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ABSTRACT

Litter decomposition is an important ecosystem process and global carbon flux that has been shown to be controlled by climate,
litter quality, and microbial communities. Process-based ecosystem models are used to predict responses of litter decomposition
to climate change. While these models represent climate and litter quality effects on litter decomposition, they have yet to inte-
grate empirical microbial community data into their parameterizations for predicting litter decomposition. To fill this gap, our re-
search used a comprehensive leaflitterbag decomposition experiment at 10 temperate forest U.S. National Ecological Observatory
Network (NEON) sites to calibrate (7 sites) and validate (3 sites) the MIcrobial-MIneral Carbon Stabilization (MIMICS) model.
MIMICS was calibrated to empirical decomposition rates and to their empirical drivers, including the microbial community (rep-
resented as the copiotroph-to-oligotroph ratio). We calibrate to empirical drivers, rather than solely rates or pool sizes, to improve
the underlying drivers of modeled leaf litter decomposition. We then validated the calibrated model and evaluated the effects of
calibration under climate change using the SSP 3-7.0 climate change scenario. We find that incorporating empirical drivers of
litter decomposition provides similar, and sometimes better (in terms of goodness-of-fit metrics), predictions of leaf litter decom-
position but with different underlying ecological dynamics. For some sites, calibration also increased climate change-induced
leaf litter mass loss by up to 5%, with implications for carbon cycle-climate feedbacks. Our work also provides an example for
integrating data on the relative abundance of bacterial functional groups into an ecosystem model using a novel calibration
method to bridge empiricism and process-based modeling, answering a call for the use of empirical microbial community data in
process-based ecosystem models. We highlight that incorporating mechanistic information into models, as done in this study, is
important for improving confidence in model projections of ecological processes like litter decomposition under climate change.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
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1 | Introduction

Plant litter decomposition is a critical ecosystem process and
globally important carbon (C) flux, which both contributes to
soil respiration losses to the atmosphere and serves as a starting
point for soil organic matter (SOM) formation. Historically, lit-
ter decomposition was thought to be driven predominantly by
climate and litter quality, with uncertainty in the relative im-
portance of these two controls (Meentemeyer 1978; Aerts 1997;
Cornwell et al. 2008; Zhang et al. 2008; Petraglia et al. 2019).
Climate and litter quality controls of decomposition rates
have been implemented in process-based ecosystem models.
Typically, abiotic drivers like temperature and moisture avail-
ability control rates of mass loss, with litter quality determin-
ing litter partitioning into faster and slower decomposing pools
(Parton et al. 1987). However, soil and litter microbial commu-
nities are also increasingly recognized as important drivers of
litter decomposition, with potential implications for responses
of litter decomposition to environmental change (Strickland
et al. 2009; Allison et al. 2013; Bradford et al. 2021). While some
models have recently begun to include functional representa-
tions of microbial communities in their formulations (e.g., Wang
et al. 2013; Wieder et al. 2014), the use of empirical microbial
community data for evaluating these functional representations
is still in its infancy. Since ecosystem models are used to pre-
dict future ecosystem states under climate change or changes
in land management, ensuring they represent our most current
understanding of litter decomposition is important for provid-
ing confidence in climate-C cycle feedbacks and management
responses.

A persistent question in the field of microbial ecology is how,
and to what extent, does a microbial community (defined here to
include composition, biomass, and diversity [richness and even-
ness|) contribute to an ecosystem's function? In the case of lit-
ter decomposition, there have been several incubation and field
studies supporting the idea that microbial communities have
a measurable and distinct effect on litter decomposition rates
(Strickland et al. 2009, 2015; Keiser et al. 2011, 2013; Allison
et al. 2013; Cleveland et al. 2014; Glassman et al. 2018; Polussa
et al. 2021). However, agreement on the importance of the mi-
crobial community on litter decomposition is not universal
(Smyth et al. 2015; Joly et al. 2023). The influence of the micro-
bial community on ecosystem function has also been explored
in process-based models, which show that including functional
representation of microbial communities can improve predic-
tions of SOM or heterotrophic respiration responses to exper-
imental warming (Wieder et al. 2014; Guo et al. 2020). These
studies functionally represent microbial communities with dif-
ferent enzyme classes or as copiotrophic and oligotrophic mi-
crobes—two examples of how to represent key traits of microbes
relevant to ecosystem function in ecosystem models. Copiotroph
and oligotroph groupings are a simplistic functional representa-
tion but are particularly relevant to microbially explicit soil bio-
geochemistry models (i.e., models with a microbial biomass pool
that affects rates of litter and SOM turnover) because the char-
acteristics of these groups are relatively easily represented with
microbial parameters and model structure. Copiotrophs and oli-
gotrophs are characterized as fast- and slow-growing microbes
that thrive on nutrient-rich and -poor substrates, respectively
(Kuznetsov et al. 1979). As such, the copiotroph-oligotroph

framework offers one axis of microbial functional and physio-
logical diversity with distinct growth rate parameters, preferred
substrates, and carbon use efficiencies that can be considered in
ecosystem models. Further, these characteristics are also well
suited for studying litter decomposition, as substrate quality is an
important control on both the relative abundance of these groups
and litter decomposition rate (Cornwell et al. 2008; Goldfarb
et al. 2011). Importantly, beyond improved predictions, models
with functional representations of microbial communities also
improve ecological realism by including a driver that has been
shown to be important for ecosystem functions. Further, using
empirical microbial community data for parameterizing these
models has reduced parameter uncertainty (Guo et al. 2020; Tao
et al. 2024). However, we know of no modeling study that has
attempted to integrate empirical microbial community data to
evaluate controls of leaf litter decomposition, despite numerous
empirical studies indicating its potential importance.

Because we use process-based models as tools to assess future
responses to climate change, it is important they correctly rep-
resent and balance empirically important drivers and controls,
thus providing the proper framework for projecting responses
to future climate change (Sulman et al. 2014). Models that im-
plicitly represent microbial activity are able to predict leaf litter
decomposition rates well when compared to field experiments
(Bonan et al. 2013). However, while some models might be able
to predict current conditions accurately, that does not necessar-
ily translate to confidence in their future predictions. To ensure
confidence in future projections, model structures should rep-
resent current empirical understanding and include parameter-
izations informed by empirical data (Bradford et al. 2016; Butler
et al. 2021; Le Nog et al. 2023). Building this confidence is par-
ticularly important in the context of climate change, for which
we have no direct empirical analog. Other recent studies have
used empirical datasets to calibrate microbially explicit soil bio-
geochemical models for prediction of leaf litter decomposition
datasets, but neither of these incorporate microbial community
data in their calibrations, providing a gap in model evalua-
tion of this empirically important driver (Aas et al. 2024; Juice
et al. 2024). Importantly, by using model calibration to improve
representation of drivers of litter decomposition, rather than
solely traditional goodness-of-fit metrics, we can improve model
confidence by better including mechanistic representation.

