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Clustering plays a crucial role in computer science, facilitating data analysis and problem-solving across
numerous fields. By partitioning large datasets into meaningful groups, clustering reveals hidden structures
and relationships within the data, aiding tasks such as unsupervised learning, classification, anomaly detection,
and recommendation systems. Particularly in relational databases, where data is distributed across multiple
tables, efficient clustering is essential yet challenging due to the computational complexity of joining tables.
This paper addresses this challenge by introducing efficient algorithms for k-median and k-means clustering on
relational data without the need for pre-computing the join query results. For the relational k-median clustering,
we propose the first efficient relative approximation algorithm. For the relational k-means clustering, our
algorithm significantly improves both the approximation factor and the running time of the known relational
k-means clustering algorithms, which suffer either from large constant approximation factors, or expensive
running time. Given a join query q and a database instance D of O(N) tuples, for both k-median and k-means
clustering on the results of ¢ on D, we propose randomized (1 + ¢€)y-approximation algorithms that run in
roughly O(K*Nfhw) 4+ Ty(kz) time, where ¢ € (0,1) is a constant parameter decided by the user, fhw is the
fractional hyper-tree width of g, while y and Ty (x) represent the approximation factor and the running time,
respectively, of a traditional clustering algorithm in the standard computational setting over x points.
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1 INTRODUCTION

Clustering is a fundamental process in computer science, serving as a vital tool for data analysis,
pattern recognition, and problem-solving across various domains. Through clustering, large datasets
are partitioned into meaningful groups, unveiling hidden structures and relationships within the
data. In machine learning, clustering algorithms are used to enable tasks such as classification,
anomaly detection, and recommendation systems. Its significance lies in its ability to transform raw
data into useful knowledge, empowering researchers, and businesses to make informed decisions.

In relational databases, data is gathered and stored across various tables. Each table consists of a
set of tuples and two tuples stored in different tables might refer to the same entity. Relational data
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is decoupled into different relational tables, and we cannot obtain the full data unless all the tables
are joined. This setting is quite common in real database management systems (DBMS). As shown
in the DB-engines study [1] the vast majority of database systems are relational DBMS. Kaggle
surveys [2] demonstrate that most of the learning tasks encountered by data scientists involve
relational data. More specifically, 70% of database systems are relational DBMS and 65% of the data
sets in learning tasks are relational data. As mentioned in [20], relational data is expected to reach
$122.38 billion by 2027 [49] in investments.

In order to explore and process relational data, usually two steps are required: data preparation,
and data processing. In the data preparation step, tuples from different tables are joined to construct
useful data, while in data processing, an algorithm (for example a clustering algorithm) is performed
on the join results to analyze the data. This two-step approach is usually too expensive because the
size of the join results can be polynomially larger than the total size of the input tables [46, 47].

In this paper, given a (full) conjunctive query and a database instance, we study efficient k-median
and k-means clustering on the results of the query without first computing the query results. While
there are recent papers [20, 23, 44] on designing clustering algorithms on relational data, they
usually suffer from i) large additive approximation error, ii) large constant relative approximation
error, and iii) expensive running time.

Despite recent attention to relational clustering, the problem of efficiently solving relational
k-median clustering without additive approximation error remained unsolved. In this paper, we
propose the first efficient relative approximation algorithm for the k-median clustering on relational
data. Furthermore, by extending our methods, we design an algorithm for the k-means clustering
on relational data that dominates (with respect to both the running time and the approximation
ratio) all the known relative approximation algorithms.

1.1 Notation and problem definition

Conjunctive Queries. We are given a database schema R over a set of d attributes A. The database
schema R contains m relations Ry,...,Rp. Let A; C A be the set of attributes associated with
relation R; € R. For an attribute A € A, let dom(A) be the domain of attribute A. We assume
that dom(A) = R for every A € A. Let D be a database instance over the database schema R. For
simplicity, we assume that each relation R; contains N tuples in D. Throughout the paper, we
consider data complexity i.e., m and d are constants, while N is a large integer. We use R; to denote
both the relation and the set of tuples from D stored in the relation. For a subset of attributes
BC AandasetY c RY let 75(Y) be the set containing the projection of the tuples in Y onto the
attributes B. Notice that two different tuples in Y might have the same projection on B, however,
np(Y) is defined as a set, so the projected tuple is stored once. We also define the multi-set 75(Y)
so that if for two tuples t;, t, € Y it holds that zg(t;) = np(t;), then the tuple np(t;) exists more
than once in 7g(Y).

Following the related work on relational clustering [20, 23, 44], we are given a full conjunctive
query (join query) q := Ry ™ ... > Ry,. The set of results of a join query q over the database
instance D is defined as ¢(D) = {t € R? | Vj € [1,m] : 7ia;(t) € R;}. For simplicity, all our
algorithms are presented assuming that q is an acyclic join query, however in the end we extend to
any general join query. A join query q is acyclic if there exists a tree, called join tree, such that the
nodes of the tree are the relations in R and for every attribute A € A, the set of nodes/relations that
contain A form a connected component. Let p*(q) be the fractional edge cover of query g, which is
a parameter that bounds the number of join results q(D) over any database instance. More formally,
for every database instance D’ with O(N) tuples in each relation, it holds that |g(D’)| = O(N?"(9))
as shown in [13].
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We use the notation fhw(q) to denote the fractional hypertree width [29] of the query q. The
fractional hypertree width roughly measures how close q is to being acyclic. For every acyclic join
query g, we have fhw(q) = 1. Given a cyclic join query ¢, we convert it to an equivalent acyclic
query such that each relation is the result of a (possibly cyclic) join query with fractional edge cover
at most fhw(q). Hence, a cyclic join query over a database instance with O(N) tuples per relation
can be converted, in O(N"™(9)) time, to an equivalent acyclic join query over a database instance
with O(Nf"™(9) tuples per relation [13]. A more formal definition of fhw is given in Appendix E.
If q is clear from the context, we write fhw instead of fhw(q).

1/2

For two tuples/points' p,q € R? let ¢(p,q) = |lp — ql| = (Zj:l,...,d(”Aj (p) — 7a, (q))z) be
the Euclidean distance between p and q. Throughout the paper, we use the Euclidean distance to
measure the error of the clustering.

Clustering. In this paper, we focus on k-median and k-means clustering. We start with some
useful general definitions. Let P be a set of points in R? and let C be a set of k centers/points in R
Let w : RY — R be a weight function such that w(p) is the weight of point p € P. For a point
p € R? let ¢(p,C) = mineec (p, c). We define

ve(P) = Y w(p)d(p.C),  and  pe(P) = ) w(p)¢$*(p,C).

peEP pEP

If P is an unweighted set, then w(p) = 1 for every p € P.

k-median clustering: Given a weight function w, a set of points P in R¢ and a parameter k, the
goal is to find a set C ¢ R? with |C| = k such that v (P) is minimized. This is also called the
geometric k-median clustering problem. Equivalently, we define the discrete k-median clustering
problem, where the goal is to find a set C € P with |C| = k such that v¢(P) is minimized.
Let OPT(P) = arg mingcga |5/—¢ Vs (P) be a set of k centers in R? with the minimum vort(p) (P).
For the discrete k-median problem let OPTgisc (P) = arg mingp |5/, Vs(P). It is always true that
vort(p) (P) < Vot (P) (P) < 2vopr(p)(P). Let GkMedianAlg, (resp. DkMedianAlg, ) be a (known)
y-approximation algorithm for the geometric k-median problem (resp. discrete k-median problem)
in the standard computational setting? that runs in T)f“ed(lP |) time, where y is a constant.
k-means clustering: Given a weight function w, a set of points P in R? and a parameter k,
the goal is to find a set C ¢ R with |C| = k such that yc(P) is minimized. This is also called
the geometric k-means clustering problem. Equivalently, we define the discrete k-means clustering
problem, where the goal is to find a set C € P with |C| = k such that pc(P) is minimized.
Let OPT(P) = argming.ga |5/« 1s(P) be a set of k centers in R? with the minimum Hopt(p) (P).
For the discrete k-means problem let OPTgjsc(P) = arg ming P.|S|=k HS (P). It is always true that
Hopt(p) (P) < popTy (p) (P) < 4piopt(p) (P). Let GkMeansAlg, (resp. DkMeansAlg, ) be a (known)
y-approximation algorithm for the geometric k-means problem (resp. discrete k-means problem) in
the standard computational setting that runs in Tymea”(IP |) time, where y is a constant.

For simplicity, we use the same notation Tymed(~) for the running time of GkMedianAlg and
DkMedianAlg. Similarly, we use the same notation T,"**"(-) for the running time of GkMeansAlg
and DkMeansAlg. We also use the same notation OPT(-) for the optimum solution for k-means
and k-median clustering problems. It is always clear from the context whether we are referring to
k-means or k-median clustering.

In this paper, we study (both geometric and discrete) k-median and k-means clustering on the
result of a join query:

The terms points and tuples are used interchangeably.
%In the standard computational setting data is stored in one table.
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Definition 1.1. [Relational k-median clustering] Given a database instance D, a join query g, and
a positive integer parameter k, the goal is to find a set S € R? of size |S| = k such that vc(g(D))
is minimized. In the discrete relational k-median clustering the set S should be a subset of g(D).

Definition 1.2. [Relational k-means clustering] Given a database instance D, a join query ¢, and a
positive integer parameter k, the goal is to find a set S C R¥ of size |S| = k such that the ys(q(D))
is minimized. In the discrete relational k-means clustering the set S should be a subset of q(D).

By relational k-median or k-means clustering, we are referring to the geometric versions, unless
explicitly stated otherwise for the discrete variants. We propose results for both versions. We note
that the clustering problem on relational data is defined over the unweighted set ¢(D). In order to
propose efficient algorithms we will need to construct weighted subset of tuples (coresets) that are
used to derive small approximation factors for the relational clustering problems.

Approximation. We say that an algorithm is a relative f-approximation algorithm for the relational
k-median clustering if it returns a set S of size k such that vs(g(D)) < B - vopr(¢q(p))q(D). Next,
we say that an algorithm is an additive f-approximation algorithm for the relational k-median
clustering if it returns a set S of size k such that vs(q(D)) < vopr(¢(p))g(D) + B. In this paper, we
focus on relative approximation algorithms, so when we refer to a f-approximation algorithm we
always mean relative f-approximation. Equivalently, we define relative and additive approximation
algorithms for the relational k-means clustering.

