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Abstract
Our work is motivated by obtaining solutions to the quantum reflection equation (qRE) by categorical methods.
To start, given a braided monoidal category C and C-module category M, we introduce a version of the Drinfeld
center Z (C) of C adapted for M; we refer to this category as the reflective center EC (M) of M. Just like Z (C) is
a canonical braided monoidal category attached to C, we show that EC (M) is a canonical braided module category
attached to M; its properties are investigated in detail.

Our second goal pertains to when C is the category of modules over a quasitriangular Hopf algebra H, and
M is the category of modules over an H-comodule algebra A. We show that the reflective center EC (M) here
is equivalent to a category of modules over an explicit algebra, denoted by 𝑅𝐻 (𝐴), which we call the reflective
algebra of A. This result is akin to Z (C) being represented by the Drinfeld double Drin(𝐻) of H. We also study
the properties of reflective algebras.

Our third set of results is also in the Hopf setting above. We show that reflective algebras are quasitriangular
H-comodule algebras, and we examine their corresponding quantum K-matrices; this yields solutions to the qRE.
We also establish that the reflective algebra 𝑅𝐻 (k) is an initial object in the category of quasitriangular H-comodule
algebras, where k is the ground field. The case when H is the Drinfeld double of a finite group is illustrated.
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1. Introduction

Quasitriangular Hopf algebras and their (universal) quantum R-matrices, introduced by Drinfeld
[Dri87], play a fundamental role in many areas of mathematics and mathematical physics, such as
low-dimensional topology, representation theory, quantum field theory and exactly solvable models.
More generally, Joyal and Street [JS91] introduced the notion of braided monoidal categories, which,
similarly, are central objects for the categorical foundations of numerous studies. There are well known
ways to construct both structures:

(1) Given a Hopf algebra H, its Drinfeld double Drin(𝐻) is a quasitriangular Hopf algebra with an
explicit R-matrix.

(2) For a monoidal category C, one constructs its Drinfeld center Z (C), which is a braided monoidal
category.

The two constructions work in tandem: The Drinfeld center of the module category of a finite-
dimensional Hopf algebra H is isomorphic to the module category of its Drinfeld double.

Going a step further, on the categorical side, Brochier [Bro13] introduced the notion of a braided
module category over a braided monoidal category. On the Hopf algebra side, Kolb [Kol20] defined the
notion of a quasitriangular (left) H-comodule algebra A of a quasitriangular Hopf algebra H; such an
algebra is equipped with a (universal) quantum K-matrix 𝐾 ∈ 𝐻 ⊗ 𝐴. There are broad parallels between
universal quantum R-matrices and K-matrices:

(a) Universal quantum R-matrices and K-matrices automatically satisfy the quantum Yang–Baxter and
reflection equations, respectively.

(b) The former give rise to representations of the Artin braid groups of type A, while the latter give rise
to representations of the Artin braid groups of type B.

(c) The former are used in studying exactly solvable models in statistical mechanics without boundary,
while the latter are used for solving models with boundary.

In summary, following Balagovic’s presentation [Bal19] on her joint paper with Kolb [BK19],

If you like . . . then you should also like

1. Quantum enveloping algebras 1. Quantum symmetric pairs
2. Universal quantum R-matrices 2. Universal quantum K-matrices
3. The quantum Yang–Baxter equation 3. The quantum reflection equation
4. Braided tensor categories 4. Braided module categories

The most important class of quasitriangular comodule algebras that was studied to date is the class
of quantum symmetric pair coideal subalgebras, introduced in the foundational works of Letzter [Let99,
Let02]. These are quantum analogs of the pairs (𝑈 (k),𝑈 (g)) where g is a complex simple Lie algebra
(or more generally a symmetrizable Kac–Moody algebra) and k is a symmetric Lie subalgebra (the
fixed point of an involutive automorphism of g). The quasitriangularity for this class of comodule
algebras was established by recursively building a quantum K-matrix using the Lusztig bar involution
[BW18a,BK19,BW18b,AV22]. For coideal subalgebras of arbitrary Drinfeld doubles of bosonizations
of Yetter–Drinfeld modules of diagonal types, where bar involutions need not exist, quantum K-matrices
were constructed from star products on partial bosonizations of Nichols algebras [KY20].

Given the vast applications of quantum K-matrices and braided module categories, one can ask the
following two questions:

(Q1) Is there a version of the Drinfeld double construction (1) with an input of an H-comodule algebra
for a quasitriangular Hopf algebra and an output a quasitriangular H-comodule algebra with an
explicit quantum K-matrix?
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(Q2) Is there a version of the Drinfeld center construction (2) with an input a module category of a
braided monoidal category C and an output a braided module category of C?

The goals of this paper are to fully resolve both questions. This leads to strong methods for the
construction of quasitriangular comodule algebras, quantum K-matrices and braided module categories
that can be applied in broad generality. The following table summarizes our constructions and notions:

Classical constructions and notions: Our constructions and notions:

5. Drinfeld centers of tensor categories 5. Reflective centers of module categories
6. Yetter–Drinfeld modules 6. Doi–Hopf modules
7. Drinfeld doubles of Hopf algebras 7. Reflective algebras of comodule algebras

Before stating the precise formulation of our results, we note that all linear structures are over an
algebraically closed field k. For a k-algebra A, let 𝐴-mod denote the category of left A-modules.

To proceed with the aims above, take a braided monoidal category C and a left C-module category
M. In Definition 4.1, we define the reflective center of M with respect to C, denoted by EC (M) and
motivated by the construction of the Drinfeld center Z (C) of C. The following results are established
for EC (M) in parallel of the known properties of Z (C):

Theorem A (Proposition 4.3, Corollary 4.6). Retain the notation above. Then the reflective center
EC (M) has the following properties.

(a) EC (M) is a braided left C-module category.
(b) EC (M) is abelian when M is exact, is finite when C is finite and M is exact, and is semisimple

when C and M are finite and semisimple.
(c) EC (M) is also a left Z (C)-module category.

Now for the rest of the introduction, take C = 𝐻-mod and M = 𝐴-mod for

◦ H a finite-dimensional quasitriangular Hopf algebra over k,
◦ A a left H-comodule algebra over k.

Our first main result for this Hopf setting is given below. This is achieved via Theorem A(a) and by
applying results in Section 3.6 on transferring a braided module category structure across an equivalence
of categories.

Theorem B (Lemma 6.2, Proposition 6.4, Theorem 6.6). There exists a category of Doi–Hopf modules
𝐻
𝐴 DH(𝐻) for a certain left H-module coalgebra 𝐻 defined in Section 5.2, and a certain algebra 𝑅𝐻 (𝐴)
defined in Section 5.3, such that

E𝐻 -mod (𝐴-mod) � 𝐻
𝐴 DH(𝐻) � 𝑅𝐻 (𝐴)-mod (1.1)

as braided left module categories over 𝐻-mod. See Figure 1 for the location of these actions.

The H-module coalgebra 𝐻 is defined in Definition 5.7, and as discussed in Remark 5.8, it is a
version of Majid’s transmuted Hopf algebra constructed in [Maj91].

We refer to 𝑅𝐻 (𝐴) as the reflective algebra of A with respect to H. It is defined as a crossed product
algebra, 𝐴 �𝐻 (𝐻

∗)op, as described at the beginning of Section 5.3.1. It plays an analogous role for
reflective centers as the Drinfeld double Drin(𝐻) of H does for the Drinfeld center Z (𝐻-mod).

We obtain the following consequence of Theorem B.

Corollary C (Corollary 6.9). The reflective algebra 𝑅𝐻 (𝐴) is a quasitriangular left H-comodule alge-
bra, with an explicit quantum K-matrix given in terms of a dual basis of H.
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𝐻-mod
⊲

br.
�� E𝐻 -mod (𝐴-mod) 𝐻-mod

►

br.
�� 𝐻
𝐴

DH(𝐻) 𝐻-mod
►

br.
�� 𝑅𝐻 (𝐴)-mod

[Lemma 6.2] [Proposition 6.4] [Theorem 6.6]

Figure 1. Isomorphic braided module categories over 𝐻-mod.

The reflective algebra 𝑅𝐻 (k) for the canonical left H-comodule algebra k is of particular interest due
to the following result.

Theorem D (Theorem 6.15). The reflective algebra 𝑅𝐻 (k) and its quantum K-matrix from Corollary
C is an initial object in the category of quasitriangular left H-comodule algebras.

The results above are illustrated in Section 6.4 in the case when H is the Drinfeld double of a finite
group, Drin(𝐺), and for the left Drin(𝐺)-comodule algebra k.

Finally, using Theorem A(c) and the braided isomorphism between Z (𝐻-mod) and Drin(𝐻)-mod,
we get a module category action of Drin(𝐻)-mod on 𝑅𝐻 (𝐴)-mod. This yields the result below.

Proposition E (Proposition 6.20). The reflective algebra 𝑅𝐻 (𝐴) is a left Drin(𝐻)-comodule algebra,
with an explicit comodule structure given in terms of the quantum R-matrix of H.

2. Preliminaries on (braided) monoidal categories

In this section, we review terminology pertaining to braided monoidal categories. We refer the reader
to [EGNO15] and [TV17] for general information. We first review background material on monoidal
categories in Section 2.1. Then in Section 2.2, we recall braided monoidal categories, the Drinfeld center
construction of a braided category from a monoidal category and the connection to quantum R-matrices
in Hopf case. We assume that all categories here are locally small (i.e., the collection of morphisms
between any two objects is a set).

2.1. Monoidal categories

We refer the reader to [EGNO15,TV17,Wal24] for further details.
Monoidal categories. A monoidal category consists of a category C equipped with a bifunctor

⊗ : C × C → C, a natural isomorphism 𝑎𝑋,𝑌 ,𝑍 : (𝑋 ⊗ 𝑌 ) ⊗ 𝑍
∼
→ 𝑋 ⊗ (𝑌 ⊗ 𝑍) for 𝑋,𝑌, 𝑍 ∈ C, an object

1 ∈ C, and natural isomorphisms 𝑙𝑋 : 1 ⊗ 𝑋
∼
→ 𝑋 and 𝑟𝑋 : 𝑋 ⊗ 1

∼
→ 𝑋 for 𝑋 ∈ C, satisfying pentagon

and triangle axioms.
A (strong) monoidal functor between monoidal categories (C, ⊗,1, 𝑎, 𝑙, 𝑟) and (C ′, ⊗′,1′, 𝑎′, 𝑙 ′, 𝑟 ′)

is a functor 𝐹 : C → C ′ equipped with a natural isomorphism 𝐹𝑋,𝑌 : 𝐹 (𝑋) ⊗′ 𝐹 (𝑌 )
∼
→ 𝐹 (𝑋 ⊗ 𝑌 ) for

𝑋,𝑌 ∈ C, and an isomorphism 𝐹0 : 1′ ∼→ 𝐹 (1) in C ′, satisfying associativity and unitality constraints.
An equivalence (resp., isomorphism) of monoidal categories is provided by a monoidal functor

between the two monoidal categories that yields an equivalence (resp., isomorphism) of the underlying
categories; it is denoted by ⊗� (resp.,

⊗
�).

Opposite monoidal category. Given a monoidal category (C, ⊗,1, 𝑎, 𝑙, 𝑟), its opposite monoidal
category is defined as C⊗op := (C, ⊗op,1, 𝑎op, 𝑙op, 𝑟op), with 𝑋 ⊗op 𝑌 := 𝑌 ⊗ 𝑋 and 𝑎

op
𝑋,𝑌 ,𝑍 := 𝑎−1

𝑍,𝑌 ,𝑋

and 𝑙
op
𝑋 = 𝑟𝑋 and 𝑟

op
𝑋 = 𝑙𝑋 , for all 𝑋,𝑌, 𝑍 ∈ C.

Rigidity. A monoidal category (C, ⊗,1) is rigid if it comes equipped with left and right dual objects;
that is, for each 𝑋 ∈ C, there exist, respectively, an object 𝑋∗ ∈ C with co/evaluation maps ev𝐿𝑋 : 𝑋∗⊗𝑋 →
1 and coev𝐿𝑋 : 1 → 𝑋 ⊗ 𝑋∗, and an object ∗𝑋 ∈ C with co/evaluation maps ev𝑅𝑋 : 𝑋 ⊗ ∗𝑋 → 1,
coev𝑅𝑋 : 1→ ∗𝑋 ⊗ 𝑋 , satisfying coherence conditions of left and right duals.
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Linearity over k, finiteness. We now discuss certain k-linear monoidal categories. A k-linear
abelian category C is locally finite if, for any two objects 𝑉,𝑊 in C, HomC (𝑉,𝑊) is a finite-dimensional
k-vector space and every object has finite length. A locally finite category C is finite if there are enough
projectives and finitely many isomorphism classes of simple objects. Equivalently, a k-linear category
C is finite if it is equivalent to the category of finite-dimensional modules over a finite-dimensional
k-algebra.

Tensor and fusion categories. A tensor category is an abelian, k-linear, locally finite, rigid, monoidal
category (C, ⊗,1) such that ⊗ is k-linear in each slot and EndC (1) � k. A tensor functor is a k-linear,
exact, faithful, monoidal functor F between tensor categories C and C ′, with 𝐹 (1) = 1′. A tensor
category is said to be a fusion category if it is both finite and semisimple. If C is a tensor (resp., finite
tensor, fusion) category, then so is C⊗op.

Deligne tensor product. Let C and C ′ be two tensor categories. Then the Deligne tensor product
of C and C ′ is a k-linear, abelian category C � C ′ endowed with a functor � : C × C ′ → C � C ′ that is
k-linear and right exact in each variable, and is universal among such functors out of C × C. We also
have that C � C ′ is a monoidal category where (𝑋 � 𝑋 ′) ⊗C�C

′
(𝑌 � 𝑌 ′) := (𝑋 ⊗C 𝑌 ) � (𝑋 ′ ⊗C

′
𝑌 ′),

for 𝑋,𝑌 ∈ C, 𝑋 ′, 𝑌 ′ ∈ C ′, and 1C�C′ := 1C � 1C′ . Moreover, the Deligne tensor product of two tensor
(resp., finite tensor, fusion) categories is a tensor (resp., finite tensor, fusion) category.

Hopf case. The category H-fdmod of finite-dimensional k-modules over a (finite-dimensional) Hopf
algebra H is a (finite) tensor category. If, further, H is a semisimple Hopf algebra, then H-fdmod is
a fusion category. If H and 𝐻 ′ are Hopf algebras over k, then (𝐻-mod)⊗op ⊗� 𝐻cop-mod, for the co-
opposite Hopf algebra 𝐻cop. We also have that 𝐻-mod � 𝐻 ′-mod

⊗
� (𝐻 ⊗k 𝐻

′)-mod for the standard
tensor product of Hopf algebras 𝐻 ⊗k 𝐻

′ over k.

2.2. Braided categories, Drinfeld centers and quantum R-matrices

See [EGNO15, Sections 8.1, 8.3, 8.5, 8.6], [Maj00, Sections 2.1, 7.1], [HS20, Section 4.1], [Kas95] for
further details.

Braided categories. A monoidal category (C, ⊗,1, 𝑎, 𝑙, 𝑟) is braided if it is a equipped with a natural
isomorphism 𝑐𝑋,𝑌 : 𝑋 ⊗ 𝑌

∼
→ 𝑌 ⊗ 𝑋 for 𝑋,𝑌 ∈ C (braiding), such that the following hexagon axioms

hold for each 𝑋,𝑌, 𝑍 ∈ C:

𝑐𝑋 ⊗𝑌 ,𝑍 = 𝑎𝑍,𝑋,𝑌 ◦ (𝑐𝑋,𝑍 ⊗ Id𝑌 ) ◦ 𝑎−1
𝑋,𝑍 ,𝑌 ◦ (Id𝑋 ⊗ 𝑐𝑌 ,𝑍 ) ◦ 𝑎𝑋,𝑌 ,𝑍 , (2.1)

𝑐𝑋,𝑌 ⊗𝑍 = 𝑎−1
𝑌 ,𝑍 ,𝑋 ◦ (Id𝑌 ⊗ 𝑐𝑋,𝑍 ) ◦ 𝑎𝑌 ,𝑋,𝑍 ◦ (𝑐𝑋,𝑌 ⊗ Id𝑍 ) ◦ 𝑎−1

𝑋,𝑌 ,𝑍 . (2.2)

We also have a mirror braiding on C given by 𝑐−1
𝑌 ,𝑋 : 𝑋 ⊗ 𝑌

∼
→ 𝑌 ⊗ 𝑋 for 𝑋,𝑌 ∈ C. We refer to the

braided monoidal category C := (C, ⊗,1, 𝑎, 𝑙, 𝑟, 𝑐−1) as the mirror of (C, ⊗,1, 𝑎, 𝑙, 𝑟, 𝑐).
A braided monoidal functor between braided monoidal categories C and C ′ is a monoidal functor

(𝐹, 𝐹−,−, 𝐹0) : C → C ′ such that

𝐹𝑌 ,𝑋 ◦ 𝑐
′
𝐹 (𝑋 ) ,𝐹 (𝑌 ) = 𝐹 (𝑐𝑋,𝑌 ) ◦ 𝐹𝑋,𝑌 (2.3)

for all 𝑋,𝑌 ∈ C. An equivalence (resp., isomorphism) of braided monoidal categories is a braided
monoidal functor that yields an equivalence (resp., isomorphism) of the underlying categories. Similar
notions exist for tensor categories and tensor functors.