We calibrated a microbially-explicit soil biogeochemistry model
to represent drivers of leaf litter decomposition (referred to as
“litter decomposition” from here forward), specifically includ-
ing microbial community data, represented as the copiotroph to
oligotroph ratio, in our calibration. This work is timely given the
demonstrated importance of microbial communities for medi-
ating rates of litter mass loss, process-based model capacity for
representing those communities, and the broader importance
of representing observational drivers in process-based models.
We use a unique and comprehensive empirical dataset, which
includes variation in soil moisture, litter lignin:N ratios, and
bacterial copiotroph:oligotroph ratios (representing climate,
litter quality, and microbial community, respectively) at both
local and regional scales, to assess drivers of litter decomposi-
tion. Other important drivers of litter decomposition, such as
soil nutrient availability (which may or may not be tied to litter
quality) and fauna (Hobbie 2015; Garcia-Palacios et al. 2013),
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are not addressed in our work and associated limitations are
discussed in Section 4.3. We use a novel Monte Carlo parame-
terization method to calibrate the model to both litter decom-
position rates and empirical drivers of litter decomposition. We
compare this calibrated model with empirically-informed pa-
rameters to a model with parameters not informed by the empir-
ical litter decomposition data. Because the calibrated model uses
empirically-informed parameters and parameters control model
dynamics, we hypothesized that the calibrated model would
alter the dynamics of litter decomposition with implications for
ecological processes, particularly with respect to the microbial
community. Specifically, we expected modelled representations
of lignin:N and soil moisture effects on litter decomposition to be
similar to empirical data before calibration as negative and pos-
itive effects, respectively. In contrast, we expected empirically-
informed model dynamics to show that copiotrophs would be
the dominant decomposers of litter, due to their faster growth
rate, and that microbial processes represented in MIMICS such
as catabolic capacity, carbon use efficiency, and turnover are
influential on litter decomposition. We also hypothesized that
calibration would increase responses of decomposition to cli-
mate change because of the expected dominance of copiotrophs
which have faster growth rates and hence, decomposition.

2 | Materials and Methods

Two key limitations to integrating soil microbial data into
ecosystem-scale process-based models are (1) that empirical mi-
crobial data are rarely able to be plugged directly in for model
parameters and (2) that calibrating to absolute values of mi-
crobial pools does not necessarily cause the model to have the
correct underlying drivers. To address these issues, we calibrate
our model to empirical effect size estimates (e.g., coefficients
from linear mixed-effects models) for proxies of three key driv-
ers of litter decomposition: soil moisture, litter lignin:N ratio,
and copiotroph:oligotroph ratio. To that end, we first describe
the empirical data and how we calculate empirical effect sizes
(Section 2.1). Section 2.2 then describes how we set up our model
to provide comparable modelled effect sizes. Next, we describe
how we carried out our calibration to choose parameters that
most closely align empirical and modelled effect sizes, as well
as empirical decomposition rates, and subsequently validate
that calibration (Section 2.3). Finally, Section 2.4 describes
how we evaluated predictions of litter decomposition under cli-
mate change from our calibration in comparison to the initial
parameters.

2.1 | Empirical Data Collection and Analysis

We conducted a highly replicated litterbag study at 10 temperate
forest U.S. National Ecological Observatory Network (NEON)
sites (Table 1). Seven sites, where we measured microbial data,
were used for model calibration and the remaining three sites,
where we did not have microbial data, were used for model val-
idation. At each site, 12 plots (1 x1 m?) were set out for each of
the three dominant tree species, resulting in 36 plots per site.
At each plot, ~5g of leaf litter from an adjacent canopy tree was
collected at peak leaf fall and encased in litterbags (20 x 20 cm).
For this study, we used 2 litterbags per plot (for each of the two

collection time points), 72 per site, and 720 total litterbags for
all 10 sites. Bags had an underside mesh with a 54 um aperture
to prevent loss of litter as it became fragmented, and a topside
mesh with an aperture width of 1.84 mm to permit mesofauna
access. Plots were arrayed in a closed loop along the periphery
of the airshed of the NEON eddy covariance tower (spanning
5-88ha depending on site) to capture within-site heterogene-
ity. Plots were established in Fall 2021 and after approximately
10 and 21 months (time points 1 and 2, respectively), litterbags
were collected, stored at 4°C for up to 1week, cleaned with a
fine brush and tweezers to remove any soil and non-litter debris,
and weighed to record total fresh mass remaining. Litter mass
loss was determined as the percent of initial mass remaining.
Because we had C concentration data from only initial litter,
percent initial mass remaining was assumed to be equivalent to
percent C remaining.

To determine the relative importance of climate, litter quality,
and microbial community for litter decomposition, we used
the proxies of soil moisture, litter lignin:N, and bacterial copi-
otroph:oligotroph ratio, respectively, at the seven sites where
microbial data were collected (i.e., not validation sites; Table 1).
Soil moisture was measured at experiment initialization and
each collection time point in soil under each litterbag (108 mea-
surements per site) with a time domain reflectometry (TDR)
probe, inserted at a 45° angle to ~5cm depth (Hydrosense II,
Campbell Scientific, Logan, UT, USA). For initial litter, lignin
was determined using an acid digestion (AOAC Official Method
973.18 1997) and percent N was measured on dried, ground litter
using a Thermo EA IsoLink CN connected to a Thermo isotope
ratio mass spectrometer (Thermo, Bremen, Germany). Lignin:N
was calculated as the mean lignin of 1-2 laboratory replicates
of leaf litter of each tree species within each site (n=3 per site)
over plot-level percent N of litter (e.g., for each replicate of each
species within a site; n =36 per site).

We leveraged 16S rRNA gene amplicon sequence data from
soil samples at experiment initiation (temporally matching the
litter lignin and N measurements) in 5-12 plots (depending
on sampling extent and data quality) at each of the seven sites
to obtain bacterial copiotroph:oligotroph ratios to be used in
our statistical model (Polussa and Oliverio 2025). Five plots
were used at GRSM and HARYV, 8 at BART, 10 at TREE, 11
at LENO and TALL, and 12 at SERC. We use copiotroph and
oligotroph groupings to represent the microbial community
because these groups are represented in the process-based
model used in this study but acknowledge there are multiple
ways to represent functional traits of microbial communities.
In brief, DNA was extracted from 200 to 700 mg soil using the
Zymo Quick-DNA Fecal/Soil Microbe DNA Miniprep Kit and
then amplified using a 250-bp fragment of the V4-V5 region of
the 16S rRNA gene. Sample concentrations were normalized
and sequenced on the Illumina MiSeq platform with 2x 150-
bp paired-end chemistry at the University of Colorado Next
Generation Sequencing Facility along with negative controls to
check for possible contamination. We processed the raw reads
to amplicon sequence variants (ASVs) with the DADA2 pipe-
line (Callahan et al. 2016) as per Shepherd and Oliverio (2024).
Samples were rarefied to 2447 reads per sample and bacterial
copiotroph: oligotroph was calculated as the sum of copiotroph
ASV counts over the sum of oligotroph ASV counts per plot.
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TABLE1 | Site data used to force MIcrobial-MIneral Carbon Stabilization (MIMICS) model in this study ordered as the sites used for calibration
or validation (indicated by the “(val.)” following their site names), and then from coldest to warmest. Sites used for calibration from the U.S. National
Ecological Observatory Network (NEON) include Treehaven (TREE), Bartlett Forest (BART), Harvard Forest (HARV), Great Smoky Mountains
(GRSM), Smithsonian Environmental Research Center (SERC), Talladega (TALL), and Lenoir Landing (LENO). Sites used for validation from
NEON include University of Notre Dame Environmental Research Center (UNDE), Mountain Lake Biological Station (MLBS), and Smithsonian
Conservation Biology Institute (SCBI).

