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Fine root and soil carbon stocks are
positively related in grasslands but not in
forests
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Increasing fine root carbon (FRC) inputs into soils has been proposed as a solution to increasing soil
organic carbon (SOC). However, FRC inputs can also enhance SOC loss through priming. Here, we
tested the broad-scale relationships between SOC and FRC at 43 sites across the US National
Ecological Observatory Network. We found that SOC and FRC stocks were positively related with an
across-ecosystem slope of 7 ± 3 kg SOC m−2 per kg FRC m−2, but this relationship was driven by
grasslands. Grasslands had double the across-ecosystem slope while forest FRC and SOC were
unrelated. Furthermore, deep grassland soils primarily showed net SOC accrual relative to FRC input.
Conversely, forests had high variability in whether FRC inputs were related to net SOC priming or
accrual. We conclude that while FRC increases could lead to increased SOC in grasslands, especially
at depth, the FRC-SOC relationship remains difficult to characterize in forests.

Increasing and deepening root inputs into soils is proposed as amechanism
to increase soil organic carbon (SOC), but it remains unclear to what extent
and under which environmental conditions this will be an effective
strategy1,2. Fine roots (typically defined as roots with <2mmdiameter) are a
key input to SOC and contribute disproportionately to SOC formation3–5.
However, experimental evidence suggests that fine roots can either stabilize
or destabilize SOC6–9. On one hand, labile compounds released by rhizo-
deposits or root litter may increase microbial biomass and more critically,
microbial necromass, thus increasing soil organic matter (SOM) if this
necromass is stabilized by minerals4,10,11. On the other hand, the release of
labile compounds from roots may cause a net loss of SOC (priming) by the
breakdown of chemical associations between organic compounds and
reactive soil minerals12, and by stimulating microbial respiration of detrital
carbon (C)13–15.

Whetherfine rootC inputs drive SOCaccrual or priming is expected to
vary by ecosystem and vegetation type, soil moisture, SOC stock and its
distribution between particulate and mineral-associated pools, the amount
and reactivity of soil minerals, and macro and micro soil nutrients6–8. Since
these factors vary throughout the organic andmineral layers of soils, we also
expect soil depth andhorizons to be important predictors of the relationship
between fine root C and SOC16,17. Ecosystem types with different dominant
vegetation could also vary in their accrual and priming behaviors due to
differences in belowground allocation, rooting depth, and other root

traits18–20. One emerging hypothesis is that SOC accrual is highest in soils
with high reactivity minerals and in high moisture conditions, where plant
productivity, SOM transport through the profile, and SOM stabilization to
mineral surfaces are also high13,21,22. However, this hypothesis remains
untested with regard to root-derived organicmatter inputs. Quantifying the
long-term stabilization of fine root C into SOC requires repeat measure-
ments over multiple decades. Given the lack of such datasets23–27, natural
gradients spanningvariation in soil and ecosystem types, and containing soil
and root measurements across depths, provide one means of testing the
long-term, steady-state relationship between fine root C and SOC.

Here, we used a natural gradient with varying fine root biomass carbon
stocks (hereafter, FRC) to explore the relationship between FRC and SOC
stocks. We also tested how the FRC-SOC relationship varies by ecosystem
type, soil depth, and soil horizon (organic or mineral), and how the rela-
tionship is influenced by climate, mineralogy, and soil nutrients. We
expected grassland ecosystem types to have stronger FRC-SOC relationships
than forests because of the high below:aboveground biomass ratio in
grasslands19,20. We also expected that mineral horizons would have a stronger
relationship between FRC and SOC than organic horizons because the latter
are likely more influenced by aboveground litter inputs28. Additionally, in
mineral horizons where SOC stabilization can proceed via organo-mineral
interactions, FRC is likely linked to net SOC to a greater extent than in
organic horizons, where SOM may be more prone to decomposition5.