Drinfeld centers. An important example of a braided monoidal category is the Drinfeld center Z (C)
of a monoidal category (C, ⊗,1). Its objects are pairs (𝑉, 𝑐𝑉 ), where V is an object of C and

𝑐𝑉 := {𝑐𝑉𝑋 : 𝑋 ⊗ 𝑉
∼
→ 𝑉 ⊗ 𝑋}𝑋 ∈C
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is a natural isomorphism, called a half-braiding, satisfying

𝑐𝑉𝑋 ⊗𝑌 = 𝑎𝑉 ,𝑋,𝑌 ◦ (𝑐
𝑉
𝑋 ⊗ Id𝑌 ) ◦ 𝑎−1

𝑋,𝑉 ,𝑌 ◦ (Id𝑋 ⊗ 𝑐𝑉𝑌 ) ◦ 𝑎𝑋,𝑌 ,𝑉 . (2.4)

Morphisms (𝑉, 𝑐𝑉 ) → (𝑊, 𝑐𝑊 ) of Z (C) are given by 𝑓 ∈ HomC (𝑉,𝑊) such that, for all 𝑋 ∈ C,

( 𝑓 ⊗ Id𝑋 ) ◦ 𝑐𝑉𝑋 = 𝑐𝑊𝑋 ◦ (Id𝑋 ⊗ 𝑓 ).

The monoidal product of Z (C) is (𝑉, 𝑐𝑉 ) ⊗ (𝑊, 𝑐𝑊 ) := (𝑉 ⊗𝑊, 𝑐𝑉 ⊗𝑊 ), for all 𝑋 ∈ C:

𝑐𝑉 ⊗𝑊𝑋 := 𝑎−1
𝑉 ,𝑊 ,𝑋 ◦ (Id𝑉 ⊗ 𝑐𝑊𝑋 ) ◦ 𝑎𝑉 ,𝑋,𝑊 ◦ (𝑐

𝑉
𝑋 ⊗ Id𝑊 ) ◦ 𝑎−1

𝑋,𝑉 ,𝑊 . (2.5)

An important feature of Z (C) is the braiding defined by

𝑐𝑉 ,𝑊 := 𝑐 (𝑉 ,𝑐𝑉 ) , (𝑊 ,𝑐𝑊 ) : (𝑉 ⊗𝑊, 𝑐𝑉 ⊗𝑊 )
𝑐𝑊𝑉 �� (𝑊 ⊗ 𝑉, 𝑐𝑊 ⊗𝑉 ).

Moreover, if C is a (finite) tensor category, then Z (C) is a braided (finite) tensor category.
Drinfeld centers in Hopf case and Yetter–Drinfeld modules. Take a finite-dimensional Hopf

algebra 𝐻 := (𝐻, 𝑚, 𝑢,Δ , 𝜀, 𝑆) over k, where Δ (ℎ) =: ℎ (1) ⊗k ℎ (2) (sumless Sweedler notation). When
C = 𝐻-mod, we have the isomorphisms of braided monoidal categories below,

Z (𝐻-mod)
⊗
� 𝐻

𝐻YD
⊗
� Drin(𝐻)-mod, (2.6)

where 𝐻
𝐻YD is the category of left Yetter–Drinfeld modules over H, and Drin(𝐻) is the Drinfeld double

of H. We provide the details below.
The objects of the category of left Yetter–Drinfeld modules 𝐻𝐻YD are triples (𝑉,�, 𝜕𝑉 ), where (𝑉,�)

is a left H-module and (𝑉, 𝜕𝑉 ) is a left H-comodule with 𝜕𝑉 (𝑣) := 𝑣 〈−1〉 ⊗k 𝑣 〈0〉 ∈ 𝐻 ⊗k 𝑉 , subject to
the following compatibility condition between � and 𝜕𝑉 :

𝜕𝑉 (ℎ � 𝑣) = ℎ (1)𝑣 〈−1〉𝑆(ℎ (3) ) ⊗k (ℎ (2) � 𝑣 〈0〉).

A morphism of 𝐻
𝐻YD is a linear map which is simultaneously a left H-module morphism and a left

H-comodule morphism. Then the first isomorphism of (2.6) holds via the assignments

Z (𝐻-mod) � (𝑉,�, 𝑐𝑉 ) ↦→ (𝑉,�, 𝜕𝑉 ) ∈ 𝐻𝐻YD for 𝜕𝑉 (𝑣) := (𝑐𝑉𝐻 )
−1 (𝑣 ⊗k 1𝐻 )

Z (𝐻-mod) � (𝑉,�, 𝑐𝑉 )← � (𝑉,�, 𝜕𝑉 ) ∈ 𝐻𝐻YD
for 𝑐𝑉𝑋 (𝑥 ⊗k 𝑣) := 𝑣 〈0〉 ⊗k ((𝑆

−1 (𝑣 〈−1〉) · 𝑥).

(2.7)

Here, H in 𝑐𝑉𝐻 is the regular left H-module, and (𝑋, ·) is an arbitrary left H-module.
However, the Drinfeld double of H is a Hopf algebra Drin(𝐻), which is, as a start, equal to 𝐻∗ ⊗k 𝐻

as a vector space. Next, denote the standard left and right actions of H on 𝐻∗ by� and�, respectively.
That is, ℎ � 𝜉 := 〈𝜉 (2) , ℎ〉𝜉 (1) with 〈ℎ � 𝜉, ℎ′〉 = 〈𝜉, ℎ′ℎ〉, and 𝜉 � ℎ := 〈𝜉 (1) , ℎ〉𝜉 (2) with
〈𝜉 � ℎ, ℎ′〉 = 〈𝜉, ℎℎ′〉, with ℎ, ℎ′ ∈ 𝐻 and 𝜉 ∈ 𝐻∗. Here, we use the Hopf pairing between 𝐻∗ and
H. Then Drin(𝐻) contains H and (𝐻∗)op as Hopf subalgebras, and the product of Drin(𝐻) between
elements of H and (𝐻∗)op is given by

ℎ𝜉 = (ℎ (3) � 𝜉 � 𝑆(ℎ (1) ))ℎ (2) = 〈𝜉 (1) , 𝑆(ℎ (1) )〉 〈𝜉 (3) , ℎ (3) 〉 𝜉 (2)ℎ (2) (2.8)

for ℎ ∈ 𝐻, 𝜉 ∈ (𝐻∗)op. Moreover, Drin(𝐻) has the tensor product unit, coproduct and counit. Then the
second isomorphism of (2.6) holds via the assignments
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𝐻
𝐻YD � (𝑉,�, 𝜕𝑉 ) ↦→ (𝑉,�, �) ∈ Drin(𝐻)-mod for 𝜉�𝑣 := 〈𝜉, 𝑣 〈−1〉〉𝑣 〈0〉
𝐻
𝐻YD � (𝑉,�, 𝜕𝑉 )← � (𝑉,�, �) ∈ Drin(𝐻)-mod

for 𝜕𝑉 (𝑣) :=
∑
𝑑 ℎ𝑑 ⊗k (𝜉𝑑�𝑣),

(2.9)

with {ℎ𝑑 , 𝜉𝑑}𝑑 a dual basis of H. (The latter assignment is independent of choice of dual basis of H.)
Quasitriangular Hopf algebras, quantum R-matrices. Again, take a Hopf algebra

𝐻 := (𝐻, 𝑚, 𝑢,Δ , 𝜀, 𝑆) over k, where Δ (ℎ) =: ℎ (1) ⊗k ℎ (2) (sumless Sweedler notation). Moreover,
denote ⊗ := ⊗k. We say that H is quasitriangular if there exists an invertible element

𝑅 =
∑
𝑖 𝑠𝑖 ⊗ 𝑡𝑖 ∈ 𝐻 ⊗ 𝐻 (quantum 𝑅-matrix), (2.10)

with inverse, 𝑅−1 :=
∑
𝑖 𝑠

𝑖 ⊗ 𝑡𝑖 ∈ 𝐻 ⊗ 𝐻, such that
∑
𝑖 (𝑠𝑖)(1) ⊗ (𝑠𝑖)(2) ⊗ 𝑡𝑖 =

∑
𝑗 ,𝑘 𝑠 𝑗 ⊗ 𝑠𝑘 ⊗ 𝑡 𝑗 𝑡𝑘 , (2.11)

∑
𝑖 𝑠𝑖 ⊗ (𝑡𝑖)(1) ⊗ (𝑡𝑖)(2) =

∑
𝑗 ,𝑘 𝑠 𝑗 𝑠𝑘 ⊗ 𝑡𝑘 ⊗ 𝑡 𝑗 , (2.12)

∑
𝑖 𝑠𝑖ℎ (1) ⊗ 𝑡𝑖ℎ (2) =

∑
𝑖 ℎ (2) 𝑠𝑖 ⊗ ℎ (1) 𝑡𝑖 . (2.13)

Alternatively, we will also use the following notation for quantum R-matrices. Take

𝑅𝑎𝑏 :=
∑
𝑖 𝑠𝑖 (in the 𝑎-th slot) ⊗ 𝑡𝑖 (in the 𝑏-th slot) ⊗ 1𝐻 (in other slots)

(e.g., 𝑅13 =
∑
𝑖 𝑠𝑖 ⊗ 1𝐻 ⊗ 𝑡𝑖). Then, the conditions (2.11)–(2.13) are written, respectively, as follows:

(Δ ⊗ Id𝐻 ) (𝑅) = 𝑅13𝑅23, (Id𝐻 ⊗ Δ) (𝑅) = 𝑅13𝑅12, 𝑅Δ (ℎ) = Δop(ℎ)𝑅 ∀ℎ ∈ 𝐻.

For a quasitriangular Hopf algebra (𝐻, 𝑅), we also have the identities below:

(𝜀 ⊗ Id) (𝑅) = 1𝐻 , (Id ⊗ 𝜀) (𝑅) = 1𝐻 , (2.14)

𝑅−1 = (𝑆 ⊗ Id) (𝑅), 𝑅 = (Id ⊗ 𝑆) (𝑅−1), 𝑅 = (𝑆 ⊗ 𝑆) (𝑅), (2.15)

where k ⊗ 𝐻 and 𝐻 ⊗ k are identified with H.
For example, for a finite-dimensional Hopf algebra H with dual bases {ℎ𝑑 , 𝜉𝑑}𝑑 , we have that the

Drinfeld double Drin(𝐻) of H is quasitriangular, with R-matrix

𝑅Drin(𝐻 ) :=
∑
𝑑 1𝐻 ∗ ⊗ ℎ𝑑 ⊗ 𝜉𝑑 ⊗ 1𝐻 ∈ Drin(𝐻) ⊗ Drin(𝐻).

Moreover, quantum R-matrices of H are tied to braidings of 𝐻-mod as we see below.

Lemma 2.16. The tensor category 𝐻-mod is braided with

𝑐𝑋,𝑌 : 𝑋 ⊗ 𝑌 → 𝑌 ⊗ 𝑋, 𝑥 ⊗ 𝑦 ↦→
∑
𝑖 (𝑡𝑖 · 𝑦) ⊗ (𝑠𝑖 · 𝑥),

for 𝑅 :=
∑
𝑖 𝑠𝑖 ⊗ 𝑡𝑖 ∈ 𝐻 ⊗ 𝐻, if and only if R is a quantum R-matrix for H.

3. Preliminaries and results on (braided) module categories

Throughout this section, let (C, ⊗,1, 𝑎, 𝑙, 𝑟) be a monoidal category, unless stated otherwise. We review
module categories over C and module functors between them in Section 3.1. The collection of module
functors form a category, which we discuss in Section 3.2. Exact module categories are reviewed in
Section 3.3. Then, bimodule categories and their centers are discussed in Section 3.4. Finally, braided
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module categories are introduced in Section 3.5, braided module functors are studied in Section 3.6,
and connections to quantum K-matrices are presented in Section 3.7.

3.1. Module categories

See [EGNO15, Sections 7.1–7.3]] for details. A left C-module category is a category M equipped with
an action bifunctor ⊲ : C ×M→M, a natural isomorphism 𝑚𝑋,𝑌 ,𝑀 : (𝑋 ⊗𝑌 ) ⊲ 𝑀

∼
→ 𝑋 ⊲ (𝑌 ⊲ 𝑀) for

𝑋,𝑌 ∈ C, 𝑀 ∈M, and a natural isomorphism 𝜆𝑀 : 1 ⊲ 𝑀
∼
→ 𝑀 for 𝑀 ∈M, such that the following

pentagon and triangle axioms hold for each 𝑋,𝑌, 𝑍 ∈ C and 𝑀 ∈M:

𝑚𝑋,𝑌 ,𝑍⊲𝑀 ◦ 𝑚𝑋 ⊗𝑌 ,𝑍 ,𝑀 = (Id𝑋 ⊲ 𝑚𝑌 ,𝑍 ,𝑀 ) ◦ 𝑚𝑋,𝑌 ⊗𝑍,𝑀 ◦ (𝑎𝑋,𝑌 ,𝑍 ⊲ Id𝑀 ), (3.1)

𝑟𝑋 ⊲ Id𝑀 = (Id𝑋 ⊲ 𝜆𝑀 ) ◦ 𝑚𝑋,1,𝑀 . (3.2)

We sometimes write M or (M, ⊲) to denote (M, ⊲, 𝑚, 𝜆) for brevity.
A C-module functor between left C-module categories (M, ⊲, 𝑚, 𝜆) and (M′, ⊲′, 𝑚′, 𝜆′) is a functor

𝐹 : M→M′ equipped with a natural isomorphism,

𝑠 := {𝑠𝑋,𝑀 : 𝐹 (𝑋 ⊲ 𝑀)
∼
→ 𝑋 ⊲′ 𝐹 (𝑀)}𝑋 ∈C,𝑀 ∈M,

such that the following coherence axioms hold for each 𝑋,𝑌 ∈ C and 𝑀 ∈M:

𝑚′𝑋,𝑌 ,𝐹 (𝑀 ) ◦ 𝑠𝑋 ⊗𝑌 ,𝑀 = (Id𝑋 ⊲′ 𝑠𝑌 ,𝑀 ) ◦ 𝑠𝑋,𝑌 ⊲𝑀 ◦ 𝐹 (𝑚𝑋,𝑌 ,𝑀 ), (3.3)

𝐹 (𝜆𝑀 ) = 𝜆′𝐹 (𝑀 ) ◦ 𝑠1,𝑀 . (3.4)

Similarly, a right C-module category is a category M equipped with a bifunctor ⊳ : M × C →M,
a natural isomorphism 𝑛𝑀,𝑋,𝑌 : 𝑀 ⊳ (𝑋 ⊗ 𝑌 )

∼
→ (𝑀 ⊳ 𝑋) ⊳ 𝑌 for 𝑋,𝑌 ∈ C, 𝑀 ∈ M, and a natural

isomorphism 𝜌𝑀 : 𝑀 ⊳ 1
∼
→ 𝑀 for 𝑀 ∈M, satisfying pentagon and triangle axioms.

A C-module functor between right C-module categories (M, ⊳, 𝑛, 𝜌) and (M′, ⊳′, 𝑛′, 𝜌′) is a functor
𝐹 : M→M′ equipped with a natural isomorphism,

𝑡 := {𝑡𝑀,𝑋 : 𝐹 (𝑀 ⊳ 𝑋)
∼
→ 𝐹 (𝑀) ⊳′ 𝑋}𝑋 ∈C,𝑀 ∈M,

satisfying coherence axioms.
A left module category over a tensor category C is a left C-module category (M, ⊲) that is abelian,

k-linear, locally finite, bilinear on morphisms, such that − ⊲ 𝑀 : C →M is exact for all 𝑀 ∈ M. A
similar notion holds for right module categories. We also assume that module functors between such
module categories are additive in each slot.

3.2. Categories of module functors

The collection of C-module functors between left C-module categories M and M′ forms a category,
which we denote by FunC (M,M′). A morphism in FunC (M,M′) from (𝐹1, 𝑠1) to (𝐹2, 𝑠2) is a natural
transformation from 𝐹1 to 𝐹2 that is compatible with 𝑠1 and 𝑠2. See [EGNO15, Section 7.2] for more
information.

The category FunC (M,M′) is not always well behaved, but we have the following useful result.

Proposition 3.5 [ENO05, Theorem 2.16]. If C is a fusion category, and M and M′ are finite and
semisimple left C-module categories, then FunC (M,M′) is a semisimple category.

A subcollection of FunC (M,M′) that is better behaved is the collection of right exact C-module
functors between left C-module categories M and M′; their full subcategory of FunC (M,M′) is
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denoted by RexC (M,M′). We also denote the full subcategory of exact C-module functors from M to
M′ by ExC (M,M′).

