
Learning Generic and Dynamic Locomotion of Humanoids Across
Discrete Terrains

Shangqun Yu1, Nisal Perera1, Daniel Marew 1, and Donghyun Kim1

Abstract— This paper addresses the challenge of terrain-
adaptive dynamic locomotion in humanoid robots, tradition-
ally tackled by optimization-based methods or reinforcement
learning (RL). Optimization-based methods, such as model-
predictive control, excel in finding optimal reaction forces and
achieving agile locomotion, but struggle with the nonlinear hy-
brid dynamics of legged systems and the real-time computation
of step location, timing, and reaction forces. Conversely, RL-
based methods show promise in navigating dynamic and rough
terrains but are limited by their extensive data requirements.
We introduce a novel locomotion architecture that integrates a
neural network policy, trained through RL in simplified envi-
ronments, with a state-of-the-art motion controller combining
model-predictive control (MPC) and whole-body impulse con-
trol (WBIC). The policy efficiently learns high-level locomotion
strategies, such as gait selection and step positioning, without
the need for full dynamics simulations. This control architecture
enables humanoid robots to dynamically navigate discrete
terrains, making strategic locomotion decisions (e.g., walking,
jumping, and leaping) based on ground height maps. Our
results demonstrate that this integrated control architecture
achieves dynamic locomotion with significantly fewer training
samples than conventional RL-based methods and can be
transferred to different humanoid platforms without additional
training. The control architecture has been extensively tested
in dynamic simulations, accomplishing terrain height-based
dynamic locomotion for three different robots.

I. INTRODUCTION

The control of legged locomotion boils down to three
fundamental questions: when and where to step, and how
to adjust the reaction force. Recently, two major approaches
have been extensively studied to address these challenges.

The first approach is optimization-based methods, most
notably model-predictive control, which focus on finding op-
timal reaction forces. This typically involves solving for con-
tact forces based on a single rigid body [1], [2] or centroidal
momentum model [3], then computing joint commands by
solving inverse kinematics or dynamics. The optimization
variables can range from reaction force only [1], [2], to
both foot position and reaction force [4], or to full joint
torque based on multi-body dynamics [5]. These approaches
have achieved highly stable and dynamic locomotion [6], [7].
However, optimization-based algorithms struggle with hybrid
dynamics, making it challenging to optimize contact tim-
ing, location, reaction forces (equivalently, CoM trajectory)
simultaneously. Although several contact-implicit trajectory
optimization efforts have aimed to tackle this issue [8]–[11],

Authors are with the 1 Manning College of Information and Com-
puter Sciences at University of Massachusetts Amherst, Amherst, MA,
140 Governors Dr, Amherst, MA 01002, USA. Corresponding Author:
robot.dhkim@gmail.com

(a) RL training using planar motion optimization

(b) Hierarchical feedback control architecture

Basal Ganglira Policy

velocity cmd
gait type
contact location

Joint torque

(c) Terrain-adaptive dynamic locomotion

Action

Observation

Action
CoM
Orietation
Reaction forces

MPC (3D SRBD) WBIC (Full Dyn.)BG-Policy (2D SRBD)

Robot state
Height map

Robot state

CoM state
Pitch orientation
height map

Fig. 1. The proposed learning framework and control architecture. (a)
We first train a policy using a single rigid body dynamics (SRBD) model in
the sagittal plane and trajectory optimization. (b) The trained policy (BG-
policy) is integrated into the motion controller (MPC + WBIC) to compute
the final joint commands for a humanoid robot. (c) Our control architecture
commands a humanoid robot to walk, leap over gaps, jump onto platforms,
and navigate stairs based on vision-based data.

no real-time optimization-based controller has succeeded in
selecting both step location and timing along with reaction
forces given terrain information.

Another prevailing approach is reinforcement learning
(RL), where neural networks are trained through interaction
with the environment. These policies take observations of the
robot state and output joint commands (desired position [12]–
[14] or torque [15], [16]), bypassing the need to explicitly
consider step timing, location, and reaction force. Recent
strides in end-to-end RL-based methods have been impres-
sive – quadruped robots can now walk and run over rough
terrains [12], [13], [17], and bipeds show significant robust-
ness and terrain adaptation [14], [18], [19]. However, end-to-
end RL strategies require massive data sets and long training
hours [20], especially when incorporating perception data.
Recent RL studies in perception-based locomotion required
long training hours (10 ∼ 20 h) [21]–[23]. Additionally
the trained policy is bound to a specific system, making it
difficult to adapt to variations like longer legs, body mass
changes, or different joint arrangements.

2024 IEEE-RAS 23rd International Conference on Humanoid Robots (Humanoids)
Nancy, France. November 22-24, 2024

979-8-3503-7357-8/24/$31.00 ©2024 IEEE 1048

20
24

 IE
EE

-R
A

S
23

rd
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 H
um

an
oi

d
R

ob
ot

s (
H

um
an

oi
ds

) |
 9

79
-8

-3
50

3-
73

57
-8

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
um

an
oi

ds
58

90
6.

20
24

.1
07

69
91

6

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 27,2025 at 20:41:32 UTC from IEEE Xplore. Restrictions apply.