Annual

litterfall Mean soil Mean soil Max soil Min soil

(gCm™2 temperature  moisture moisture moisture Clay LIG:N LIGIN LIG:N
Site (state) year™!) °C) scalar multiplier multiplier (%) 1 2 3
TREE (W) 519 6.8 (10.8) 0.44 (0.27) 1.10 0.90 5 12 30 32
BART (NH) 613 8.5(9.3) 0.55 (0.29) 1.07 0.93 12 15 34 40
HARV 637 8.9(9.1) 0.66 (0.25) 1.06 0.94 16 27 33 65
(MA)
GRSM (TN) 853 14.7 (6.5) 0.80 (0.06) 1.06 0.94 16 21 25 43
SERC (MD) 744 14.8 (8.0) 0.62 (0.09) 1.03 0.97 12 15 20 33
TALL (AL) 608 18.1(6.3) 0.66 (0.11) 1.08 0.92 3 25 37 112
LENO (AL) 841 19.1 (6.1) 0.71(0.12) 1.03 0.97 21 32 35 54
UNDE (MI; 591 6.1(10.3) 0.47 (0.32) 1.07 0.93 6 13 31 34
val.)
MLBS (VA; 639 9.5(7.5) 0.70 (0.19) 1.03 0.97 11 6 26 37
val.)
SCBI (VA; 640 13.0 (8.1) 0.61 (0.11) 1.06 0.94 32 13 17 34
val.)

Note: Community Land Model (CLM) output was used to determine litterfall, temporally-averaged soil temperature (with standard deviation), and a temporally-
averaged soil moisture scalar (with standard deviation), a 0-1 scalar calculated from soil water potential in CLM. Clay content is from NEON megapit measurements
interpolated to CLM depths; we use the clay content at 1 cm depth. The soil moisture scalar (which is unitless) is multiplied by the max and min soil moisture
multipliers to represent moisture variability within a site as informed by field data. Lignin-to-nitrogen (LIG:N) values were averaged from field collected litter for three
tree species from each site. These are ordered in ascending order (e.g., decreasing litter quality; LIG:N 1-3).

Bacterial taxa were classified as copiotrophs or oligotrophs
using phylogeny, which has been shown to be predictive of
growth rate, the main trait distinguishing copiotrophs and oli-
gotrophs (Walkup et al. 2023). Classification was across mul-
tiple taxonomic levels, ranging from phylum to genus, using
publicly available criteria established in Averill et al. (2021)
and Ho et al. (2017). Criteria were based on a literature review
prioritizing functional studies with pure culture work, stable
isotope probing, and coupled community and physiological
analyses. There were 13 genus-level, 2 class-level, 4 order-
level, 4 family-level, and 13 phylum-level classifications, with
preference given to finer classifications. Copiotrophs generally
included taxa within Alphaproteobacteria, Bacteroidetes, and
Gammaproteobacteria, while oligotrophs were represented by
Acidobacteria, Planctomycetes, and Verrucomicrobia.

Here, we note some limitations associated with our micro-
bial data and how these were addressed, if possible. We use
soil bacterial communities rather than those in litter with
the assumption that the community in the surface soil is an
adequate representation of decomposer community variation
across experimental sites. Future investigation of the coloni-
zation and succession of leaf litter decomposing communities
would be valuable. However, here we use data on soil bacterial
communities collected when litterbags were first placed in the
field given that Barbour et al. (2022) found that the majority of

taxa overlap between soil and litter and using initial soil mi-
crobial community as a proxy for microbial variation is com-
mon practice (e.g., Strickland et al. 2009; Keiser et al. 2011).
Fungal decomposers are key drivers of litter decomposition,
but we do not consider them here due to a lack of phyloge-
netic data that is tied to growth rate for soil fungi. Alternative
classifications and recent work characterizing fungal life
history traits offer promise for future work (also addressed
in Section 4.3; Crowther et al. 2014; Camenzind et al. 2024;
Leifheit et al. 2024). The bacterial relative abundance data we
use (e.g., from 16S) does not directly translate to model out-
put, which is the C content of the copiotroph and oligotroph
pools. Because the model does not discern between fungi and
bacteria and instead represents copiotrophic and oligotrophic
strategies more generally, this is another limitation to not
having a representation of empirical fungal data. However,
by using the ratio of copiotrophs to oligotrophs as our predic-
tor, we aim to compare the relative dominance of copiotrophs
vs. oligotrophs rather than compare absolute amounts of ei-
ther group, with the assumption that dominance of a given
bacterial strategy might be indicative of a comparable fungal
strategy (Ma et al. 2023). Finally, in our classification process,
anywhere from 6% to 70% of taxa in a sample are not classified
as copiotrophs nor oligotrophs; this lack of classification was
similar across sites (Figure Sla). To assess the influence of
this, we performed a sensitivity analysis where we designated
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non-assigned taxa as either copiotrophs or oligotrophs (100%
copiotrophs and 0% oligotrophs, 90% copiotrophs and 10%
oligotrophs, 80% copiotrophs and 20% oligotrophs and so on)
and found the largest effect of these unassigned values was
to increase the effect size of copiotrophs: oligotrophs by ap-
proximately 10 units (Figure S1b,c), so we included this obser-
vational uncertainty when calibrating our model (described
in Section 2.3). We did not further consider unassigned taxa
for our bacterial copiotroph: oligotroph estimates. Additional
uncertainty associated with the classification of these groups
is due to classification being less successful at coarser taxo-
nomic resolution (e.g., phyla; Ho et al. 2017; Stone et al. 2023;
Walkup et al. 2023). To reduce this uncertainty, the method
of classification we chose (Ho et al. 2017; Averill et al. 2021)
prioritized finer resolution taxonomy when available and was
based on data using the best available methodology (e.g., pure
culture work, stable isotope labelling approaches, or commu-
nity analyses supported by physiological characteristics; Ho
et al. 2017). To account for this uncertainty in our calibration,
we weigh matching litter decomposition rates more highly
than matching the empirical driver of bacterial copiotroph:
oligotroph ratio when choosing best parameter sets (described
in Section 2.3).

To determine the relative importance of different drivers of lit-
ter decomposition, we created a linear mixed effects model of
the field data with soil moisture, lignin:N, and bacterial copi-
otroph:oligotroph ratios as drivers and percent litter mass loss at
time points 1 and 2 as the response variables. Plot nested within
site was a random effect in the model to account for potential
temporal correlation from sampling litterbags from the same
plots, and site reflected the spatial non-independence of multi-
ple plots within a forest site. Decomposition kinetics in MIMICS
are temperature sensitive and have been calibrated to site-level
variation in temperature with data from the Long-term Inter-
site Decomposition Experiment Team (LIDET) study (Harmon
et al. 2009). Given our lack of plot-level soil temperature mea-
surements, which would supplement the site-level calibration
and were not collected because of minimal within-site spatial
variation (e.g., 10X less variable than soil moisture; Loescher
et al. 2014), we do not include temperature in our within-site
scale model calibration efforts. However, temperature is a nota-
ble control on litter decomposition (e.g., Petraglia et al. 2019) and
so we assessed the influence of including site-level soil tempera-
ture (Table 1) for our empirical effect size estimates. We found
temperature had relatively little influence on the model R? and
reduced the relative effect sizes comparably across the other
drivers, minimally changing their direction and magnitude rel-
ative to one another (Figure S2). However, temperature still had
a considerable effect size, and we discuss the importance of fu-
ture studies including temperature in Section 4.3. For the linear
mixed effects model, soil moisture was represented as the mean
volumetric water content taken over three timepoints (0, 10, and
21 months) at each plot within each site. Soil moisture was log
transformed to meet linearity assumptions, and all three inde-
pendent variables were standardized to increase comparability
(i.e., unstandardized coefficient values reflect different unit
scales). We limit our empirical statistical analysis to plots with
16S data, where each plot has a unique soil moisture and lign-
in:N measurement (n =124 observations over two time points;
dataset available at Rocci, Pierson, and Wieder 2024).