1.2 Related work

There is a lot of research on k-median and k-means clustering in the standard computational setting.
For the k-median clustering there are several polynomial time algorithms with constant approxi-
mation ratio [12, 19, 40]. For the k-means clustering, there are also several constant approximation
algorithms such as [35]. In practice, a local search algorithm [41] is mostly used with a O(log k)
approximation ratio. Furthermore, coresets (formal definition in Section 2) have been used to design
efficient clustering algorithms [14, 32, 33]. Coresets are also used to propose efficient clustering
algorithms in the streaming setting [16, 30] or the MPC model [15, 26]. All these algorithms work
in the standard computational setting and it is not clear how to efficiently extend them to relational
clustering.

In its most general form, relational clustering is referring to clustering objects connected by links
representing persistent relationships between them. Different variations of relational clustering
have been studied over the years in the database and data mining community, for example [9, 17,
28, 34, 38, 42, 45]. However, papers in this line of work either do not handle clustering on join
results or their methods do not have theoretical guarantees.

The discrete relational k-means clustering problem has been recently studied in the literature.
Khamis et al. [36], gave an efficient implementation of the Lloyd’s k-means heuristic in the relational
setting, however it is known that the algorithm terminates in a local minimum without any
guarantee on the approximation factor. Relative approximation algorithms are also known for
the relational k-means clustering problem. Curtin et al. [23] construct a weighted set of tuples
(grid-coreset) such that an approximation algorithm for the weighted k-means clustering in the
grid-coreset returns an approximation solution to the relational k-means clustering. Their algorithm
runs in O(k™Nfhw +T,"*" (k™)) time and has a (y?+4y+/y +4y)-approximation factor. For some join
queries, the approximation factor can be improved to (4y + 24/y + 1). Moseley et al. [44] designed a
relational implementation of the k-means++ algorithm [8, 11] to derive a better weighted coreset.
For a constant ¢ € (0, 1), their algorithm runs in O(k*N" log N + k? N 1og” N + T, (klog N))
expected time and has a (320+644(1+¢)y)-approximation factor. No efficient relative approximation
algorithm is known for the relational k-median problem.
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Problem | Method | Approximation Running time Type
2d+2 nyfhw med (1.2
k-median NEW (2+¢e)y O(l; th 4+ T d(k 2) D
NEW (2+¢e)y O(K“N™ + k* + T,™° (k%)) R
2 3 fhw mean
[23] Yo +4y\Jy +4y O(K™N™V + Ty can (k™)) D
k-means [44] | 320+644(1+¢)y O(K*N™ + Tmean (k) R
NEW (4+¢)y O(K**2N™w 4 Tmean (k2)) D
NEW (4+¢)y O(K*N™ + k* + T (k%)) | R

Table 1. Comparison of our new algorithms with the state-of-the-art relative approximation algorithms. For
our new algorithms we show the approximation for the discrete relational k-median and k-means clustering
problems. For the geometric version of the studied problems the approximation factor of our algorithms is
always (1 + ¢)y. The running time is shown in data complexity. We assume that ¢ € (0, 1) is a small constant.
The notation O is used to hide logo(l) N factors from the running time. T)ﬁ“ed (y) (resp. T)ﬁnea” (y)) is the
running time of a known y-approximation algorithm over y points for the k-median (resp. k-means) clustering
in the standard computational setting. fhw is the fractional hypertree width of q. The number of attributes in
the query q is denoted by d. The letter R stands for randomized, while D stands for deterministic algorithm.

Additive approximation algorithms are also known for relational clustering problems. Chen et
al. [20], constructed coresets for empirical risk minimization problems in relational data. Their
algorithm is quite general and can support relational clustering, i.e., k-median and k-means can be
formulated as risk minimization problems. They work independently in every relation to compute a
good enough coreset and then by the aggregation tree algorithm they merge the solutions carefully
using properties of the k-center clustering. We note that the authors do not design algorithms
for relational clustering problems, instead, they compute a coreset such that any approximation
algorithm (for k-median or k-means) on the coreset returns an (additive) approximation of the
relational k-median or k-means problem. Running GkMedianAlg on top of their coreset leads
to a randomized algorithm that runs in O(N™™ + TYmEd(l)) time and has an ¢ - y - diam(q(D))
additive approximation term, with high probability, where diam(q(D)) is the largest Euclidean
distance between two tuples in g(D). For the relational k-means clustering, their algorithm runs in
O(Nw 4 T;"**"(1)) time, and hasan e -y - diam?(q(D)) additive approximation term, with high
probability. In all cases we assume that ¢ € (0, 1) is a small constant.

Finally, there is a lot of recent work on relational algorithms for learning problems such as,
linear regression and factorization [37, 39, 48, 51], SVMs [3, 4, 55], Independent Gaussian Mixture
models [21, 22]. In [50] the authors give a nice survey about learning over relational data. Generally,
in databases there is an interesting line of work solving combinatorial problems over relational data
without first computing the join results, such as ranked enumeration [24, 25, 53], quantiles [54],
direct access [18], diversity [6, 10, 43], and top-k [53].

1.3 Our results

The main results for the discrete relational clustering in this paper are summarized in Table 1. In
all cases, we assume that ¢ € (0, 1) is a small constant decided by the user.

First, we present a deterministic (1 + ¢)y-approximation algorithm for the (geometric) relational
k-median clustering that runs in O(k%¥*2Nfhw logd+2 N+ T)L“Ed (k*log N)) time. Then, we show a
randomized (1 + ¢)y-approximation algorithm for the (geometric) relational k-median clustering
that works with high probability and runs in O(k2N™" log N+k*log®(N) log® (k) +T,§“ed (k*log N))
time. If k2 log(N) < logd(k) the running time can be improved to O(k*N™™ log N + k® log*(N) +
Tymed (k*log N)). In the discrete case, the approximation factor is (2+¢)y. These are the first known
efficient relative approximation algorithms for the relational k-median clustering problem.
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We extend our methods to show algorithms with the same guarantees for the relational k-
means clustering. We give a deterministic (1 + ¢)y-approximation algorithm for the (geometric)
relational k-means clustering that runs in O(k?#*2N*hw longr2 N +Tpmean (k*log N)) time. Further-

more, we give a randomized (1 + ¢)y-approximation algorithm that runs in O(k*N™"™ log N +
k*log*(N) logd(k) + Tpmean (k?1log N)) time. If k% log(N) < logd(k) the running time can be im-
proved to O(k*N™ log N + k®log*(N) + T;"¢2"(k* log N)). In the discrete case the approximation
factor is (4 + ¢)y. Our algorithms significantly improve both the approximation factor and the
running time of the known algorithms on relational k-means clustering. Due to space limit, in
the next sections we focus on the relational k-median clustering. We show all the results for the
k-means clustering in Appendix A.

Remark 1. While our algorithms work for both acyclic and cyclic join queries, we first present
all our results assuming that q is an acyclic join query. In Section 4.2 we extend our results for
every join query using the generalized hypertree decomposition [29]. From now on we consider
that q is an acyclic join query, so fhw = 1.

Remark 2. For the relational k-means clustering, the algorithm in [44] is generally faster, by
log N factors, than the other algorithms for k = O(1).

2 PRELIMINARIES
2.1 Coreset

We give the definition of coresets for both the relational k-median and k-means clustering problems.
Our algorithms construct small enough coresets to approximate the cost of the relational clustering.

A weighted set C C R is an e-coreset for the relational k-median clustering problem on g(D) if
for any set of k centers Y C RY,

(1-¢)vy(q(D)) <vy(C) £ (1+¢&)vy(q(D)). 1)

Similarly, a weighted set C is an e-coreset for the relational k-means clustering problem, if for
any set of k centers Y C R4,

(1-e)py(g(D)) < py(C) < (1+6)py(q(D)). @)

2.2 Data structures for aggregation queries

In this subsection, we show how we can combine known results in database theory to answer
aggregation queries in linear time with respect to the size of the database.

Let R be an axis-parallel hyper-rectangle in R? The goal is i) count the number of tuples |g(D)NR],
and ii) sample uniformly at random from q(D) N R. The axis-parallel hyper-rectangle R is defined
as the product of d intervals over the attributes, i.e., R = {I; X ... X Iy), where I; = [a;, b;] for
a;,b; € R. Hence, R defines a set of d linear inequalities over the attributes, i.e., a tuple ¢ lies in R if
and only if aj < 74, (t) < b; for every A; € A. Let p be a tuple in a relation R;. If a; < 74,(p) < b;
for every A; € A;, then we keep p in R;. Otherwise, we remove it. The set of surviving tuples is
exactly the set of tuples that might lead to join results in R. Let D’ C D be the new database instance
such that ¢(D’) = g(D) N R. The set D’ is found in O(N) time. Using Yannakakis algorithm [56]
we can count |g(D’)| in O(N log N) time and using [57] we can sample z tuples from q(D’) in
O((N +z) log N) time. Using hashing, we can improve the running time of the algorithms to O(N)
and O(N + zlog N), respectively.

LEmMA 2.1. Let R be a rectangle in R%. There exists an algorithm CountRect(g, D, R) to count
|g(D) N R| in O(N log N) time or O(N) time with high probability. Furthermore, there exists an
algorithm SampleRect(q, D, R, z) to sample z samples from q(D) N R in O((N + z) log N) time or
O(N + zlog N) time with high probability.
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Let B C A be a subset of the attributes. The result in Lemma 2.1 can also be used (straightfor-
wardly) to compute |7p(q(D)) N R| or sample z samples from 75(q(D)) N R in the same running
time, since |7(q(D)) N R| = |g(D) N R|.

2.3 High level ideas

Before we start with the technical sections of the paper, we give high level ideas of our methods.