In summary, both optimization-based and RL-based meth-
ods have limitations in handling terrain-adaptive dynamic
locomotion. Although their challenges appear different, they
stem from the difficulty of gradient descent-based optimiza-
tion in large, nonlinear search spaces. RL-based methods
perform better with contact decisions due to their exploration
capabilities but require massive data. Attempts to merge
these methods often rely on heuristic algorithms for contact
sequence or location, [24]–[26] or they exclude perception
data [27]–[30]. To our knowledge, no successful demonstra-
tions exist for simultaneous selection of both contact location
and sequence given terrain information, nor for perception-
based dynamic locomotion involving jumping and leaping in
a complete humanoid system.

We present a new locomotion architecture combining
a neural network policy for high-level decisions and a
low-level optimization-based motion controller. The policy,
trained through RL in a simple environment with a single
rigid body and contact points in planar space, outputs the
gait type (i.e., contact timing), contact location, and forward
speed. This is followed by trajectory optimization solving
a convex problem. In essence, the policy views locomo-
tion abstractly and makes high-level decisions similar to
our brain’s basal ganglia, hence the name Basal Ganglia-
policy (BG-policy) [31]. In deployment, the trained BG-
policy is combined with a low-level controller consisting of
convex MPC and whole-body impulse controller (WBIC) [6],
considered one of the state-of-the-art controllers that have
demonstrated various agile behaviors in the MIT mini-
cheetah [6], [10] and humanoid robots [32]. The architecture,
comprising BG-policy, MPC, and WBIC, enables humanoid
robots to dynamically navigate discrete terrains by observing
terrain height, selecting appropriate locomotion strategies
(e.g., walking, jumping, leaping), and coordinating full-body
movements.

Thanks to our efficient learning framework, we trained a
BG-policy with just a million samples, significantly fewer
than other learning based methods [25], [33]. Additionally,
the model-based motion controller allows the same BG-
policy to be deployed across various humanoid robots with-
out retraining and to handle tasks beyond locomotion (e.g.,
object carrying, head rotation). The main contributions of
this paper are summarized as follows:

1) A novel control architecture with a BG-policy and
optimal motion controller that selects step locations
and gait types (e.g., walking, leaping, jumping) based
on robot states and terrain height maps.

2) An efficient learning framework focused on sagittal
motion, not requiring full dynamics simulations, with
the policy handling only high-level decisions, making
it much more sample-efficient than traditional end-to-
end methods.

3) A generic locomotion controller offering three key
benefits: 1) a robot-agnostic approach for zero-shot
transfer to various robots, 2) flexibility to add extra
tasks (e.g., object carrying) without additional training,
and 3) support for omni-directional walking with an

additional yaw-rate command.

II. RELATED WORK

A. Contact Implicit Trajectory Optimization (CI-TO)

Contact, because of its binary nature, introduces discrete
jumps in the gradient when incorporated into optimization
variables. Common techniques like mixed-integer program-
ming (MIP) [34] is suffered from exponentially growing
computational time. On the other hand, contact implicit
trajectory optimization (CI-TO), as initially presented in [35]
and later in [36], use complementarity constraints to mitigate
this issue. However, real-time control using CI-TO faces the
risk of converging to local minima. Soft contact constraints
have been suggested as a solution [37]. More recently,
advances in differential dynamic programming (DDP)-based
approaches have demonstrated experimental success with
quadruped robots but require starting near the solution due to
DDP’s local search nature [9], [11]. Alternatively, solving
LCP with a pre-trained warm starting point generator has
reduced computation time but performed poorly beyond
the trained data set [10]. [38] circumvented the gradient
discontinuity issue by representing the contact sequence with
parameterized polynomial functions. However, this method
necessitates specifying the number of contact points and has
not been tested in full dynamics simulations.

Currently, no established CI-TO solution exists beyond
relaxing the contact constraint, and CI-TO algorithms haven’t
been integrated with real-time perception-based locomotion.
Therefore, we confined the optimization problem to convex
or quasi-convex forms, delegating nonlinear decision vari-
ables to the BG-policy outputs.

B. Training efficiency of Reinforcement Learning

Training perception-based locomotion for discrete terrains
presents significant challenges, even for quadruped systems,
due to the enlarged observation space and difficulties in con-
trolling accurate step locations. For example, [22] required
18 hours to train depth image-based parkour locomotion on
an Nvidia 3090, and [39] used a teacher-student training
scheme that consumed 12 million samples for student train-
ing alone. This challenge is greater for humanoid robots
due to their larger action spaces and inherent instability.
For instance, [40] spent 30 hours training blind walking for
humanoid robots in the Isaac Gym [41] using an Nvidia
3090Ti.

In contrast, our BG-policy efficiently learns dynamic lo-
comotion for humanoid systems with just 1 million samples
in under an hour on a desktop with an 8-core AMD Ryzen 7
CPU and an RTX 3080 GPU. Despite the optimization run-
ning on the CPU across only 12 parallel environments using
Casadi [42] and the Ipopt solver, our approach demonstrates
superior efficiency compared to existing methods.