2.2 | Model Setup

We use the MIcrobial-MIneral Carbon Stabilization (MIMICS)
model (Figure S3; Wieder, Grandy, et al. 2015; Rocci, Pierson,
and Wieder 2024) to project rates of leaf litter decomposition
at each of the seven NEON sites. MIMICS is well-suited for the
goals of our study because it is one of relatively few ecosystem-
scale process-based models to include a functional represen-
tation of microbial communities, which we can couple to our
empirical data to evaluate the influence of microbial community
composition on litter decomposition rates. A detailed descrip-
tion of MIMICS can be found in Wieder, Grandy, et al. (2015) but
briefly, MIMICS separates litter into a metabolic and structural
litter pool (LITm and LITs) based on litter quality (as a linear
function of lignin:N content of litterfall). In the model, LITm
is preferentially decomposed by a copiotrophic microbial group
(MICr) and LITs by an oligotrophic microbial group (MICk).
Microbial turnover subsequently contributes C to physically pro-
tected and chemically protected soil organic matter pools (SOMp
and SOMc), as well as to the available SOM pool (SOMa), from
which microbes can also assimilate C (Figure S3). We calculated
steady-state pools in MIMICS using site-specific inputs (de-
scribed below) using a standard ordinary differential equation
solver from the RootSolve package (Soetaert and Herman 2009).
As in Wieder, Grandy, et al. (2015), we subsequently added lit-
terbag metabolic and structural litter pools that decomposed but
did not influence microbial biomass or SOM pools in the un-
derlying model. In other words, all decomposed litter from the
litterbag was immediately lost from the system with the assump-
tion that the amount of C in the litterbag was much smaller than
and would have minimal effect on the steady-state C pools in
the model.

In our model experiments at each of the NEON sites, we sim-
ulated within-site heterogeneity by decomposing three litter
types (Table 1) across a gradient in soil moisture (described
below). Inputs for MIMICS (e.g., litterfall, soil temperature, soil
moisture, and percent clay; Table 1) were generated from site-
scale simulations using the Community Land Model version 5.2
(CLM5.2) forced with meteorological observations (2018-2022)
from the National Ecological Observatory Network (NEON)
data version 3, as described in Lombardozzi et al. (2023). For
the LENO site, input data were only available for 2021-2022
and for the HARV site for 2018-2021. From these NEON-CLM
data, annual means or sums of input data for each site were
used to calculate steady state. Daily input climatologies (e.g.,
averaged across years) were used to force litterbag simulations.
Litterbag simulations ran for 3 calendar years, where litterbags
were added to the model on November 11th (the average day of
litterbag deployment across sites) and decomposed for the re-
maining ~2years. We corrected anomalously high litterfall data
simulated by CLM at the TALL site (verified using data from
Jevon et al. 2022) by using an empirical relationship between
modeled annual litterfall at the other sites and GPP estimates
from NEON flux tower measurements averaged over 2018-2021
(NEON 2023; Figure S4).

To represent the variability in soil moisture in each site, we calcu-
lated the mean and lower and upper 95% confidence intervals of
observed field soil moisture within each site and then determined
a minimum and maximum soil moisture multiplier for each site
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by dividing the lower and upper 95% confidence intervals by the
mean at each site. We then multiplied the soil moisture scalar
from both annual and daily CLM output (a 0-1 scalar on decom-
position rate calculated from soil water potential in CLM) by
minimum and maximum soil moisture multipliers, in addition to
having the soil moisture scalar from CLM output (3 soil moistures
per site; Table 1). This allowed us to represent soil moisture vari-
ability while minimizing the necessary number of unique model
runs, thereby allowing us to run a large number of parameter sets
in the Monte Carlo parameterization, described in Section 2.3.

For our initial model setup, we used MIMICS parameters from
Wieder, Grandy, et al. (2015) with two main modifications. First,
we replaced the previous density dependent parameterization
in MIMICS with the beta parameterization of density depen-
dent microbial turnover (Equation 1) described by Georgiou
et al. (2017), such that higher microbial biomass or higher betas
cause more microbial turnover:

MICtrn = MIC® x tau x fS @

where MICtrn is microbial turnover, MIC is the microbial
biomass carbon pool, beta is the parameter from Georgiou
et al. (2017), tau is the ratio of biomass that is turned over, and
fS is the fraction of turnover allocated to a given SOM pool.
Implementing beta reduced the oscillatory behavior of microbial
biomass in our preliminary simulations with MIMICS. Second,
we reduce the microbial catabolic capacity (V,,,,) by 40% to cre-
ate initial litter decomposition kinetics that agree with our field
data. We reduce microbial catabolic capacity to ensure we are
not correcting a kinetics bias with our calibration, whereas the
goal of our calibration is to better represent drivers of litter de-
composition. The initial MIMICS parameters (e.g., from Wieder,
Grandy, et al. 2015) combined with the use of beta and reduc-
tion of V__ represent the default model parameters that are the
starting point for our calibration (Table S1). For historical sim-
ulations (e.g., using forcing data climatology from 2018 to 2022,
which we expect to be similar to our field experiment period),
we ran 63 unique model runs (7 sites X3 litters X3 soil mois-
tures). These historical runs with the default model parameters
are referred to as the “default” model moving forward.

To determine the effects of soil moisture, litter lignin:N ratio, and
copiotroph:oligotroph ratio on historical modeled litter mass loss,
we created a similar statistical model as for the observational data.
From here forward, we use copiotroph:oligotroph ratio rather than
bacterial copiotroph:oligotroph ratio to represent both the empir-
ical and model estimates, the former of which is based solely on
bacteria. From model output, we calculated litter mass loss for the
two site-specific field collection time points (on average, 10 and
21 months) and extracted initial copiotroph:oligotroph ratios (e.g.,
MICr:MICk at steady state), the temporally-averaged soil moisture
scalar for each of the three soil moistures, and the litter lignin:N
ratio. We then use the latter three variables in a linear mixed ef-
fects model predicting litter mass loss to estimate the effect sizes
of climate (soil moisture), litter quality (lignin:N), and microbial
community (copiotroph:oligotroph) with “plot” (e.g., each litter
type and soil moisture combination) nested within site as a random
variable. As with the observational data, we log transformed soil
moisture to meet linear model assumptions and standardized all
predictors to make their effect sizes more comparable. We checked
the statistical models for observational data and default and cali-
brated model output (described in Section 2.3) for collinearity and
found that predictors in each model had variance inflation factors
less than 5, suggesting correlations between the variables were not
severe and our statistical models were appropriate.

2.3 | Calibration and Validation

For the calibration, we start from the default model with the pa-
rameter modifications described in Section 2.2. To calibrate the
model to empirically important drivers of litter decomposition,
we first conducted a one-at-a-time sensitivity analysis to iden-
tify the parameters that had the largest effect on litter decom-
position rates and drivers that were simulated by MIMICS. This
identified two parameters related to microbial turnover and two
related to catabolic capacity (Table 2) that were used in a Monte
Carlo calibration following the approach by Pierson et al. (2022).
The combination of parameters was assessed by dropping one
parameter at a time to ensure each parameter was required to
meet calibration goals. Model calibration was performed using
5000 random parameter sets of our selected four parameters,

TABLE 2 | Descriptions, default values, multiplier ranges, and calibrated multipliers values for the MIMICS parameters used in the calibration.
The three best (see methods for explanation of “best”) sets of calibrated multipliers are shown in sub-columns under the “Calibrated parameter

multipliers” column (e.g., Set 1, Set 2 and Set 3).