In Section 3, we assume that a set of centers X for the relational k-median clustering is given such
that v (q(D)) is within a constant factor from the optimum k-median error with |X| > k. Using
X, we construct a coreset C for the relational k-median problem. Then we run GkMedianAlg,
(or DkMeansAlgy for the discrete version) on C to obtain the final solution S. While all previous
papers on relational clustering [20, 23, 44] construct weighted coresets, the coresets that were used
are sub-optimal. Instead, we use and modify the coreset construction from [33], which is a more
optimized coreset for the k-median (and k-means) clustering under the Euclidean metric, in the
standard computational setting. Of course, using such a coreset comes at a cost. First, it is not clear
how to construct a set X with the desired properties on relational data, efficiently. In Section 4
we show how to construct X designing a hierarchical method over the attributes A. Second, it is
not straightforward to construct the coreset in [33] on relational data, given X. In fact, the coreset
construction in [33] cannot be applied (efficiently) in the relational setting. Hence, inspired by [33],
we design a novel small coreset based on X and show that it can be applied to relational data.

More specifically, for any center x; € X, in [33], the authors first compute all points in the dataset
that have x; as the closest center in X. Let P; be this set of points. Then, they construct a grid
around x;, and from every cell O in the grid, they add one representative point from P; N O with
weight |P; N O|. Unfortunately, in our setting we cannot compute P; and/or |P; N O| efficiently.

We resolve the two issues as follows. First, we construct a grid around x;, but instead of computing
all tuples that have x; as the closest center and process all cells, we check whether a cell O is close
enough to the center x; (Equation (3) in the next section). If not then we skip the cell. If yes, then
we take a representative tuple from 0O and we set its weight to be the number of tuples in O that do
not lie in a different cell that has been already processed by our algorithm. Of course, the weight
of a representative tuple now is not the same as in [33] and we might count tuples even outside
of P;, however with a careful analysis we make sure that the overall error is still bounded. The
second problem though, still remains; we need to count the number of tuples in O excluding the
cells we have already visited from previous centers in X (notice that the grid cells of two different
centers in X might intersect). We propose two methods to achieve it. In Section 3.1 we give a
deterministic method that constructs the arrangement of the complement of the visited cells and we
use Lemma 2.1 to count the number of tuples, exactly. However, this algorithm requires Q(|X|¢N)
time. In Section 3.2 we give a more involved and faster randomized approximation algorithm to
count the number of tuples based on sampling.

3 FROM MANY CENTERS TO EXACTLY k CENTERS

We describe an algorithm that constructs a coreset for the relational k-median clustering over the
(multi-set) projection of q(D) on an arbitrary subset of attributes. Let A;, C A be a subset of the
attributes. Let q,,(D) be the multi-set q,,(D) := 7a,(q(D)). Notice that |q,(D)| = |q(D)| and its
size can be computed in O(N) time using Yannakakis algorithm. Let n = |q,(D)| and d,, = |A,|.
Assume that X is a set of points in R% such that vx(q, (D)) < a- VOPT(¢q. (D)) (qu(D)), where a > 1
is a constant. Notice that

vx(gu(D) = > p(ra, (),X).

teq(D)

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 213. Publication date: November 2024.



213:8 Aryan Esmailpour and Stavros Sintos

We also assume that r is a real number such that vx(q,(D)) < r < @ - vopr(q, (D)) (qu(D)). In fact,

it follows from the following sections that we can also assume (H;) 7 < vx(qy(D)). Note that

we do not assume anything about the size of X. In the next section, we show that we can always
consider |X| = O(k?).

In this section we propose two algorithms that take as input X and r and return a set S C
R% of cardinality |S| = k such that vs(q,(D)) < (1 + £)YVOPT(qu (D)) (qu(D)), ie, Sisa (1 +
£)y-approximation for the k-median problem in g, (D). They also return a number r, such that
vs(qu(D)) < ry < (1+€)yvopT(q, (D)) (qu(D)). We note that given a set of centers S, we cannot
compute the error vs(q, (D)) efficiently, hence r,, is needed to estimate the error of the clustering.
We also note that if A, = A, then the returned set S is an (1 + ¢)y approximation solution for the
relational k-median clustering problem on ¢(D). For the discrete relational k-median clustering,
we return S C q(D) and r, such that, vs(q,(D)) < r, < (2+6)yVopr(q. (D)) (qu(D)).

The first algorithm is a slow deterministic algorithm that runs in Q(|X|%*!N) time. The second
algorithm is a faster randomized algorithm that runs in time roughly O(|X|N) time. We mostly
focus on the geometric version of the relational k-median clustering, however, we always highlight
the differences with the discrete version.

3.1 Slow deterministic algorithm

For the slow deterministic algorithm we construct a hierarchical grid around every center x; € X.
Then, for every cell that is close enough to x;, we compute the number of join results in g, (D)
inside the cell that do not lie inside another cell previously processed by our algorithm. We count
the number of join results using Lemma 2.1.

Algorithm. The pseudocode of this algorithm is shown in Algorithm 1. We first set ¢’ = ¢/4 and

. . (D .
define ® = —~- as a lower bound estimate of the average radius Yorrguo) (4uD) g every point

n
x; € X we construct an exponential grid around x;. Let Q; ; be an axis parallel square with side
length ® - 2/ centered at x;, for j = 0,1,...,2log(an). Let Viy = Q; and let Vij=0ij\Qij-1. We
partition V; ; into a grid 17,-,]- of side length ¢’®2//(10ad,,). Let V= U, 17,3]-.

-1 Oq
. Xi+3
)

\\ xi e
. - - - 4

Fig. 2. Let 01,02 € V;. It holds that ¢(x;,01) >
¢(xi+1,01) + diam(O1) so Oy is not processed by
the algorithm. x;42 is the closest center to Oy, i.e.,
¢(X,02) = ¢(xit2,02) and it holds @(x;,02) <
Fig. 1. The grid construction V; around the red point ¢ (xis2, O2) + diam(O2), so Oz is processed by the al-
x; € X. gorithm. The red (blue) dashed segments represent
the distances of x; to 07 (O2), xi+1 (xi+2) to O (O2),
and the diameter of O; (O2).

FFEF
HE

An example of the grid construction can be seen in Figure 1. The construction so far is similar to
the exponential grid in [33]. However, from now on the algorithm and the analysis is different. Let
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Algorithm 1: RELCLUSTERINGSLOW(q, D, A, X, a, 1, €)
16 =¢/4

2 n=|q,(D)| =|q(D))| (using Lemma 2.1);
30=-"3 G=0; C=0;

4 foreach x; € X do

5 foreach j=0,1,...,2log(an) do

6 Q;j « axis parallel square with length 2/® centered at x;;

7 Vij=Qij\ Qij-15 vi,j « grid of side length £'2/®/(10ad,) in V; j;
8 Vi = Uj Vi,j;

9 foreach 0 € V; do

10 if ¢(x;,0) < ¢(X,0) + diam(O) then

11 Arr(G) « arrangement of G;  Arr(G) « complement of Arr(G);
12 Art’ (G) « partition of Arr(G) into hyper-rectangles;

13 Ko =0;

14 foreach R € Arr’(G) do

15 L Og =0NR; Ky =Ky+ CountRect(q,D,0Og) (using Lemma 2.1);
16 if K5 > 0 then

17 sg < arbitrary tuple in q,,(D) N (O \ G);

18 w(sg) = Kg;

19 C < CU{sg};
20 G «— Gu{Oo};

21 § = GkMedianAlg, (C) (or S = DkMedianAlg, (C) for the discrete version);
22 1y = 795vs(C);
23 return (S, r,);

G = 0 be an empty set of grid cells. Let also C = @ be an empty point set in R% and w be a weight
function that we are going to define on C.
For every x; € X, and for every cell O € V; we repeat the following steps. Let diam(0) be the

diameter of 0. If #(x;,0) < ¢(X,0) + diam(D), ®)

(an example of applying Equation (3) is shown in Figure 2) then we proceed as follows. Let Gy be the
set G just before the algorithm processes the cell O. The goal is to identify |g, (D) N (O \ Gg)| and
if |q,(D) N (O \ Go)| > 0 then add a representative point sg € g, (D) N (O \ Gp) in C with weight
w(sg) = |qu(D) N (O \ Go)|- Next, we construct the arrangement of G. The arrangement [7, 31]
of Gp, denoted Arr(Gp), is a partitioning of G into rectangular contiguous regions, such that
for every region reg in the arrangement, reg lies in the same subset of Gg. Let Arr(Gg) be the
complement of Arr(Gg), and let Arr’(Gg) be a partition of Arr(Gg) into hyper-rectangles. For each
rectangle R € Arr’(Gg), we compute Og = 0N R, which is also a hyper-rectangle in R%. Using the
CountRect(-) procedure form Lemma 2.1 we compute Ko = Y gearr (G) [O% N qu(D)]. If Ko > 0 we
also get an arbitrary point sg from Ugear () Or N qu(D). We add sg in C and we set its weight
w(sg) = Kg. We say that all tuples in g, (D) N (O \ Gg) are assigned to sg, and we add Oin G. An
example of the arrangement can be seen in Figure 3.
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- ===

Fig. 4. The black square is a cell O € V;. The blue
squares define the set of heavy cells in Bg that in-
tersect O. The points represent the set of samples
Hp. Blue points are the samples in Bg while black
points are the samples in O \ Bg. Hence, go = 8 and
M = |Hg| = 12. If = 0.3 then go/M > 2 -7, and a

black point is selected as sg with weight % . 1’1%‘9

Fig. 3. The black square is a cell O € V;. The blue
squares define the set of cells in G (cells already pro-
cessed by the algorithm) that intersect O. The red
dashed segments show the arrangement of the com-
plement of G in O, i.e., the red dashed segments show
o N Arr’(Gp).

7.

On the other hand, if the condition (3) is not satisfied, then we skip O and we continue with the
next cell in the exponential grid.

In the end, after repeating the algorithm for each x; € X, we get a weighted set C. We run

the standard algorithm for the weighted k-median problem GkMedianAlg, (or DkMedianAlg,, for
the discrete k-median problem) on C to get a set of k centers S, and we return S as the answer.
Furthermore, we return r,, = ﬁvs(c ).
Correctness. We first show that every tuple in q,(D) is assigned to a point in C. Then, we
show that C is an ¢'-coreset for q, (D). Next, we show that S is a good approximation of the
optimum k-median solution and r, is a good approximation of vg(q,(D)). Finally, we show that
vs(qu(D)) < ry £ (1+6)yVopT(¢. (D)) (qu(D)). All missing proofs can be found in Appendix B.