III. BASAL GANGLIA POLICY TRAINING

For efficient training, we distilled the environment to
essential elements for learning high-level decisions. In our
training setup, a humanoid robot is substituted by a planar

1049

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 27,2025 at 20:41:32 UTC from IEEE Xplore. Restrictions apply.

Walking

Leaping

Jumping

Trajectory Optimization

,

, Walking

Leaping

Jumping

 . COM Relative Pose.

 . COM Velocity.

 . COM Pitch Angle.

 . COM Angular Velocity.

 . Terrain Height Map

. Desired Velocity.

. Left Foot Step X Location.

. Right Foot Step X Location.

. Gait Selection

STATE N

STATE N+1

(a)

(b)

(c)

(d)

, , , ,
2D

 R
L

 E
nv

ir
on

m
en

t

,

,

Fig. 2. State Transition in the 2D Environment. We designed a 2D
environment which makes the policy focus on only the information that
matters. The simplification leads to exceptional efficient training of the
policy. This environment enables the policy to be effectively trained using
no more than 1 million samples, a quantity several magnitude smaller than
what is typically required in end-to-end methods with vision based data.

single rigid-body and two line contacts, representing the
left and right feet. A line contact is implemented with two
paired point contacts for simplicity and to allow for future
extensions to various gait types, such as heel-toe transitions.
The observation for the environment is

obs =
[
p⊤ θ v⊤ ω ht

⊤]⊤ , (1)

where p ∈ R2 and v ∈ R2 are the center of mass position
and velocity, respectively, with respect to the stance foot
frame. θ ∈ R and ω ∈ R are the pitch angle and angular
velocity, respectively, and ht ∈ R20 is the height map of
the terrain (Fig. 2(a)). Our BG-policy makes an action when
the right foot is under contact, where the origin of the local
frame is attached to. The policy outputs the desired forward
velocity, the contact locations of the next two steps (left
foot and right foot) in the local frame, and the gait type
(Fig. 2(b)). Subsequently, a trajectory optimisation seeks the
optimal trajectory for the upcoming two steps (Fig. 2(c))
considering the contact constraints set by given action along
with the current state and other constraints (e.g., reaction
force and kinematics limit). The last state of the optimal
trajectory, with some random Gaussian noise added, returns
to the policy as the next state of the environment (Fig. 2(d)).

The state of the planar single rigid body model is given by

x =
[
p⊤ θ v⊤ ω

]⊤
, (2)

where p ∈ R2 is the position of CoM, θ is the pitch angle
of the rigid body, v ∈ R2 is the CoM velocity, and ω is the
angular velocity. The derivative of the state ẋ is given by

ẋ =
d

dt


p

θ

v

w

 =


v

w
1
m

∑nc

i=0 fi − g
1
I

∑nc

i=0(pci − p)× fi

 , (3)

where fi ∈ R2 is the force of the contact points. Both feet
have two contact points, thus nc = 4 is the total number of
contact points. pci ∈ R2 is the position of the i-th contact
point. m and I ∈ R are the mass and approximated inertia
of a robot. To determine the value of I , we initially compute
the inertial tensor of the robot in its nominal pose (standing
position) and then project it onto the sagittal plane. The
optimization is formulated by

min
xk,fk

N∑
k=1

(xk − xdes
k)⊤Qx(xk − xdes

k) + f⊤k Qf fk

s.t. xk+1 = xk + ẋk△t, (dynamics)

− µfi,y ≤ fi,x ≤ µfi,y, (friction)

0 ≤ fi,y ≤ fmax, (reaction force)

lxmin ≤ |pi,x − pci,x| ≤ lmax,x, (kinematics)

lymin ≤ |pi,y − pci,y| ≤ lmax,x, (kinematics)

fi,y(1− ci) = 0, (contact)

where Qx ∈ R6×6 and Qf ∈ R8×8 are weight matrices.
fk ∈ R8 is the reaction force vector for the four contact
points. xdes

k ∈ R6 is the reference trajectory, which is
generated by integrating the desire forward velocity output
by the BG-policy. The reference trajectory’s height and angle
are set by nominal robot height from the ground, zero pitch
angle, and zero angular velocity. pi,x, pi,y represent the
horizontal and vertical position of the CoM, respectively,
while pci,x, pci,y denotes the position of the contact point.
The selection of pci,x is determined by the policy, and pfi,y
is determined by terrain height corresponding to pci,x.