A full list of affiliations appears at the end of the paper. e-mail: avni.malhotra@pnnl.gov
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Furthermore, by comparing our observedFRC-SOCrelationshipswith
a theoretical one-to-one relationship between FRC input and SOC stock, we
inferred net SOC accrual versus priming across the gradient. Specifically, we
assumed that sites with observed SOC above the 1:1 line of standardized
SOC and FRC data indicate the potential for net SOC accrual (hereafter,
SOC accrual), whereas sites with SOC below the 1:1 FRC-SOC line indicate
the potential for net priming (hereafter, priming). We hypothesized that
SOC accrual would be highest in ecosystems with high moisture and clay
content, where plant production and mineral stabilization of fine root litter
would be optimized13,21. Conversely, priming would be more likely in eco-
systems with lower moisture and clay content, where SOC would have a
lower probability of interacting with soil minerals. We also hypothesized
that SOC accrual would be greater at depth due to higher concentrations of
reactive minerals and/or metals and lower microbial abundance/activity
than in surface soils29,30.

We used the continental gradient provided by the National Ecological
Observatory Network (NEON; Fig. 1a), where coupled FRC and SOC
measurements to 2-mdepth have been conducted at 43 sites across theUSA
(see Table S1 for data sources). NEON sites represent a range of climates,
with mean annual temperatures (MAT) ranging from −12 to 25 °C and
mean annual precipitation (MAP) ranging from 100 to 2500mm year−1.
The sites also capture a variety of ecosystem types, though we focus our
analyses primarily on grasslands and forests, which are the most abundant
ecosystems across the network. Although it is difficult to leverage obser-
vational data collected at a continental spatial scale to probe processes such
as priming andmechanismsof SOCpersistence that canoccur at themicron
scale, ourwork illuminates broad spatial patterns in SOC stocks thatmay be
driven by these underlying processes.

Results
Grasslands drive broad-scale fine root and soil carbon
relationships
Ashypothesized, FRCand SOCwere positively related across sites, but these
trends were primarily driven by grasslands (Fig. 1b). Combining C stocks
across the entire soil profile (to amaximum2-m depth; Table S2), we found
that FRC and SOC were positively related across our continental USA
spatial gradient. The total SOC stock in a soil profile was positively related to
whole-profile FRC (Fig. S1a; adj r2 = 0.39, p < 0.001, n = 43) and was best
predicted by FRC, MAT, clay content, and ecosystem type (Table S3).
Across ecosystem types, for a 1 kgm−2 increase in FRC, there was a
7 ± 3 kgm−2 increase in SOC (Fig. S1a). Within grasslands, for a 1 kgm−2

increase in FRC, therewas a 15 ± 2 kgm−2 (p < 0.0001 in a linear regression)

increase in SOC.This increased to a 23 ± 7 kgm−2 increase in SOCif the two
highest FRC outliers were excluded (p = 0.0114). The grassland-only slope
estimate is more than double the value across all ecosystems (cross-eco-
system estimate: 7 ± 3 kg SOCm−2 per kg FRCm−2; Fig. S1) due to the lack
of a FRC-SOC relationship in forests. Our analyses suggest that aridity
(MAP standardized by MAT; see “Methods”), micronutrients, and above-
ground litter input may be important in explaining forest SOC, but the
relationships were not statistically significant (Fig. S2).

When separated into organic and mineral horizons, FRC and SOC
remained positively related across ecosystems, and ecosystem type was a
significant predictor across most statistical models (Table S4a, b). However,
the slope and best predictors of the relationship differed between soil hor-
izons (Fig. S1b). The only significant predictor of SOC in the organic hor-
izon was FRC (adj r2 = 0.41, p = 0.03, n = 17 out of which 2 were grasslands
and rest were forests; Table S4a). Conversely, in the mineral horizon other
factors such as MAT and percent clay were also important (adj r2 = 0.30,
p = 0.003,n = 43;Table S4b). Interestingly, threehigh latitude sites hadmore
than twice as much root biomass than the others: NEON site codes WREF
(cold and wet coniferous forest), BARR (tundra), and HEAL (tundra) (See
Table S2 for details corresponding to site codes). Excluding these three sites,
a model with root biomass, MAT, clay, and ecosystem type still resulted in
significant relationships, albeit weaker (adj r2 = 0.19, p < 0.001, n = 40).
Thus, contrary toourhypotheses, our cross-ecosystemanalysis suggests that
in organic horizons, FRC is a primary predictor of SOC, while in mineral
horizons, MAT and clay content are also important. MAT likely is a proxy
for temperature limitations on plant productivity and decomposition of
SOM, while clay content represents the potential for mineral-associated
organic matter formation.