LEMMA 3.1. Every tuple t € q,,(D) is assigned to a point in C. Furthermore, the number of tuples in
q. (D) that are assigned to a point s € C is w(s).

Proor. Let x; € X be the center that is closest to t. By definition, there will be a cell O defined
by the exponential grid around x; that contains ¢, since ¢(t, x;) < an®. We show that for the cell
O the condition (3) holds. Let x; be the center such that ¢(x;, 0) = ¢(X, 0). We have ¢(x;,0) <
d(xi,t) < Pp(xj,t) < ¢(X,0) + diam(O). Hence, ¢ is assigned in sg. The second part of the lemma
holds by definition. O

For a tuple t € q,(D), let O; be the cell from the exponential grid defined by the algorithm such
that 0, is the first cell processed by the algorithm that contains ¢, i.e., t € q,(D) N (O, \ Gg,). Next,
we denote the assignment of each tuple ¢ € q,,(D) to a point in C by o, i.e., o(t) := sy, € C. Let
i(t) be the index such that O; € ‘7,'(:). By definition, notice that x;(;) € X is the center visited by
our algorithm at the moment that ¢ is assigned to o(t).

LEmMA 3.2. C is an ¢’ -coreset for q, (D).

PROOF. Let Y be an arbitrary set of k points in R%. The error is defined as & = |vy(q,(D)) —
vy(O)] £ Xiequ) 19(t,Y)—=¢(o(2), Y)|. By the triangle inequality, ¢ (¢, Y) < ¢(o(2), Y)+¢(t, 0(2))
and ¢(o(t),Y) < ¢(t,Y) + (¢, 0(t)). Hence, |¢p(£,Y) — ¢p(a(t), V)| < ¢(t, 0(t)). We have,

E< ) dto)= > $ow) + > Lo

t€qy (D) €4y (D),¢(t.xi(1)) S tequ(D),¢(t.xi(r))>®
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For ¢(t,x;(1)) < ®, by the construction of the exponential grid, we have ¢(t, o(t)) < diam(0;) <

o
162 D hence ,

£
To VOPT(4u(D)) (qu(D)).

$(t, 0 (1)) < lf)—ancp <
teqyu(D),¢(t.xi(r)) <P
For ¢(t, x;(;)) > ®, by the construction of the exponential grid we have ¢(t, o(t)) < diam(0;) <
ﬁg{)(t, Xi(1))- Notice that ¢ (x;(;), 0;) < ¢(X,0;) + diam(O;), by condition (3) We have,

(L, xi(1)) < P(xi(), Or) + diam(Q;) < ¢(X,0

S Pt xin) < P o, X) < (1
- Toa

so ¢p(t,o(t)) < 100{(1 + 100{)45(t X). Then, we get
8 E/ E/ / ( /)2

S Tog YOPT(a«(®) (qu(D) + 150 (1+ (D)) < ( ~Tooa VOPT(au (D)) (qu(D))
< €'VopT(g,(p)) (qu(D))-
This implies that [vy(q,(D)) — vy(C)| £ €'vy(qy(D)). O

From the previous lemma, we conclude with the main result establishing the correctness of the
algorithm.

LEMMA 3.3. IkaMedianAIgy is used, then S ¢ R? and vs(q, (D)) < 1, < (1+€)yvorT(q. (D)) (qu(D)).
IkaMedianAIgy is used, then S € q,(D) and vs(qu(D)) < ry < (2+€)YVopTy(gu (D)) (qu(D)).

Proor. By the definition okaMedianAlgy and Lemma 3.2, we have vs(C) < yvopr(¢)(C) <
YVorT(g. (D)) (C) < (1 +€)yvorT(q,D))(qu(D)), and vs(C) = (1 - ¢')vs(q(D)), so
vs(gu(D)) < -

< (1+4€)yvort(g, (D)) (qu(D)) = (1 +€)yvopT(g, (D)) (qu(D)).
The proof using the DkMedianAlg,, algorithm is shown in Appendix B. O

1 1 +¢&
— vs(C)=ry < YTTo vort(c)(C) < =7 YVOPT(¢u (D)) (qu(D))

Running time.
LEMMA 3.4. |C| = O(|X|e~%log N).

Proor. For each x; € X there are 2log(aN) = O(log N) boxes Q; ;. For each V; j, we construct
O(&7%) cells. In the worst case, C contains a point for every cell. O

The algorithm visits O(|X|e~% log N) cells. For each cell O, we check the condition (3) in O(|X])
time and we compute the arrangement Arr(Gg) in O(|X|%¢ % log* N) time. For each hyper-
rectangle in the complement, we run a query as in Lemma 2.1 in O(N log N) time. Overall, C is
constructed in O(Ide““s’dlZfd“N logdquz N) time, and we get S in O(Tymed(|X|e’du log N)) time.

THEOREM 3.5. Let D be a database instance with N tuples, q be an acyclic join query over a
set of attributes A and A, C A. Given a set X C R? a constant a such that vx(q,(D)) <
AVOPT(q. (D)) (qu(D)), and a constant parameter ¢ € (0,1), there exists an algorithm that com-
putes a set S ¢ R? of k points and a number r, in O(|X|%*'Nlog%*2 N + Tymed(|X| log N)) time
such that vs(qu(D)) < ry < (1 + €)yvopT(q.(D))(qu(D)). There also exists an algorithm that
computes a set S C q,(D) of k points and a number r, with the same running time, such that
vs(qu(D)) < ru < (2+ &)y Vot (g.(D)) (qu(D)).
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Algorithm 2: RELCLUSTERINGFAST(q, D, A, X, @, 1, €)
1 ¢ =¢/34;

2 Lines 2-3 from Algorithm 1;

3 foreach x; € X do

4 Lines 5-8 from Algorithm 1;

5 B=0;

6 T=

1 .
16|X|(¢’)~9u-llog N’

7 M= —(8,3)2T log(2N104);
8 foreach 0 € V; do

9 if ¢(x;,0) < ¢(X,0) + diam(O) then

10 Hp = 7, (SampleRect(q, D, 0, M)) (Using Lemma 2.1);
1 9o =|Ho \ (BN Ho)l;

12 if gﬁu > 27 then

13 sg < arbitrary tuple in Hy \ B;

14 ng = CountRect(q, D, O0) (Using Lemma 2.1);

5 Wiso) = o - % -

16 C—CU{sg}; B« BU{O};

17 S = GkMedianAlg, (C) (or S = DkMedianAlg, (C) for the discrete version);

,
18 r, = 1555vs(C);

19 return (S,r,);

3.2 Fast randomized algorithm

As we show in Section 4.1, the algorithm in the previous section can be used to get a constant
approximation for the relational k-median problem. However, the running time is Q(|X|%*!N).
As we will see in the next section |X| = k?, leading to an Q(k*%*2N)) algorithm. In this section,
we propose a more involved randomized algorithm that improves the factor |X|%*!N to only
|X| - N. Undoubtedly, the expensive part of the deterministic algorithm is the cardinality estimation
|g.(D) N (O\ Gp)|. Next, we design a faster algorithm to overcome this obstacle. The algorithm
constructs exactly the same exponential grid as described above. However, in this algorithm, we
use a more involved approach to estimate the weights w(sg) faster using random uniform sampling.
We use the same notation as in the previous subsection. Let C = 0 and let ® as defined above. In
this algorithm, we will characterize each cell we visit as heavy or light. Let B denote the set of the
processed heavy cells. So, we initialize with B = 0.

Algorithm. The pseudocode of the algorithm is shown in Algorithm 2. We set ¢’ = ¢/34. For
each x; € X and for each cell O € V;, we check condition (3). If it is satisfied, then we process O
Otherwise, we skip it and continue with the next cell. Let O be a cell in the exponential grid that

. 1 .
the algorithm processes. We compute ng = |q,,(D) N O| and we set 7 = X Tiog N Using the

algorithm from Lemma 2.1, we sample with replacement a multi-set Hy of M = “,—3)21_ log(2N1d) =
O(|X|(¢") %3 log2 N) points from g, (D) N O and we set g5 = |Hg \ (B N Hy)|, i.e., the number
of samples that are not currently contained in heavy cells we processed. If £2 > 27, then let sg
be any of the sampled points in Hy \ B as the representative point of 0. We add sy in C with

weight w(sg) = # . gﬁu - np. We say that all the points in q,,(D) N (O \ B) are mapped to sg. We
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characterize O as a heavy cell and we add it to B. Otherwise, if gM‘] < 27, then O is a light cell, we
skip it and continue processing the next cell. An example of the sampling procedure is shown
in Figure 4. In the end, after repeating the algorithm for each x; € X, we have a weighted set
C of size O(|X|e~% log n). We run the standard algorithm for the weighted k-median problem
GkMedianAlg, (or discrete k-median problem DkMedianAlg,) on C to get a set of k centers S. We

return the set of centers S. Furthermore, we return r,, = llf‘;i/, vs(C).
Correctness. Let P, (heavy tuples) be the tuples in g, (D) that belong to at least one heavy cell in
Bandlet P, = q,(D) \ P, (light tuples), at the end of the algorithm. By construction, every tuple
t € g, (D), belongs to at least one heavy or light cell. Notice that a point ¢ € g, (D) might first lie in
a light cell and only later in the algorithm it might be found in a heavy cell. It is straightforward to
see that any heavy point ¢ € P, is mapped to a point in C. For each t € P,, let O; be the first heavy
cell visited by the algorithm such that ¢ € q,,(D) N O;. Let i(¢) be the index such that O; € Vi(t). In
the deterministic algorithm, we had the assignment function o(+) for all the points in g, (D). In
this algorithm, we only map the points in P, so we define a new mapping function &(-), i.e., for a
point t € P, 6(t) := sg, € C. For a cell O processed by the algorithm, let By be the set of heavy
cells found by the algorithm just before O was processed. For a point p € C, let O, be the cell that
the algorithm processed while p was added in C, and let n, = |q,(D) N (O, \ Bg,)| be the number
of the points mapped to p.