The kinematics constraint are derived based on the leg
length of the robot to ensure the foot step position is
realizable in the actual system. ci ∈ {0, 1} indicates whether
the current contact point is in contact or not, which made
based on the gait selected by the policy. The reward is given
by

r = wvelrvel + woptropt + wgaitrgait, (4)

where wvel, wopt and wgait are the weights for each term.
The first term is a velocity reward given by

rvel = ae−b(vx−vnominal)
2

, (5)

1050

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 27,2025 at 20:41:32 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 RL Environemnt Step Function

Input: vx,des, plc,x, prc,x, g
Output: out

1: pc, dviolate = getContactLoc(plc,x, prc,x)
2: c = getContactSeqFromGait(g)
3: xdes

1..n = getRef(vx,des)
4: x1..n, lcost, dterminate = optimize(xdes

1..n, pc,1..n, c)
5: done = dviolate||dterminate

6: r = calcualteReward(lcost, g, xn)
7: xobs = xn + N(0, σ)

8: ht = getHeightMap(xobs)
9: return xobs, ht, r, done

where a > 0 and b > 0 are hyper parameters, and vnominal

is the user-specified nominal velocity. The second term is the
optimization reward ropt = c/lcost, where lcost is the cost
from the trajectory optimization, and c > 0 is another hyper
parameters. The lower the cost optimization found, the higher
the ropt reward. The last term is the gait selection reward,
which encourages RL to choose the appropriate gait based
on terrain information. Building upon the described reward
function, RL aims to sustain the nominal speed, minimize
the resultant cost of trajectory optimization, and select an
appropriate gait for diverse situations.

Algorithm 1 describes the environment step function de-
sign. The BG-policy chooses the desired forward velocity
(vx,des), horizontal step locations for the next two steps
(plc,x, prc,x), and gait type (g). The environment finds the
vertical step locations based on the terrain and check step
feasibility. If a step location is infeasible (e.g., stepping into
a pit), dviolate is set to true. Contact sequence c and reference
trajectory xdes

1..n are based on g and vx,des from the policy.
The optimization then searches for the optimal trajectory.
The environment is set to ”done” if the step location is invalid
or optimization fails. The reward is computed using Eq. (4),
and Gaussian noise is added to the last state of the trajectory
before it is sent as the next observation.

IV. OPTIMIZATION-BASED MOTION CONTROLLER

Once the training of BG-policy is complete, we integrate
the policy into the motion controller, which consists of MPC
and WBIC [6] (Fig. 1 (b)). In real-time control, we first
compile the observations for the BG-policy, including the
humanoid robot’s CoM state, body pitch angle/velocity, and
the terrain height map. Based on this information, the policy
outputs the desired forward velocity, the contact locations of
the left and right feet on the x-axis, and the gait type, and
then sends them to the MPC.

A. Model Predictive Control

Three gait types (i.e., walking, leaping, and jumping) are
pre-specified based on appropriate swing/stance times. Each
gait will lead to a different contact sequence for the next
2 steps.(Fig. 3) Based on the high level decisions from

Walking LeapingJumping

Fig. 3. Three different gaits All gaits have the same length with different
contact sequence.

n
n+1

step n step n+h

n+2

n+3

n+4

n+h

MPC step

Fig. 4. Illustration of how to maintain constant prediction horizon
for MPC. Between two actions, the BG-policy uses prediction from the
MPC to compute the output, which ensure the MPC to have sufficiently
long contact sequence to keep its constant prediction horizon.

the BG-policy, and state of a single rigid body is synchro-
nized with the robot’s CoM state and body orientation and
angular velocity, then MPC calculates the reaction force,
CoM/orientation trajectory, and reaction force profiles. The
state of the MPC is given by

x = [p⊤ Rvec v⊤ ω⊤]⊤, (6)

where p ∈ R3 and v ∈ R3 are the position and the velocity
of the robot’s center of mass, Rvec ∈ R9 and ω ∈ R3 are
the vectorized orientation matrix and angular velocity of the
body frame. The cost function and constraint are formulated
in similar fashion as the 2D trajectory optimization.

Each action from the policy include contact sequence for
0.6 seconds, while the MPC’s prediction horizon is set at 0.5
seconds. The MPC operates in a sliding window fashion, and
to maintain a constant 0.5-second window size, the policy
needs to output a new sequence when MPC’s window hit the
end of contact sequence. If the series of contact sequences
from the policy do not cover the MPC’s prediction horizon
(h), the policy will generate a new action based on MPC’s
forecast (refer to Fig. 4). For instance, at step n, the policy
has just issued an action that satisfies the MPC’s prediction
horizon. However, by the time it reaches step n+3, the policy
needs to produce another sequence based on the MPC’s latest
state prediction, so that the MPC can maintain its horizon
length. From step n + 3 to n + h, the policy outputs a
new action each time the MPC produces a new prediction,
ensuring the MPC’s predictions align closely with the actual

1051

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 27,2025 at 20:41:32 UTC from IEEE Xplore. Restrictions apply.

state. At step n+h, the policy can plan the contact sequence
based on the actual robot state.

B. Lateral Directional Step Location Selection

While the foot step position on the sagittal plane (x axis)
is given by the policy, the position on the lateral direction
(y axis) is calculated through the following formula:

pf,y = py + pf,y0 + kdvy, (7)

where py is current CoM position in y, pc,y0 is the nominal
relative position offset on y axis. vy is the current lateral
directional CoM velocity. We select kd based on velocity
reversal planner from [43],

kd =

√
hCoM

g
coth

(
tswing

2

√
g

hCoM

)
, (8)

which guarantee the asymptotic stability of linear inverted
pendulum motion. The formula needs swing time (tswing)
and CoM height (hCoM), and we use nominal gait parameter
(swing time: 0.3 s, CoM height: 0.6 m). The selected number
works across different gait type (walking, leaping, jumping)
thanks to the planner’s strong convergence. Once the x and
y coordinates for the stepping position are determined, the
corresponding landing height is obtained from the height
map. Following this, the desired position, velocity, and
acceleration of the swing foot are calculated by using a
Bezier curve.