3.3. Exact module categories

Assume here that C is a finite tensor category. Here, we recall background material on exact module
categories from [EGNO15, Sections 7.5, 7.11].

A locally finite module category (M, ⊲) over C is called exact if for any projective object 𝑃 ∈ C and
any object 𝑀 ∈M, we have that the object 𝑃 ⊲ 𝑀 is projective in M.

Example 3.6. If C is a finite tensor category, then C is an exact left module category over both C and
C � C⊗op; see [EO04, Example 3.3(i)].

As mentioned above, the category of right exact module category functors is better behaved than the
category of ordinary module category functors. To see this, consider the result below.

Proposition 3.7 [EGNO15, Proposition 3.11]. If M and M′ are exact, finite, left C-module categories,
then RexC (M,M′) is abelian and finite.

We also have that any module category functor from an exact module category is (right) exact.

Proposition 3.8 [EO04]. Let M be an exact, finite left C-module category. Then FunC (M,M′) =
ExC (M,M′) for any left C-module category M′.

3.4. Bimodule categories and their centers

Here, we recall material from work of Greenough, [Gre10, Sections 2 and 7]. A C-bimodule category is
a tuple (M, ⊲, ⊳, 𝑚, 𝑛, 𝜆, 𝜌) such that (M, ⊲, 𝑚, 𝜆) is a left C-module category and (M, ⊳, 𝑛, 𝜌) is a right
C-module category, with a natural isomorphism, 𝑏 := {𝑏𝑋,𝑀,𝑌 : (𝑋 ⊲𝑀) ⊳𝑌

∼
→ 𝑋 ⊲ (𝑀⊳𝑌 )}𝑋,𝑌 ∈C,𝑀 ∈M,

satisfying compatibility conditions.

Remark 3.9. Note that (M, ⊲, ⊳, 𝑚, 𝑛, 𝜆, 𝜌) is a C-bimodule category if and only if (M, ⊲̄, 𝑚̄, 𝜆̄) a left
module category over C � C⊗op. Here, (𝑋 � 𝑋 ′)⊲̄𝑀 � (𝑋 ⊲ 𝑀) ⊳ 𝑋 ′, for 𝑋, 𝑋 ′ ∈ C and 𝑀 ∈M, and
we have similar correspondences between the associativity and unitality constraints.

A functor of C-bimodule categories 𝐹 : M→M′ is at the same time a functor for the left and right
C-module structures, with natural isomorphisms for 𝑋 ∈ C and 𝑀 ∈M,

𝑠𝑋,𝑀 : 𝐹 (𝑋 ⊲ 𝑀)
∼
→ 𝑋 ⊲′ 𝐹 (𝑀), 𝑡𝑀,𝑋 : 𝐹 (𝑀 ⊳ 𝑋)

∼
→ 𝐹 (𝑀) ⊳′ 𝑋,

satisfying the compatibility condition below for all 𝑋,𝑌 ∈ C, 𝑀 ∈M:

(Id𝑋 ⊲′ 𝑡𝑀,𝑌 ) ◦ 𝑠𝑋,𝑀⊳𝑌 ◦ 𝐹 (𝑏𝑋,𝑀,𝑌 ) = 𝑏′𝑋,𝐹 (𝑀 ) ,𝑌 ◦ (𝑠𝑋,𝑀 ⊳′ Id𝑌 ) ◦ 𝑡𝑋⊲𝑀,𝑌 .

Given a C-module category, one defines its center by analogy with the center of a monoidal category
(cf. Section 2.2).

Definition 3.10. Given a C-bimodule category M, we define its center ZC (M) as the category consist-
ing of objects (𝑀, 𝑑𝑀 ), where M is an object of M and d is a natural isomorphism,

𝑑𝑀 =
{
𝑑𝑀𝑋 : 𝑋 ⊲ 𝑀

∼
→ 𝑀 ⊳ 𝑋

}
𝑋 ∈C

(half-braiding),

which satisfies the coherence condition below for all 𝑋,𝑌 ∈ C and 𝑀 ∈M:

𝑑𝑀𝑋 ⊗𝑌 = 𝑛−1
𝑀,𝑋,𝑌 ◦ (𝑑

𝑀
𝑋 ⊳ Id𝑌 ) ◦ 𝑏−1

𝑋,𝑀,𝑌 ◦ (Id𝑋 ⊲ 𝑑𝑀𝑌 ) ◦ 𝑚𝑋,𝑌 ,𝑀 . (3.11)
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Morphisms 𝑓 : (𝑀, 𝑑𝑀 ) → (𝑁, 𝑑𝑁 ) are given by morphisms 𝑓 : 𝑀 → 𝑁 in M which commute
with the respective half-braidings – that is, for 𝑋 ∈ C: ( 𝑓 ⊳ Id𝑋 ) ◦ 𝑑𝑀𝑋 = 𝑑𝑁𝑋 ◦ (Id𝑋 ⊲ 𝑓 ).

Example 3.12. The Drinfeld center Z (C) of C appears as the special case ZC (C), where C is a
C-bimodule via the regular action 𝑋 ⊲𝑉 = 𝑋 ⊗𝑉 and 𝑉 ⊳ 𝑋 = 𝑉 ⊗ 𝑋 , along with C-bimodule constraints
derived from the monoidal constraints of C as follows: 𝑚𝑋,𝑌 ,𝑉 = 𝑎𝑋,𝑌 ,𝑉 , 𝑛𝑉 ,𝑋,𝑌 = 𝑎−1

𝑉 ,𝑋,𝑌 , 𝜆𝑋 = 𝑙𝑋 ,
𝜌𝑋 = 𝑟𝑋 , and 𝑏𝑋,𝑉 ,𝑌 = 𝑎𝑋,𝑉 ,𝑌 for all 𝑋,𝑌,𝑉 ∈ C. In this case, 𝑑𝑉𝑋 = 𝑐𝑉𝑋 for all 𝑋,𝑉 ∈ C.

3.5. Braided module categories

Now assume that C := (C, 𝑐) is braided. We say that a left C-module category (M, ⊲, 𝑚, 𝜆) is braided
if it is equipped with a natural isomorphism,

𝑒 := {𝑒𝑋,𝑀 : 𝑋 ⊲ 𝑀
∼
→ 𝑋 ⊲ 𝑀}𝑋 ∈C,𝑀 ∈M (braiding),

such that the following axioms hold for each 𝑋,𝑌 ∈ C and 𝑀 ∈M:

𝑒𝑋 ⊗𝑌 ,𝑀 = 𝑚−1
𝑋,𝑌 ,𝑀 ◦ (Id𝑋 ⊲ 𝑒𝑌 ,𝑀 ) ◦ 𝑚𝑋,𝑌 ,𝑀 ◦ (𝑐𝑌 ,𝑋 ⊲ Id𝑀 )

◦ 𝑚−1
𝑌 ,𝑋,𝑀 ◦ (Id𝑌 ⊲ 𝑒𝑋,𝑀 ) ◦ 𝑚𝑌 ,𝑋,𝑀 ◦ (𝑐

−1
𝑌 ,𝑋 ⊲ Id𝑀 ),

(3.13)

𝑒𝑋,𝑌 ⊲𝑀 = 𝑚𝑋,𝑌 ,𝑀 ◦ (𝑐𝑌 ,𝑋 ⊲ Id𝑀 ) ◦ 𝑚−1
𝑌 ,𝑋,𝑀 ◦ (Id𝑌 ⊲ 𝑒𝑋,𝑀 )

◦ 𝑚𝑌 ,𝑋,𝑀 ◦ (𝑐𝑋,𝑌 ⊲ Id𝑀 ) ◦ 𝑚−1
𝑋,𝑌 ,𝑀 .

(3.14)

Remark 3.15. Let us compare the definition above to the definition of a braided module category in
other parts of the literature.

(a) In [Kol20, Section 2], the author uses right C-module categories and works in the strict case,
and our axiom (3.14) is the braided module category axiom [Kol20, (2.3)]. Moreover, our axiom
(3.13) is the equivalent to the axiom [Kol20, (2.3)] via a similar argument to [Kol20, Remarks 2.2
and 2.4] when C is ribbon. More precisely, if C is a ribbon category with a twist transformation
{𝜃𝑋 : 𝑋

∼
→ 𝑋}𝑋 ∈C (see [EGNO15, Definition 8.10.1]), then the natural isomorphism e satisfies

conditions (3.13)–(3.14) if and only if the natural isomorphism

𝑒̃ := {𝑒̃𝑋,𝑀 = 𝑒𝑋,𝑀 (𝜃𝑋 ⊲ Id𝑀 ) : 𝑋 ⊲ 𝑀
∼
→ 𝑋 ⊲ 𝑀}𝑋 ∈C,𝑀 ∈M

satisfies the left-hand versions of [Kol20, (2.3)–(2.4)]: (3.14) with e replaced by 𝑒̃, with

𝑒̃𝑋 ⊗𝑌 ,𝑀 = 𝑚𝑋,𝑌 ,𝑀 (𝑐𝑌 ,𝑋 ⊲ Id𝑀 ) 𝑚−1
𝑌 ,𝑋,𝑀 (Id𝑌 ⊲ 𝑒̃𝑋,𝑀 )

𝑚𝑌 ,𝑋,𝑀 (𝑐𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1
𝑋,𝑌 ,𝑀 (Id𝑋 ⊲ 𝑒̃𝑌 ,𝑀 ).

We further note that the conventions of [Kol20] are identical to those in [Bro13, Section 5.1].
(b) Considering [DN21, Definition 4.1], our axiom (3.14) is the same as their first braided module

category axiom. Also, our axiom (3.13) is the equivalent to their second braided module category
axiom, by using the first braided module axiom.

The next result shows that braided module categories can be obtained using braided monoidal
functors; cf. [DN21, Proposition 4.12].
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Proposition 3.16. We have the following statements.

(a) Suppose that C and C ′ are monoidal categories and (𝐹, 𝐹−,−, 𝐹0) : C → C ′ is a (strong) monoidal
functor. If (M′, ⊲′, 𝑚′, 𝜆′) is a left C ′-module category, then (M′, ⊲, 𝑚, 𝜆) is a left C-module
category with

𝑋 ⊲ 𝑀 := 𝐹 (𝑋) ⊲′ 𝑀,

𝑚𝑋,𝑌 ,𝑀 := 𝑚′
𝐹 (𝑋 ) ,𝐹 (𝑌 ) ,𝑀

(𝐹−1
𝑋,𝑌 ⊲′ Id𝑀 ) and 𝜆𝑀 := 𝜆′𝑀 (𝐹

−1
0 ⊲′ Id𝑀 ), for 𝑋,𝑌 ∈ C, 𝑀 ∈M′.

(b) If (C, 𝑐) and (C ′, 𝑐′) are braided monoidal categories and (𝐹, 𝐹−,−, 𝐹0) : C → C ′ is a braided
monoidal functor, then the left C-module category C ′ from part (a) is braided with

𝑒𝑋,𝑀 := 𝑐′𝑀,𝐹 (𝑋 ) ◦ 𝑐
′
𝐹 (𝑋 ) ,𝑀 ,

for all 𝑋 ∈ C and 𝑀 ∈ C ′.

Proof. (a) See, for example, [Wal24, Example 3.18].
(b) It suffices to establish (3.13) and (3.14) when 𝑒𝑋,𝑀 := 𝑐′

𝑀,𝐹 (𝑋 )
◦𝑐′

𝐹 (𝑋 ) ,𝑀
, for 𝑋 ∈ C and 𝑀 ∈ C ′.

The following computation verifies (3.14):

𝑚𝑋,𝑌 ,𝑀 (𝑐𝑌 ,𝑋 ⊲ Id𝑀 ) 𝑚−1
𝑌 ,𝑋,𝑀 (Id𝑌 ⊲ 𝑒𝑋,𝑀 ) 𝑚𝑌 ,𝑋,𝑀 (𝑐𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1

𝑋,𝑌 ,𝑀

= 𝑎′𝐹 (𝑋 ) ,𝐹 (𝑌 ) ,𝑀 (𝐹
−1
𝑋,𝑌 ⊗

′ Id𝑀 ) (𝐹 (𝑐𝑌 ,𝑋 ) ⊗′ Id𝑀 ) (𝐹𝑌 ,𝑋 ⊗′ Id𝑀 ) 𝑎′−1
𝐹 (𝑌 ) ,𝐹 (𝑋 ) ,𝑀

◦ (Id𝐹 (𝑌 ) ⊗′ 𝑐′𝑀,𝐹 (𝑋 ) ) (Id𝐹 (𝑌 ) ⊗
′ 𝑐′𝐹 (𝑋 ) ,𝑀 )

◦ 𝑎′𝐹 (𝑌 ) ,𝐹 (𝑋 ) ,𝑀 (𝐹
−1
𝑌 ,𝑋 ⊗

′ Id𝑀 ) (𝐹 (𝑐𝑋,𝑌 ) ⊗′ Id𝑀 ) (𝐹𝑋,𝑌 ⊗′ Id𝑀 ) 𝑎′−1
𝐹 (𝑋 ) ,𝐹 (𝑌 ) ,𝑀

= 𝑎′𝐹 (𝑋 ) ,𝐹 (𝑌 ) ,𝑀 (𝑐
′
𝐹 (𝑌 ) ,𝐹 (𝑋 ) ⊗

′ Id𝑀 ) 𝑎′−1
𝐹 (𝑌 ) ,𝐹 (𝑋 ) ,𝑀 (Id𝐹 (𝑌 ) ⊗

′ 𝑐′𝑀,𝐹 (𝑋 ) ) (Id𝐹 (𝑌 ) ⊗
′ 𝑐′𝐹 (𝑋 ) ,𝑀 )

◦ 𝑎′𝐹 (𝑌 ) ,𝐹 (𝑋 ) ,𝑀 (𝑐
′
𝐹 (𝑋 ) ,𝐹 (𝑌 ) ⊗

′ Id𝑀 ) 𝑎′−1
𝐹 (𝑋 ) ,𝐹 (𝑌 ) ,𝑀

= 𝑎′𝐹 (𝑋 ) ,𝐹 (𝑌 ) ,𝑀 (𝑐
′
𝐹 (𝑌 ) ,𝐹 (𝑋 ) ⊗

′ Id𝑀 ) 𝑎′−1
𝐹 (𝑌 ) ,𝐹 (𝑋 ) ,𝑀 (Id𝐹 (𝑌 ) ⊗

′ 𝑐′𝑀,𝐹 (𝑋 ) ) 𝑎
′
𝐹 (𝑌 ) ,𝑀 ,𝐹 (𝑋 )

◦ 𝑎′−1
𝐹 (𝑌 ) ,𝑀 ,𝐹 (𝑋 ) (Id𝐹 (𝑌 ) ⊗

′ 𝑐′𝐹 (𝑋 ) ,𝑀 ) 𝑎
′
𝐹 (𝑌 ) ,𝐹 (𝑋 ) ,𝑀 (𝑐

′
𝐹 (𝑋 ) ,𝐹 (𝑌 ) ⊗

′ Id𝑀 ) 𝑎′−1
𝐹 (𝑋 ) ,𝐹 (𝑌 ) ,𝑀

= 𝑐′𝐹 (𝑌 ) ⊗′𝑀,𝐹 (𝑋 ) 𝑐
′
𝐹 (𝑋 ) ,𝐹 (𝑌 ) ⊗′𝑀

= 𝑒𝑋,𝑌 ⊲𝑀 .

The first and last equations holds by definition; the second equation holds by the braided monoidal
functor axiom (2.3); the third equation holds trivially; and the fourth equation holds by the braided
monoidal category axioms (2.1) and (2.2).

Likewise, (3.13) holds by applying a combination of the braided monoidal functor axiom (2.3) and
the braided monoidal category axioms (2.1) and (2.2). �

3.6. Braided module functors

Here, we compare braided module categories via the notions below. For ease, given a left C-module
category M with objects 𝑋 ∈ C, 𝑀 ∈M, and morphisms 𝜓 ∈ C, 𝜙 ∈M, we write 𝑋 ⊲ 𝜙 and 𝜓 ⊲ Id𝑀
for the morphisms Id𝑋 ⊲ 𝜙 and 𝜓 ⊲ 𝑀 in M, respectively.

Definition 3.17. A braided C-module functor between braided left C-module categories (M, ⊲, 𝑒) and
(M′, ⊲′, 𝑒′) is a left C-module functor (𝐹, 𝑠) : (M, ⊲) → (M′, ⊲′) such that

𝑒′𝑋,𝐹 (𝑀 ) ◦ 𝑠𝑋,𝑀 = 𝑠𝑋,𝑀 ◦ 𝐹 (𝑒𝑋,𝑀 ) (3.18)
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for all 𝑋 ∈ C and 𝑀 ∈ M. An equivalence (resp., isomorphism) of braided left C-module categories
is given by two braided module functors 𝐹 : M → N and 𝐺 : N → M between the two module
categories that yields an equivalence (resp., isomorphism) of the underlying categories.

The next result is straightforward; the reader may refer to the arXiv version 1 of this article if they
are interested in the proof.