Strong positive FRC-SOC relationships in deep grassland soils
Similar to the relationships between total FRC and SOC summed across the
soil profile, we found that depth distributions of FRC and SOC stocks,
quantifiedusing an exponential decay functionfit, were related in grasslands
but not in forests (Figs. S3–S5, Tables S5a and S5b). Furthermore, we
investigated how shallow (<30 cm soil depth) and deep (>30 cm soil depth)
FRC influence shallow and deep SOC. Specifically, we tested whether the
slope of the standardized FRC-SOC relationship in deep soil layers is higher
than the slope of the FRC-SOC relationship in shallow layers. This obser-
vation would suggest a more effective SOC accrual per unit FRC at depth.
We found that indeed in deep soils, SOC increased more with increasing
FRC than in shallow soils in grasslands (Figs. S7 and 2b) but not in forests
(Figs. S8 and 2a). Thus, our results support the hypothesis that deep FRC

Fig. 1 | Site locations and relationships between fine root carbon and soil organic
carbon stocks. aNEON site distribution by ecosystem type. Alaska and Puerto Rico
are shown as insets. bThe overall relationship between FRC and SOC (in Fig. S1a) is
driven by grasslands. Grasslands (n = 15) have a significant relationship between
FRC and SOC (r2 = 0.80, F1,13 = 53.14, p < 0.0001; y = 8.5+ 15.5x). For ease of
visualization, we have removed the three highest FRC sites here, but these tundra

sites are included in Fig. S1a andTable S2. Removing these outliers decreases the r2 to
0.46 but increases the slope to 22.6 kg SOC FRC−1 m−2. Forest FRC and SOC are
unrelated (n = 25). Shrubland (n = 3) and cultivated (n = 1) ecosystem types do not
have adequate sample sizes to analyze FRC-SOC relationships. Table S2 also pro-
vides information on depth of sampling, typically 2 m.
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increases deepSOCmore than shallowFRC increases shallowSOC,butonly
in grasslands. Furthermore, in grasslands, while a unit increase in stan-
dardized deep FRC increases deep SOC by 1.23 ± 0.42 (p = 0.015), a unit
increase in shallow FRC does not significantly increase shallow SOC
(p = 0.19) (based on the slopes in Fig. S7).

Lowest inferred priming in deep grassland soils
Using the standardized shallow and deep FRC-SOC relationships above, we
quantified residuals from the 1:1 line, i.e., the difference between observed
SOCvalue at a given site and the expected SOCvalue at a theoretical 1:1 line.
We used these residuals as indicators of net SOC accrual or net priming
relative to FRC inputs. Inferred SOC accrual corresponds to relatively more
SOC being stored than incoming FRC (i.e., data points above the 1:1 line),
and inferredpriming corresponds to lower SOCbeing stored than incoming
FRC (i.e., below the 1:1 line) (Fig. 2). We found that forests exhibited great
variation in inferred SOC accrual or priming relative to grasslands, which
were primarily SOC accruing (Fig. 3). In addition to ecosystem type, the
degree of accrual or priming was predicted by factors related to moisture
availability (aridity andMAP), soil texture andmicronutrients (Table S6). In
grasslands, as per our hypothesis, SOC accrual increased with increasing
moisture availability, clay content and micronutrients; particularly in
shallow soil layers (Fig. S9). In forests, the variability in inferred primingwas
harder to explain, with the best-fit model explaining up to 44% of the
variability in priming versus 73% in grasslands (Table S6). Deep forest soil
dynamics remain particularly elusive as we could only explain up to 26% of
the variability in inferred priming (Table S6). For example, we observed
some indication of higher priming inwarmer forests (Fig. S10) compared to
cooler forests, but this explained only 20% of the variability in priming.