C. Whole Body Impulse Control (WBIC)

For the final step, WBIC [6] is used to calculates the joint
torque. WBIC utilizes a null space projection technique to
build a task hierarchy which allows lower priority tasks to
be executed without interfering the higher priority tasks.

Our task hierarchy from high to low is as follow: contact
constraint > body orientation task > CoM position task >
swing foot position task > joint position task. The lower
priority tasks are always executed in the null-space of the
higher priority tasks.

V. RESULTS

A. Experiment and Evaluation

We use Tello robot [44] for the validation of our learning
framework and control architecture. Firstly, we train an RL
agent in the 2D environment, where the planar single rigid-
body’s weight, inertia and box constraint for the kinematics
are extracted from the Tello robot. The algorithm we use for
the BG-policy training is Soft Actor-Critic (SAC), both the
actor and the critic have two hidden layers of size 256. The
input layer has a size of 26, 6 for state in the sagittal plane
and 20 for the height map. The resolution of the height map
is 0.05 m, enabling to perceive terrain features up to 1 m
ahead. The output layer has 4 dimensions: desired velocity,
left/right foot step, and gait selection as described in Fig. 2
(b).

In addition to the flat ground, the terrain features a variety
of challenges, including gaps, high platforms, and stairs.

0 0.25M 0.5M 0.75M 1M
Step

A
ve

ra
ge

 R
et

ur
n

A
vg S

u
ccess R

ate

20%

30%

57%

93%

0

20

40

60

80

100

120

140

160

0
%

20%
40%

60
%

80%
100

%
SAC

PPO

20 - 30 cm

(a) Performance in Training and Validation Courses

(b) Validation Courses

Platform

Stair

Gap

6 - 12 cm

14 - 20 cm

SAC Avg Success Rate

1-1.5 m~

~

Fig. 5. Training performance and Validation Courses. (a) Both SAC
and PPO are trained for 1 million steps in 5 different seeds. The average
return plot shows outstanding performance of SAC algorithm. The average
success rate of the policy trained by SAC is also shown as orange bar. Once
the iteration reaches to 1 million steps, the policy gets converged and shows
robust locomotion performance. (b) To evaluate the actual performance of
the trained policy, we made 30 validation courses with randomly generated
obstacles in the full dynamic simulator.

At the start, the environment is dynamically configured
by randomly selecting 10 obstacles across these categories.
The distance between adjacent obstacles is also randomly
determined, ranging from 1 to 1.5 m. Remarkably, the policy
achieves convergence using just 1 million samples in less
than an hour, running on a desktop outfitted with an 8-core
AMD Ryzen 7 CPU and an RTX 3080 GPU.

The trained policy is deployed in full humanoid robot con-
trol by combining with optimization-based motion controller.
In the dynamic simulation tests, we randomly generated 30
validation courses, each featuring three randomly selected
obstacles with varying height/width as described in Fig. 5(b).
The 93% success rate of SAC policy trained with 1M
samples (refer Fig.5(a)) shows that the policy can manage
the dynamic navigation over discrete terrains after an hour
training.

1052

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 27,2025 at 20:41:32 UTC from IEEE Xplore. Restrictions apply.

TABLE I
NUMBER OF STEP REQUIRED TO ACHIEVE 90% SUCCESS RATE

BG humanoid E2E biped (Cassie) E2E humanoid
1M 40M 400M

B. Benchmark

To evaluate the training efficiency depending on RL algo-
rithms, we also tried Proximal Policy Optimization (PPO),
finding that SAC significantly outperformed PPO, as shown
in Fig. 5(a). The result is also consistent with previous studies
indicating that SAC, an off-policy algorithm, is more sample-
efficient than on-policy algorithms like PPO, particularly
in our framework that run trajectory optimization in each
interaction with the environment.

Additionally, we have also compared our algorithm with
the end-to-end method by recreating the same environment
in the widely adopted open-source legged gym environment
[45]. To verify the correctness of the implementation, the
policy is firstly tested on an existing biped system (Cassie)
included in [45]. Subsequently, the same end-to-end training
setup is tested on the MIT Humanoid robot to evaluate the
difference between a biped and a humanoid. The number of
interaction steps required to achieve a 90 percent success rate
in the validation courses was recorded. (Table I). Our policy
proved to be 1-2 orders of magnitude more sample-efficient
in terms of the number of interaction steps needed for
training. While the end-to-end method with Cassie achieved
a 90 percent success rate after approximately 40 million
steps, the policy initially only learned to jump forward across
the discrete terrain. Learning how to select the appropriate
gait type for different terrains required 150 million steps.
However, with the complete humanoid system, due to its
high-dimensional action space, it converged to an unrealistic
locomotion strategy that involved excessive torso twisting
along with irregular gait sequence, and further training did
not resolve this issue.