Calibrated parameter

Default Multiplier multipliers
Parameter name Description value range Set1l Set 2 Set3
tau_r The litter quality multiplier 0.3 0.3-2 1.33 0.58 0.82
on copiotrophic turnover
beta A multiplier for density 1.5 0.67-1.33 0.76 0.72 0.74
dependent microbial turnover
vMODm Overall multiplier on maximum 10, 3% 0.5-2 1.76 1.62 1.57
metabolic litter decomposition rate
vMODs Overall multiplier on maximum 2,3 0.5-2 0.93 0.92 0.95

structural litter decomposition rate

2For copiotrophic and oligotrophic microbes, respectively—note the same multiplier is applied for each microbial group.
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with descriptions and ranges summarized in Table 2. We en-
sured that we had a sufficient number of random model runs by
running a sensitivity test to ensure similar parameter sets were
retrieved if we left out 10% of the runs (Figure S5). As above, we
calculated modelled litter mass loss for each site, litter type, and
soil moisture variant at each timepoint.

After running all simulations, we filtered the 5000 parameter
combinations based on the following four criteria. Parameter
sets were kept if they: (1) produced litter mass loss rates that
fell within observed minimum and maximums for each site at
each timepoint, (2) produced relative effect sizes within 10 units
of observed relative effect sizes for soil moisture, litter lignin:N,
and copiotroph:oligotroph ratio, (3) produced root mean squared
errors (RMSEs) less than 5.4% (chosen to ensure multiple good-
fitting parameter sets) for observed versus modeled litter mass
loss, and (4) maintained viable copiotrophic or oligotrophic mi-
crobial groups. This filtering provided three best parameter sets
that we use in the “calibrated” model (Table 2). We prioritized
more closely matching litter decomposition over effect sizes
since we have more certainty in empirical litter mass loss esti-
mates than empirical effect size estimates, particularly for the
copiotroph:oligotroph ratio.

Independent validation of the calibrated parameter sets was
conducted using observed field decomposition rates from NEON
forest sites that were not used in the aforementioned calibration
activities. Validation sites were three experimental field sites
that applied the same experimental design for litterbag exper-
iments, but where no 16S data were collected and so they could
not be used for calibration (Table 1). We ran MIMICS simula-
tions for validation sites with inputs generated from CLM (as
was done for sites used in model calibration). At validation sites,
we ran simulations with both default and calibrated parameters
and quantified litter mass loss compared to field observations.
From our calibrated model results, we compared the steady state
pool sizes, litterbag decomposition rates, and the copiotroph:oli-
gotroph ratio to evaluate the differences between the calibrated
and default models.

2.4 | Implications Under Climate Change

To evaluate the influence of the new calibration on litter mass
loss under climate change, we ran both the default and the cal-
ibrated MIMICS model under a high climate change scenario,
Shared Socioeconomic Pathway (SSP) 3-7.0, through the year
2100. Briefly, the anomaly forcing provides a smooth transi-
tion from observed to future climate that is generated by sub-
tracting the climatological mean baseline atmospheric state
(2005-2014) from the mean monthly atmospheric states that
were simulated from a Community Earth System Model version
2 (CESM2) SSP3-7.0 simulation (Wieder, Cleveland, et al. 2015;
Danabasoglu et al. 2020; Jay et al. 2023). We then added these
anomalies to historical climate data cycled over the observa-
tional record (2018-2022) for each NEON site and used these
data as MIMICS inputs (e.g., litterfall, soil temperature, and
soil moisture). To compare to our historical runs, we used input
data for the three-year period from 2072 to 2074, 50years after
the historical data end date of 2022, to force the default and
calibrated models. We then compared decomposition rates for

simulations of both the default and calibrated models (including
the three top parameter sets) from the future run to the histori-
cal run to determine the effect of climate change for both mod-
els. We note that using other future time periods did not strongly
alter the interpretation of the results besides decomposition be-
coming faster as climate change progressed.

To evaluate the differences between the calibrated and default
model responses to climate change, we built a linear mixed ef-
fects model with the percent difference in the calibrated versus
default climate change responses for each time point, litter qual-
ity, and soil moisture combination for each site (n=7 sites x2
time points X 3 litter qualities X 3 soil moistures =126) as the re-
sponse variable. As the driving variables, we used site clay, site
soil moisture variability, and “plot” litter quality with either his-
torical annual litterfall, mean soil temperature, and “plot” soil
moisture, the change in those variables under climate change,
or the future values of those variables. As with the above linear
mixed effect models, “plot” (e.g., each litter quality, soil mois-
ture, site combination) nested within site was the random effect
and soil moisture was log transformed to meet the assumptions
of the linear model. All statistical and model analyses were car-
ried out in R statistical software (R Core Team 2024).

3 | Results
3.1 | Empirical Data and Model Calibration

The observed field litterbag data revealed that soil moisture
was positively related, and lignin:N and copiotroph:oligotroph
were negatively related to rates of litter mass loss (Figure 1;
Figure S6). The default MIMICS model was able to reproduce
observed rates of litter mass loss over the two observational
time points (Figure 2a) but had considerably different effect
size estimates than the observations, particularly for the copi-
otroph:oligotroph ratio, which was in the opposite direction
from the observations (Figure 1). The calibrated model, for
which we average over three simulations with the best parame-
ter sets, was also able to reproduce litter mass loss over the two

50 4
S
8 254
‘»
g Type
% . Observations
0 01 [¢] Default
= [E] calibrated
&
_25-

Soil mloisture Lignlin:N Copiotrophlzoligotroph

FIGURE1 | Relative effect sizes for linear mixed effects models (e.g.,
model coefficients relativized to 100%) predicting litter mass loss using
soil moisture (volumetric water content and soil moisture scalar for ob-
servations and model output, respectively), litter quality (lignin:N), and
microbial community (copiotroph:oligotroph) as independent variables
for the observations, default model, and calibrated model (fill color).
Points show effect sizes for each parameter set in the calibrated model.
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FIGURE 2 | Litter mass remaining in (a) default and (b) calibrated models compared to observations. Shading shows minimum and maximum

decomposition predictions from the model, including variability due to three litter types and three soil moistures, and for the calibrated model, three

parameter sets (n =9 and n =27 simulations per site for default and calibrated results, respectively). Points with 95% confidence intervals show vari-

ability in observed litterbag mass loss at collection time points 1 and 2. Insets show comparison of modeled and observed decomposition, with dashed
line depicting the 1:1 line. Sites are ordered from coldest (TREE) to warmest (LENO).

observational time points (Figure 2b) and was better aligned
with the effect sizes from the observational data (Figure 1).

3.2 | Validation

We independently validated results with simulations at three
additional NEON sites (not used in the calibration) and showed
that parameter sets calibrated at the seven sites with microbial
data similarly improve simulated rates of litter decomposition.
Specifically, the calibrated parameter sets provided model sim-
ulations that were more similar to observations, especially at
UNDE, but had higher bias compared to the default parameter
set (Figure 3). Effect sizes for the default model in the valida-
tion runs were in similar directions as the historical runs, albeit
slightly different magnitudes (e.g., stronger and weaker effects of
soil moisture and litter quality, respectively; Table 3). However,
effect sizes for the calibrated model in the validation runs were
quite different from the historical runs (particularly for litter
lignin:N ratio and copiotroph:oligotroph ratio) and more vari-
able among parameter sets (Table 3).