We show the correctness of our algorithm through a number of technical lemmas. We first show
a crucial observation. There exists a charging process where i) every light tuple (i.e., a tuple that
does not belong to a heavy cell) charges gl heavy tuples that lie to the same cell as the light tuple,
and ii) every heavy tuple is charged at most once. This observation is then used to show that for
any set of k centers, the k-median error of q,, (D) is close enough to the k-median error with respect
to the heavy tuples so we can safely ignore the other tuples. Using this argument, we prove that
C is a 9¢’-coreset for the heavy points. Using all previous observations, we conclude that S is a
(1 + ¢)y-approximation for the relational k-median clustering. All missing lemmas and proofs can
be found in Appendix C.

LEMMA 3.6. For every point p € C, np, < w(p) < (1+ 4¢")n,, with probability at least 1 — W.

PRroOF. Let p € C be a point in the coreset. By definition g% > 27, so using the Chernoff bound,
as shown in [20] (Lemma 2), with probability at least 1 — ﬁ it holds that

’ 9o ,
(1-¢)|qu(D) N (Tp \ B,)| < ﬁpnmp < (1+¢)]qu(D) N (0, \ B, ).
Hence, n, < w(p) < llf—‘i/,np < (1+4¢’)n,, with probability at least 1 — 1/NO). O

Let L be the set of light cells found by the algorithm. For a cell O € L, let PL be the set of the
points in q, (D) N O that do not belong in a heavy cell at the time that the algorithm processes
0. Notice that a point p € PL might also belong to P, (points that lie in at least one heavy cell)
because p was found inside a heavy cell later in the algorithm. In addition, we note that it might be
possible that PEL,’_ NPL # 0, for j # h. Furthermore, let PZ be the set of points in g, (D) N O that
belong in at least one heavy cell at the time that the algorithm processes 0.

In the next technical lemma, we show the existence of a charging process that is later used to
estimate the k-median error of ¢(D) using only the heavy tuples P,,.

LEMMA 3.7. There exists a charging process that works with probability at least 1 — W having

the following properties. For every cell 0 € L, each point p € PL charges ﬁ points in PE, such that, in
the end, every point t € P, has been charged at most once.
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ProoF. Let L = {Oy,...,0,} be sorted in ascending order of |PL, ie., |7>éj| < IPéjﬂl. It is
sufficient to show that for every j = 1,...,n, |ng - %th |7Déh > %ISDé“jl. Indeed, if this
inequality holds for every j, then there are always at least % |Péj| uncharged points in 5051_, and
we can charge each point in 7’L. to i points in PB,.

L

?’D]

|Ho,
Recall that O; € L is a light cell because the algorithm found that the ratio <2r.In

| L
PERPL] <4
with probability at least 1 — Nom Solving the inequality with respect to |7’B |, we get ISDB | >
o, IPL |, because 7 < ¢ Hence |PB | > 2|X]|(e") "% ' log(N) - IPL [

Next we find an upper bound for 7 Dih<j |7>D} |. Because of sorting in ascendmg order of |SDL I,
we have £ %, |95, | < Z|PL | < 'f,' PLI < IXI(e)) "% log(N) - |PL |-

Hence, we conclude that

this case, from the Chernoff bound (Lemma 2 in the full version of [20]) we have

PE - = Z P51 = 21X|(") % log(N)IP5 | - IXI() "% " log(N)|P5 | = — |7>é]
h<j
O
For each point p € Py, let 0;(,) € L be the cell in L such that p € 0;(,) and p charges gl points
in 3, i(p)’ i)
Next, we show that the k-median error Wlth respect to the heavy points P, approximates the
k-median error of all tuples in g, (D).

as shown in Lemma 3.7. Let ¢, (), . . .. j, ,, (p) be these points in Pg

LEMMA 3.8. Let Y be an arbitrary set of k points in R%. It holds that vY(P ) < vy(Py) +

& vy(q,(D)) and vy (qy (D)) < (1 +4¢")vy(P,) with probability at least 1 — Nou)

ProoF. We start showing the first inequality vy(P,) < &vy(P,) + € vy(q,(D)). We have
vy(Py) = Y pep, $(p, ). For a point p € P, and each h < £, by triangle inequality, we have

P, Y) < (L), (p), Y) + 9D L (p))-

Taking the sum ofthese - inequalities, we have ¢(p,Y) < ¢ Zh 1¢(t]h(p),Y)+€ Zh . ¢(p tin(p))s

so we get 1/¢ 1/¢
w(P) <& )Y bt D +E Y D S tm).
peP, h=1 peP, h=1

From Lemma 3.7, we proved that any t € P, is charged by at most one point in P,, so the first
term in the sum can be bounded as ¢’ 3’ ¢, 2;1/:81 A(tj,p),Y) < € Xpep, $(t,Y) = e'vy(Py). In
Appendix C we bound the second term in the sum showing that ¢’ 3 ,cp, Z;l/jl d(p.tj,(p)) <
(e)vy(q(D)) < £'vy(g(D)). Hence, the first inequality follows.
For the second inequality we have,
vy(Py) = vy(qu(D)) - vy(Py) 2 vy(qu(D)) - £'vy(Py) — £'vy(qu(D)),

so vy(qu(D)) < %til/VY(Pu) < (1+4€)vy(Py). o

Using the inequalities in Lemma 3.8 and Lemma 3.6, we follow the proof of Lemma 3.2 and we
show the next result.

LEmMA 3.9. C is an 9¢’-coreset of P, with probability at least 1 — ﬁ
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Proor. Let Y be an arbitrary set of k points in R%  as we had in Lemma 3.2. From Lemma 3.6,
let &, € [0,4¢’] be a real number such that w(p) = (1 +&,)n,, for p € C. With probability at least

1- ﬁ we have,
E=Ivy(P) =vy(O) =1 D $(t,Y) = D wpdp(p, V)l =1 D $(tY) = Y (1+e)nyd(p, V)]
tePy, peC tePy peC
=1 DY) = ) (14 250)PE(EL V< Y 1(5Y) = (1+£5(0)$(6(1), V).
teP, teP, tepP,

This inequality also follows from Lemma 3.6. Indeed, each 6(t) has a weight that is (1+¢5(;)) times
larger than the number of points in P, that are assigned to (). We have,

&< D IpY) = (142506, < Y 19(4Y) = $(5(0), )| +4¢ " $(5(2),Y)

tePy, teP, teP,

< Z $(t,6(1)) +4e'vy (Py).

teP,
Following the proof of Lemma 3.2 we have };cp, ¢(t,6(t)) < €'vy(q,(D)). From Lemma 3.8 we
get vy (qu(D)) < (1+4¢’)vy(P,). We conclude that & < (5¢’ + 4(¢’)?)vy(P,) < 9¢'vy(P,). O

Form Lemma 3.9, we conclude to the main result.

LEMMA 3.10. IkaMedianAIg is used, thenS ¢ R? andvs(q(D)) < r, < (1+e)yvort(q(D)) (q(D)),
N0<1> IkaMedlanAlg is used, thenS C qu(D) and vs(q,(D)) <r, <
(2 + &)y VoprT . (qu (D)) (qu(D)), with probability at least 1 —

with probability at least 1 —
NO(l)

Proor. We first consider the case where GkMedianAIgy is used. From Lemma 3.9, we have that

for any set ofk points Y in R%, (1 = 9¢')vy(P,) < vy(C) < (1 +9¢")vy(P,), with probability at
least 1 — By definition,

vs(C) < yvorr(c)(C) < yvort(p,)(C) < (1+9¢")yvopr(p,) (Pu). (4)

The last inequality follows by the definition of the coreset for Y = OPT(P,). Since P, C q, (D) and
OPT(P,), OPT(g,(D)) c RY, it also holds that vopr(p,) (Py) < VOPT(qu (D)) (qu(D)).
From Lemma 3.8 (for Y = S) we have vs(q,(D)) < (1+4¢")vs(P,). Hence,

NO(I)

, 1+4¢ 1+4¢)(1+9¢
vs(gu(D) < (1+4¢)vs(Pu) < T vs(C) =1 < o (1+4e)(1+9¢)
—9¢ 1-9¢

< (1+34¢")yvopr(q. (D)) (qu(D)) = (1 +&)yVoprt(q. (D)) (qu(D)).

YVOPT(gu (D)) (qu(D))

The proof using the DkMedianAlg, algorithm is shown in Appendix C. O

Running time.  The total number of cells that the algorithm processes is O(|X|e~% log N). In
each cell, we take M = O(|X|e~%~3 log? N)) samples. Using Lemma 2.1, for each cell we spend O(N+
M log N) time to get the set of samples. For each sample, we check whether it belongs to a heavy cell
in B. This can be checked trivially in O(|B|) = O(|X|e~% log N) time, or in O(logd“ (IX|e~%1log N))
time using a dynamic geometric data structure for stabbing queries [5, 52]. Finally, the standard
algorithm for k-median clustering on O(|X|e~% log N) points takes O(Tymed(|X|£_d“ log N)) time.
The overall time of the algorithm is

) (N|X|e‘d“ log(N)+|X|%e~%~3 103 (N) min {|X|e‘d“ log(N), logd (|X|)}+Tymed(|X|e‘d" log N)) .
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Algorithm 3: REL-K-MEDIAN(q, D, R, ¢, u)

1 if u is a leaf node then

2 Let R; be a relation in R such that A, € Aj;

3 Construct join tree T of ¢ with R; in the root;

4 Run Yannakakis algorithm on T to compute c(h) = |{t € q(D) | 7a,(t) = h}|, Vh € R;;
5 | Hy=nma,(Rj);

6 foreach p € H, do

7 | w(P) = Zheryira, (=p €M)

8 Su = GkMedianAlg, (Hy);  ru = vs, (Hu);

9 else

10 Let 0 and z be the children of u;

11 X=8,X8,; r=ry+ry

12 (Su,7u) < RelClusteringFast(q, D, A, X, (1+ &)y V2,1, ¢);

13 return (S, r,);

THEOREM 3.11. Let D be a database instance with N tuples, q be an acyclic join query over
a set of attributes A, and A, C A. Given a set X C R%, a constant a such that vx(q,(D)) <
AVOPT(q. (D)) (qu(D)), and a constant parameter € € (0, 1), there exists an algorithm that computes a
setS C R? of k points and a numberr, in O(|X|N log N +|X|? log®(N) min{logd" (1X1), [ X|log N} +
T)I“Ed(|X| log N)) such that vs(qu(D)) < ry, < (1+€)yvopT(q. (D)) (qu(D)), with probability at least
1- ﬁ There also exists an algorithm that computes a set S C q,(D) of k points and a number
ru with the same running time, such that vs(qu(D)) < ry < (2 + &)y VorT,. (g.(D)) (qu(D)), with
probability at least 1 — m
4 EFFICIENT ALGORITHMS

We use the results from Section 3 to describe a complete algorithm for the relational k-median
clustering. In the previous section, we saw how we can get a (1 + ¢)y-approximation algorithm if
a set X along with a number r such that vx(q(D)) < r < O(1)vopr(¢(p))g(D) are given. In this
section, we efficiently compute the set X and the value r, and present the complete algorithms for
the relational k-median clustering.

