kinematic trajectory consistent with
the Center of Mass (CoM) and foot contact locations.

Our approach is comprehensive, using kinodynamic tra-
jectory optimization that leverages the centroidal dynamics
of the robot, which are more expressive than SRB or LIPM
approximations. Additionally, our resulting kinematic trajec-
tory aligns not only with the CoM and foot contact positions
but also with linear and angular momenta, yielding realistic
and expressive motion retargeting. Beyond modeling and op-
timization, we incorporate biomechanical observations from
the six phases of the instep kick as constraints and cost terms
in our trajectory optimization formulation, complementing
the implicit priors obtained from the MoCap data.

After obtaining optimal kicking trajectories that include
essential preparatory momentum-building steps, we train
a reinforcement learning control policy with an imitation
objective. This policy aims to track the trajectories obtained
in the motion planning phase while maintaining the robot’s
balance in Isaac Gym [30] — accounting for factors such as
the dynamic interaction between the robot and ball.

The main contributions of this paper are as follows: 1)
We present a new motion planning and imitation learning
frameworks for performing human-like soccer kicks by iden-
tifying key constraints and insights from the biomechanics
of soccer kicks. 2) We showcase instep kicks that propel
the ball at speeds exceeding 11 m/s. This is almost double
the 6.6 m/s instep kick achieved by the ground-anchored
single-leg robot [4]. Notably, the demonstrated ball speed
is about 40% of the speed an average human player can
achieve [31], which is an impressive result considering the
robot’s size and limited torque capability. The robot weighs
30kgs and has a maximum hip pitch torque of only 48
N.m, compared to the average human player’s hip joint
flexion/extension capability of over 250 Nm [32]. 3) We
highlight the importance of proper consideration of dynamics
in the offline motion planning stage for sample-efficient
imitation learning. This is demonstrated by comparing purely
kinematics-based reference motions with kinodynamically
consistent ones.

II. METHODOLOGY
A. Offline Kicking Trajectory Generation

Our objective is to emulate the powerful kicks demon-
strated by humans using a robotic platform. While earlier
works attempted to manually craft kicking motions from
scratch, we believe in harnessing the natural expertise of
humans [6]-[10]. To this end, we utilize MoCap data derived
from humans executing soccer kicks as a reference for gen-
erating robot trajectories that are consistent with the robot’s
kinematic and torque capability. Our methodology comprises
four stages. Initially, we preprocess the MoCap data to
ensure it aligns with the robot’s morphology. Subsequently,
using inverse kinematics, we derive purely kinematic joint
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position and velocity trajectories that closely mirror the
link position trajectory present in the MoCap data. These
kinematic trajectories serve both as a reference and an initial
guess to inform the more complex, non-linear kinodynamic
trajectory optimization problem. Here, we generate trajecto-
ries that are consistent with the robot’s centroidal dynamics
and kinematics. Finally, we use inverse dynamics to verify
that the robot’s torque limits are not violated, and we make
necessary adjustments to the trajectory if any violations are
detected. A detailed depiction of our framework is illustrated
in Fig. 3.

1) Mocap Data Preprocessing: To derive a robot tra-
jectory compatible with the robot’s morphology, we pre-
process the original MoCap data by adjusting link lengths
to align with the robot’s structure. We initiate this process
by establishing a correspondence between human and robot
joints, as shown in Fig. 3 (a). Starting from the root joint,
we recursively scale the link lengths in the MoCap data to
achieve a match. Moreover, during this stage, we establish
a ground foot contact schedule and other important timing
parameters. Specifically, we identify the beginning of the
swing phase (7°V"¢), the ankle locking time (7'°%), and
the end of the ball impact phase (T'™P*!), We derive the
ground contact schedule by monitoring when the feet initiate
or break contact with the ground, using heuristics based on
foot height and velocity thresholds [29]. This information
is vital for subsequent stages as it enables the imposition
of constraints that prevent unwanted artifacts such as foot
skating.