3.3 | Comparison of Default and Calibrated Models

By changing parameter values to better align effect sizes in
MIMICS with those from the observational data, we also mod-
ified the dynamics of MIMICS. Averaging results from the
best parameter sets in the calibrated model, we find our cali-
brated results shift decomposition rates; oligotrophs decom-
pose metabolic litter more rapidly and copiotrophs decompose
structural litter more slowly, compared to the default parame-
terization (Figure 4a,b). At the same time, litter quality more

strongly shapes microbial communities in the calibrated model
(Figure 4c) but the strength of this effect varies across param-
eter sets (Figure S7). These effects in the calibrated model are
associated with less metabolic litter and more structural litter
at steady state compared to the default model, as oligotrophs de-
compose more metabolic litter and copiotrophs decompose less
structural litter (Figure 4d,e). Notably, in all three calibrated
parameter sets, coexistence of copiotrophic and oligotrophic
microbes is not maintained at low litter quality. Specifically, in
the calibrated results, only oligotrophs survived with eastern
white and longleaf pine (Pinus strobus and Pinus palustris) litter
(lignin:N > 60) at HARV and TALL, respectively. Differences in
the three best parameter sets chosen through calibration could
indicate equifinality (multiple parameter sets working equally
as well for modelling targets) and/or provide ecological insight
(Supporting Information: Text A; Figure S8).

3.4 | Decomposition Response to Climate Change

Accelerated rates of litter mass loss under climate change pro-
jections were common, regardless of model parameterization,
as compared to the historical runs (using 2018-2022 clima-
tology; Figure 5). A notable exception to higher litter mass
loss under climate change is for later stage decomposition
at TALL, where there is lower litter mass loss under climate
change than under historical climate. This is likely because of
the very low litter quality at this site for which climate change
caused faster loss of the metabolic litter, leaving only slower
decomposing structural litter during later stage decompo-
sition, where metabolic and structural litter decomposition
have the same temperature sensitivity in MIMICS (Figure 5c;
Figure S9). In response to climate change, the calibrated
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TABLE 3 | Relative effect sizes (%) from linear mixed effect models predicting litter mass loss in the validation sites and under climate change for
the default and calibrated model, with historical runs added for comparison. The independent variables in the model are soil moisture (soil moisture

scalar), lignin:N, and copiotroph:oligotroph. Ranges for calibrated models show the range across the three best parameter sets.

Run type Model type Soil moisture Lignin:N Copiotroph:oligotroph
Historical Default 47.9 -19.0 33.1
Historical Calibrated 42.2t044.0 —41.1to —42.8 —14.0 to —15.5
Validation Default 23.7 —45.2 31.0
Validation Calibrated 31.0to 51.6 —-8.3t011.7 40.1to 57.2
Climate change Default 38.0 -11.9 50.0

Climate change Calibrated 49.7 to 52.9 —39.0to —44.3 6.1to0 8.1

model generally predicted higher litter mass loss than the de-
fault model (Figure 5a,b). The calibrated model lost up to 5.4%
more litter mass than the default model, based on site-level
averages, under 50years of climate change, but this effect de-
pended on site. TREE, BART, and TALL, which are also the
sites with the lowest annual litterfall, exhibited the highest
losses of litter mass under climate change in the calibrated rel-
ative to the default model (Figure 5c¢). This greater mass loss
is dominantly through metabolic litter for TREE and BART
and through structural litter for TALL (Figure 6a,b; Table S2).
We also analyzed the drivers of differences in litter mass
loss between the calibrated and default model under climate
change (e.g., what variables were associated with higher mass
loss under climate change for the calibrated relative to default
model). We found lignin:N and soil moisture variability to
be consistently significant and positive drivers, regardless of
whether they were included with historical, future, or future
minus historical litterfall and soil temperature and moisture
(Figure 6c,d).

Regardless of the model parameterization, the average effect of
climate change on litter mass loss appears to be stronger for the
colder sites (Figure 5). This is likely related to stronger increases
in soil temperature at colder sites than warmer sites and higher
moisture availability in winter at colder sites under the climate
change scenario (Table S3; Figure S10). Effect sizes from linear
mixed effect models were similar under climate change com-
pared to the historical runs for default and calibrated models,
respectively. That is, except for the copiotroph:oligotroph ratio
effect size in the calibrated model, which was similar in magni-
tude but opposite in direction (positive), indicating copiotrophs
were more important drivers of decomposition in the calibrated
model under climate change (Figure 1; Table 3).

4 | Discussion

Our work sought to both (1) evaluate how calibrating litter decom-
position of a process-based ecosystem model using empirically
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important drivers can influence model performance and predic-
tions and (2) serve as a case study for integrating empirical mi-
crobial community data into an ecosystem model that represents
multiple functional microbial groups. Our results demonstrate
that we can calibrate parameters to empirical drivers of litter de-
composition while predicting litter decomposition rates equally
as well (or better) than with the default parameters. Moreover,
we independently validated results from our calibrated model at
sites that were not used in model calibration. Despite calibration
changing model predictions about the decomposition abilities of
copiotrophs and oligotrophs, the default and calibrated models
responded similarly to climate change with exceptions at sites
with high soil moisture variability and very low litter quality.
Similarities between calibrated and default models could be taken
to mean that calibration was not necessary. However, calibra-
tion provided increased confidence in model outputs because it
increased model realism by representing advanced mechanistic
understanding, in this case by ensuring the calibrated model was
underlain by empirically important drivers of litter decomposition
(Knutti and Sedlacek 2013). Additionally, at the sites where there
were differences in decomposition with the calibrated and default
parameters, these differences might indicate that it is quantita-
tively important to represent empirical drivers in models when
assessing potential C cycle-climate feedbacks. Our work also

demonstrates an important step toward integrating empirical mi-
crobial community data (represented by the copiotroph:oligotroph
ratio) into functional model representations of microbial commu-
nities, and subsequently, projections of terrestrial ecosystem re-
sponses to climate change.

4.1 | Ecological Dynamics in a Model Calibrated to
Empirical Drivers

Ecosystem models can sometimes accurately predict ecosystem
dynamics without necessarily representing their underlying
drivers (Wieder, Grandy, et al. 2015). While this could be suffi-
cient under steady state conditions, accurately representing eco-
logical processes in models under environmental change may
drive alternate responses compared to models without process
representation (Wieder et al. 2013; Reich et al. 2014; Sulman
et al. 2014, 2017; Guo et al. 2020; Rocci, Cleveland, et al. 2024).
For this reason, it is important to ensure process-based models
represent our best empirical understanding. In our work, the
observed effect sizes showed that soil moisture was positively
related and lignin:N and copiotroph:oligotroph ratios were
negatively related to litter decomposition (Figure 1). Given
the expected increase in litter mass loss with soil moisture in
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non-flooded soils (Prescott 2010), and findings that a positive
relationship between soil moisture and litter mass loss might
be stronger when considering variation at both the local and re-
gional scale as we did (Bradford et al. 2017), our findings were
not surprising. Similarly, higher litter quality (lower lignin or
lignin:N) has long been associated with faster decomposition
(Meentemeyer 1978; Aerts 1997), and some work suggests lit-
ter quality is a stronger driver of litter decomposition than cli-
mate (Zhang et al. 2008; Petraglia et al. 2019). The negative
relationship between copiotroph:oligotroph and decomposition
rates was contrary to our hypotheses, given copiotrophs are de-
fined as having faster growth and, consequently, decomposition
(Wieder, Grandy, et al. 2015; Couso et al. 2023). However, given
the relatively lignin-rich nature of temperate leaf litter and the
relatively high lignin:N values of litter in this study relative to
a global analysis of forest leaf litter (Garcia-Palacios et al. 2016;
global mean=16.9, this study=35.2), it is reasonable that oli-
gotrophs caused faster decomposition, given their better ability
to decompose structural litter theoretically and in MIMICS.
This is further supported by findings of associations between
oligotrophic bacteria and litters with higher lignin (Hedé&nec
et al. 2023). Future studies on whether oligotrophs indeed thrive
on low quality litter are warranted to determine how general-
izable this relationship is across larger spatial extents and over
decomposition time frames.