4.1 Acyclic queries

We construct a balanced binary tree 7~ such that the j-th leaf node stores the j-th attribute A; € A
(the order is arbitrary). For a node u of 77, let 7, be the subtree of 7 rooted at u. Let A,, be the set
of attributes stored in the leaf nodes of 7;. For every node u, our algorithm computes a set S, of
cardinality k and a real positive number r,, such that

vs, (qu(D)) < ry < (1+6)yvopT(q, (D)) (qu(D)), (5)

for the relational k-median clustering. For the discrete relational k-median clustering, our algorithm
computes a set S, of cardinality k and a real positive number r,, such that

Vs, (qu(D)) < ry < (2+€)YVoprTy (qu (D)) (qu(D)), (6)

The definition of g, (D) is the same as in the previous section: g, (D) = 7a,(q(D)). Simi-
larly, we use the notation d, = |A,|. For a finite set Y ¢ R? and a point t € R? let N(Y,t) =
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argmin, .y #(,y), be the nearest neighbor of # in Y. Recall that for any set Y C R%, vy (q,(D)) =
2reqm) P(7a, (1), Y) = Yiecq) \/ZAjeA,,(ﬂAj(t) =74, (N(Y, 7, (1))))2.

The algorithm we propose works bottom-up on tree 7. If u has children v, z we use the pre-
computed S,, S, and r,, 7, to compute S, and r,,.

Algorithm. First, we run the Yannakakis algorithm [56] on ¢(D) and we keep only the non-
dangling tuples in D, i.e., tuples in D that belong to at least one join result g(D). For any node u
of 77, in Algorithm 3 we show the pseudocode for the geometric version of relational k-median
clustering, computing S, and r,,.

Let u be a leaf node where A, contains one attribute A, € A. This is the only case that we
try to implicitly construct q, (D) as a set of O(N) points in R! with cardinalities (weights). More
specifically, we construct the weighted set of points in R!, H, = na,(q(D)) such that p € H,
has weight w(p) = |{t € q(D) | 7a,(t) = p}|. Notice that H, is a set and not a multi-set. We
can compute H,, and the weight function w(-) as follows. Let R; be an arbitrary relation from R
that contains the attribute A,. We use the counting version of Yannakakis algorithm to count the
number of times that a tuple belongs in ¢(D). More specifically, we construct the join tree for q
and choose R; as its root. Using Yannakakis algorithm, for every tuple h in the root R; we compute
c(h) = |{t € q(D) | ma,(t) = h}|. By grouping together tuples from R; with the same value on
attribute A, we compute H, and the weight function w(-). More specifically, we set H, = 74, (R;)
and for each p € Hy, we set w(p) = Xper; na, (h)=p ¢(h). Finally, we run the standard weighted
k-median GkMedianAlg,, (or discrete k-median DkMedianAlg, ) algorithm on the weighted set H,
and we get a set of k centers S,. We also compute r, = vg, (Hy).

Next, assume that u is an inner node of 7~ with two children o, z. The algorithm sets r = r, +r,

and X = S, X S,. Then, we run the algorithm from Theorem 3.11 (or Theorem 3.5) using X and r
as input and compute S, and r,,. More specifically, for the relational k-median clustering we call
RelClusteringFast(q, D, A,, X, (1+¢) y\/z r, €) , while for the discrete relational k-median clustering
we call RelClusteringFast(q, D, A,, X, 2(2 + 8))/\/5, r,€). Let p be the root of 7. We return the set
S=8,.
Correctness. As we explained above, for the leaf nodes, the algorithm is simple. Let u be an
intermediate node and let v and z be the two child nodes of u. Assuming that S,,7, and S, 7,
satisfy the Equation (5) (resp. Equation (6) for the discrete relational k-median), we show that S,
and r,, satisfy Equation (5) (resp. Equation (6) for the discrete relational k-median). If we prove that
vx(qu(D)) < ry £ avopr(q, (D)) (qu(D)), then the correctness follows from Theorem 3.11. The full
proof of the next lemma can be found in Appendix D.

LemMa 4.1. If GkMedianAlg, is used, then vx(qu(D)) < ry < avopt(q,(D))(qu(D)), fora = (1+
e)yV2. IfDkMedianAlg,, is used, then vx (qu(D)) < ry < avopr(q, (n))(qu(D)), fora = 2(2+€)yV2.

Proor. We focus on the case where GkMedianAIgy is used. Let O, = ma, (OPT(q,(D))), and
O, = na_(OPT(gqy(D))). We define O = O, x O,. Notice that OPT(gq, (D)) € O so vp(q.(D)) <
VOPT(g4(D)) (qu(D)). We have,

vx(qu(D) = Y lma, () - N(X, ma, (D)]]

teq(D)
= 3 e, (6) = ma, (N X 7a, (D)2 + 176, (£) = 78, (N (X, 7a, ()] 2
teq(D)
< D M) = NSpma, I+ Y. 7a. () = N(Seoma, (DI < 7+ 72
teq(D) teq(D)
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< (@ +ey| D llna,(6) = N(OPT(go(D)), za, ())II+ Y [17a.(t) = N(OPT(g: (D)), 7a. ()]l

teq(D) teq(D)

< (1+o)yV2 Z \/IlﬂAv(t)—ﬂAv(N(O,ﬂAu(t)))IIZ+IIﬂAz(t)—HAZ(N(QﬂAu(t)))II2
teq(D)

=(+eyV2 Y [l7a, () = N(O. 2, ()] < (1+€)yVZ - Vorr(g, o)) (qu(D)).
teq(D)

Similarly, if DkMedianAlg,, is used, we have vx (qu (D)) <r, < 2(2+£)y\/§-vopT(qu ))(qu(D)). O
Putting everything together, we conclude with the next theorem.

THEOREM 4.2. Given an acyclic join query q, a database instance D, a parameter k, and a constant
parameter ¢ € (0, 1), there exists an algorithm that computes a set S ¢ R? of k points such that
vs(q(D)) < (1+ &)yvopr(q())(q(D)), with probability at least 1 — W The running time of
the algorithm is O(Nk? log(N) + k* log® (N) min{logd(k), k*log N} + T)I“ed (k?1og N)). Furthermore,
there exists an algorithm that computes a set S’ C q(D) of k points in the same time such that
vs (g(D)) < (2 + €)yvopt,, (¢(D)) (q(D)), with probability at least 1 — Ném

We extend the result of Theorem 4.3 for the relational k-means clustering in Appendix A. Using
Theorem 3.5 instead of Theorem 3.11 we can get a deterministic algorithm for the relational k-
median clustering problem with the same approximation guarantees that runs in O (k?**2N log®*? N+
T)ﬁ“e‘i (k?log N)) time.

4.2 Cyclic queries

We use the notion of fractional hypertree width [29] and use a standard procedure to extend our
algorithms to every (cyclic) join query q. For a cyclic join query q, we convert it to an equivalent
acyclic query such that each relation is the result of a (possibly cyclic) join query with fractional
edge cover at most fhw(q). We evaluate the (possibly cyclic) queries to derive the new relations
and then apply the algorithm from Section 4.1 on the new acyclic query. Since it is a typical method
in database theory, we give the details in Appendix E.

THEOREM 4.3. Given a join query q, a database instance D, a parameter k, and a constant parameter
e € (0,1), there exists an algorithm that computes a setS c R? of k points such that vs(q(D)) <
(1+&)yvort(q(p)) (q(D)), with probability at least 1 — NO(I) The running time of the algorithm is
O(Nf™k?1log(N) + k*1og*(N) mm{log (k),k*log N} + T;"ed (k?1og N)). Furthermore, there exists
an algorithm that computes a set S’ C q(D) of k points in the same time such that vs (q(D)) <
(2+&)yvopt .. (¢()) (q(D)), with probability at least 1 — 0(1) The same results hold for the relational
k-means clustering problem.

5 CONCLUSION

In this paper we propose improved approximation algorithms for the relational k-median and
k-means clustering. There are multiple interesting open problems derived from this work. It is
interesting to check whether our geometric algorithms can be extended other clustering objective
functions such as the sum of radii clustering. It is also interesting to use the ideas proposed in this
paper to design clustering algorithms on the results of more complex queries such as conjunctive
queries with inequalities or conjunctive queries with negation. Finally, someone can study relational
clustering under different distance functions such as the Hamming, Jaccard or the cosine distance.
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A EFFICIENT ALGORITHMS FOR RELATIONAL k-MEANS CLUSTERING

In this section, we focus on the relational k-means clustering. The algorithm is similar with the
algorithm described in section 3. However, there are changes in the analysis of the algorithms that
need to be addressed. For simplicity, we focus on the (geometric) relational k-means clustering.
All the results are straightforwardly extended to the discrete version using DkMeansAlg, instead
of GkMeansAlg, and using the fact that yiopr(y) (Y) < popry. (v) (Y) < 4popr(y) (Y), for any set of
tuples Y, equivalently to the relational k-median clustering problem in Sections 3, 4. Due to space
constraints, all missing proofs can be found in the full version of the paper [27].