Discussion
We found that grasslands drive the relationship between fine root and soil
carbon stocks across a continental-scale observational gradient. Our
hypotheses about the relationship betweenFRCand SOCwere supported in
grasslands but not in forests. Grassland FRC and SOC were strongly posi-
tively related, and SOC accrual was highest in high moisture and clay-rich
grassland soils. Deep grassland soils had a particularly strong FRC-SOC

relationship wherein net SOC accrual was more prevalent than priming.
Conversely, forests showed high variability in FRC-SOC relationships.
There are several possible explanations for why forest FRC-SOC relation-
ships and priming may be highly variable compared to grasslands. In this
section,weuse existing literature todiscuss possiblemechanismsbehindour
observed differences in grasslands and forests.

Higherbelowgroundandabsorptive rootallocation ingrasslands
relative to forests
Grasslands typically have higher root:shoot ratios than forests and thus
grassland root inputs may represent a dominant source of fresh carbon
input into the soil19,31,32. Conversely, in forests, root:shoot can vary con-
siderably across climate gradients and aboveground inputs may also be an
important source of fresh carbon inputs into the soil, especially in deciduous
forests31. This could mean that FRC inputs and FRC-induced priming are
less influential on soil C processes compared to aboveground litter inputs in
forests versus grasslands, although we did not see any evidence for above-
ground litterfall rates predicting forest SOCeither (Fig. S2). It is possible that
increased aboveground litterfall also led to priming in forests, as previously
observed in temperate and tropical forests33–36.

Furthermore, relative to forests, grassland plant roots typically have
higher absorptive:transport root ratios and a greater proportion of
absorptive roots with short lifespans, which could imply greater exudation
and greater root litter contribution to SOC, respectively37,38. Given the
generally greater physiological activities of fine compared to coarse roots37, a
greater relative abundance of high-turnover, absorptive roots in grasslands
compared to forests39 might also result in greater activity rates of soil
microbes. This greater microbial activity could also be higher in grasslands
than in forests because grassland roots decompose faster than forest roots40.
Thus, we might expect greater rates of microbial necromass production
where fine root abundance is relatively greater, given fine root exudate
activities and associated rhizosphere microbial growth and death41. Evi-
dence is accumulating thatmicrobial necromass is ameaningful component
of persistent SOC stocks41–43. We might expect, then, that where absorptive
root litter production is greater, necromass and thus SOCaccrualmight also
be greater.

Fig. 2 | Relationships between standardized fine root carbon and soil organic
carbon stocks. FRC and SOC are shown by soil depth along with a 1:1 line. Data
points above the 1:1 line suggest inferred net accrual of SOCwhile data points below
the 1:1 line suggest inferred priming. a Forests have no significant relationship
between standardized FRC and SOC while (b) in grasslands the slope of the

relationship between deep roots and deep SOC (>30 cm) is steeper (linear regression
slope = 1.2, p = 0.015) than the slope between shallow roots and shallow SOC
(<30 cm depth; slope = 0.9, p = 0.19). Detailed statistics across depths and ecosystem
type are provided in Figs. S7 and S8.
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Variable depth distribution and chemistry of forest roots
In forests and in woody plants, maximum rooting depths vary widely and
differ from the more conserved rooting depths of grasslands18,44. This
rooting depth variation would also influence the relationship between FRC
and SOC, given the hypothesis that deeper roots have a greater propensity
for mineral interactions and thus contribute to persistent SOC pools30. In
our data, we also observed generally deeper and more variable depth dis-
tributions of FRC and SOC in forests compared to grasslands (Fig. S4). The
variability in forest FRC-SOC relationships suggests that factors other than
FRC contribute to forest SOC accrual to a greater extent than in grass-
land soils.