The default model in our study provided relatively similar ef-
fect sizes to the observations except that the litter quality effect
size was weaker than in the observations and, notably, the effect
size of the copiotroph:oligotroph was in the opposite direction as
the observations (Figure 1). The latter means MIMICS with the
default parameters assumed copiotrophs were the most import-
ant decomposers of temperate forest litter, which may be due to
the faster decomposition capabilities of copiotrophs in MIMICS.
When we calibrated MIMICS to the empirical drivers of decom-
position, we improved agreement with field decomposition for
both the calibration and independent validation sites (Figures 2
and 3). Parameter changes associated with calibration caused
oligotrophs to be more rapid decomposers of metabolic litter
and copiotrophs to be slower decomposers of structural litter
(Figure 4a,b). This shift allowed for the negative relationship
between copiotroph:oligotroph and decomposition in the cali-
brated model that aligned with observed effect sizes (Figure 1).
The parameters that caused these changes to model dynamics
are associated with catabolic capacity and microbial turnover,
and so our results suggest these microbial traits might be par-
ticularly important for litter decomposition, although there is
little empirical data on these traits (Supporting Information:
Text A). Additionally, the calibrated model simulated a stron-
ger relationship between litter quality and microbial community
composition (Figure 4c), amplifying assumptions in MIMICS
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that structural litter preferentially supports an oligotrophic
community and metabolic litter preferentially supports a copi-
otrophic community. At the extreme end of this, when litter
quality was very low, only oligotrophic microbes survived in the
calibrated version of MIMICS. This result could lend support to
the idea that representing microbial communities in process-
based models is not always necessary since a single microbial
pool could adapt to changes in litter quality (Yang et al. 2023).
Alternatively, this result could highlight that representing func-
tional groups with specific traits is particularly important in
specific ecosystem contexts (e.g., oligotrophs when litter qual-
ity is low). Regardless, representing two functional groups of
microbes provides ecological realism that improves confidence
in our model projections relative to a singular representation of
soil microbes (Knutti and Sedlacek 2013; Bradford et al. 2016).
However, which functional representation of soil microbes in
ecosystem models is the most appropriate for a given modeling
goal remains unclear. For example, by characterizing the micro-
bial community into copiotrophs and oligotrophs using bacterial
data, we are able to represent traits of growth rate and substrate
preference for bacteria. Thus, our findings can likely be applied
to other temperate forest leaf litter decomposition by bacteria,
assuming that growth rate and substrate preference are im-
portant for litter decomposition, for which there is evidence in
the literature (Goldfarb et al. 2011; Zeng et al. 2019). However,
traits and organisms (e.g., fungi) not captured by our microbial

grouping are likely important to consider in future work (see
Section 4.3).

In our study, the effect sizes of copiotroph:oligotroph ratio for
calibrated output of the validation and climate change runs
were more positive than the historical runs and observations
(Table 3). On one hand, we could assume the effect sizes from
the historical calibration (and by extension, the observations)
should be representative over space and time (e.g., for the val-
idation sites and climate change runs). With that assumption,
the different effect sizes in validation and climate change runs
compared to the historical runs might indicate that a structural
change (rather than a parametric one) is required to ensure
MIMICS always represents oligotrophic microbes as the rela-
tively more important drivers of temperate forest leaf litter de-
composition. On the other hand, the different effect sizes could
inform testable hypotheses moving forward. For example, we
could hypothesize that the influence of copiotrophic microbes
on litter decomposition is greater at validation sites due to the
higher litter quality at those sites (lignin:N =5.7-37.1; Table 1).
Or, for the climate change runs, we could hypothesize that copi-
otrophic microbes become more dominant decomposers under
warming because their faster decomposition kinetics, relative to
oligotrophs, would be amplified due to the temperature sensi-
tivity of decomposition in MIMICS. Hence, our calibration can
inform future studies.
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4.2 | Litter Decomposition Response to Future
Climate Change

The effect of calibration on responses of litter mass loss to cli-
mate change was site-dependent (Figure 5). At three of the sites
we investigated (TALL, BART, and TREE), calibration caused
faster litter mass loss under climate change (up to 5% higher), with
potential implications for CO, emissions to the atmosphere and
soil C formation. According to our statistical analysis, this effect
was driven by within-site soil moisture variability (at TREE and
BART) and litter quality (at TALL; Figure 6). The influence of soil
moisture variability (e.g., spatial and temporal variation within a
site represented with the minimum and maximum soil moisture
multipliers) in our results could be due to the fact that, in MIMICS,
the fraction of water content in the soil is a multiplier on decom-
position rate. Since oligotrophs in the calibrated model were better
able to decompose metabolic litter and losses of metabolic, and
not structural, litter were driving higher mass loss under climate
change for BART and TREE, this effect might be exaggerated at
the high end of more variable soil moisture (e.g., the maximum
soil moisture multiplier) at these sites. However, we would expect
that the lower end of soil moisture (e.g., the minimum soil mois-
ture multiplier) could balance the potential influence of higher
soil moisture, so the influence of soil moisture variability remains
unclear. Rather, soil moisture variability might be indicating an
unmeasured driver or site effects more broadly. While the effect
of litter quality can be explained more directly—the calibrated
model made oligotrophic microbes better decomposers, in contrast
to our hypothesis, and low litter quality increased oligotrophic bio-
mass—it also was clearly driven by low litter quality at the TALL
site (Figure 6), again potentially indicating site-specific effects.
For example, the TALL site is unique (compared to our other sites)
in its low litter quality, but also it is a very warm site with sandy
soils, making it generally unique among the sites represented in
our study (Table 1). Thus, site effects beyond soil moisture, litter
lignin:N ratio, and copiotroph:oligotroph ratio may be important
drivers of litter decomposition that warrant further attention.
Further, these site-specific effects may also highlight interactions
between our drivers. While we feel confident that these drivers are
not correlated in our dataset (all models had variance inflation fac-
tors below 5) and thus our statistical approach was valid, higher
water availability has been shown to confer better plant quality
(Aerts 1997), and the relative abundance of copiotrophs and oli-
gotrophs has also been shown to be associated with substrate la-
bility (Goldfarb et al. 2011). Thus, a study implementing a similar
method to ours could assess these drivers with hierarchical mod-
eling to better capture these interactions. Finally, changes in soil
temperature and litterfall are expected to be important drivers of
variation in litter decomposition under climate change. However,
we do not include within-site temperature and litterfall variation
in our calibration due to lack of data on these metrics, so it is not
surprising that they did not influence climate change-induced
litter mass loss in the calibrated vs. default model (Section 3.4).
Including within-site variation in soil temperature and the influ-
ence of litterfall amount in future calibrations applied under cli-
mate change would help determine whether they are influential in
models that integrate these drivers.