We keep the main notation as it is in section 3. We change the definition of the set X to be a
set of points in R% such that ux(g,(D)) < « - HOPT(g. (D)) (qu(D)), where @ > 1 is a constant.
Notice that yix(qu(D)) = Xeqp) $?(7a, (1), X). We also assume that r is a real number such that
px(qu(D)) <7 < a- fiop1(q, (D)) (qu(D)). In fact, we can also assume that 7=~ < yix(q.(D)). Note
that again we do not assume anything about the size of X, and in the next section, we show that
we can always consider |X| = O(k?). Again, we assume that at first, the set X and the number r are
given as input, and later we describe the algorithm to efficiently construct X and r. Similarly to
the relational k-median clustering, we propose two algorithms, one slower deterministic and one
faster randomized. The running times of the algorithms are the same as the running times of the
algorithms for the relational k-median clustering.

A.1 Deterministic algorithm

. . «(D
We set @ = w/ﬁ to be a lower bound estimate of the average mean radius %Mq()), and

keep all other parameters as described for the k-median coreset in section 3.1. Then we construct
the same exponential grids and follow the exact same algorithms to get the coreset C. Then, we
run the standard algorithm for the weighted k-means problem on C, GkMeansAlg, (C), to geta

set of k centers §. We return the set of centers S. Furthermore, we set and return r, = ﬁ us(C).

Correctness. We conduct a correctness analysis by proving analogous versions of the lemmas
established for the k-median clustering, but this time for the k-means clustering.

For any tuple t € q,,(D), let x; € X be the center that is closest to t. We have that ¢(t, x;) < an®.
So, the following lemma is correct by the same argument as in lemma 3.1.

LEmMA A.1. Every tuplet € q,, (D) is assigned to one point in C. Furthermore, the number of tuples
in q,,(D) that are assigned to a points € C is w(s).

Any point t € q,,(D) is assigned to one point in C, so we can define x;(;) and o(t) as before.
LEMMA A.2. C is a k-means e-coreset for q,, (D).

PROOF. Let Y be an arbitrary set of k points in R%. The error is defined as

& = |py(g(D)) - py(C)| < Z 972, Y) = ¢*(a(t), V)]
teqy (D)
= Z [(¢(2,Y) = ¢(a(2), Y))(§(,Y) + $(a(2),Y))|.
teq, (D)

By the triangle inequality, ¢(t,Y) < ¢(a(t),Y) + ¢(t,0(t)) and #(o(¢),Y) < ¢(8,Y) + ¢(t, o(t)).
Hence, |¢(t,Y) — ¢(o(2),Y)| < ¢(t, 0(t)). We have,

&< Z [($(2,Y) = ¢(a(2), V) ($(£,Y) + $(a (1), Y))| < Z ¢(t,0(1)(29(t,Y) + $(t,0(1)).

teqyu (D) tequ (D)
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We divide the points of g, (D) into three cases. Let Py = {t € q,(D)|¢(t, xi(1)) < PAPH(L,Y) < D},
Py = {t € qu(D) \ Pol(t, Y) < $(t,xi(0))} and Py = {t € gu(D) \ Pilg(t, xi(r)) < $(t,V)}. Note
that we do not actually construct these sets, instead we only analyze the error induced by these
three types of points separately. It is straightforward to see that Py UP, UP5; = q,,(D) and Py NP, = 0,
PiNP;=0,P,NP;=0.

For a point ¢ € P;, since d)(t Xi(r)) < ®, by the construction of the exponential grid, we have that
$(t,o(t)) < diam(O;) < 15-@, hence,

> (o)L +9(t0(0) < D" 020+ —0) < =n < iopr(g,m) (gu(D)).

teP; teP; 10cr 10a

By the definition of the set P,, we have ¢ (¢, x;(;)) > @, hence, as shown in the proof of lemma
3.2, ¢(t,0(t)) < 7559(t xi(r)), and ¢(¢, x,(,)) <1+ IOa)¢(t X). Therefore,

> $to)P(EY) +4(ta(n) < Y- mqsu,xi(t))(zf;s(n i) + mgﬁ(t,xim))

tePz tepP,
3¢ 4e
t, < — 1+— t,X) < — u < — «(D
[E§PZ¢ (t, xi(r)) o tEEPZ( + 10a)¢ (t,X) llx(q (D)) < ,Uopr(q,,m))(q (D)).

For the last case, where t € P3, we have (¢, o(t)) < 15-¢(t,Y).Itholds because: If ¢ (£, x; (1)) < @,

then ¢(t,0(t)) < 152®@ < 759 (L, Y). I (L, xi(1)) > Pthen $(t, 0(t)) < 15=P(t, xi(r)) < 1755¢(LY).
Hence, we have,

D (LTS + (o) € ) (V) (2P(LY) + 7= (t. V) < = Z $(1,Y)

tePs t€P3 l’EP3

—IJY((Iu(D)) < —#OPT(q(D)) (qu(D)).

Finally, we bound the error,

Ex D $toM)HLY) +(to(t) < . G(ta())(2(tY) + $(t, o (1))

tequ (D) tep;

+ 2 B(La(D)(2(1,Y) +§(t (D)) + D Pt 0(1) (26 (L, Y) +§(t,0(1))

tep, tEP’%

18¢
,UOPT(qu(D)) (q.(D)) + 1 ﬂOPT(qu(D)) (qu(D)) + _,UOPT(q(D)) (q.(D)) < Eﬂy(qu(D))
Thus, if we set ¢ « ¢/18, the result follows. O
With the same argument as in lemma 3.3, we can prove the following lemma.

Lemma A3 p15(qu(D)) < 7y < (1+£)y0rT(gu(o)) (@u(D)).

As the algorithm for constructing the k-means coreset is almost the same as the one for the
k-median’s coreset, and the only difference is in the analysis, the running time is the same and we
can conclude with the following theorem.

THEOREM A.4. Let D be a database instance with N tuples, q be an acyclic join query over a
set of attributes A and A, C A. Given a set X C R? a constant a such that px(q,(D)) <

®UOPT (¢, (D)) (qu(D)), and a constant parameter ¢ € (0,1), there exists an algorithm that com-

putes a set S C R? of k points and a number r, in O(|X|% “Nlogd N+ ;™" (1X]log N))
time such that j15(qu(D)) < ry < (1+ €)yUopT(q. (D)) (qu(D)). There also exists an algorithm that
computes a set S C q,(D) of k points and a number r, with the same running time, such that

ps(qu(D)) < 1y < (4+&)YHOPT o (qu (D)) (qu(D)).
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A.2 Randomized Algorithm

The algorithm for the k-means problem is exactly the same as the one we described in section
3.2 for the k-median problem. Hence, in this section, we use the same notation and prove the
additional lemmas required to show that the algorithm works also for k-means clustering. Note
that this algorithm builds the k-means version of the exponential grid as described in A.1, and then
continues with the randomized counting algorithm described in section 3.2.

Correctness. Notice that Lemmas 3.6 and 3.7 are independent of the objective function of the
problem and we can directly assume they are true without proving them again in this section. The
proof of the next lemma follows from the same steps as in Lemma 3.8.

LEMMA A.5. LetY be an arbitrary set of k points in R% It holds thatpy(Pu) < ey (Py)+epy (q(D))

and piy (q, (D)) < (1 + &)uy (P,,) with probability at least 1 — NO(U

Similarly, the proof of the next lemma is analogous to that of Lemma 3.9, and is shown in [27].

LEmMA A6. C is a k-means e-coreset of P, with probability at least 1 — W.

Finally, we show that ps(q,(D)) is a good approximation of piopr(q, (D) (qx(D)) and that r,, =
ﬁ 1s(C) is a good estimate of ug(q,(D)). The proof of the following lemma is analogous to
that of Lemma 3.10.

Lemma A7. p1s(gu(D)) < ry < (1+)YiopT(qu(p) (@u(D)), with probability at least 1 - .

Notice that there is no difference between the above algorithm and the one for k-median proposed
in section 3.2, and the only difference is in the correctness analysis. Therefore, the running is exactly
the same, and we can directly have the following theorem.

THEOREM A.8. Let D be a database instance with N tuples, q be an acyclic join query over a
set of attributes A, and A, C A. Given a set X C R%, a constant a such that jix(q,(D)) <
®UOPT (¢, (D)) (qu(D)), and a constant parameter € € (0, 1), there exists an algorithm that computes a
setS C R? of k points and a numberr, in O(|X|N log N +|X|?log®(N) min{logd" (1X), 1 X|log N} +
;™" (1X|log N)) such that ps(qu(D)) < ry < (1+€)ypoPT(q, (D)) (qu(D)), with probability at least
1- W. There also exists an algorithm that computes a set S C q,,(D) of k points and a number
ry with the same running time, such that jis(qu(D)) < ry < (4 + €)YHOPT 4. (qu (D)) (qu(D)), with
probability at least 1 — W.
A.3 Efficient Algorithms

We use the results from the previous section to describe a complete algorithm for the relational
k-means clustering. As we did in section 4.1, in this section, we describe how to efficiently construct
the set X and the number r. To do so, we construct a binary tree as described in section 4.1, and
use the same notation. Our goal this time is to compute for each node u, a set S, and a number r,,
such that, 15, (¢u(D)) < ry < (1+6)yHorT(qum)) (4u(D)). )

The algorithm is identical to that of k-median clustering, with one difference: instead of applying
the standard k-median algorithm to the leaf nodes, we use the standard k-means algorithm, and for
the intermediate nodes, we apply the coreset-based relational k-means algorithms, as described
above.

Correctness. Foranyset Y C R%, 11y (q, (D)) = Yiteq(D) P2 (7a, (1),Y) = Dteq(D) 24 eA, (ma; (1)—
7a; (N (Y, 7a, (t)))?. Assuming that S,, r, and S,, r, satisfy Equation 7, we show how to compute
S, and r, that satisfy Equation 7.
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If we prove that X is a constant a-approximation of the k-means problem on ¢, (D) and
px(qu(D)) < ry < apopT(q,(D))(qu(D)), then the correctness follows from Theorem A.8 (or
Theorem A.4). The proof of the next lemma is a simpler version of the proof in Lemma 4.1, and it
follows by the same arguments. We show its proof in [27].