Proposition 3.19. Let (𝐹, 𝑠) : (M, ⊲, 𝑒) → (M′, ⊲′, 𝑒′) be a functor of braided left C-module categories
and let 𝐺 : M′ →M be a quasi-inverse of F. Then there exists a natural isomorphism 𝑠′making (𝐺, 𝑠′)
a functor of braided left C-module categories.

The consequence below is now straightforward to establish.

Corollary 3.20. Braided (left) C-module equivalence is an equivalence relation for braided (left)
C-module categories.

We now discuss how to transfer structure for (braided) module categories, particularly across an
equivalence of categories. The proof is available in the arXiv version 1 of this article.

Proposition 3.21. Let 𝐹 : M→M′ be a category equivalence with a quasi-inverse 𝐺 : M′ →M.

(a) If (M, ⊲) is a left C-module category, then we can define a left C-module category structure ⊲′ on
M′ via

𝑋 ⊲′ 𝑁 := 𝐹 (𝑋 ⊲ 𝐺 (𝑁)),

for each 𝑋 ∈ C and 𝑁 ∈M′, such that both F and G are left C-module functors.
(b) A braiding e on the left C-module category M induces a braiding 𝑒′ on M′ via

𝑒′𝑋,𝑁 := 𝐹 (𝑒𝑋,𝐺 (𝑁 ) ) : 𝑋 ⊲′ 𝑁
∼
→ 𝑋 ⊲′ 𝑁,

for each 𝑋 ∈ C and 𝑁 ∈M′, with the left C-module category structure from part (a) such that 𝐹, 𝐺
preserve the braiding.

3.7. Quasitriangular comodule algebras and quantum K-matrices

Assume that H is a quasitriangular Hopf algebra with a quantum R-matrix 𝑅 :=
∑
𝑖 𝑠𝑖 ⊗ 𝑡𝑖 ∈ 𝐻 ⊗ 𝐻.

Here, ⊗ := ⊗k. Let A be a left H-comodule algebra with coaction

𝛿 : 𝐴→ 𝐻 ⊗ 𝐴, 𝑎 ↦→ 𝑎 [−1] ⊗ 𝑎 [0] .

Definition 3.22. We say that A is a quasitriangular left H-comodule algebra if it is equipped with an
invertible element,

𝐾 :=
∑
𝑖 𝑔𝑖 ⊗ 𝑝𝑖 ∈ 𝐻 ⊗ 𝐴 (quantum 𝐾-matrix),

with inverse, 𝐾−1 :=
∑
𝑖 𝑔

𝑖 ⊗ 𝑝𝑖 ∈ 𝐻 ⊗ 𝐴, such that
∑
𝑖 (𝑔𝑖)(1) ⊗ (𝑔𝑖)(2) ⊗ 𝑝𝑖 =

∑
𝑗 ,𝑘,𝑙,𝑚 𝑡𝑘𝑔𝑙𝑡

𝑚 ⊗ 𝑔 𝑗 𝑠𝑘 𝑠
𝑚 ⊗ 𝑝 𝑗 𝑝𝑙 ,

(equivalently, (Δ ⊗ Id𝐴)𝐾 = 𝐾23𝑅21𝐾13𝑅
−1
21 ),

(3.23)

∑
𝑖 𝑔𝑖 ⊗ (𝑝𝑖)[−1] ⊗ (𝑝𝑖)[0] =

∑
𝑗 ,𝑘,𝑙 𝑡 𝑗𝑔𝑘 𝑠𝑙 ⊗ 𝑠 𝑗 𝑡𝑙 ⊗ 𝑝𝑘 ,

(equivalently, (Id𝐻 ⊗ 𝛿)𝐾 = 𝑅21𝐾13𝑅12),
(3.24)
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∑
𝑖 𝑔𝑖𝑎 [−1] ⊗ 𝑝𝑖𝑎 [0] =

∑
𝑖 𝑎 [−1]𝑔𝑖 ⊗ 𝑎 [0] 𝑝𝑖 ∀𝑎 ∈ 𝐴,

(equivalently, 𝐾𝛿(𝑎) = 𝛿(𝑎)𝐾 ∀𝑎 ∈ 𝐴).
(3.25)

Here, 𝐾𝑎𝑏 :=
∑
𝑖 𝑔𝑖 (in the 𝑎-th slot) ⊗ 𝑝𝑖 (in the 𝑏-th slot) ⊗ 1𝐻 (in other slots).

Returning to braided module categories, consider the result below.

Lemma 3.26. Retain the notation above for the quasitriangular Hopf algebra (𝐻, 𝑅) and the left
H-comodule algebra A. Then, the following statements hold.

(a) We have that 𝐴-mod is a left module category over 𝐻-mod via

⊲ : 𝐻-mod × 𝐴-mod→ 𝐴-mod, ((𝑋, ·), (𝑀, ∗)) ↦→ (𝑋 ⊗ 𝑀, ∗̃),

where 𝑎 ∗̃ (𝑥 ⊗ 𝑚) := (𝑎 [−1] · 𝑥) ⊗ (𝑎 [0] ∗ 𝑚) for 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑋 , 𝑚 ∈ 𝑀 .
(b) Take 𝐾 :=

∑
𝑖 𝑔𝑖 ⊗ 𝑝𝑖 ∈ 𝐻 ⊗ 𝐴, and for (𝑋, ·) ∈ 𝐻-mod, (𝑀, ∗) ∈ 𝐴-mod, take the morphism

𝑒𝑋,𝑀 : 𝑋 ⊗ 𝑀 → 𝑋 ⊗ 𝑀, 𝑥 ⊗ 𝑚 ↦→
∑
𝑖 (𝑔𝑖 · 𝑥) ⊗ (𝑝𝑖 ∗ 𝑚).

Then, the left (𝐻-mod)-module category (𝐴-mod, ⊲) is braided with braiding given by 𝑒𝑋,𝑀 if and
only if K is a quantum K-matrix for A.

(c) Conversely, any braiding for the (𝐻-mod)-module category 𝐴-mod from part (a) is of the form
given in part (b) for some element 𝐾 :=

∑
𝑖 𝑔𝑖 ⊗ 𝑝𝑖 ∈ 𝐻 ⊗ 𝐴.

Proof. Part (a) is straightforward to check, and we leave this to the reader. For part (b), we sketch the
forward direction; the reverse direction is proved by reversing the arguments.

To proceed, note that if we write H (resp., A) in the subscript of either the braiding c or e, then this
denotes the regular left H-module (resp., regular left A-module). Also, denote the inverse of 𝑒𝑋,𝑀 by
𝑒−1
𝑋,𝑀 : 𝑋 ⊗ 𝑀 → 𝑋 ⊗ 𝑀 and set

𝐾 ′ := 𝑒−1
𝐻,𝐴(1𝐻 ⊗ 1𝐴) ∈ 𝐻 ⊗ 𝐴.

By the naturality of 𝑒−1
𝑋,𝑀 , we obtain that 𝑒−1

𝑋,𝑀 (𝑥 ⊗𝑚) = 𝐾 ′ ∗̃ (𝑥 ⊗𝑚), for 𝑥 ∈ 𝑋 , 𝑚 ∈ 𝑀 . This implies
𝐾𝐾 ′ = 𝐾 ′𝐾 = 1𝐻 ⊗ 1𝐴. Therefore, 𝐾 ∈ 𝐻 ⊗ 𝐴 is invertible.

To establish (3.23), we compute

∑
𝑖 (𝑔𝑖)(1) ⊗ (𝑔𝑖)(2) ⊗ 𝑝𝑖 = 𝑒𝐻 ⊗𝐻,𝐴(1𝐻 ⊗ 1𝐻 ⊗ 1𝐴)

(3.13)
= (Id𝐻 ⊗ 𝑒𝐻,𝐴) (𝑐𝐻,𝐻 ⊗ Id𝐴) (Id𝐻 ⊗ 𝑒𝐻,𝐴) (𝑐

−1
𝐻,𝐻 ⊗ Id𝐴) (1𝐻 ⊗ 1𝐻 ⊗ 1𝐴)

Lem. 2.16
=

∑
𝑚(Id𝐻 ⊗ 𝑒𝐻,𝐴) (𝑐𝐻,𝐻 ⊗ Id𝐴) (Id𝐻 ⊗ 𝑒𝐻,𝐴) (𝑠

𝑚 ⊗ 𝑡𝑚 ⊗ 1𝐴)

=
∑
𝑙,𝑚(Id𝐻 ⊗ 𝑒𝐻,𝐴) (𝑐𝐻,𝐻 ⊗ Id𝐴) (𝑠𝑚 ⊗ 𝑔𝑙𝑡

𝑚 ⊗ 𝑝𝑙)

Lem. 2.16
=

∑
𝑘,𝑙,𝑚 (Id𝐻 ⊗ 𝑒𝐻,𝐴) (𝑡𝑘𝑔𝑙𝑡

𝑚 ⊗ 𝑠𝑘 𝑠
𝑚 ⊗ 𝑝𝑙)

=
∑
𝑗 ,𝑘,𝑙,𝑚 𝑡𝑘𝑔𝑙𝑡

𝑚 ⊗ 𝑔 𝑗 𝑠𝑘 𝑠
𝑚 ⊗ 𝑝 𝑗 𝑝𝑙 .

Likewise to establish (3.24), we compute

∑
𝑖 𝑔𝑖 ⊗ (𝑝𝑖)[−1] ⊗ (𝑝𝑖)[0] = 𝑒𝐻,𝐻 ⊗𝐴(1𝐻 ⊗ 1𝐻 ⊗ 1𝐴)

(3.14)
= (𝑐𝐻,𝐻 ⊗ Id𝐴) (Id𝐻 ⊗ 𝑒𝐻,𝐴) (𝑐𝐻,𝐻 ⊗ Id𝐴) (1𝐻 ⊗ 1𝐻 ⊗ 1𝐴)

Lem. 2.16
=

∑
𝑗 ,𝑘,𝑙 𝑡 𝑗𝑔𝑘 𝑠𝑙 ⊗ 𝑠 𝑗 𝑡𝑙 ⊗ 𝑝𝑘 .
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Finally, to show that (3.25) holds, recall that 𝑒𝑋,𝑀 : 𝑋⊗𝑀 → 𝑋⊗𝑀 is an A-module homomorphism.
Therefore,

∑
𝑖 𝑔𝑖𝑎 [−1] ⊗ 𝑝𝑖𝑎 [0] = 𝑒𝐻,𝐴(𝑎 [−1] ⊗ 𝑎 [0] ) = 𝑒𝐻,𝐴(𝑎 ∗̃ (1𝐻 ⊗ 1𝐴))

= 𝑎 ∗̃ 𝑒𝐻,𝐴(1𝐻 ⊗ 1𝐴) = 𝑎 ∗̃ (
∑
𝑖 𝑔𝑖 ⊗ 𝑝𝑖) =

∑
𝑖 𝑎 [−1]𝑔𝑖 ⊗ 𝑎 [0] 𝑝𝑖 .

For part (c), it remains to show that any braiding e on 𝐴-mod is given by the action of some element
𝐾 ∈ 𝐻 ⊗ 𝐴. This follows from a reconstruction argument as in [Maj00, Section 9.4]. �

Remark 3.27. Let us compare the definition of the quantum K-matrix above with that in [Kol20].
Assume that H is a ribbon Hopf algebra; that is, it is quasitriangular with quantum R-matrix R and
contains an invertible central element v such that Δ (𝑣) = (𝑣 ⊗ 𝑣)

(
𝑅21𝑅12

)−1 and 𝑣 = 𝑆(𝑣). Set

𝐾 := 𝐾 (𝑣−1 ⊗ 1𝐴) ∈ 𝐻 ⊗ 𝐴.

(a) Analogous to Remark 3.15(a), one shows that conditions (3.23)–(3.25) are equivalent to

(Δ ⊗ Id𝐴)𝐾 = 𝐾23𝑅21𝐾13𝑅21, (3.28)

(Id𝐻 ⊗ 𝛿)𝐾 = 𝑅21𝐾13𝑅21, (3.29)

𝐾𝛿(𝑎) = 𝛿(𝑎)𝐾, ∀𝑎 ∈ 𝐴. (3.30)

In turn, (3.28)–(3.30) are equivalent to the same set of conditions with (3.28) replaced by

(Δ ⊗ Id𝐴)𝐾 = 𝑅21𝐾13𝑅21𝐾23. (3.31)

Indeed, the forward direction follows from

(Δ ⊗ Id𝐴)𝐾
(3.28)
= 𝐾23𝑅21𝐾13𝑅21

(3.29)
= 𝐾23

(
(Id𝐻 ⊗ 𝛿)𝐾

)
(3.30)
=

(
(Id𝐻 ⊗ 𝛿)𝐾

)
𝐾23

(3.29)
= 𝑅21𝐾13𝑅21𝐾23,

while the opposite direction is obtained by reversing the argument.
(b) Conditions (3.29), (3.30) and (3.31) are precisely the conditions for a quasitriangular comodule

algebra used in [Kol20, Definition 2.7], with the only difference that [Kol20] works with right
comodule algebras, while we work with left ones.

(c) Equating the right-hand sides of (3.28) and (3.31) gives that

𝐾23𝑅21𝐾13𝑅21 = 𝑅21𝐾13𝑅21𝐾23,

from which it follows that 𝐾 and R define representations of the braid groups of type B.

4. Reflective centers of module categories

In this part, we introduce and study the reflective center of a module categoryM over a braided monoidal
category C. Preliminary results on this construction are presented in Section 4.1. Then, in Section 4.2,
we realize the reflective center of M as a center of a certain C-bimodule category. This enables us to
establish properties of reflective centers such as being abelian, finite and semisimple in the case when
C is a braided tensor category.
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4.1. Preliminaries on reflective centers

We introduce the terminology below.

Definition 4.1. Let (C, ⊗,1, 𝑎, 𝑙, 𝑟, 𝑐) be a braided monoidal category, and let (M, ⊲, 𝑚, 𝜆) be a left
C-module category. The reflective center of M with respect to C is a category EC (M) defined as follows.

(a) Its objects are pairs (𝑀, 𝑒𝑀 ), where M is an object of M, and

𝑒𝑀 := {𝑒𝑀𝑌 : 𝑌 ⊲ 𝑀
∼
→ 𝑌 ⊲ 𝑀}𝑌 ∈C (reflection)

is a natural isomorphism such that 𝑒𝑀𝑋 ⊗𝑌 (= 𝑒𝑋 ⊗𝑌 ,𝑀 ) satisfies (3.13) for all 𝑋,𝑌 ∈ C.
(b) The morphisms (𝑀, 𝑒𝑀 ) → (𝑁, 𝑒𝑁 ) are given by morphisms 𝑓 ∈ HomM(𝑀, 𝑁) such that, for all

𝑌 ∈ C,

(Id𝑌 ⊲ 𝑓 ) ◦ 𝑒𝑀𝑌 = 𝑒𝑁𝑌 ◦ (Id𝑌 ⊲ 𝑓 ).

Lemma 4.2. Retain the notation above. We have that EC (M) is a left C-module category, where by the
abusing notation ⊲, the action bifunctor ⊲ : C × EC (M) → EC (M) is defined by

𝑌 ⊲ (𝑀, 𝑒𝑀 ) := (𝑌 ⊲ 𝑀, 𝑒𝑌 ⊲𝑀 ),

where 𝑒𝑌 ⊲𝑀𝑋 (= 𝑒𝑋,𝑌 ⊲𝑀 ) is defined by (3.14) for all 𝑋,𝑌 ∈ C, and the associativity isomorphism is that
of the left C-module category M.