Regardless of the parameter set used in the model, litter decom-
position at sites with colder mean soil temperatures responded
more strongly to climate change in our study (Figure 5). Broader

literature on decomposition (including litter and soil organic
matter) has long supported stronger climate change responses in
colder areas, with higher long-term Q10s (the increase in activity
for a 10°C increase in temperature) of heterotrophic respiration
associated with colder temperatures or increased latitude (Lloyd
and Taylor 1994; Kirschbaum 1995; Zhou et al. 2009), although
this depends on moisture limitation (Aerts 2006). However, lit-
erature on litter decomposition specifically is more equivocal.
One global study found higher climate change-induced litter
C release in cold places, where temperature increased by the
greatest percentage under climate change, as in our study (Chen
et al. 2024; Table S3). Another found, in contrast, that litter de-
composition responded most positively to warming in warm en-
vironments (Liu et al. 2024). The former used SSP scenarios to
project climate change, similar to our study, whereas the latter
synthesized warming experiments. This suggests other changes
in climate change scenarios, such as greater moisture avail-
ability in the winter at cold sites (Figure S10), may also drive
stronger responses to climate change at cold sites, rather than
temperature per se. However, reduced soil moisture is also ex-
pected with climate change, and seasonal dryness in temperate
forests may negatively interact with warming to reduce litter
decomposition (Butenschoen et al. 2011; Reich et al. 2018), so
investigating temperature and moisture interactions would be
an important future direction. If these expectations of relatively
greater decomposition rates at colder sites under climate change
do occur, our findings suggest that decomposition rates would
get more similar across the eastern US temperate region under
climate change as colder sites begin to increase to similar rates
as warmer sites and increase overall.

4.3 | Limitations and Future Work

We believe that our work is a useful starting point for integrating
empirical microbial community data into process-based models.
We have demonstrated a method using categorization of bacte-
ria into copiotrophic and oligotrophic groups using phylogeny
(Ho et al. 2017; Averill et al. 2021) to capture variation in the
trait of microbial growth rate (Walkup et al. 2023). This method
has potential limitations, including uncertainty about how
finely phylogeny must be defined to be predictive of growth rate
(Stone et al. 2023). Alternative methods to determine growth
rate, such as quantitative stable isotope probing, would likely
provide better estimates for future work (Walkup et al. 2023;
Stone et al. 2023). We highlight the challenge of categorizing
fungi into copiotrophs and oligotrophs and so identify a need for
microbial work to establish whether shifts in copiotrophs and
oligotrophs for bacteria reflect similar shifts in fungal commu-
nities, which would allow for integration into MIMICS with the
same method presented here. Additionally, we highlight needs
for evaluation of other soil microbial traits, particularly those
relevant to fungi (e.g., Camenzind et al. 2024), for their empiri-
cal relevance for decomposition and for methods of integration
into models. Specific traits relevant to MIMICS and similar
models could include carbon use efficiency, biomass chemistry,
biomass and hyphal turnover, and substrate-specific decomposi-
tion rates. Other methods that have incorporated functional mi-
crobial information via calibration at the ecosystem scale used
enzyme activities and functional gene expression (Li et al. 2019;
Gao et al. 2020; Guo et al. 2020; Tao et al. 2024). However, given
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the wide availability of 16S ribosomal gene sequence data, we
believe our method is a meaningful addition to options for incor-
porating microbial community data into ecosystem models. It is
not tractable to represent the vast diversity of soil microbes in
soil biogeochemical models, so it is imperative that empiricists
and modelers work together to identify the best ways to repre-
sent this diversity. Here, we simplify the microbial community
into two microbial functional groups, but alternative methods
include adding mathematical functions that can represent com-
munity processes (Georgiou et al. 2017), using scaling tools from
math and physics (Wan and Crowther 2022), or deriving traits
from fine-scale models to use in ecosystem and larger scale mod-
els (Karaoz and Brodie 2022; Marschmann et al. 2024). Another
useful way forward may be to aim for generalizable microbial
parameters that could be used across models (Jian et al. 2024).
It is also important to ensure temporal microbial dynamics in
process-based ecosystem models align with those in empirical
work, as time-varying data is rarely used for model validation
(Le Noé et al. 2023). In the case of litter decomposition, findings
of co-varying microbial communities with litter quality and en-
vironmental factors during decomposition (Matulich et al. 2015;
Snajdr et al. 2011; but see Bray et al. 2012) suggest assessing vari-
ability in all of these controls together could be important for
ensuring accurate temporal dynamics in process-based models.

Beyond providing an example of how to integrate empirical
microbial community data into an ecosystem scale model, we
also present a novel method of calibration. By combining tradi-
tional empirical statistical methods with Monte Carlo parame-
ter estimation, we demonstrate a way to bridge empiricism and
process-based modelling when observations cannot be directly
plugged into models as parameters, which is commonly the
case for soil microbial parameters (Wan and Crowther 2022).
Additionally, our work highlights that parameterizing models
to predict not just for the right answers but for the right rea-
sons is important for ensuring confidence in modelled results
(Bradford et al. 2016) and, in some cases, could modify future
C cycle-climate feedbacks. Ensuring confidence in our model
projections is key for ensuring the science in our models is cer-
tain enough to support decision-making around climate action
and adaptation.

While our work captures several dominant drivers of litter de-
composition, other drivers may be playing a role in our results
and are worth investigating for their representation in process-
based models. Temperature is a key driver of litter decompo-
sition, with its effects potentially mediated by soil moisture
(Petraglia et al. 2019). In our work, we lacked within-site mea-
surement of soil temperature to represent this aspect of climate
in our calibration, and site-level temperature had a similar effect
on decomposition as within-site soil moisture (Figure S2). In
other datasets where temperature data are available at the fine
scale or uniquely influence decomposition, temperature should
be assessed as an additional climate driver to soil moisture. Soil
nutrient availability and soil fauna are also commonly cited
drivers of litter decomposition (Hobbie 2015; Garcia-Palacios
et al. 2013). Future work could employ a similar method as in our
work to a soil biogeochemical model with coupled C and N, cal-
ibrating each site to soil N availability, or could use the model as
a tool for disentangling litter quality and soil nutrient availabil-
ity feedbacks by changing drivers independently and together.

Since our litterbags allowed for access by fauna, different faunal
communities across and within sites may have directly or in-
directly, by changing the microbial communities, altered litter
decomposition (Frouz 2018) but we lack the data to test this and
model representation of fauna. Indeed, few process-based mod-
els include representation of fauna (Grandy et al.2016), but as
fauna are important drivers of litter decomposition, assessing
their roles in process-based models would be useful future work.

5 | Summary

Given the empirical evidence suggesting that the microbial com-
munity is an important driver of litter decomposition, and the
ability of ecosystem and Earth system models to now represent
microbial communities, we sought to evaluate (1) the influence of
representing empirical drivers of litter decomposition, including
microbial community (represented as the copiotroph:oligotroph
ratio), for ecosystem model performance and predictions and (2)
the potential for integrating microbial composition data into an
ecosystem model with functional representation of microbial com-
munities. We show that we are able to reasonably represent three
key empirical drivers of litter decomposition as proxies for climate,
litter quality, and microbial community without compromising
model performance. Further, representing empirical drivers pre-
dicted higher litter mass loss under climate change at three of our
sites, with implications for C cycle-climate feedbacks. We also
provide a useful case study for assimilating empirical bacterial
community data into functional microbial groups in an ecosystem
model. Our study demonstrates that adding ecological realism to
process-based models does not necessarily incur a loss in model
performance and that including microbial community data in
these models in functional ways may provide more confidence in
our models' abilities to predict ecosystem processes under global
environmental change.
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