The chemical composition of litter and root inputs may vary more
across forest types compared to grasslands,making the relationship between
FRC inputs and SOC accumulation across forests harder to predict. Gra-
minoid species can be chemically relatively simple compared to other
plants45. In contrast, tree species are known to differentially affect decom-
position and soil C and N cycling46,47, including the magnitude of the rhi-
zosphere priming effect48. Leaf and root litter fromsome tree species canbe a
source of tannins and other phenolics that affect soil processes49–51, and the
presence or absence of tannin-rich species on our forest sites may represent
an important source of variability in forest SOC dynamics. For example,
tannin-rich litter could promote SOC stabilization while cellulose-rich litter
could stimulate priming52. Thus, plant litter quality influences priming or
stabilization of SOC, and greater variability in litter quality in forests
compared to grasslands could potentially contribute to our observed high
variation in forest SOC dynamics53.

The role of mineralogical limits and moisture availability differs
between forests and grasslands
Higher and more variable precipitation in forests compared to grasslands
could drive variability in the activity of decomposition enzymes and reactive
metals21. Thus, mineralogical limits to C storage, driven by variations in the
amount and reactivity of clay minerals and reactive metals, may be more
important controls on forest SOC than the quantity of plant litter inputs21,54.
Since our predictive models do not include detailed proxies defining
mineralogical limits to C storage, we may be missing some explanatory
powerand thus seeinghighvariability in forests. Furthermore, our grassland
sites, on average, have half the MAP of our forest sites. Thus, plant growth,
litter inputs, and decomposition could all be more moisture-limited in
grasslands than in forests, such that C inputs and not mineralogical limits
may be amore important factor for stabilizing SOC in grasslands.While we
did see support for our hypothesis that moisture availability and SOC
accrual are positively related within grasslands (Fig. S9), we did not find
support for this hypothesis across ecosystem types.

Mycorrhizal community complexitymay be higher in forests than
in grasslands
Lastly, forests have the added complexity of a variety of mycorrhizal sym-
bionts that could be influencing plant-soil processes and belowground
carbon allocation in ways different than in grasslands, which are often
limited to arbuscular mycorrhizal types that have a lower carbon demand
(Fig. S11)55–57. Dominant mycorrhizal association type was not a significant
predictor in any of our models (see “Methods”), but it is likely that fungal

Fig. 3 | Distributions of inferred soil organic car-
bon accrual or priming. SOC accrual or priming is
inferred from residuals of the 1:1 line between
standardized FRC and SOC; see Fig. 2. Data dis-
tributions are shown for shallow (<30 cmdepth) and
deep (30–200 cm) layers from both (a) forest and (b)
grassland sites. Bins above the zero line are reflective
of sites net SOC accrual and bins below the zero line
reflect net priming. See Fig. S12 for raw data points
of the distributions.
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biomass could have been a better predictor (data unavailable for the NEON
megapit samples). FRC and fungal biomass together would better capture
the forest variability in total belowground carbon allocation. Furthermore,
high variation in mycorrhizal types in forests would also lead to diverse
decomposition dynamicse.g.,58.

Overall, it makes sense that while we were able to explain inferred
priming in grasslands using simple climate, soil texture, and nutrient
information, inferred priming in forests would require additional predictors,
including information about root systems, litter chemistry, mineralogical
limits to C storage, and mycorrhizal community structure and function.

Limitations
Our inferred priming proxy allows us to explore potential relationships
between FRC and SOC and offers hypotheses to probe the drivers of SOC
formation and persistence. However, our approach has limitations. First,
our proxy does not account for all the belowground C inputs into SOC.We
only consider standing fine root biomass in our calculations. Ideally, inputs
to SOC would include all rhizodeposits and incorporate information about
root and fungal turnover rates59, but these data were unavailable for NEON
megapits. Second, we did not have a way to account for variation in the
decomposition of incoming root litter. In otherwords, at sites where we saw
high inferred priming, there may have simply been efficient decomposition
of fresh root litter. Root litter decomposition rates in the first year can vary
widely in forests, with estimates suggesting 20–40% mass loss60. Further-
more, turnover times of forest SOC are also more variable than those of
grasslands61. Thus, we expect that this variability further contributed to the
lack of a clear FRC-SOC relationship in forests. Third, as is the case with
many observational studies, it is difficult to ascribe causation to correlative
relationships. A variety of climate and edaphic factors could be driving both
FRC and SOC, thus resulting in the observed relationships.