Proof. First, we need to show that ⊲ is well defined on objects and on morphisms.
Given objects 𝑊, 𝑋,𝑌 ∈ C and 𝑀 ∈ M, we need to show that 𝑒𝑌 ⊲𝑀𝑊 ⊗𝑋 defined by (3.14) satisfies

(3.13) as in Definition 4.1(a). This is achieved by the following computation:

𝑒𝑌⊲𝑀𝑊 ⊗𝑋 = 𝑚𝑊 ⊗𝑋,𝑌 ,𝑀 (𝑐𝑌 ,𝑊 ⊗𝑋 ⊲ Id𝑀 ) 𝑚−1
𝑌 ,𝑊 ⊗𝑋,𝑀 (Id𝑌 ⊲ 𝑒𝑀𝑊 ⊗𝑋 ) 𝑚𝑌 ,𝑊 ⊗𝑋,𝑀 (𝑐𝑊 ⊗𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1

𝑊 ⊗𝑋,𝑌 ,𝑀

= 𝑚𝑊 ⊗𝑋,𝑌 ,𝑀 (𝑐𝑌 ,𝑊 ⊗𝑋 ⊲ Id𝑀 ) 𝑚−1
𝑌 ,𝑊 ⊗𝑋,𝑀 [Id𝑌 ⊲

(
𝑚−1
𝑊 ,𝑋,𝑀 (Id𝑊 ⊲ 𝑒𝑀𝑋 ) 𝑚𝑊 ,𝑋,𝑀 (𝑐𝑋,𝑊 ⊲ Id𝑀 )

)
]

◦ [Id𝑌 ⊲
(
𝑚−1
𝑋,𝑊 ,𝑀 (Id𝑋 ⊲ 𝑒𝑀𝑊 ) 𝑚𝑋,𝑊 ,𝑀 (𝑐

−1
𝑋,𝑊 ⊲ Id𝑀 )

)
] 𝑚𝑌 ,𝑊 ⊗𝑋,𝑀 (𝑐𝑊 ⊗𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1

𝑊 ⊗𝑋,𝑌 ,𝑀

= 𝑚−1
𝑊 ,𝑋,𝑌 ⊲𝑀 [Id𝑊 ⊲

(
𝑚𝑋,𝑌 ,𝑀 (𝑐𝑌 ,𝑋 ⊲ Id𝑀 ) 𝑚−1

𝑌 ,𝑋,𝑀 (Id𝑌 ⊲ 𝑒𝑀𝑋 )
)
]

◦ [Id𝑊 ⊲
(
𝑚𝑌 ,𝑋,𝑀 (𝑐𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1

𝑋,𝑌 ,𝑀

)
] 𝑚𝑊 ,𝑋,𝑌 ⊲𝑀 (𝑐𝑋,𝑊 ⊲ Id𝑌 ⊲𝑀 )

◦ 𝑚−1
𝑋,𝑊 ,𝑌 ⊲𝑀 [Id𝑋 ⊲

(
𝑚𝑊 ,𝑌 ,𝑀 (𝑐𝑌 ,𝑊 ⊲ Id𝑀 ) 𝑚−1

𝑌 ,𝑊 ,𝑀 (Id𝑌 ⊲ 𝑒𝑀𝑊 )
)
]

◦ [Id𝑋 ⊲
(
𝑚𝑌 ,𝑊 ,𝑀 (𝑐𝑊 ,𝑌 ⊲ Id𝑀 ) 𝑚−1

𝑊 ,𝑌 ,𝑀

)
] 𝑚𝑋,𝑊 ,𝑌 ⊲𝑀 (𝑐

−1
𝑋,𝑊 ⊲ Id𝑌⊲𝑀 )

= 𝑚−1
𝑊 ,𝑋,𝑌 ⊲𝑀 (Id𝑊 ⊲ 𝑒𝑌⊲𝑀𝑋 ) 𝑚𝑊 ,𝑋,𝑌 ⊲𝑀 (𝑐𝑋,𝑊 ⊲ Id𝑌 ⊲𝑀 ) 𝑚−1

𝑋,𝑊 ,𝑌 ⊲𝑀 (Id𝑋 ⊲ 𝑒𝑌⊲𝑀𝑊 )

◦ 𝑚𝑋,𝑊 ,𝑌 ⊲𝑀 (𝑐
−1
𝑋,𝑊 ⊲ Id𝑌⊲𝑀 )

Here, the first and last equations hold by (3.14); the second equation holds by Definition 4.1(b)
for 𝑒𝑀 ; and the third equation follows from (3.1), from the braid axiom (2.1), and the naturality of
c. A similar computation shows that the original associativity isomorphism 𝑚𝑋,𝑌 ,𝑀 indeed defines a
morphism in EC (M).

Next, given an object 𝑋 ∈ C, along with morphisms 𝑓 : 𝑌 → 𝑌 ′ in C and 𝑔 : 𝑀 → 𝑀 ′ in M, we
need to show that (Id𝑋 ⊲ ( 𝑓 ⊲ 𝑔)) ◦ 𝑒𝑌 ⊲𝑀𝑋 = 𝑒𝑌

′⊲𝑀 ′

𝑋 ◦ (Id𝑋 ⊲ ( 𝑓 ⊲ 𝑔)) as in Definition 4.1(b). This is done
as follows:
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(Id𝑋 ⊲ ( 𝑓 ⊲ 𝑔)) 𝑒𝑌 ⊲𝑀𝑋

= (Id𝑋 ⊲ ( 𝑓 ⊲ 𝑔)) 𝑚𝑋,𝑌 ,𝑀 (𝑐𝑌 ,𝑋 ⊲ Id𝑀 ) 𝑚−1
𝑌 ,𝑋,𝑀 (Id𝑌 ⊲ 𝑒𝑀𝑋 ) 𝑚𝑌 ,𝑋,𝑀 (𝑐𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1

𝑋,𝑌 ,𝑀

= 𝑚𝑋,𝑌 ′,𝑀 ′ (𝑐𝑌 ′,𝑋 ⊲ Id𝑀 ) 𝑚−1
𝑌 ′,𝑋 ,𝑀 ′ ( 𝑓 ⊲ (Id𝑋 ⊲ 𝑔)) ◦ (Id𝑌 ⊲ 𝑒𝑀𝑋 ) 𝑚𝑌 ,𝑋,𝑀 (𝑐𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1

𝑋,𝑌 ,𝑀

= 𝑚𝑋,𝑌 ′,𝑀 ′ (𝑐𝑌 ′,𝑋 ⊲ Id𝑀 ) 𝑚−1
𝑌 ′,𝑋 ,𝑀 ′ (Id𝑌 ′ ⊲ 𝑒𝑀

′

𝑋 ) ( 𝑓 ⊲ (Id𝑋 ⊲ 𝑔)) 𝑚𝑌 ,𝑋,𝑀 (𝑐𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1
𝑋,𝑌 ,𝑀

= 𝑚𝑋,𝑌 ′,𝑀 ′ (𝑐𝑌 ′,𝑋 ⊲ Id𝑀 ′ ) 𝑚−1
𝑌 ′,𝑋 ,𝑀 ′ (Id𝑌 ′ ⊲ 𝑒𝑀

′

𝑋 ) 𝑚𝑌 ′,𝑋 ,𝑀 ′ (𝑐𝑋,𝑌 ′ ⊲ Id𝑀 ′ ) 𝑚−1
𝑋,𝑌 ′,𝑀 ′ (Id𝑋 ⊲ ( 𝑓 ⊲ 𝑔))

= 𝑒𝑌
′⊲𝑀 ′

𝑋 (Id𝑋 ⊲ ( 𝑓 ⊲ 𝑔))

Here, the first and last equations hold by (3.14); the second and fourth equations hold by the naturality
of m and of c; and the third equation holds by Definition 4.1(b) for 𝑒𝑀 .

Therefore, the C-action bifunctor ⊲ for EC (M) is well defined. It also satisfies (3.1) and (3.2) because
they are satisfied for the C-action bifunctor for M. �

An important feature of EC (M) is that the reflections 𝑒𝑀 in Definition 4.1(a) equip this module
category with a braiding (as in Section 3.5).

Proposition 4.3. Take a braided monoidal category (C, 𝑐) and a left C-module category M. Then, the
reflective center EC (M) is a braided left C-module category, where

𝑒𝑌 , (𝑀,𝑒𝑀 ) : 𝑌 ⊲ (𝑀, 𝑒𝑀 )
𝑒𝑀𝑌 �� 𝑌 ⊲ (𝑀, 𝑒𝑀 ),

for 𝑌 ∈ C and (𝑀, 𝑒𝑀 ) ∈ EC (M). Here, 𝑌 ⊲ (𝑀, 𝑒𝑀 ) := (𝑌 ⊲ 𝑀, 𝑒𝑌 ⊲𝑀 ) by Lemma 4.2.

Proof. We have that EC (M) is a left C-module category by Lemma 4.2. So, it suffices to show that
𝑒𝑌 , (𝑀,𝑒𝑀 ) := 𝑒𝑀𝑌 is a braiding for EC (M). First, we verify that 𝑒𝑀𝑌 is a morphism in EC (M). We
compute that, for all 𝑋,𝑌 ∈ C and 𝑀 ∈M,

(Id𝑋 ⊲ 𝑒𝑀𝑌 ) 𝑒
𝑌 ⊲𝑀
𝑋

= (Id𝑋 ⊲ 𝑒𝑀𝑌 ) 𝑚𝑋,𝑌 ,𝑀 (𝑐𝑌 ,𝑋 ⊲ Id𝑀 ) 𝑚−1
𝑌 ,𝑋,𝑀 (Id𝑌 ⊲ 𝑒𝑀𝑋 ) 𝑚𝑌 ,𝑋,𝑀 (𝑐𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1

𝑋,𝑌 ,𝑀

= 𝑚𝑋,𝑌 ,𝑀 𝑒𝑀𝑋 ⊗𝑌 (𝑐𝑌 ,𝑋 ⊲ Id𝑀 ) (𝑐𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1
𝑋,𝑌 ,𝑀

= 𝑚𝑋,𝑌 ,𝑀 (𝑐𝑌 ,𝑋 ⊲ Id𝑀 ) 𝑒𝑀𝑌 ⊗𝑋 (𝑐𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1
𝑋,𝑌 ,𝑀

= 𝑚𝑋,𝑌 ,𝑀 (𝑐𝑌 ,𝑋 ⊲ Id𝑀 ) 𝑚−1
𝑌 ,𝑋,𝑀 (Id𝑌 ⊲ 𝑒𝑀𝑋 ) 𝑚𝑌 ,𝑋,𝑀 (𝑐𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1

𝑋,𝑌 ,𝑀 (Id𝑋 ⊲ 𝑒𝑀𝑌 )

= 𝑒𝑌 ⊲𝑀𝑋 (Id𝑋 ⊲ 𝑒𝑀𝑌 ).

The first and last equations hold by Lemma 4.2. The second and fourth equations hold by Defini-
tion 4.1(a). The third equation holds by the naturality of c in the first slot.

Now we are done since the morphism 𝑒𝑀𝑌 of EC (M) is an isomorphism by Definition 4.1(a), and it
also satisfies the first braided module category axiom (3.13) by Definition 4.1(a) and the second braided
module category axiom (3.14) by Lemma 4.2. �

4.2. Reflective centers as centers of bimodule categories

Given a braided monoidal category (C, 𝑐), any left C-module category (M, ⊲, 𝑚, 𝜆) is also a right
C-module category (M, ⊳, 𝑛, 𝜌), where for all 𝑋,𝑌 ∈ C, 𝑀 ∈M, we define

𝑀 ⊳ 𝑋 := 𝑋 ⊲ 𝑀,
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and we define the structure morphisms 𝑛𝑀,𝑋,𝑌 , 𝜌𝑀 , 𝑏𝑋,𝑀,𝑌 as follows:

𝑛𝑀,𝑋,𝑌 : (𝑋 ⊗ 𝑌 ) ⊲ 𝑀
𝑐𝑋,𝑌 ⊲Id𝑀

�� (𝑌 ⊗ 𝑋) ⊲ 𝑀
𝑚𝑌 ,𝑋,𝑀

�� 𝑌 ⊲ (𝑋 ⊲ 𝑀),

𝜌𝑀 : 1 ⊲ 𝑀
𝜆𝑀 �� 𝑀,

𝑏𝑋,𝑀,𝑌 : 𝑌 ⊲ (𝑋 ⊲ 𝑀)
𝑚−1

𝑌 ,𝑋,𝑀
�� (𝑌 ⊗ 𝑋) ⊲ 𝑀

𝑐−1
𝑋,𝑌 ⊲Id𝑀

�� (𝑋 ⊗ 𝑌 ) ⊲ 𝑀
𝑚𝑋,𝑌 ,𝑀

�� 𝑋 ⊲ (𝑌 ⊲ 𝑀).

We denote the data
(
M, ⊲, ⊳ := ⊲, 𝑚, 𝑛 := 𝑚(𝑐 ⊲ Id), 𝜆, 𝜌 := 𝜆, 𝑏 := 𝑚(𝑐−1 ⊲ Id)𝑚−1) by Mbim,

and this is referred to as a one-sided bimodule category.

Lemma 4.4. Given the setting above, we have the following statements:

(a) Mbim is a C-bimodule category and thus is a left (C � C⊗op)-module category.
(b) If M is an exact left C-module category, then Mbim is an exact left (C � C⊗op)-module category.

Proof. Part (a) follows from [Gre10, Proposition 7.1]; see also Remark 3.9. Part (b) follows from
remarks in [DN13, Equation 18]. �

Next, recall the notion of a center of a bimodule category from Definition 3.10, and consider the
connection to reflective centers below.

Proposition 4.5. Retain the notation above. Then we have that EC (M) and ZC (Mbim) are isomorphic
as categories.

Proof. Given an object (𝑀, 𝑒𝑀 ) ∈ EC (M), we also get that (𝑀, 𝑑𝑀 := 𝑒𝑀 ) ∈ ZC (Mbim) by setting
⊳ := ⊲, 𝑛 := 𝑚(𝑐 ⊲ Id), 𝜌 := 𝜆, 𝑏 := 𝑚(𝑐−1 ⊲ Id)𝑚−1 (via Lemma 4.4). Indeed, (3.11) holds by the
naturality of 𝑒𝑀 and by (3.13) as follows:

𝑑𝑀𝑋 ⊗𝑌 := 𝑒𝑀𝑋 ⊗𝑌 = (𝑐−1
𝑋,𝑌 ⊲ Id𝑀 ) 𝑒𝑀𝑌 ⊗𝑋 (𝑐𝑋,𝑌 ⊲ Id𝑀 )

= (𝑐−1
𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1

𝑌 ,𝑋,𝑀 (Id𝑌 ⊲ 𝑒𝑀𝑋 ) 𝑚𝑌 ,𝑋,𝑀 (𝑐𝑋,𝑌 ⊲ Id𝑀 ) 𝑚−1
𝑋,𝑌 ,𝑀

◦ (Id𝑋 ⊲ 𝑒𝑀𝑌 ) 𝑚𝑋,𝑌 ,𝑀 (𝑐
−1
𝑋,𝑌 ⊲ Id𝑀 ) (𝑐𝑋,𝑌 ⊲ Id𝑀 )

= 𝑛−1
𝑀,𝑋,𝑌 (𝑑

𝑀
𝑋 ⊳ Id𝑌 ) 𝑏−1

𝑋,𝑀,𝑌 (Id𝑋 ⊲ 𝑑𝑀𝑌 ) 𝑚𝑋,𝑌 ,𝑀 .

Conversely, given (𝑀, 𝑑𝑀 ) ∈ ZC (Mbim), we obtain that (𝑀, 𝑒𝑀 := 𝑑𝑀 ) is in EC (M) by a similar
argument. This identification of objects extends to an identification of morphisms in ZC (Mbim) (see
Definition 3.10) with morphisms in EC (M) (see Definition 4.1(b)). Thus, we have an isomorphism of
categories: EC (M) � ZC (Mbim). �

Corollary 4.6. We have the following statements about the reflective center EC (M), for C a braided
tensor category and M a left C-module category:

(a) EC (M) is a Z (C)-module category.
(b) EC (M) � FunC�C⊗op (C,Mbim) as Z (C)-module categories.
(c) EC (M) is abelian when M is exact and finite.
(d) EC (M) is finite when C is finite and M is exact and finite.
(e) EC (M) is semisimple when C and M are finite and semisimple.

Proof. It follows from Proposition 4.5 that it suffices to establish the statements for ZC (Mbim). Part (a)
then holds by [Gre10, Lemma 7.8]. We can then apply Proposition 4.5 to obtain the action of Z (C) on
EC (M) below:
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⊲̃ : Z (C) × EC (M) −→ EC (M)(
(𝑉, 𝑐𝑉 ), (𝑀, 𝑒𝑀 )

)
↦→

(
𝑉 ⊗ 𝑀, 𝑒𝑉 ⊲𝑀

)
,

where, for any 𝑋 ∈ C, we have

𝑒𝑉 ⊲𝑀𝑋 := 𝑏−1
𝑉 ,𝑀,𝑋 (Id𝑉 ⊲ 𝑒𝑀𝑋 ) 𝑚𝑉 ,𝑋,𝑀 (𝑐

𝑉
𝑋 ⊲ Id𝑀 ) 𝑚−1

𝑋,𝑉 ,𝑀

= 𝑚𝑋,𝑉 ,𝑀 (𝑐𝑉 ,𝑋 ⊲ Id𝑀 ) 𝑚−1
𝑉 ,𝑋,𝑀 (Id𝑉 ⊲ 𝑒𝑀𝑋 ) 𝑚𝑉 ,𝑋,𝑀 (𝑐

𝑉
𝑋 ⊲ Id𝑀 ) 𝑚−1

𝑋,𝑉 ,𝑀 .

For part (b), note that by [Gre10, Proposition 7.10],ZC (Mbim) is isomorphic to RexC�C⊗op (C,Mbim).
We have that C is an exact module category over C � C⊗op by Example 3.6. Now by Proposition 3.8, we
have that RexC�C⊗op (C,Mbim) = FunC�C⊗op (C,Mbim). So, the result holds.

By part (b), it suffices to establish parts (c,d,e) for FunC�C⊗op (C,Mbim). Parts (c,d) then follow from
Example 3.6, Lemma 4.4(b), Propositions 3.7, 3.8. Part (e) follows from Proposition 3.5. �

We note that the Z (C)-module structure ⊲̃ on EC (M) in Corollary 4.6(a) does not coincide with the
one obtained by restricting the (braided) C-module structure ⊲ of Lemma 4.2 and Proposition 4.3 along
the tensor functor Z (C) → C. However, the C-action ⊲ can be recovered from ⊲̃ by restriction along the
tensor functor C → Z (C), 𝑉 ↦→ (𝑉, 𝑐𝑉 ), where 𝑐𝑉𝑋 := 𝑐𝑋,𝑉 , for all 𝑋 ∈ C.