While our algorithm demonstrates greater efficiency in
terms of the number of interaction steps required with the en-
vironment, it is important to acknowledge that current GPU-
based physics simulators can collect millions of samples
within minutes, rendering the total time cost for the end-
to-end methods comparable to ours. The primary limitation
of our approach lies in the use of a CPU-based optimization
solver, which restricts our ability to generate thousands of
environments in parallel. However, this training time could
be significantly reduced with the availability of GPU-based
optimization solvers, offering a clear pathway for further
improvements in efficiency.

C. Algorithm’s Robustness

Notably, the trained policy shows simultaneous adjustment
of foot step location, gait and forward velocity to adapt to
different terrain configuration. For instance, in Fig. 6, we
present two distinct scenarios faced by the policy. In the
scenario described in the bottom of Fig. 6, the terrain can be

Fig. 6. Demonstrating the BG-Policy’s Adaptability. (a) The robot was
initialized at the exact same state except a different distance to the gap.
(b) In the top row, the policy found it need to adjust its foot step to leap
over the gap, so it choose to slow down and take smaller step, while at
the bottom row, the policy choose to move forward with regular step size.
(c) At the end, the robot is able to leap over the gap in both situation by
dynamically coordinating its forward velocity and foot step location.

Task Hierarchy

Contact Constrant

Body Orientation

Body Pose

Swing Foot Pose

Hand Pose

Joint Pose

Newly added task
for carrying the box

Fig. 7. Tello carrying a box while traversing the irregular terrain.
By utilizing null-space projection based task prioritization, we can easily
add additional task such as commanding the arm to carry a box without
interfering the locomotion task, which will be very useful for object
manipulation.

navigated by selecting footsteps that maintain a consistent
distance from each other. However, in the scenario (shown
at the top), where we deliberately reduced the gap distance
from the initial position, the policy chooses to slow down,
take several short steps, and then make a leap over the gap.
This ability to adjust its locomotion strategy in real-time
underscores the policy’s effectiveness in handling diverse and
challenging terrains.

Moreover, by using the WBIC, its null-space projection
based task prioritization allows us to add additional task such
as carrying a box (Fig. 7) without interfering the existing
locomotion task nor it requires additional training typically
necessary in end-to-end methods.

Another important benefit of our framework is its flexibil-
ity, unlike the end-to-end scheme, where the trained policy is
specifically tailored to the robot it was trained on. Our policy
can be directly applied to other robots without requiring
any additional training. We demonstrate this by applying the
same policy on MIT humanoid and Digit robots, simply by
switching the robot model in the low-level motion controller
(Fig. 8). Despite the significant difference in kinematics
and dynamics between these robots and the Tello robot, for

1053

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 27,2025 at 20:41:32 UTC from IEEE Xplore. Restrictions apply.

MIT Humanoid

Digit

Tello
18.8 kg
60.5 cm

24.2 kg
65.5 cm

42.7 kg
88.5 cm

center of mass

Fig. 8. Locomotion of different robots using the same policy. Since the
policy is trained using an abstracted model, it can be deployed to various
robots by simply switching the robot model in the motion controller. The
results show that we can enable MIT Humanoid and Digit walk and jump
over discrete terrain without additional training.

Fig. 9. Demonstration of omni-directional walking. By incorporating the
user’s yaw rate command, MPC+WBIC controller can manage the walking
direction behavior. This rotation does not make a difference in BG-policy’s
perspective because it only focuses on the robot’s local sagittal plane.

which the policy was originally trained, the same policy
successfully guides different robots to navigate irregular
terrain. It is noteworthy that our locomotion framework is
robust to the difference between the target system being
controlled and the robot on which the policy was trained. For
example, although the Digit robot is significantly taller than
the Tello robot, for which the policy was trained, the policy
still functions effectively with a simple height adjustment of
−250 mm applied to the observations before they are passed
into the policy.

Last but not least, our algorithm also enables omni-
directional walking on discrete terrain by seamlessly integrat-
ing an additional yaw rate command (Fig. 9). While taking
high-level action from the BG policy, the MPC incorporates
a desired yaw rate from the user command to change the
walking direction. The BG policy processes state and 1D
terrain information from the robot’s sagittal plane – the
robot’s local xy plane. Then the MPC takes in the high-
level actions along with the additional yaw rate command
to calculate optimal trajectory and reaction force, and the
WBIC calculates the joint torque commands. Because both
MPC and WBIC take the robot’s state in the global frame
and have the complete 3D information, the algorithm does
not need additional modifications to extend forward walking
to omni-directional walking.

VI. CONCLUDING REMARKS

In this work, we introduced a novel training framework
and control architecture that synergizes RL-trained pol-
icy with optimal control, tailored for dynamic humanoid
locomotion. Our methodology involves a streamlined 2D
training environment that encapsulates critical locomotion
determinants – forward velocity, contact location, and gait
selection – leveraging terrain and state abstractions. This
strategic simplification has led to a drastic reduction in the
requisite training samples, surpassing traditional end-to-end
approaches by orders of magnitude. Employing this policy
in tandem with low-level motion controller, our system
adeptly navigates complex terrains, demonstrating a versatile
locomotion repertoire that includes walking, leaping, and
jumping over discrete terrains. Our control architecture fa-
cilitates the incorporation of auxiliary tasks, such as object
manipulation, without compromising locomotion efficacy.
Furthermore, the demonstrated zero-shot transferability un-
derscores the policy’s applicability across diverse robotic
platforms. Another expected benefit is effortless sim-to-real
transfer because the low-level motion controller have been
successfully implemented in robot hardware.