2) Kinodynamic Trajectory Optimization: We use kin-
odynamic trajectory optimization, first proposed by [23],
to generate physically consistent human-like soccer kicking
trajectories, using the solution from the prior step as a
reference. This approach, based on the robot’s centroidal
dynamics and full-body kinematics, strikes a balance be-
tween full-body dynamics and reduced-order models like
Linear Inverted Pendulum (LIP) or Single Rigid Body (SRB)
based approaches. It has fewer non-linearities compared to
full-body dynamics-based trajectory optimization, hence can
be solved more efficiently while being more realistic and
expressive than LIP or SRB models, which rely on restrictive
assumptions [23], [33]. In kinodynamic trajectory optimiza-
tion, the centroidal dynamics of the robot, given by Eqgs. (1)

and (2), relates the ground reaction forces to the robot’s linear
and angular momentum, while the kinematics model is used
to determine a corresponding kinematic trajectory consistent
with the center of mass, contact location, and momenta.
Thus, the optimization encompasses centroidal variables such
as the position r € R?, velocity + € R3, and acceleration
f € R3 of the robot’s center of mass (CoM), the robot’s
centroidal angular momentum (CAM) h € R? and its rate
h € R3, the location of contact points ¢; € R3, as well as the
external ground reaction forces acting at the contact points
f; € R3. The optimization also involves kinematic variables:
joint position q € R™*7 and joint velocity v € R"*%, where
n is the number of joints of the robot. The additional seven
dimensions in the position vector refer to the body position
€ R? and orientation represented by a unit quaternion € R*,
while the velocity vector includes six dimensions for the
body’s linear and angular velocities.

mi = Z f;, + mg (1)
i=1

h= Z(ci —r)xf; )
=1

Here, n. represents the number of contact points. For the
PresToe robot (see Fig. 2) in this study, we utilize 10 contact
points: 5 for each foot. Specifically, there are two contact
points on the front part of the toe, two on the back part,
and one for the heel, as depicted in Fig. 2(b). Following
[23], the continuous dynamics of the robot is sampled at
regular intervals of At, in order to transcribe the optimization
problem into a nonlinear programming problem. Equations
1-2 describe the discretized linear and angular centroidal
dynamics of the robot, respectively at timestep k. The
optimization objective comprises several components. Firstly,
reference tracking objective represented by

S = |lorx(ar) — i l1Q,, 3)

which ensures the resulting trajectory is close to the one
obtained in the previous step. Additionally, we included a
cost term to encourage kicking foot acceleration during the
swing phase of the motion. This term is applied from the
start of the swing phase to the end of the impact phase,
corresponding to phases (d) and (e) in Fig. 1.

Ty = =Cill T foot, 1 (ak) Vi | & )
where (; is a weighting function given by

(&)

o= 1 if kAt e [TSWi“g,TimPaCt] ,
B 0 otherwise.

Here J o011 is the Jacobian of the kicking leg’s foot link in
the world frame. Lastly, a regularization cost is included as

(6)

T = (1= G velly, + Ihally, + SIS,

Where @, Qy, @i, @ and Q5 positive definite diagonal
weighting matrices. In addition to the dynamic constraints
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given by Egs. (1)-(2), we enforce consistency between the
centroidal and kinematic variables using Eqgs. (7) to (9).

hi = Acanm(ai) v @)
Tt = ¢com (k) ¥
Cik = ¢Ci (qk) ©)

where A aps represents the centroidal angular momentum
matrix [23]. In this context, ¢cons and ¢, refer to the
forward kinematic maps for the center of mass and the i'"
contact point, respectively. To ensure kinodynamic feasibility
of the resulting trajectories, we incorporate additional contact
constraints. Utilizing the contact schedule obtained from
previous steps, we impose the following constraints when
contact points are active:

fireF (10)
Cik = Cik—1 (11
Ci,z = ’and(ci,xa Ci,y) (12)

Equation (10) represents the friction cone constraint, where
F 1is the linear approximation of the friction cone. Equation
(11) enforces a no-slip constraint when a contact point is
active in consecutive time steps, whereas Eq. (12) ensures
contact with the ground. Here, ~onq represents a height
map function that returns the ground height at a specified
(x,y) position. Additionally, we enforce a constraint at every
timestep to prevent ground penetration by the feet, given by:

Ci,z > 'and(ci,waci,y)- (13)

To address the numerous instances of self-collisions present
in the MoCap data, we use convex approximations of se-
lected links that are prone to collision and impose the
following distance constraint:

Cij(qr) >ri+r; V(i,j)€P (14)

Where C;; is a capsule distance function representing the
minimum distance between two capsules representing the ith
and jth links. P represents the set of relevant link pairs, and
r; and r; are the radii of the capsules for links ¢ and j
respectively. Moreover, we impose joint velocity and torque
limits in Eqgs.(16)-(18). Here we approximate the necessary
torque as equivalent to that required for producing ground
reaction forces and establish limits accordingly [33], [34],
which is given by

~ QT
Tk & —8S; (

where 7;, € R” is the required joint torque at j-th joint,
S, € R"*"H6 5 a selection matrix, and J; € R3*"*6 s the
Jacobian of the ¢-th contact point.

iJ(Qk)?fi,k

i=1

15)

qmin < qk < qQmax (16)
Vmin S Vi S Vmazx (17)
Tmin S Tk § Tmazx (18)
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Furthermore, we incorporate the following explicit
biomechanics-inspired constraints: Ankle locking and
Approach Angle constraints given by Egs. (19) and (20)
respectively.

vitke =0, for kAt € [Tk Tmre!] (19)

pballxy _ pbodyl.y) e

PPy — Py
Equation. (19) inspired by [18] ensures that the kicking
foot ankle joint velocity vi™¢ is zero for before the impact
moment, starting from 719K up to the end of the impact
period T'™Pat, Equation (20) constrains the approach angle
of the robot relative to the ball. It ensures that the angle
between the vector from the initial body position p*°%zy to
the ball position p*'zy (both projected onto the xy-plane)
and the x-axis falls within the range [0, Omax]. In this
work, we set Opin = 24 ° and 0,,x = 43 °, based on
biomechanics literature [14], [16], [17]. Lastly, we add the
dynamics integration constraints.

Ornin < COS_1 (( ) < Omax (20)

Qi4+1 = qr @ ViEAL, (21
Tpy1 = T + FpAt (22)
Fpp1 = Iy + TR At (23)

hj.1 = hy, + h,At (24)

The final kinodynamic optimization problem is then given
by Egs. (25) to (32).

N
min Jet 4 res 4 gime 25
ry,rr,hg,qr, Z k + k + k ( )
qr,fi,cr k=1
S.t.
Integration constraints (Egs. (22) - (24)) (26)

Centroidal dyn. constraints (Egs. (1)-(2)) (27)
Consistency constraints (Egs. (7)-(9)) (28)
Contact constraints (Egs. (10)-(13)) 29)
Biomechanics constraints (Egs. (19)-(20)) (30)
(31
(32)

Collision constraint (Egs. (14))
Joint Limit constraints (Egs. (16)-(18))

This optimization problem involves considerable non-linear
constraints, although not as much as fullbody dynamics
based trajectory optimization, so can be difficult to solve
efficiently. We address this challenge using a two-stage
approach: First, we perform a kinematics-only optimization
stage where we ignore the centroidal dynamics, and consis-
tency constraints and obtain a purely kinematic trajectory.
This stage is equivalent to the optimization-based inverse
kinematics approach described in [24] and illustrated in
Fig. 3(b). We then use the result from the first stage as a
warm start for the full optimization problem, which includes
both kinematics and centroidal dynamics. Finally, we use
the joint position q, velocity v, and ground reaction force
f from the previous step to compute the required torque
and verify that torque limits are not violated when full-body
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dynamics is considered. We do this by first obtaining the
joint acceleration q trajectory through finite differencing of
the joint velocity v, and then applying inverse dynamics:

D =1D(q,v, q4,f) (33)

If necessary, we iterate between the kinodynamics optimiza-
tion and torque verification steps until all constraints are
satisfied.