5. Reflective algebras of comodule algebras

In this section, we consider the case when C is the braided monoidal category 𝐻-mod for H a quasi-
triangular Hopf algebra over k and M is the left C-module category 𝐴-mod, for a left H-comodule A
over k. (Note that every indecomposable, exact C-module category is of this form in the finite tensor
case [AM07, Proposition 1.19] – that is, when restricting to finite-dimensional modules over finite-
dimensional A and H.) The module associativity isomorphism m given by the (trivial) associativity
isomorphism of Vec. The goal of this section is to describe an H-comodule algebra 𝑅𝐻 (𝐴) that repre-
sents the reflective center EC (M) – that is, to get

E𝐻 -mod (𝐴-mod) � 𝑅𝐻 (𝐴)-mod as categories.

The notation for the section and for the rest of the paper is summarized in Section 5.1. An intermediate
category of Doi–Hopf modules is introduced in Section 5.2 toward achieving the isomorphism above.
With this, we define 𝑅𝐻 (𝐴) and establish the desired isomorphism in Section 5.3. Properties of 𝑅𝐻 (𝐴)
are examined in Section 5.4.

5.1. Standing notation and hypotheses for the Hopf setting

We collect for the reader notation and setting that we will use from now on. We use (sumless) Sweedler
notation throughout.
◦ ⊗ will denote the tensor product (⊗k), monoidal product (⊗) and C-action bifunctor (⊲) above from

now on as they are all equal ⊗k.
◦ 𝐻 := (𝐻, 𝑚, 𝑢,Δ , 𝜀, 𝑆) is a quasitriangular Hopf algebra over k.
◦ Δ (ℎ) = ℎ (1) ⊗ ℎ (2) is the coproduct of H. Its composition is denoted by

(Δ ⊗ Id𝐻 )Δ (ℎ) = (Id𝐻 ⊗ Δ)Δ (ℎ) =: ℎ (1) ⊗ ℎ (2) ⊗ ℎ (3) .

◦ If H is finite-dimensional, then 〈 , 〉 is the Hopf pairing between 𝐻∗ and H. That is,

〈𝜉𝜁, ℎ〉 = 〈𝜉 ⊗ 𝜁,Δ (ℎ)〉 = 〈𝜉, ℎ (1) 〉〈𝜁, ℎ (2) 〉, 〈𝜉, ℎℓ〉 = 〈Δ (𝜉), ℎ ⊗ ℓ〉 = 〈𝜉 (1) , ℎ〉〈𝜉 (2) , ℓ〉, (5.1)

for 𝜉, 𝜁 ∈ 𝐻∗, ℎ, ℓ ∈ 𝐻. Here, 𝜉 (1) ⊗ 𝜉 (2) denotes the coproduct of 𝜉 ∈ 𝐻∗.
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◦ If H is finite-dimensional, then we denote the dual basis of H by {ℎ𝑑 , 𝜉𝑑}𝑑 , for ℎ𝑑 ∈ 𝐻 and 𝜉𝑑 ∈ 𝐻∗.
Namely, we get

ℎ =
∑
𝑑 〈𝜉𝑑 , ℎ〉ℎ𝑑 , 𝜉 =

∑
𝑑 〈𝜉, ℎ𝑑〉𝜉𝑑 . (5.2)

◦ If H is finite-dimensional, the standard left and right actions of H on 𝐻∗ are denoted by� and�,
respectively. That is, for ℎ, ℎ′ ∈ 𝐻, 𝜉 ∈ 𝐻∗,

ℎ � 𝜉 = 〈𝜉 (2) , ℎ〉𝜉 (1) with 〈ℎ � 𝜉, ℎ′〉 := 〈𝜉, ℎ′ℎ〉,
𝜉 � ℎ := 〈𝜉 (1) , ℎ〉𝜉 (2) with 〈𝜉 � ℎ, ℎ′〉 := 〈𝜉, ℎℎ′〉.

(5.3)

◦ 𝑅 :=
∑
𝑖 𝑠𝑖 ⊗ 𝑡𝑖 ∈ 𝐻 ⊗ 𝐻 is the R-matrix of H.

◦ 𝑅−1 :=
∑
𝑖 𝑠

𝑖 ⊗ 𝑡𝑖 ∈ 𝐻 ⊗ 𝐻 is the inverse of the R-matrix of H.
◦ A is a left H-comodule algebra over k.
◦ 𝛿 : 𝐴→ 𝐻 ⊗ 𝐴, 𝑎 ↦→ 𝑎 [−1] ⊗ 𝑎 [0] , is the left H-coaction of A. Its composition is denoted by

(Δ ⊗ Id𝐻 )𝛿(𝑎) = (Id𝐻 ⊗ 𝛿)𝛿(𝑎) =: 𝑎 [−2] ⊗ 𝑎 [−1] ⊗ 𝑎 [0] .

◦ 𝐾 :=
∑
𝑖 𝑔𝑖 ⊗ 𝑝𝑖 ∈ 𝐻 ⊗ 𝐴 is the K-matrix of A when A is quasitriangular.

◦ 𝐾−1 :=
∑
𝑖 𝑔

𝑖 ⊗ 𝑝𝑖 ∈ 𝐻 ⊗ 𝐴 is the inverse of the K-matrix of A when A is quasitriangular.
◦ C is the braided monoidal category 𝐻-mod over k, with monoidal product ⊗, unit object k and braiding

c. The H-action for objects of C is denoted by a centered dot, ·.
◦ 𝑐𝑋,𝑌 : 𝑋 ⊗ 𝑌

∼
→ 𝑌 ⊗ 𝑋, 𝑥 ⊗ 𝑦 ↦→

∑
𝑖 (𝑡𝑖 · 𝑦) ⊗ (𝑠𝑖 · 𝑥), is the braiding of C via the R-matrix of H, for

𝑋,𝑌 ∈ C.
◦ 𝑐−1

𝑌 ,𝑋 : 𝑋 ⊗ 𝑌
∼
→ 𝑌 ⊗ 𝑋, 𝑥 ⊗ 𝑦 ↦→

∑
𝑖 (𝑠

𝑖 · 𝑦) ⊗ (𝑡𝑖 · 𝑥), is the inverse braiding of C, via the inverse
R-matrix of H, for 𝑋,𝑌 ∈ C.

◦ M is the left C-module category 𝐴-mod over k. The A-action for objects of M is denoted by an
asterisk, ∗, or by ∗̃ if the action is induced.

◦ 𝑒𝑀 is the braiding of M = 𝐴-mod for 𝑀 ∈M.
◦ 𝑒𝑀𝑋 (𝑥 ⊗ 𝑚) :=

∑
𝑖 (𝑔𝑖 · 𝑥) ⊗ (𝑝𝑖 ∗ 𝑚), for 𝑋 ∈ C and

∑
𝑖 𝑔𝑖 ⊗ 𝑝𝑖 ∈ 𝐻 ⊗ 𝐴.

◦ When H (resp., A) is in the subscript of c or e, this indicates the regular left H-module (resp.,
A-module).

5.2. Reflective centers as Doi–Hopf modules

Here, we will consider a category of left Doi–Hopf modules, 𝐻
𝐴 DH(𝐻), consisting of vector spaces

which are modules over the left H-comodule algebra A and comodules over a left H-module coalgebra
𝐻, which is a version of Majid’s covariantized (or transmuted) coalgebra [Maj91,Maj00]. Our main goal
is to show that

EC (M) � 𝐻
𝐴 DH(𝐻) as categories. (5.4)

We recall the category of Doi–Hopf modules in Section 5.2.1; we then get 𝐻𝐴 DH(𝐻) after we define
𝐻 in Section 5.2.2. Next, we construct a functor 𝐹 : EC (M) → 𝐻

𝐴 DH(𝐻) in Section 5.2.3 and a functor
𝐺 : 𝐻𝐴 DH(𝐻) → EC (M) in Section 5.2.4. Then, we establish (5.4) in Section 5.2.5.

5.2.1. The category of Doi–Hopf modules
First, let us recall the notion of a Doi–Hopf module from work of Doi [Doi92]. Note that we abuse some
of the notation of Section 5.1 below.
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Definition 5.5 [Doi92, Remark 1.3]. Consider the following input data:

◦ L, a Hopf algebra;
◦ B, a left L-comodule algebra with coaction given by 𝛿 : 𝐵→ 𝐿 ⊗ 𝐵, 𝑏 ↦→ 𝑏 [−1] ⊗ 𝑏 [0] ;
◦ C, a left L-module coalgebra with action given by ⇀: 𝐿 ⊗ 𝐶 → 𝐶.

A vector space M is a left (𝐿, 𝐵, 𝐶)-Doi–Hopf module is if the following conditions hold:

(i) M is a left B-module with action given by ∗ : 𝐵 ⊗ 𝑀 → 𝑀;
(ii) M is a left C-comodule with coaction given by 𝜑 : 𝑀 → 𝐶 ⊗ 𝑀, 𝑚 ↦→ 𝑚−1 ⊗ 𝑚0;

action and coaction are subject to the following compatibility condition,

(𝑏 ∗ 𝑚)−1 ⊗ (𝑏 ∗ 𝑚)0 = (𝑏 [−1] ⇀ 𝑚−1) ⊗ (𝑏 [0] ∗ 𝑚0), (5.6)

for all 𝑚 ∈ 𝑀 and 𝑏 ∈ 𝐵.

The collection of left (𝐿, 𝐵, 𝐶)-Doi–Hopf modules forms a category. Here, a morphism between
two left (𝐿, 𝐵, 𝐶)-Doi–Hopf modules is a map that is simultaneously a left B-module map and a left
C-comodule map. We denote this category by

𝐶
𝐵DH(𝐿).

In the appendix of the arXiv version 1 of this article, it is shown that the category of left (𝐿, 𝐵, 𝐶)-
Doi–Hopf modules admits a canonical structure of a left module category over the braided monoidal
category 𝐿-mod when L is quasitriangular, with R-matrix

∑
𝑖 𝑠𝑖 ⊗ 𝑡𝑖 .

5.2.2. The left H-module coalgebra 𝐻

Let us define the H-module coalgebra 𝐻 mentioned above in (5.4) which is a version of Majid’s
transmuted (or covariantized) coalgebra; see Remark 5.8.

Definition 5.7. Take 𝐻 to be equal to H as vector spaces, and consider the following comultiplication,
counit and left H-action formulae:

Δ̂ (ℎ) :=
∑
𝑖, 𝑗 𝑡 𝑗ℎ (1) 𝑡𝑖 ⊗ ℎ (2) 𝑠𝑖𝑆

−1 (𝑠 𝑗 ),

𝜀̂(ℎ) := 𝜀(ℎ),

ℓ ⇀ ℎ := ℓ(2)ℎ𝑆
−1 (ℓ(1) ),

for all ℎ ∈ 𝐻 and ℓ ∈ 𝐻.

The operations from Definition 5.7 make 𝐻 a left H-module coalgebra. This follows as in [Maj00,
Theorem 7.4.2].

Remark 5.8. The precise comparison to the conventions of [Maj00] is as follows. For a quasitriangular
Hopf algebra 𝐻 := (𝐻, 𝑅 :=

∑
𝑖 𝑠𝑖⊗𝑡𝑖), we have that its co-opposite Hopf algebra 𝐻cop is a quasitriangular

Hopf algebra with 𝑅cop :=
∑
𝑖 𝑡𝑖 ⊗ 𝑠𝑖 . With this, and by inspecting the proof of [Maj91, Theorem 3.1],

one can see that (𝐻)cop = (𝐻cop)trm, where 𝐻trm denotes the coalgebra obtained by transmutation in
[Maj00, Theorem 7.4.2].

5.2.3. Functor from the reflective center to a category of Doi–Hopf modules
Consider the following preliminary result.

Lemma 5.9. Let 𝑟ℎ be right multiplication by ℎ ∈ 𝐻. Then, the operator

Λ : Homk (𝐴 ⊗ 𝑀, 𝐻 ⊗ 𝑀) → Homk (𝐴 ⊗ 𝑀, 𝐻 ⊗ 𝑀)

𝜓 ↦→ [𝑎 ⊗ 𝑚 ↦→ ((𝑟𝑎[−1] ⊗ Id𝑀 ) ◦ 𝜓) (𝑎 [0] ⊗ 𝑚)]
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is invertible, with inverse

Λ−1 : Homk (𝐴 ⊗ 𝑀, 𝐻 ⊗ 𝑀) → Homk (𝐴 ⊗ 𝑀, 𝐻 ⊗ 𝑀)

𝜓 ↦→ [𝑎 ⊗ 𝑚 ↦→ ((𝑟𝑆−1 (𝑎[−1] ) ⊗ Id𝑀 ) ◦ 𝜓) (𝑎 [0] ⊗ 𝑚)] .

Next, we turn our attention to the desired functor for this section.

Proposition 5.10. We have a functor

𝐹 : E𝐻 -mod (𝐴-mod) → 𝐻
𝐴 DH(𝐻)

(𝑀, ∗, 𝑒𝑀 ) ↦→ (𝑀, ∗, 𝜑 := 𝜑𝑒𝑀 : 𝑀 → 𝐻 ⊗ 𝑀),

where 𝜑(𝑚) = 𝑒𝑀𝐻 (1𝐻 ⊗ 𝑚) =: 𝑚−1 ⊗ 𝑚0.

Proof. It suffices to establish the following statements:

(i) (𝑀, 𝜑) ∈ 𝐻-comod (this will follow from (3.13)), and
(ii) (𝑀, ∗, 𝜑) satisfies (5.6) (this will follow from 𝑒𝑀𝑋 ∈ 𝐴-mod for any 𝑋 ∈ 𝐻-mod).

Toward (i), for ℎ, ℓ ∈ 𝐻 (as the regular left H-module), note that

𝑐𝐻,𝐻 (ℎ ⊗ ℓ) =
∑
𝑖 𝑡𝑖ℓ ⊗ 𝑠𝑖ℎ and 𝑐−1

𝐻,𝐻 (ℎ ⊗ ℓ) =
∑
𝑖 𝑠

𝑖ℓ ⊗ 𝑡𝑖ℎ. (5.11)

Moreover by taking 𝑟ℎ : 𝐻 → 𝐻 to be right multiplication by h, we get that 𝑟ℎ ∈ 𝐻-mod. Thus, by the
naturality of 𝑒𝑀 , we obtain that

𝑒𝑀𝐻 (ℎ ⊗ 𝑚) = 𝑒𝑀𝐻 (𝑟ℎ ⊗ Id𝑀 ) (1𝐻 ⊗ 𝑚) = (𝑟ℎ ⊗ Id𝑀 )𝑒𝑀𝐻 (1𝐻 ⊗ 𝑚) = 𝑚−1ℎ ⊗ 𝑚0. (5.12)

Moreover, note that Δ̂ = 𝜔 ◦ Δ for

𝜔(ℎ ⊗ ℎ′) :=
∑
𝑘,𝑙 𝑡𝑙ℎ𝑡𝑘 ⊗ ℎ′𝑠𝑘𝑆

−1 (𝑠𝑙). (5.13)

In fact, as an aside, we have that 𝜔 is invertible with

𝜔−1(ℎ ⊗ ℎ′) :=
∑
𝑖, 𝑗 𝑡𝑖ℎ𝑡 𝑗 ⊗ ℎ′𝑆−1 (𝑠𝑖)𝑠 𝑗 . (5.14)

Now (i) holds by the following computation:

(Δ̂ ⊗ Id𝑀 )𝜑(𝑚) = (𝜔 ⊗ Id𝑀 ) (Δ ⊗ Id𝑀 )𝑒𝑀𝐻 (1𝐻 ⊗ 𝑚)

𝑒𝑀nat’l, Δ∈𝐻 -mod
= (𝜔 ⊗ Id𝑀 )𝑒𝑀𝐻 ⊗𝐻 (Δ ⊗ Id𝑀 ) (1𝐻 ⊗ 𝑚)

= (𝜔 ⊗ Id𝑀 )𝑒𝑀𝐻 ⊗𝐻 (1𝐻 ⊗ 1𝐻 ⊗ 𝑚)

(3.13)
= (𝜔 ⊗ Id𝑀 ) (Id𝐻 ⊗ 𝑒𝑀𝐻 ) (𝑐𝐻,𝐻 ⊗ Id𝑀 ) (Id𝐻 ⊗ 𝑒𝑀𝐻 ) (𝑐

−1
𝐻,𝐻 ⊗ Id𝑀 ) (1𝐻 ⊗ 1𝐻 ⊗ 𝑚)

(5.11)
=

∑
𝑖 (𝜔 ⊗ Id𝑀 ) (Id𝐻 ⊗ 𝑒𝑀𝐻 ) (𝑐𝐻,𝐻 ⊗ Id𝑀 ) (Id𝐻 ⊗ 𝑒𝑀𝐻 ) (𝑠

𝑖 ⊗ 𝑡𝑖 ⊗ 𝑚)

(5.12)
=

∑
𝑖 (𝜔 ⊗ Id𝑀 ) (Id𝐻 ⊗ 𝑒𝑀𝐻 ) (𝑐𝐻,𝐻 ⊗ Id𝑀 ) (𝑠𝑖 ⊗ 𝑚−1𝑡

𝑖 ⊗ 𝑚0)

(5.11)
=

∑
𝑖 (𝜔 ⊗ Id𝑀 ) (Id𝐻 ⊗ 𝑒𝑀𝐻 ) (𝑡 𝑗𝑚−1𝑡

𝑖 ⊗ 𝑠 𝑗 𝑠
𝑖 ⊗ 𝑚0)
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(5.12)
=

∑
𝑖, 𝑗 (𝜔 ⊗ Id𝑀 ) (𝑡 𝑗𝑚−2𝑡

𝑖 ⊗ 𝑚−1𝑠 𝑗 𝑠
𝑖 ⊗ 𝑚0)

=
∑
𝑖, 𝑗 ,𝑘,𝑙 𝑡𝑙𝑡 𝑗𝑚−2𝑡

𝑖𝑡𝑘 ⊗ 𝑚−1𝑠 𝑗 𝑠
𝑖𝑠𝑘𝑆

−1(𝑠𝑙) ⊗ 𝑚0

=
∑
𝑗 ,𝑙 𝑡𝑙𝑡 𝑗𝑚−2 ⊗ 𝑚−1𝑠 𝑗𝑆

−1(𝑠𝑙) ⊗ 𝑚0

(2.15)
= 𝑚−2 ⊗ 𝑚−1 ⊗ 𝑚0

= (Id ⊗ 𝜑)𝜑(𝑚).