Conclusions
In the last few decades, paradigm shifts in SOC research suggest that root
carbon inputs are central to organicmatter formation and stabilization5.We
found that at broad spatial scales, FRC and SOCare related, but these trends
were driven by grasslands and not forests across a continental-scale gra-
dient. We also investigated whether deeper roots are associated with higher
deep SOC, which is presumed to bemore stable, and found support for this
in grasslands butnot in forests.Ourhypothesis that stabilizationof FRC into
SOC would be highest under conditions of high moisture and clay content
was also supported in grasslands. Future data collection efforts at the con-
tinental scale and beyond should quantify other belowground carbon
inputs, such as root turnover and exudation, and microbial biomass turn-
over to enable amoremechanistic understanding of FRC and SOC linkages
across biomes. Nevertheless, in the context of management strategies
focused on increasing FRC to increase SOC, root biomass will likely be the
main trait that can be measured and managed, and not root turnover 2.
Thus, our analysis provides a useful benchmark of how FRC and SOC are
related across broad scales and ecosystems.

Unlike grasslands, forests displayed high variability in FRC-SOC
relationships, both across space and depth, likely due to the variability in
root-soil interactions across forests. Thus, some forest typesmaynot be ideal
settings to increase SOC through fresh root carbon inputs, as thismay result
in priming-induced SOC losses. Predictors of this forest priming effect,
especially in deeper layers, remain elusive and can serve as an important
future research trajectory. Conversely, grassland soils with relatively high
moisture and clay content may serve as settings in which increased root-
derived SOC sequestrationmay be promoted at depth, although replication
across climate gradients and detailed measurements of root dynamics are
needed to confidently project SOC accrual.

Methods
Sites and data
The root and soil carbon data used for this studywere collected byNEON, a
continental-scale ecological monitoring program spanning 47 terrestrial

sites and all major US ecoclimatic regions. We used data from the NEON
“megapits”, which include measurements of soil chemical properties, phy-
sical properties, and root biomass (Table S1). We downloaded these data
from the Soils Data Harmonization (SoDaH) database24 (data accessed Jul
2020), which includes NEON data62 among other network data sources.
Data from other networks were not considered in this study because sites
infrequently measured root biomass and soil chemistry profiles to depth in
the same location. Four NEON sites (STER, KONA, PUUM, and TOOL)
were excluded from our study because root data were not collected in the
NEON megapits. Thus, 43 of the 47 NEON sites were included in our
analyses. All 43 sites had mineral soil horizons, and 17 of the 43 sites had
organic soil horizons (15 forests and 2 high-latitude grasslands). Site
metadata such as MAT, MAP, and site-wide dominant plants were taken
fromSanClements et al.63.We also calculated an aridity index asMAP(mm)
standardized by MAT (°C) using the formula MAP/(MAT+ 13). The 13
was added to adjust for negativeMATvalues64. Lowervalues representmore
arid conditions. Land cover was ascertained by NEON scientists and was
based on the NLCD land cover classifications65 from NEON field site
information tables (link). In the manuscript text, we refer to land cover as
“ecosystem type”.

Sample collection and processing
The NEON megapit sampling effort was a one-time measurement con-
ducted by NEON staff and the USDA Natural Resource Conservation
Service (NRCS) over the course of 2014–2018.At each site,NEON scientists
and contractors excavated a 2m deep (or to bedrock) soil pit in the vicinity
of the NEON eddy covariance tower. The timing of sampling varied across
the growing season andwas not always at peakbiomass.NRCS soil scientists
then assigned soil taxonomy in situ, and by taxonomic horizon to the
bottom of the pit. These samples were then sent to the Kellogg Soil Survey
Laboratory in Lincoln, Nebraskawhere, after passing through a 2mm sieve,
they were analyzed for a host of physical and chemical properties including
bulk density, particle size, total C, nitrogen (N), phosphorous (P), metals,
and other edaphic properties using standard NRCS methods66.