We also identified a limitation of the framework: when
the robot’s motion becomes highly dynamic, the deviation
of the actual motion from the predicted trajectory becomes
noticeable. Consequently, the BG-policy does not effectively
accomplish what it has learned during training. Future work
could explore fine-tuning the BG-policy with full dynamics
simulations or integrating an additional neural network policy
to bridge this gap, potentially enhancing the fidelity of
motion execution Further algorithmic enhancements could
stem from leveraging GPU-accelerated optimization environ-
ments, promising substantial training speed improvements
through parallelization. While our current RL setup, opti-
mized for CPU execution, achieves significant efficiency,
transitioning to GPU-based computation could further ex-
pedite the training process.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 2220924.

REFERENCES

[1] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the mit cheetah 3 through convex model-predictive
control,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 1–9.

[2] O. Villarreal, V. Barasuol, P. M. Wensing, D. G. Caldwell, and C. Sem-
ini, “Mpc-based controller with terrain insight for dynamic legged
locomotion,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2020, pp. 2436–2442.

[3] S.-H. Lee and A. Goswami, “Reaction mass pendulum (rmp): An
explicit model for centroidal angular momentum of humanoid robots,”
in Proceedings 2007 IEEE international conference on robotics and
automation. IEEE, 2007, pp. 4667–4672.

[4] G. Bledt, P. M. Wensing, and S. Kim, “Policy-regularized model
predictive control to stabilize diverse quadrupedal gaits for the mit
cheetah,” in 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017, pp. 4102–4109.

1054

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 27,2025 at 20:41:32 UTC from IEEE Xplore. Restrictions apply.

[5] E. Dantec, R. Budhiraja, A. Roig, T. Lembono, G. Saurel, O. Stasse,
P. Fernbach, S. Tonneau, S. Vijayakumar, S. Calinon et al., “Whole
body model predictive control with a memory of motion: Experiments
on a torque-controlled talos,” in 2021 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2021, pp. 8202–8208.

[6] D. Kim, J. D. Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” 2019.

[7] G. Garcı́a, R. Griffin, and J. Pratt, “Mpc-based locomotion control of
bipedal robots with line-feet contact using centroidal dynamics,” in
2020 IEEE-RAS 20th International Conference on Humanoid Robots
(Humanoids). IEEE, 2021, pp. 276–282.

[8] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu, “Fast and
feature-complete differentiable physics for articulated rigid bodies with
contact,” arXiv preprint arXiv:2103.16021, 2021.

[9] S. Le Cleac’h, T. A. Howell, S. Yang, C.-Y. Lee, J. Zhang, A. Bishop,
M. Schwager, and Z. Manchester, “Fast contact-implicit model pre-
dictive control,” IEEE Transactions on Robotics, 2024.

[10] S. H. Jeon, S. Kim, and D. Kim, “Online optimal landing control of
the mit mini cheetah,” in 2022 International Conference on Robotics
and Automation (ICRA). IEEE, 2022, pp. 178–184.

[11] G. Kim, D. Kang, J.-H. Kim, S. Hong, and H.-W. Park,
“Contact-implicit mpc: Controlling diverse quadruped motions with-
out pre-planned contact modes or trajectories,” arXiv preprint
arXiv:2312.08961, 2023.

[12] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
robotics, vol. 5, no. 47, p. eabc5986, 2020.

[13] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” 2020.

[14] Z. Li, X. Cheng, X. B. Peng, P. Abbeel, S. Levine, G. Berseth,
and K. Sreenath, “Reinforcement learning for robust parameterized
locomotion control of bipedal robots,” 2021.

[15] S. Chen, B. Zhang, M. W. Mueller, A. Rai, and K. Sreenath, “Learning
torque control for quadrupedal locomotion,” in 2023 IEEE-RAS 22nd
International Conference on Humanoid Robots (Humanoids). IEEE,
2023, pp. 1–8.

[16] D. Kim, G. Berseth, M. Schwartz, and J. Park, “Torque-based deep
reinforcement learning for task-and-robot agnostic learning on bipedal
robots using sim-to-real transfer,” arXiv preprint arXiv:2304.09434,
2023.

[17] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” 2018.

[18] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal
stair traversal via sim-to-real reinforcement learning,” 2021.

[19] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and
K. Sreenath, “Real-world humanoid locomotion with reinforcement
learning,” 2023.

[20] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in
minutes using massively parallel deep reinforcement learning,” in 5th
Annual Conference on Robot Learning, 2021. [Online]. Available:
https://openreview.net/forum?id=wK2fDDJ5VcF

[21] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” arXiv preprint arXiv:2309.14341, 2023.

[22] Z. Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and
H. Zhao, “Robot parkour learning,” in Conference on Robot Learning
(CoRL), 2023.