To prove (ii), note that 𝑒𝑀𝐻 ∈ 𝐴-mod (†). So, for 𝑎 ∈ 𝐴 and 𝑚 ∈ 𝑀 , we get that

𝑎 [−1]𝑚−1 ⊗ (𝑎 [0] ∗ 𝑚0) = 𝑎 ∗ (𝑚−1 ⊗ 𝑚0)
(5.12)
= 𝑎 ∗ 𝑒𝑀𝐻 (1𝐻 ⊗ 𝑚)

(†)
= 𝑒𝑀𝐻 (𝑎 ∗ (1𝐻 ⊗ 𝑚)) = 𝑒𝑀𝐻 (𝑎 [−1] ⊗ (𝑎 [0] ∗ 𝑚))

(5.12)
= (𝑎 [0] ∗ 𝑚)−1𝑎 [−1] ⊗ (𝑎 [0] ∗ 𝑚)0.

(5.15)

Now the following computation verifies (ii):

(𝑎 [−1] ⇀ 𝑚−1) ⊗ (𝑎 [0] ∗ 𝑚0)
Def. 5.7
= (𝑎 [−1] )(2) 𝑚−1 𝑆−1 ((𝑎 [−1] )(1) ) ⊗ (𝑎 [0] ∗ 𝑚0)

= 𝑎 [−1] 𝑚−1 𝑆−1 (𝑎 [−2] ) ⊗ (𝑎 [0] ∗ 𝑚0)

(‡)
= (𝑎 [0] ∗ 𝑚)−1 𝑎 [−1] 𝑆

−1 (𝑎 [−2] ) ⊗ (𝑎 [0] ∗ 𝑚)0

= (𝑎 [0] ∗ 𝑚)−1 𝜀(𝑎 [−1] ) ⊗ (𝑎 [0] ∗ 𝑚)0

= (𝑎 ∗ 𝑚)−1 ⊗ (𝑎 ∗ 𝑚)0.

At (‡), we applied the operator Λ−1 from Lemma 5.9 to (5.15). This concludes the proof. �

5.2.4. Functor from a category of Doi–Hopf modules to the reflective center
Proposition 5.16. For 𝜑(𝑚) := 𝑚−1 ⊗ 𝑚0, we have a functor

𝐺 : 𝐻𝐴 DH(𝐻) → E𝐻 -mod (𝐴-mod)(
𝑀, ∗, 𝜑 : 𝑀 → 𝐻 ⊗ 𝑀

)
↦→

(
𝑀, ∗, 𝑒𝑀𝑋 := (𝑒𝑀𝑋 )𝜑 : 𝑋 ⊗ 𝑀 → 𝑋 ⊗ 𝑀

)
,

where 𝑒𝑀𝑋 (𝑥 ⊗ 𝑚) = (𝑚−1 · 𝑥) ⊗ 𝑚0, for (𝑋, ·) a left H-module.

Proof. It suffices to establish the following statements:

(i) 𝑒𝑀𝑋 satisfies (3.13) (this will follow from (𝑀, 𝜑) ∈ 𝐻-comod), and
(ii) 𝑒𝑀𝑋 ∈ 𝐴-mod for any 𝑋 ∈ 𝐻-mod (this will follow from (5.6)).

To verify (i), recall the invertible linear map 𝜔 from (5.13) and (5.14), and recall that Δ̂ = 𝜔 ◦ Δ for
the coproduct Δ̂ in Definition 5.7. We use the Sweedler notation Δ̂ (ℎ) := ℎ

(̂1) ⊗ ℎ
(̂2) for ℎ ∈ 𝐻, along

with Δ (ℎ) := ℎ (1) ⊗ ℎ (2) for ℎ ∈ 𝐻. Also, for 𝑋,𝑌 ∈ 𝐻-mod, and 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 , we have that

𝑐𝑌 ,𝑋 (𝑦 ⊗ 𝑥) =
∑
𝑖 (𝑡𝑖 · 𝑥) ⊗ (𝑠𝑖 · 𝑦) and 𝑐−1

𝑌 ,𝑋 (𝑥 ⊗ 𝑦) =
∑
𝑖 (𝑠

𝑖 · 𝑦) ⊗ (𝑡𝑖 · 𝑥). (5.17)
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Now (i) holds via the computation below for 𝑋,𝑌 ∈ 𝐻-mod, 𝑀 ∈ 𝐴-mod, 𝑥 ∈ 𝑋 , 𝑦 ∈ 𝑌 , 𝑚 ∈ 𝑀:

𝑒𝑀𝑋 ⊗𝑌 (𝑥 ⊗ 𝑦 ⊗ 𝑚) = (𝑚−1 · (𝑥 ⊗ 𝑦)) ⊗ 𝑚0

= ((𝑚−1)(1) · 𝑥) ⊗ ((𝑚−1)(2) · 𝑦) ⊗ 𝑚0
(5.14)
=

∑
𝑖, 𝑗 [𝑡

𝑖 (𝑚−1)(̂1) 𝑡
𝑗 · 𝑥] ⊗ [(𝑚−1)(̂2) 𝑆

−1(𝑠𝑖) 𝑠 𝑗 · 𝑦] ⊗ 𝑚0

𝜑 ∈𝐻 -comod
=

∑
𝑖, 𝑗 [𝑡

𝑖 𝑚−2 𝑡 𝑗 · 𝑥] ⊗ [𝑚−1 𝑆−1(𝑠𝑖) 𝑠 𝑗 · 𝑦] ⊗ 𝑚0
(2.15)
=

∑
𝑖, 𝑗 [𝑡𝑖 𝑚−2 𝑡 𝑗 · 𝑥] ⊗ [𝑚−1 𝑠𝑖 𝑠

𝑗 · 𝑦] ⊗ 𝑚0

(5.12)
=

∑
𝑖, 𝑗 (Id𝑋 ⊗ 𝑒𝑀𝑌 ) [𝑡𝑖 𝑚−1 𝑡 𝑗 · 𝑥) ⊗ (𝑠𝑖 𝑠

𝑗 · 𝑦) ⊗ 𝑚0

(5.17)
=

∑
𝑗 (Id𝑋 ⊗ 𝑒𝑀𝑌 ) (𝑐𝑌 ,𝑋 ⊗ Id𝑀 ) [(𝑠 𝑗 · 𝑦) ⊗ (𝑚−1𝑡

𝑗 · 𝑥) ⊗ 𝑚0]

(5.12)
=

∑
𝑗 (Id𝑋 ⊗ 𝑒𝑀𝑌 ) (𝑐𝑌 ,𝑋 ⊗ Id𝑀 ) (Id𝑌 ⊗ 𝑒𝑀𝑋 ) [(𝑠

𝑗 · 𝑦) ⊗ (𝑡 𝑗 · 𝑥) ⊗ 𝑚]

(5.17)
= (Id𝑋 ⊗ 𝑒𝑀𝑌 ) (𝑐𝑌 ,𝑋 ⊗ Id𝑀 ) (Id𝑌 ⊗ 𝑒𝑀𝑋 ) (𝑐

−1
𝑌 ,𝑋 ⊗ Id𝑀 ) (𝑥 ⊗ 𝑦 ⊗ 𝑚).

Toward (ii), note that, for 𝑎 ∈ 𝐴 and 𝑚 ∈ 𝑀 , we get that

(𝑎 ∗ 𝑚)−1 ⊗ (𝑎 ∗ 𝑚)0
(5.6)
= (𝑎 [−1] ⇀ 𝑚−1) ⊗ (𝑎 [0] ∗ 𝑚0)

Def. 5.7
= ((𝑎 [−1] )(2) 𝑚−1 𝑆−1((𝑎 [−1] )(1) ) ⊗ (𝑎 [0] ∗ 𝑚0)

= 𝑎 [−1] 𝑚−1 𝑆−1 (𝑎 [−2] ) ⊗ (𝑎 [0] ∗ 𝑚0).

By the counit and antipode axioms, we get that

(𝑎 [0] ∗ 𝑚)−1 𝑎 [−1] 𝑆
−1(𝑎 [−2] ) ⊗ (𝑎 [0] ∗ 𝑚)0 = (𝑎 [0] ∗ 𝑚)−1 𝜀(𝑎 [−1] ) ⊗ (𝑎 [0] ∗ 𝑚)0

= 𝑎 [−1] 𝑚−1 𝑆−1 (𝑎 [−2] ) ⊗ (𝑎 [0] ∗ 𝑚0).

Applying the operator Λ from Lemma 5.9 to the above equation yields

(𝑎 [0] ∗ 𝑚)−1 𝑎 [−1] 𝑆
−1 (𝑎 [−2] ) 𝑎 [−3] ⊗ (𝑎 [0] ∗ 𝑚)0 = 𝑎 [−1] 𝑚−1 𝑆−1 (𝑎 [−2] ) 𝑎 [−3] ⊗ (𝑎 [0] ∗ 𝑚0).

Using antipode and counit axioms again yields

(𝑎 [0] ∗ 𝑚)−1 𝑎 [−1] ⊗ (𝑎 [0] ∗ 𝑚)0 = 𝑎 [−1]𝑚−1 ⊗ (𝑎 [0] ∗ 𝑚0).

Now (ii) follows from the following computation:

𝑒𝑀𝑋 (𝑎 ∗ (𝑥 ⊗ 𝑚)) = 𝑒𝑀𝑋 ((𝑎 [−1] · 𝑥) ⊗ (𝑎 [0] ∗ 𝑚))
(5.12)
= ((𝑎 [0] ∗ 𝑚)−1 𝑎 [−1] · 𝑥) ⊗ (𝑎 [0] ∗ 𝑚)0

= (𝑎 [−1]𝑚−1 · 𝑥) ⊗ (𝑎 [0] ∗ 𝑚0) = 𝑎 ∗ ((𝑚−1 · 𝑥) ⊗ 𝑚0)

= 𝑎 ∗ 𝑒𝑀𝑋 (𝑥 ⊗ 𝑚).

This concludes the proof of the result. �

5.2.5. Isomorphism of categories
Now we establish the category isomorphism (5.4).

Proposition 5.18. We have that the reflective center E𝐻 -mod(𝐴-mod) and the category of Doi–Hopf
modules 𝐻

𝐴 DH(𝐻) are isomorphic as categories.
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Proof. It suffices to show that the functors 𝐹 : E𝐻 -mod (𝐴-mod) → 𝐻
𝐴 DH(𝐻) from Proposition 5.10 and

𝐺 : 𝐻𝐴 DH(𝐻) → E𝐻 -mod (𝐴-mod) from Proposition 5.16, are mutually inverse. Starting with an object
(𝑀, 𝑒𝑀 ) in E𝐻 -mod(𝐴-mod), consider the half-braiding 𝑒 on 𝐺𝐹 (𝑀, 𝑒𝑀 ) given by

𝑒𝑀𝑋 (𝑥 ⊗ 𝑚) = (𝑚−1 · 𝑥) ⊗ 𝑚0,

for 𝑋 ∈ 𝐻-mod and 𝑥 ∈ 𝑋 . Here, 𝑚−1 ⊗ 𝑚0 := 𝑒𝑀𝐻 (1𝐻 ⊗ 𝑚). For 𝑥 ∈ 𝑋 , take the morphism

𝑙𝑥 : 𝐻 → 𝑋, ℎ ↦→ ℎ · 𝑥 ∈ 𝐻-mod.

Applying naturality of the braiding 𝑒𝑀 to 𝑙𝑥 gives

𝑒𝑀𝑋 (𝑥 ⊗ 𝑚) = (𝑙𝑥 ⊗ Id𝑀 )𝑒𝑀𝐻 (1𝐻 ⊗ 𝑚) = 𝑒𝑀𝑋 (𝑙𝑥 ⊗ Id𝑀 )(1𝐻 ⊗ 𝑚) = 𝑒𝑀𝑋 (1𝐻 · 𝑥 ⊗ 𝑚) = 𝑒𝑀𝑋 (𝑥 ⊗ 𝑚).

Hence, 𝑒 = 𝑒, and the identity 𝐺𝐹 (𝑀) → 𝑀 is a morphism of objects in E𝐻 -mod (𝐴-mod). This shows
𝐺𝐹 = IdE𝐻 -mod (𝐴-mod) .

However, for an object M in 𝐻
𝐴 DH(𝐻) with coaction 𝑀 → 𝐻 ⊗ 𝑀,𝑚 ↦→ 𝑚−1 ⊗ 𝑚0, consider the

induced 𝐻-coaction 𝜑 on M obtained on 𝐹𝐺 (𝑀). Then

𝜑(𝑚) = 𝑒𝐺 (𝑀 )𝐻 (1𝐻 ⊗ 𝑚) = (𝑚−1 · 1𝐻 ) ⊗ 𝑚0 = 𝑚−1 ⊗ 𝑚0.

This shows that (𝐹𝐺 (𝑀), 𝜑) = (𝑀, 𝜑) as Doi–Hopf modules, and hence, 𝐹𝐺 = Id𝐻
𝐴

DH(𝐻 ) . �

5.3. Reflective centers represented by reflective algebras

The goal of this section is to extend the isomorphism (5.4) to the isomorphism below:

EC (M) � 𝐻
𝐴 DH(𝐻) � 𝑅𝐻 (𝐴)-mod as categories, (5.19)

for some k-algebra 𝑅𝐻 (𝐴) which we call a reflective algebra. In Section 5.3.1, we construct a general
isomorphism between 𝐶

𝐵DH(𝐿) (from Section 5.2.1) and the category of modules of a crossed product
algebra 𝐵 �𝐿 (𝐶

∗)op. Next, we study the dual of the H-module coalgebra 𝐻 (from Section 5.2.2) in
Section 5.3.2 and then define 𝑅𝐻 (𝐴) as a crossed product algebra in Section 5.3.3.

5.3.1. Doi–Hopf modules and crossed products
In the setting of Section 5.2.1, consider the case when the left L-module coalgebra C is finite-dimensional.
Then 𝐶∗ is a right L-module algebra with the L-action given by

〈𝜉 ↼ ℓ, 𝑐〉 := 〈𝜉, ℓ ⇀ 𝑐〉, (5.20)

for 𝜉 ∈ 𝐶∗, 𝑐 ∈ 𝐶, ℓ ∈ 𝐿. The same action makes (𝐶∗)op a right 𝐿cop-module algebra. Define the crossed
product algebra (see [Doi92, Section 1])

𝐵 �𝐿 (𝐶
∗)op := 𝐵 � (𝐶∗)op/

(
𝜉𝑏 − 𝑏 [0] (𝜉 ↼ 𝑏 [−1] ), 𝑏 ∈ 𝐵, 𝜉 ∈ (𝐶∗)op) ,

where � denotes the free product of algebras. That is, for all 𝑎, 𝑏 ∈ 𝐵 and 𝜉, 𝜁 ∈ (𝐶∗)op, we get

(𝑎 𝜉) (𝑏 𝜁) := mult𝐵�𝐿 (𝐶∗)op (
𝑎 � 𝜉, 𝑏 � 𝜁

)
= mult𝐵

(
𝑎, 𝑏 [0]

)
mult(𝐶∗)op (

𝜉 ↼ 𝑏 [−1] , 𝜁
)

=: 𝑎 𝑏 [0] 𝜁 (𝜉 ↼ 𝑏 [−1] ).