B. Imitation Learning

Once the physically consistent trajectory is obtained, we
use the Proximal Policy Optimization (PPO) algorithm [35]
to train a Reinforcement Learning (RL) control policy in
a simulated environment in Isaac Gym [30] that includes a
standard sized soccer ball. This policy has an imitation objec-
tive to robustly track the reference trajectory, while making
necessary adjustments to account for the mismatch between
the centroidal dynamics used in trajectory optimization and
the full-body dynamics of the simulation. The RL policy is
trained to maximize the following tracking rewards:

CoM

T}Cmi[aﬁon _ rl]zeypoint TJomt ’ (34)

where
Tzeypoint _ wkekk S Rk (arh) -8 (Qk)H (35)
POt — 4 eha e —anll> 4 wvek””"zet"’“”% (36)
rCoM w,eFellPeomr—Peomnllz (37)

Here, wy, wy, w,, and w,. are weight parameters for each
reward component ki, kg, k,, and k. are scaling factors.
@7 (+) is the forward kinematics map for the m-th keypoint.
In addition to the imitation objective, we incorporate the
reward to maximize the ball’s velocity toward the desired
direction:

ball

ball .nlarge[)
Tk

(emax(O,v

_1)

where v° is the velocity vector of the ball and n*™¢* is the
unit vector representing the desired direction of ball travel.

(38)

= Wpall *

ball

C. Sample Efficient RL Training Through Reference Guided
Early Termination Strategy

Previous works in the graphics community have demon-
strated the importance of early termination for sample-
efficient training of motion imitation [36], [37]. Early ter-
mination prevents unnecessary local optima behaviors by
assigning zero reward after the agent enters undesirable
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states, thereby avoiding unnecessary exploration and improv-
ing sample efficiency. Luo et al. [37] used a Reference-
based Early Termination (RET) strategy, where the agent is
terminated if the average link position of the robot deviates
from the reference motion. However, this kind of termination
strategy based on motion references without consideration
of the robot’s dynamics faces challenges in yielding the
desired behavior, especially for highly dynamic motions
like a soccer kick. This is because faithfully following the
kinematics reference alone does not guarantee that physical
limits, such as torque limits, are not violated. Therefore, the
agent might need to deviate from the reference significantly
to accommodate the limits not considered in the motion
planning stage.

This challenge is a primary reason why we spent signifi-
cant efforts to create a kinodynamic trajectory optimization
framework. The obtained optimal trajectories are guaranteed
the system to operate within the physical limits; thereby the
trajectories can serve as a trustful prior for constraining the
search space during RL training through early termination.
In particular, we use the following distance threshold-based
RET strategy to achieve sample-efficient exploration:

P (a2 > d

That is, terminate the episode if the position of any link of
the robot in the link set £ deviates from the reference by a
distance greater than the threshold d.

We consider two kinds of thresholds for our termination
strategy. The first is a fixed threshold, where a single distance
threshold is used throughout the training process. The second
one a time-varying threshold, where the threshold is updated
as the training progresses, given by Eq. (40). Specifically,
we continuously reduce the distance threshold over time
following a staircase-like function, as depicted in Fig. 5,
as the policy becomes better at tracking the reference. This
approach allows for finer and more precise tracking, enabling
the policy to maintain biomechanical characteristics captured
in the human MoCap data while allowing for necessary
adaptations to the robot’s specific dynamics.

Terminate if max 1§ x (@) — (39)
1€

dimax if ¢ < tgart

d(t) = { dmin if ¢ > tend
dmax — Y1y Ah -0 ( W) otherwise

(40)

where o is the sigmoid function given by o/(z) = yt==, 7 i

a smoothness parameter, Ad = @ and At = fad—tun,

III. EXPERIMENTAL SETUP
A. Experimental Platform

In this study, we use PresToe, illustrated in Fig. 2, for all
our simulation experiments. PresToe is a 25 DoF humanoid
robot, comprised of two 7 DoF legs, each with a distinct
1 DoF toe actuation, two 5 DoF arms, and a 1 DoF torso.
The robot stands at a height of 1.3 meters in its nominal
configuration and weighs 29.5 kg. The joint torque and
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TABLE I
PRESTOE JOINT TORQUE AND VELOCITY LIMITS