At each NEON megapit, root samples were collected across depth
profiles. Samples were collected in 10-cm depth increments to 1m depth,
then in 20-cm depth increments to 2m depth by cutting 10-cm deep × 10
cm wide soil monoliths, in three vertical profiles on the left, middle, and
right side of the pit. Roots were hand-sorted from these monoliths, visually
classified as live or dead, and the diameter wasmeasured.Most NEON sites
(30 sites out of 43) classified “fine roots” as less than 2mm in diameter.
However, 13 sites had a differentmethodological protocol and used a 4mm
diameter cutoff. Of these, nine were forests, three were rangelands/grass-
lands (hereafter, grassland), and one was a shrubland. Note that we statis-
tically tested the hypothesis that having different fine root diameter cut offs
may be related to our observed variability in forest FRC-SOC relationships.
This hypothesis was not supported in aWilcoxon rank test of the residuals
from the FRC-SOC relationship when comparing the two diameter classes
(Z = 0.59, p = 0.55). Other studies16 have also found that root biomass from
these two diameter classes are highly correlated across sites in fine root
databases, and that in theNEON sites, the diameter sampling differences do
not influence properties such as rooting depth distribution16.

Root biomass wasmeasured after oven-drying the samples at 65 °C for
at least 48 h.Dried root samples were sent to theUniversity ofWyoming for
analysis of C concentrations using elemental analysis. The three vertical
pit profiles per megapit were averaged prior to ingestion into SoDaH and
used in our statistical analysis. Despite the 4mm diameter exceptions,
we consider the rootstock to represent “fine-root biomass” throughout the
manuscript.

Lastly, we used annual litterfallfluxes (forest sites only) as a covariate in
an exploratory analysis (see Table S1 for data sources). Briefly, annual
litterfall was measured by collecting all material dropped from the forest
canopy with a diameter <2 cm and a length <50 cm using elevated 0.5 m2

PVC traps. Traps were deployed (20 plots per site) near the megapits. We
used the total mass (leaves, needles, twigs, etc. all added) collected by the
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traps over the course of a growing season to estimate annual productivity.
Where multiple years of data were available, the average flux was used.

Data alignment
Alignment of FRC and SOC data was necessary due to different sampling
strategies for roots and soils. Roots were sampled at fixed (10 or 20 cm)
increments through the profile, while soils were sampled once in each
taxonomic horizon regardless of horizon depth. Therefore, we aligned the
root data with the corresponding soil horizon. Fine root biomass C stocks
(FRC) were calculated as the product of root biomass (gm−2) in a given
depth interval and FRC concentration (%). SOC stocks were calculated as
the product of soil organic C concentration (%), bulk density (kg/cm3), and
sampling depth (cm), then converted to kgm−2 by multiplying by 1 × 103.

Calculation of beta coefficients
In order to investigate the relationship between depth profiles of FRC and
SOC, we calculated beta values using an exponential decay curve (Eq. 1),
which describes how stocks changewith depth20,67. Of the 43NEONsites, 36
were used to calculate beta coefficients. Seven sites (BARR, CLBJ, GRSM,
GUAN, JORN, LAJA, TEAK)were excludedbecause beta coefficients could
not be calculated due to too few SOCmeasurements in the profile. SOCand
FRC may accumulate primarily in surface soils and to varying degrees
deeper in the profile, or there may be a gradual and consistent increase at
each depth interval. These different accumulation patterns can be captured
in an exponential function (Eq. 1), where a higher beta coefficient indicates a
deeper distribution of root or SOC, relative to a lower beta. We converted
each depth profile (FRC or SOC) at each site into one beta coefficient to
facilitate these analyses.