LEMMA A9. px(qu(D)) < 1y < apopt (g, (D)) (qu(D)).

We have that S = S, is a (1 + £)y approximation of the relational k-median problem in q(D).
The algorithm is the same as the proposed algorithm for the k-median problem, and it has the
same time complexity. Therefore we can conclude with the following theorem.

THEOREM A.10. Given an acyclic join query q, a database instance D, a parameter k, and a constant
parameter ¢ € (0,1), there exists an algorithm that computes a set S C R? of k points such that
ps(g(D)) < (1+&)ypopt(q(p)) (q(D)), with probability at least 1 - NOU) The running time of the
algorithm is O(Nk?log(N) + k* log®(N) min{logd(k), k*log N} + Tyrean (k?1log N)). Furthermore,
there exists an algorithm that computes a set S’ C q(D) of k points in the same time such that
ps(q(D)) < (4 + &)yHopT . (q(D))(q(D)), with probability at least 1 — Ném

B MISSING PROOFS FROM SUBSECTION 3.1

Proor oF LEMMA 3.3. Next, we assume that DkMedianAIgy is used. We note that

1
vs(qu(D)) < VS(C) =rusyr VOPTd,SC(C)(C) <2rg

= — VorT(C) ©)

/

1+¢ ’
< zm}"’omqu(n))(qu(m) < 2(1+4€")yvorT(g,(D)) (4u(D))

2(1+&)yvoprT(qu. (D)) (qu(D)) < 2(1 + &)yVorT (. (D)) (qu(D)).

The result follows setting ¢ « ¢/2. O

C MISSING PROOFS FROM SUBSECTION 3.2

ProoF oF LEMMa 3.8. We bound the second term in the sum. We define a new assignment
function ¢’ as we did in Lemma 3.2. For a point p € P, we set o’(p) = p. If a point t € P,, is not
charged by any point in | Jge; PE, then o’ (t) = t. For a point ¢ € P, let p; be the point in ge; PL
such that p, charges t = t;, (,,) for a value of h, according to Lemma 3.7. If p; € P, then ¢’ (t) = p;.
If p; € P,, o’ (t) = t. Using the new assignment function ¢’(-), the second term can be bounded as

1/¢
€Y D6 tip) <€D pLAW) < Y bt (1)),
peP, h=1 teP, teq, (D)

We note that ¢’ is a different assignment than the assignment o we used in Lemma 3.2, however,
notice that in all cases both t and ¢’ (¢) belong to the same cell defined by the exponential grids
as constructed and processed by the algorithm. In fact, both t and ¢’ (t) belong in the same cell
Oy (1) € Vi/(t) around a center xy(;) € X. By construction, condition (3) is satisfied for x; ()
and Oy ;). Hence, the same properties hold. We can distinguish between ¢(t,x;(;)) < ® and
¢ (t, xy (1)) > @ as we did in Lemma 3.2 making the same arguments. Using the proof of Lemma 3.2,
we get that e’ 3, p) ¢(t, 0" (1)) < (¢)*vy(qu(D)) < €'vy(qu(D)). The first inequality vy (P,) <
vy (Py) + €' vy(qyu (D)) follows.

Proor oF LEMMA 3.10. We assume that DkMedianAlgy is used. We have, o

vs(C) < yvopry. (¢)(C) < 2yvopr(c)(C) < 2yvopr(p,)(C) < 2(1+9¢")yvopr(p,) (Pu)
< 2(1+9¢")yvopr(q. (D)) (qu(D)), hence,
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, 1+ 4¢ (1+4)(1+9¢)
vs(qu(D)) < (1+4€)vs(P,) < Y vs(C)=ry < ZT}/VOPT(qu(D))(qu(D))
< 2(1+34€")yvorT(g, (D)) (qu(D)) < 2(1+ €)yVoPTy (¢, (D)) (qu(D)).
The result follows setting ¢ « ¢/2. O

D MISSING PROOFS FROM SUBSECTION 4.1

PRrOOF OF LEMMA 4.1. We first consider that GkMedianAlg, is used. Let O, = ma,(OPT(q,(D))),
and O, = 7z, (OPT(g,(D))). We define O = O,x0,. Notice that OPT(q,,(D)) € O sovo(q,(D)) <
VOPT(qu (D)) (qu(D)). We have,

vx(qu(D)) = Z |17, (8) = N (X, 7a,, ()|

teq(D)

D l7a,(6) = 7a, (N X, 7, (D)2 #1176, (2) = 76 (N (X, 74, ()] 2

teq(D)

D A, (8) = 7, NG ma, O+ Y- 74 (8) = ma (N G za, ()]

teq(D) teq(D)

D0 7a () = N(Soma, )+ D l1ma, () = N (S ma, (D) < 7o + 7

teq(D) teq(D)

IA

IA

(+ey| D llma, (- N(OPT(qu(D)). ma, ()1+ ll7a_ (1) = N (OPT(g:(D)), 7a_ ()]
teq(D) teq(D)

<140y D) llma, () = N(Opma, i)l + (1+6)y Y. 7. (1) = N(Ox 7a. (1))

teq(D) teq(D)

=(1+eo)y Z (Il7a, (8) = 7a, (N (O, 7ta, (O] + ||7a, () = 74, (N (O, 7a, (D))

teq(D)

<(1+e)yV2 Z \/||”Au(t) — A, (N(O, 7o, ()12 + || 7a, (t) — 7, (N (O, 7a,, (1)))1]?
teq(D)

=(1+yV2 > e, () = N(O,ma, (D)l = (1+ &)y V2 - vo(gu(D))

teq(D)

< (1+ )y V2 Vort(g,(m)) (qu(D))-

The first and second equalities hold by the definition of the Euclidean metric. The third inequality
holds because Va +b < va + \/l;, fora, b > 0.

We show the fourth inequality by proof by contradiction. Notice that for any x € X, 74, (X) € S,
because X = S, X S;. Let s € S, be the closest point in S, from (), and let x € X be the
closest point in X from ma,(t). Without loss of generality, assume that s is the unique nearest
neighbor. Assume that s, (N (X, 7a, (1)) # N(Sy, 7a,(t)) & 7ma,(x) # s. In fact, assume that
7, (x) =" € Sy such that s’ # 5, and ma, (x) =5 € S;. Let x” = s X § € X. We have,

CRENOIE \/ 3 (4, () = 74, (1) = \/ S (a0 =74, (024 (a, () = 7, (1))
A A

jEAY jEA, AjeA,

> \/Z (4, (5) = 4, (072 + 3 () (5) = 74, (1) = \/Z (4, (x') = 74, (1))
AjeA, AjeA, AjeA,

= llx’ — 7a, (D)l
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which is a contradiction because x is the closest point in X from s, ().

The fifth inequality holds because r,, r, satisfy Equation (5). The sixth inequality holds because
of the definition of S, and S, i.e., vs,(q,(D)) < (1 + €)yvopT(q,(D))(qo(D)) (similarly for z).
The seventh inequality holds because vopr (4, (D)) (9o(D)) < vo,(q,(D)) (similarly for z). The
eighth equality holds because it is equivalent to the fourth inequality. The ninth inequality holds
because a + b < V2Va? + b2 for a,b > 0. The tenth equality holds because of the definition of
the Euclidean metric. The eleventh equality holds by definition of v (g, (D)). The last inequality
holds because OPT(g, (D)) C O. Overall, @ = (1 + ¢)yV2 which is a constant. Furthermore, notice
that r = ry, +r; so the result follows. Moreover, ry < (1+¢) Xeq) Il7a, (1) = N(Sy, 7a, (1))]| s0
r < (1+¢)V2vx(qu(D)).

Similarly, we show the analysis assuming DG kMedianAlgy is used. We have,
vx(qu(D)) <...<ry+r;

<(2+e)y Z(I |7, (£) =N (OPTisc (g0 (D)), 7, (1)) || +]]7a, (£) =N (OPTisc (g (D)), 7a (1) 1)
¢€q(D)

<2(2+e)y Z (174, (1) =N (OPT(qy(D)), 7a, (1))|| +|7a. (£) =N (OPT (g (D)), 7a. (1))
teq(D)

< ... 222+ )y V2vorr(g, ) (qu(D)).

O
E EXTENSION TO CYCLIC QUERIES

A fractional edge cover of join query q is a point x = {xg | R € R} € R™ such that for any attribute
A € A, Y per, Xr = 1, where Ry are all the relations in A that contain the attribute A. As proved
in [13], the maximum output size of a join query q is O(N!*I). Since the above bound holds for
any fractional edge cover, we define p = p(q) to be the fractional cover with the smallest #;-norm,
ie., p(q) is the value of the objective function of the optimal solution of linear programming (LP):
min Y geg Xg, S.t. VRE€R:xgp 2 0and VA € A: Ypea, ¥R 2 1.

Next, we give the definition of the Generalized Hypertree Decomposition (GHD). A GHD of q is
a pair (7,1), where 7 is a tree as an ordered set of nodes and A : 7~ — 28 isa labeling function
which associates to each vertex u € 7 a subset of attributes in A, called 1, such that the following
conditions are satisfied: i) (coverage) For each R € R, there is a node u € 7 such that Ag C A,
where Ap is the set of attributes contained in R; ii) (connectivity) For each A € A, the set of nodes
{u e 7 :Ae A} forms a connected subtree of 7.

Given a join query g, one of its GHD (7, 1) and a node u € 7, the width of u is defined as the
optimal fractional edge covering number of its derived hypergraph (1,, &), where &, = {ArN A, :
R € R}. Given a join query and a GHD (7, 4), the width of (77, A) is defined as the maximum width
over all nodes in 7°. Then, the fractional hypertree width of a join query follows: The fractional
hypertree width of a join query g, denoted as fhw(q), is fhw(q) = min(s 1) maxyeq p(Ay, Ey), ie.,
the minimum width over all GHDs.

Overall, O(N™) is an upper bound on the number of join results materialized for each node
in 7. It is also the time complexity to compute the join results for each node in 7 [13]. Hence,
we converted our original cyclic query into an acyclic join query (with join tree 7°) where each
relation has O(N'"Y) tuples. We execute all our algorithms to the new acyclic join query replacing
the N factor with the N" factor in the running time.
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