Group Joint Max Torque | Max Speed
Leg Hip 48 N-m 20 rad/s
Knee 200 N-m 10 rad/s
Ankle 100 N-m 10 rad/s
Toe 10 N-m 20 rad/s
Arm Shoulder
Elbow 18 N-m 40 rad/s
Wrist
Torso Torso 18 N-m 40 rad/s

velocity limits are listed in Table I. PresToe is an ideal
candidate for replicating human-like movements, given its
comparable size and anthropomorphic design. The leg design
is based on our earlier work on Staccatoe [34] and has
a unique co-actuation coupling mechanism that allows the
robot to generate large knee and ankle torques of up to 200
N-m for the knee and 100 N-m for the ankle, depending on
the robot’s joint configuration.

B. Reference Motion Generation and RL Policy Training

We generate reference motion by kinodynamically re-
targeting MoCap data of a human performing a soccer
kick, obtained from the CMU Mocap Dataset [38]. The
original motion is 3.7 seconds long, recorded at 120 Hz. We
subsample it to 30 Hz, resulting in a trajectory optimization
horizon of 112 time steps. We follow the four steps described
in Section II-A.2 to perform the retargeting.

The overall Imitation Learning framework is depicted in
Fig. 4. As the figure shows, the observation space of the
policy is given by

0t = [Sﬂ{o.ozo‘fss,l.:sz;}svStvqge—soms} ; 41
where Sﬁ0.02,0.68,1.34s represents the future desired refer-
ence states at 0.02s, 0.68s, and 1.34s ahead of the current
time, s; is the current state represented by q, v, and g% o,
is the action at the previous time step which is a desired joint
position command. We convert this position command to a
torque command using the following PD control law:

des

T = kp(q - q) - de7 (42)

where k, and kg are PD gains. In all experiments, the
episode begins with the robot initialized with a random
state sampled from the reference motion similar to [36].
For both the policy and value networks, we use a multi-
layer perceptron neural network consisting of two hidden
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layers with sizes 1024 and 512, respectively, alongside ReLU
activation.

C. Sample Efficiency Experiment

We assess the effectiveness of introducing dynamics in the
offline motion planning stage by comparing motion tracking
policies trained with solely imitation objectives using three
different reference types. The first is a kinodynamic refer-
ence trajectory that takes into consideration the centroidal
dynamics of the robot and imposes appropriate torque limits.
The second is a purely kinematics-based motion reference
similar to [24], which retains artifacts such as foot skating
present in the reference MoCap data. The third is another
purely kinematic reference but that does not involve artifacts
like foot sliding. This reference is obtained by leveraging
the same contact schedule used to obtain the kinodynamic
trajectory.

D. Ball Kicking Experiment

In this experiment, we first train a motion tracking policy
solely with the motion imitation objective using a time-
varying distance threshold approach in Eq. (40). The thresh-
old changes from 30 cm to 10 cm over 1 billion training
steps. The goal here is to track the reference as closely as
possible and retain biomechanical insights captured in the
human MoCap data. We then adapt this policy for a high-
impact soccer ball kicking task. To achieve this, we introduce
a standard FIFA size 5 ball (weighing 430g with a diameter
of 22 cm) into the simulation. We further train the policy
to maximize ball velocity in the forward direction using
the impact reward in Eq. (38), in addition to the imitation
objective. Note that in this work, we assume a fixed ball
position and we do not provide it as an observation to
the policy. Instead, it is inferred indirectly through the ball
impact reward.

IV. RESULTS AND DISCUSSION

Fig. 7 illustrates the imitation reward return as training
progresses under two scenarios. Fig. 7 (a) shows the per-
formance without reference-based early termination (RET),
while Fig 7 (b) demonstrates the results with RET using a
distance threshold of 30 cm. Both Figs 7 (a) and (b) dis-
play the training performance when three different reference
types are used: kinematic-only with motion artifact like foot
sliding, kinematic-only but without motion artifacts, and kin-
odynamic references. As evident from the figure, the policy
trained with kinodynamically consistent trajectories learns
faster and achieves higher returns in both scenarios. When
RET is deployed, there is a noticeable advantage, especially
when motion artifacts like foot slippage are removed. The
policy tends to learn faster in this case, although not as
effectively as with references that consider dynamics.