Beta coefficients (β) were calculated using the following function20,67:

Y ¼ 1" ðβÞd ð1Þ

InEq. 1,Y is the cumulative fractionof either SOCor root biomass in a given
layer with respect to the whole profile, and d is the depth (cm) measured at
the bottomof that layer. For every depth layer at every site, we solved for β in
Eq. 1 for both SOC (βSOC) and root biomass (βroots). These β values were
used as starting parameters at discrete points through the depth profile, and
we used the iterative Bound Approximation by Quadratic Approximation
(BOBYQA) method (package minqa in R Statistical Software)68 to inter-
polate between points and resolve the function across the continuous depth
profile at each site69. TheBOBYQA-resolvedβSOCandβFRC valueswereused
as response and fixed effect variables, respectively, in mixed effects models.

Statistical analyses
We analyzed relationships between SOC, FRC, and other climatic and
edaphic covariates using linear mixed-effects models. We analyzed FRC-
SOC relationships in three ways wherein FRC and SOC stocks were: (1)
summed across the whole profile, (2) separated by organic andmineral soil
horizons, and (3) described as beta coefficients as a function of depth. For
each analysis, we constructed a null (random effects only) model, a full
model, and then reducedmodels that lacked covariates.We selected best-fit
models based on the lowest Akaike InformationCriterion (AIC) score aside
from the full model, to avoid overparameterization, or the sample-size
corrected AIC (AICc) score when the data set contained fewer than 40
observations70. In whole-profile and by-horizon analyses, the full model
included SOC as the response and FRC,MAT,MAP, clay percent, and land
cover (ecosystem type) as fixed effects and maximum profile depth as a
random effect.We also verified that sampling depth does not influence our
analyses by conducting a multiple regression analysis including all covari-
ates and maximum profile depth and found that profile depth was not a
significantparameter (p = 0.57,partial r2 = 0.01). Lastly,we explored the role
of mycorrhizal associations by adding dominant mycorrhizal type (arbus-
cular, ectomycorrhizal or mixed prescribed based on NEON reported
species)55 as a fixed effect but saw no significant relationships or model
improvements. Across the mixed-effects models, we report the significance

level (p-value) calculated using Satterthwaite’s method (lmerTest R
package)71,72, a test statistic (χ2), and marginal pseudo-R2 (sjstats R
package)73. Thefixed effects of the bestfitmodelwere testedusing analysis of
variance (Anova function in the R package car)74. Forest and grassland land
cover types were tested and shrublands and cultivated lands were excluded
from this analysis due to limited sample size. Assumptions of homo-
scedasticity, low variance inflation factors and normal data distributions
were verified for each statistical model. R code is available in Supplemen-
tary Data 1.

Inferred SOC accrual and priming
We calculated inferred net accrual or priming using residuals, which mea-
sure the difference between observed and predicted values, from the shallow
(<30 cm) and deep (>30 cmdepth) FRC-SOC relationships. Specifically, we
determined the residual difference between the observed SOC and expected
SOC along a standardized 1:1 line, which represents a theoretical scenario
where each unit of FRC input results in an equivalent unit increase in SOC
(Figs. S7 and S8). This 1:1 line serves as the baseline for assessing if SOC
levels are higher or lower than expected basedonFRC inputs. The calculated
residuals, therefore, act as a proxy for SOC accrual (when observed values
exceed the expected) or priming (when observed values are less than
expected) in relation to FRC inputs. Furthermore, we employed multiple
regression models to explore the potential factors influencing this inferred
priming or accrual, as detailed inTable S6. Thesemodels allowus to identify
and evaluate variables that may affect the relationship between FRC and
SOC across different sites and conditions.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data used in this manuscript are available in a public repository in the
following National Ecological Observatory Network (NEON) data pro-
ducts: Soil physical and chemical properties, Megapit (DP1.00096.001,
accessed January 1, 2020); Root biomass and chemistry, Megapit
(DP1.10096.001, accessed January 1, 2020); and Litterfall and fine woody
debris productionandchemistry (DP1.10033.001, accessed January 12021);
PROVISIONAL. Data can be accessed at https://data.neonscience.org/.

Code availability
The code used in the study is available as an R source file in Supplemen-
tary Data 1.
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