[23] D. Hoeller, N. Rudin, D. Sako, and M. Hutter, “Anymal parkour:
Learning agile navigation for quadrupedal robots,” 2023.

[24] G. B. Margolis, T. Chen, K. Paigwar, X. Fu, D. Kim, S. bae
Kim, and P. Agrawal, “Learning to jump from pixels,” in 5th
Annual Conference on Robot Learning, 2021. [Online]. Available:
https://openreview.net/forum?id=R4E8wTUtxdl

[25] W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans,
S. Ha, J. Tan, and T. Zhang, “Visual-locomotion: Learning to
walk on complex terrains with vision,” in Proceedings of the
5th Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, A. Faust, D. Hsu, and G. Neumann, Eds., vol.
164. PMLR, 08–11 Nov 2022, pp. 1291–1302. [Online]. Available:
https://proceedings.mlr.press/v164/yu22a.html

[26] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis,
“Rloc: Terrain-aware legged locomotion using reinforcement learning
and optimal control,” IEEE Transactions on Robotics, vol. 38, no. 5,
pp. 2908–2927, 2022.

[27] X. Da, Z. Xie, D. Hoeller, B. Boots, A. Anandkumar, Y. Zhu,
B. Babich, and A. Garg, “Learning a contact-adaptive controller
for robust, efficient legged locomotion,” in Proceedings of the 2020
Conference on Robot Learning, ser. Proceedings of Machine Learning
Research, vol. 155. PMLR, 16–18 Nov 2021, pp. 883–894. [Online].
Available: https://proceedings.mlr.press/v155/da21a.html

[28] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:
Planning and control of quadrupedal gaits using deep reinforcement
learning,” 2020.

[29] Z. Xie, X. Da, B. Babich, A. Garg, and M. v. de Panne, “Glide:
Generalizable quadrupedal locomotion in diverse environments with
a centroidal model,” in International Workshop on the Algorithmic
Foundations of Robotics. Springer, 2022, pp. 523–539.

[30] Y. Yang, G. Shi, X. Meng, W. Yu, T. Zhang, J. Tan, and B. Boots,
“CAJun: Continuous adaptive jumping using a learned centroidal
controller,” in 7th Annual Conference on Robot Learning, 2023.
[Online]. Available: https://openreview.net/forum?id=MnANx01rV2w

[31] J. L. Lanciego, N. Luquin, and J. A. Obeso, “Functional neuroanatomy
of the basal ganglia,” Cold Spring Harbor perspectives in medicine,
vol. 2, no. 12, 2012.

[32] M. Chignoli, D. Kim, E. Stanger-Jones, and S. Kim, “The mit
humanoid robot: Design, motion planning, and control for acrobatic
behaviors,” in 2020 IEEE-RAS 20th International Conference on
Humanoid Robots (Humanoids). IEEE, 2021, pp. 1–8.

[33] F. Jenelten, J. He, F. Farshidian, and M. Hutter, “Dtc: Deep
tracking control - a unifying approach to model-based planning
and reinforcement-learning for versatile and robust locomotion,”
ArXiv, vol. abs/2309.15462, 2023. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:263152143

[34] Y. Ding, C. Li, and H.-W. Park, “Single leg dynamic motion planning
with mixed-integer convex optimization,” in 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE,
2018, pp. 1–6.

[35] K. Yunt and C. Glocker, “Trajectory optimization of mechanical hybrid
systems using sumt,” in 9th IEEE International Workshop on Advanced
Motion Control, 2006., 2006, pp. 665–671.

[36] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory op-
timization of rigid bodies through contact,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.

[37] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 4906–4913.

[38] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560–1567, 2018.

[39] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[40] A. Tang, T. Hiraoka, N. Hiraoka, F. Shi, K. Kawaharazuka, K. Kojima,
K. Okada, and M. Inaba, “Humanmimic: Learning natural locomotion
and transitions for humanoid robot via wasserstein adversarial imita-
tion,” 2023.

[41] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Mack-
lin, D. Hoeller, N. Rudin, A. Allshire, A. Handa et al., “Isaac gym:
High performance gpu-based physics simulation for robot learning,”
arXiv preprint arXiv:2108.10470, 2021.

[42] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[43] D. Kim, S. J. Jorgensen, J. Lee, J. Ahn, J. Luo, and L. Sentis,
“Dynamic locomotion for passive-ankle biped robots and humanoids
using whole-body locomotion control,” The International Journal of
Robotics Research, vol. 39, no. 8, pp. 936–956, 2020. [Online].
Available: https://doi.org/10.1177/0278364920918014

[44] Y. Sim and J. Ramos, “Tello leg: The study of design principles and
metrics for dynamic humanoid robots,” IEEE Robotics and Automation
Letters, vol. 7, no. 4, pp. 9318–9325, 2022.

[45] N. Rudin, “Isaac gym environments for legged robots,” https://github.
com/leggedrobotics/legged gym, 2021.

1055

Authorized licensed use limited to: University of Massachusetts Amherst. Downloaded on July 27,2025 at 20:41:32 UTC from IEEE Xplore. Restrictions apply.