Table II presents the reference tracking performance of
the trained policies, measured using the average link position
error between the policy and the reference at each time step.
The table clearly demonstrates the importance of RET. In
fact, as can be observed in the attached video, without RET,
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Fig. 6.
momentum-building step, windup, kicking leg acceleration, impact, and follow-through. (b) Forward velocity of the kicking leg links moments before
impact and during follow-through phase; vertical dashed lines indicate the moment each link reaches its maximum speed. (c) Torque and velocity profiles

throughout the motion for both kicking and non-kicking legs.

the policies fail to learn to emulate the motion with just re-
ward signals alone in one billion steps for all three reference
types. However, with when RET is used, all three policies
successfully learned to imitate the motion, with the policy
trained on kinodynamically consistent trajectories learning
significantly faster and more closely resembling the refer-
ence. The kinodynamic reference’s superior performance can
be attributed to its consideration of both kinematics and
dynamics of the robot as well as its physical limits, providing
a more realistic and achievable trajectory for the policy to
imitate.

Fig. 6(a) presents a snapshot sequence of the robot per-
forming an instep kick using the kicking policy. The kick
follows the six steps of an instep kick: approach, support
phase, windup, leg swing, ball contact, and follow-through
phases, achieving ball speeds exceeding 11 m/s. This speed
is approximately double the 6.6 m/s instep kick achieved
by the ground-anchored single-leg robot detailed in [4], and
about 40% of the speed an average human player can achieve
[31]. This performance is noteworthy considering the robot’s
size and limited torque capability. The robot has a maximum
hip pitch torque of 48N.m, compared to the average human
player’s hip joint flexion/extension capability of over 250N.m
[32]. Fig. 6(b) showcases the velocities of the kicking leg’s
links in the forward direction before and after ball impact. We
observe that the pelvis reaches its maximum speed and starts
to decelerate before the thigh reaches its maximum speed and
decelerates. Moreover, the shank, foot, and toe links reach
their maximum speeds at the moment of impact. This pattern
exhibits the classic proximal-to-distal kinetic energy transfer
present in optimal soccer kicks, as discussed in biomechanics
literature [14], [16], [19], [22]. Finally, Fig. 6(c) shows
the torque and velocity profiles of the kicking (Right leg)
and non-kicking leg joints throughout the entire motion and
demonstrates that they remain within the physical limits of
the robot.
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Fig. 7. Training progress measured by normalized imitation reward return
vs. environment steps for three reference types: Kinematic-only with foot
slippage artifacts (Kin w/ foot slip), Kinematic-only without foot slippage
(Kin w/o foot slip), and Kinodynamic reference. (a) Without reference-based
early termination (RET). (b) With reference-based early termination.

TABLE II
AVERAGE LINK POSITION TRACKING ERROR
Ref. Type Without RET With RET
Kin. w foot slip 0.66 +/- 0.47 m | 0.14 +/- 0.03 m
Kin. w/o foot slip | 0.61 +/- 0.51 m | 0.114 +/- 0.06 m
Kin. + Dyn. (ours) | 0.60 +/- 0.50 m | 0.09 +/- 0.02 m

V. CONCLUSION AND FUTURE WORK

In this study, we developed a motion planning and imi-
tation learning-based control framework informed by human
biomechanics to facilitate dynamic and powerful soccer kicks
with a humanoid robot. This approach significantly surpasses
the limited kick-power outputs observed in previous works
which used quasi-static and walk-kick type kicking tech-
niques. Additionally, we demonstrated the effectiveness of
kinodynamic motion retargeting, which produces physically
consistent trajectories for efficiently learning control policies,
as opposed to kinematics-only approaches that don’t take
into account the dynamics of the robot. In future work,
we aim to extend and validate our approach with other
dynamic motions beyond soccer kicks. Additionally, as all
experiments in this study were conducted in a simulated
environment, we plan to validate these trajectories on a
physical robot.
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