(5.21)

Lemma 5.22. We have that 𝐵 �𝐿 (𝐶∗)op is isomorphic to 𝐵 ⊗ (𝐶∗)op as a (𝐵, (𝐶∗)op)-bimodule.
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Proof. Consider the tensor product 𝐵 ⊗ (𝐶∗)op. It is straightforward to verify that the product (5.21) on
it is associative, where 𝑎, 𝑏 ∈ 𝐵 and 𝜉, 𝜁 ∈ (𝐶∗)op. Therefore, 𝐵 �𝐿 (𝐶∗)op is isomorphic to the space
𝐵 ⊗ (𝐶∗)op with this product. This implies the statement of the lemma. �

We now recall results relating Doi–Hopf modules to modules over the crossed product algebra.

Lemma 5.23. Let {𝑐𝑑 , 𝜉𝑑}𝑑 be a dual basis of C. Then, we have an isomorphism of categories:

Ω : 𝐶-comod
∼
→ (𝐶∗)op-mod,

given by the assignments, for 𝜉 ∈ 𝐶∗ and 𝑚 ∈ 𝑀:
(
𝑀, 𝜑 : 𝑀 → 𝐶 ⊗ 𝑀, 𝜑(𝑚) := 𝑚−1 ⊗ 𝑚0

)
↦→

(
𝑀, ★𝜑 : (𝐶∗)op ⊗ 𝑀 → 𝑀, 𝜉 ★𝜑 𝑚 := 〈𝜉, 𝑚−1〉𝑚0

)
,(

𝑀, 𝜑★ : 𝑀 → 𝐶 ⊗ 𝑀, 𝜑★(𝑚) :=
∑
𝑑 𝑐𝑑 ⊗ (𝜉𝑑 ★𝑚)

)
← �

(
𝑀, ★ : (𝐶∗)op ⊗ 𝑀 → 𝑀

)
.

The following result is an analogue of [Doi92, Remark 1.3(b)] with our conventions.

Proposition 5.24. The functor below is an isomorphism of categories:

Ω𝐿;𝐵,𝐶 : 𝐶𝐵DH(𝐿) → (𝐵 �𝐿 (𝐶∗)op)-mod, (𝑀, ∗, 𝜑) ↦→ (𝑀,★),

where ★ is defined by 𝜉 ★ 𝑚 := 𝜉 ★𝜑 𝑚 as given in Lemma 5.23, for 𝜉 ∈ 𝐶∗, and by 𝑏 ★ 𝑚 = 𝑏 ∗ 𝑚, for
𝑏 ∈ 𝐵 and 𝑚 ∈ 𝑀 .

Proof. Recall that 𝑀 ∈ 𝐶
𝐵DH(𝐿) is a left B-module via the action ∗ : 𝐵 ⊗ 𝑀 → 𝑀 , and a left

C-comodule via the action 𝜑 : 𝑀 → 𝐶 ⊗𝑀 , 𝑚 ↦→ 𝑚−1 ⊗𝑚0. By dualization, M is a left (𝐶∗)op-module
via Lemma 5.23. The two actions on M are compatible in the following way:

𝜉 ★ (𝑏 ∗ 𝑚) = 〈𝜉, (𝑏 ∗ 𝑚)−1〉(𝑏 ∗ 𝑚)0
(5.6)
= 〈𝜉, 𝑏 [−1] ⇀ 𝑚−1〉(𝑏 [0] ∗ 𝑚0)

= 𝑏 [0] ∗
(
〈𝜉 ↼ 𝑏 [−1] , 𝑚−1〉𝑚0

)
= 𝑏 [0] ∗

(
(𝜉 ↼ 𝑏 [−1] ) ★𝑚

)
,

for 𝜉 ∈ 𝐶∗, 𝑏 ∈ 𝐵, 𝑚 ∈ 𝑀 . Therefore, the actions ∗ (resp., ★) of B and (resp., (𝐶∗)op) on M induce the
stated action ★ of the crossed product 𝐵 �𝐿 (𝐶∗)op on M; that is, 𝑀 ∈ (𝐵 �𝐿 (𝐶∗)op)-mod. Clearly, the
space of morphisms between 𝑀, 𝑁 ∈ 𝐶

𝐵DH(𝐿) coincides with the space of morphisms between M and
N considered as 𝐵 �𝐿 (𝐶

∗)op-modules. This yields a functor

Ω𝐿;𝐵,𝐶 : 𝐶𝐵DH(𝐿) → (𝐵 �𝐿 (𝐶∗)op)-mod.

Moreover, this is an isomorphism of categories since 𝐶-comod � (𝐶∗)op-mod by Lemma 5.23. �

Remark 5.25. Note that, up to differences in conventions, the crossed product algebra 𝐵 �𝐿 (𝐶
∗)op is

a smash product algebra as defined in [Tak80]; cf. [CMZ97, Section 3]. We also note that sometimes
Doi-Hopf modules are referred to as Doi–Koppinen modules due to independent work of Koppinen in
[Kop95].

5.3.2. The right H-module algebra 𝐻∗

Recall the left H-module coalgebra 𝐻 introduced in Section 5.2.2. Then, when H is finite-dimensional,
the dual vector space 𝐻∗ has a canonical structure of a right H-module algebra, which is described in
the next lemma.

https://doi.org/10.1017/fms.2025.10055 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10055


26 R. Laugwitz, C. Walton and M. Yakimov

Lemma 5.26. Assume that H is finite-dimensional. Then, given the left H-module coalgebra 𝐻 in
Definition 5.7, we have the following statements.

(a) The induced algebra structure on 𝐻∗ is given as follows, for 𝜉, 𝜁 ∈ 𝐻∗:

mult𝐻
∗

(𝜉, 𝜁) =
∑
𝑖, 𝑗

(
𝑡𝑖 � 𝜉 � 𝑆(𝑡 𝑗 )

) (
𝑠𝑖𝑠 𝑗 � 𝜁

)
.

(b) The induced right H-module algebra structure of 𝐻∗ is given as follows, for ℓ ∈ 𝐻, 𝜉 ∈ 𝐻∗:

𝜉 ↼ ℓ = 𝑆−1 (ℓ(1) ) � 𝜉 � ℓ(2) .

Proof. Part (a) holds by the following computation:

〈𝜉𝜁, ℎ〉 = 〈𝜉 ⊗ 𝜁, Δ̂ (ℎ)〉
Def. 5.7
= 〈𝜉 ⊗ 𝜁,

∑
𝑖, 𝑗 𝑡 𝑗ℎ (1) 𝑡𝑖 ⊗ ℎ (2) 𝑠𝑖𝑆

−1 (𝑠 𝑗 )〉

=
∑
𝑖, 𝑗 〈𝜉, 𝑡 𝑗ℎ (1) 𝑡𝑖〉 〈𝜁, ℎ (2) 𝑠𝑖𝑆

−1 (𝑠 𝑗 )〉

(5.3)
=

∑
𝑖, 𝑗 〈𝑡𝑖 � 𝜉 � 𝑡 𝑗 , ℎ (1) 〉 〈𝑠𝑖𝑆

−1 (𝑠 𝑗 ) � 𝜁, ℎ (2) 〉

(5.1)
=

∑
𝑖, 𝑗 〈(𝑡𝑖 � 𝜉 � 𝑡 𝑗 ) (𝑠𝑖𝑆

−1 (𝑠 𝑗 ) � 𝜁), ℎ〉

(2.15)
=

∑
𝑖, 𝑗 〈(𝑡𝑖 � 𝜉 � 𝑆(𝑡 𝑗 )) (𝑠𝑖𝑠 𝑗 � 𝜁), ℎ〉,

for all 𝜉, 𝜁 ∈ 𝐻∗ and ℎ ∈ 𝐻. Part (b) is proved by the next computation:

〈𝜉 ↼ ℓ, ℎ〉 = 〈𝜉, ℓ ⇀ ℎ〉
Def. 5.7
= 〈𝜉, ℓ(2)ℎ𝑆

−1 (ℓ(1) )〉
(5.3)
= 〈𝑆−1 (ℓ(1) ) � 𝜉 � ℓ(2) , ℎ〉,

for all 𝜉 ∈ 𝐻∗, ℎ ∈ 𝐻, ℓ ∈ 𝐻. �

5.3.3. Definition of the reflective algebra
Now we present the main construction of this section.

Definition 5.27. For a finite-dimensional quasitriangular Hopf algebra H and a left H-comodule algebra
A, define the reflective algebra of A with respect to H to be the crossed product algebra:

𝑅𝐻 (𝐴) := 𝐴 �𝐻 (𝐻
∗)op.

The algebras A and (𝐻∗)op are canonical subalgebras of the reflective algebra 𝑅𝐻 (𝐴). Moreover,
by Lemma 5.22, 𝑅𝐻 (𝐴) is isomorphic to 𝐴 ⊗ (𝐻∗)op as an (𝐴, (𝐻∗)op)-bimodule. Also, pertaining to
Majid’s transmuted Hopf algebras discussed in Remark 5.8, we have that

𝑅𝐻 (𝐴) � 𝐴 �𝐻 (𝐻
cop)∗ � 𝐴 �𝐻 (𝐻

cop)trm, as k-algebras.

Specializing the functor Ω𝐿,𝐵,𝐶 from Proposition 5.24 to 𝐿 := 𝐻, 𝐵 := 𝐴,𝐶 := 𝐻∗ gives the
following corollary.

Corollary 5.28. For a finite-dimensional quasitriangular Hopf algebra H and a left H-comodule algebra
A, the functor

Ω := Ω𝐻 ;𝐴,𝐻 ∗ : 𝐻𝐴 DH(𝐻)
∼
−→ 𝑅𝐻 (𝐴)-mod.

is an isomorphism of categories.
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5.4. Properties of reflective algebras

In this part, we examine algebraic properties of reflective algebras and their categories of modules.

Proposition 5.29. For a finite-dimensional quasitriangular Hopf algebra H and a left H-comodule
algebra A, we have the following facts about the reflective algebra 𝑅𝐻 (𝐴) and its category of modules.

(a) If A is finite-dimensional, then 𝑅𝐻 (𝐴) is finite-dimensional, and hence, 𝑅𝐻 (𝐴)-fdmod is a finite
abelian category.

(b) If H is semisimple, and A is finite-dimensional and semisimple, then 𝑅𝐻 (𝐴) is semisimple.

Proof. Part (a) follows from Lemma 5.22. Part (b) follows from Corollary 4.6(e). �

Example 5.30. Consider the special cases of left H-comodule algebras A below. Take 𝐴 = k to be the
trivial left coideal subalgebra of H with 𝛿(1k) = 1𝐻 ⊗ 1k. Then,

𝑅𝐻 (k) � (𝐻∗)op.

Here, 𝑅𝐻 (k)-mod is abelian and finite. Moreover, 𝑅𝐻 (k) is semisimple when H is semisimple.

6. Modules over reflective algebras as braided module categories

We maintain the setting and notation of Section 5.1 here. The goal of this section is to upgrade the
category isomorphisms of the previous section to isomorphisms of braided module categories. Namely
in Sections 6.1 and 6.2, we establish how (5.4) and (5.19), respectively, can be extended to isomorphism
of braided left C-module categories. We also obtain an H-comodule algebra structure and quantum
K-matrix (i.e., quasitriangular structure) for the pertinent reflective algebra in Section 6.2. Next in
Section 6.3, we display a universal property for the reflective algebra of the trivial H-comodule algebra
k. Then in Section 6.4, we provide an explicit example of the results here for H being the Drinfeld
double of a finite group.

Standing notation. Along with the notation of Section 5.1, we collect some additional notation
introduced in the previous section.

◦ 𝐶
𝐵DH(𝐿) is the category of (𝐿, 𝐵, 𝐶)-Doi–Hopf modules from Section 5.2.1, with L a Hopf algebra,
with objects (𝑀, ∗, 𝜑) for (𝑀, ∗) a left B-module, and (𝑀, 𝜑) a left C-module.

◦ 𝜑(𝑚) := 𝑚−1 ⊗ 𝑚0 for 𝑚 ∈ 𝑀 .
◦ 𝐻 := (𝐻, Δ̂ , 𝜀̂,⇀) is the left H-module coalgebra from Definition 5.7; here, Δ̂ (ℎ) := ℎ

(̂1) ⊗ ℎ
(̂2) .

◦ When H is finite-dimensional, 〈 , 〉 is the algebra-coalgebra pairing between 𝐻∗, 𝐻. Here,

〈𝜉𝜁, ℎ〉 = 〈𝜉 ⊗ 𝜁, Δ̂ (ℎ)〉 = 〈𝜉, ℎ
(̂1) 〉〈𝜁, ℎ (̂2) 〉, (6.1)

for 𝜉, 𝜁 ∈ 𝐻∗, ℎ ∈ 𝐻.
◦ 𝑅𝐻 (𝐴) is the reflective algebra from Section 5.3.3; it is equal to 𝐴 ⊗ 𝐻∗ as a vector space.

6.1. Reflective centers are Doi–Hopf modules as braided module categories

By (5.4), we have the category isomorphism

E𝐻 -mod (𝐴-mod) � 𝐻
𝐴 DH(𝐻).

The goal of this subsection to describe explicitly the corresponding braided (𝐻-mod)-module category
structure of 𝐻𝐴 DH(𝐻). This will be akin to the isomorphism Z (𝐻-mod)

⊗
� 𝐻

𝐻YD of braided categories
mentioned in (2.6).

https://doi.org/10.1017/fms.2025.10055 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2025.10055


28 R. Laugwitz, C. Walton and M. Yakimov

Lemma 6.2. The following statements hold.

(a) We have that E𝐻 -mod (𝐴-mod) is a left module category over 𝐻-mod as follows:

⊲ : 𝐻-mod × E𝐻 -mod (𝐴-mod) −→ E𝐻 -mod (𝐴-mod)(
(𝑌, ·), (𝑀, ∗, 𝑒𝑀 )

)
↦→

(
𝑌 ⊗ 𝑀, ∗̃, 𝑒𝑌 ⊗𝑀

)
,

for 𝑎 ∗̃ (𝑦 ⊗ 𝑚) = (𝑎 [−1] · 𝑦) ⊗ (𝑎 [0] ∗ 𝑚) with 𝑎 ∈ 𝐴, 𝑦 ∈ 𝑌 , 𝑚 ∈ 𝑀 . Here, 𝑒𝑌 ⊗𝑀 is given by

𝑒𝑌 ⊗𝑀𝑋 (𝑥 ⊗ 𝑦 ⊗ 𝑚) =
∑
𝑖, 𝑗 ,𝑘 (𝑡𝑘𝑔 𝑗 𝑠𝑖 · 𝑥) ⊗ (𝑠𝑘 𝑡𝑖 · 𝑦) ⊗ (𝑝 𝑗 ∗ 𝑚), (6.3)

for some element
∑
𝑗 𝑔 𝑗 ⊗ 𝑝 𝑗 ∈ 𝐻 ⊗ 𝐴 independent of choice of 𝑌, 𝑀 .

(b) Further, the reflections 𝑒𝑀 equip E𝐻 -mod(𝐴-mod) with the structure of a braided module category
over 𝐻-mod, where

𝑒E
𝑋, (𝑀,𝑒𝑀 )

:= 𝑒𝑀𝑋 ,

for 𝑋 ∈ 𝐻-mod and (𝑀, 𝑒𝑀 ) ∈ E𝐻 -mod (𝐴-mod). In particular, 𝑒𝑀𝑋 is a braiding if and only if
𝐾 :=

∑
𝑗 𝑔 𝑗 ⊗ 𝑝 𝑗 is a K-matrix for A.

Proof. Part (a) follows from Lemma 4.2. In particular, the formula for ∗̃ is derived from Lemma 3.26(a).
Note that there exists an element

∑
𝑗 𝑔 𝑗 ⊗ 𝑝 𝑗 ∈ 𝐻 ⊗ 𝐴 satisfying 𝑒𝑀𝑋 (𝑥 ⊗ 𝑚) =

∑
𝑗 (𝑔 𝑗 · 𝑥) ⊗ (𝑝 𝑗 ∗ 𝑚)

by Lemma 3.26(c). Then the formula for 𝑒𝑌 ⊗𝑀 holds as follows:

𝑒𝑌 ⊗𝑀𝑋 (𝑥 ⊗ 𝑦 ⊗ 𝑚)
(3.14)
= (𝑐𝑌 ,𝑋 ⊗ Id𝑀 ) (Id𝑌 ⊗ 𝑒𝑀𝑋 ) (𝑐𝑋,𝑌 ⊗ Id𝑀 ) (𝑥 ⊗ 𝑦 ⊗ 𝑚)

=
∑
𝑖 (𝑐𝑌 ,𝑋 ⊗ Id𝑀 ) (Id𝑌 ⊗ 𝑒𝑀𝑋 ) ((𝑡𝑖 · 𝑦) ⊗ (𝑠𝑖 · 𝑥) ⊗ 𝑚)

=
∑
𝑖, 𝑗 (𝑐𝑌 ,𝑋 ⊗ Id𝑀 ) ((𝑡𝑖 · 𝑦) ⊗ (𝑔 𝑗 𝑠𝑖 · 𝑥) ⊗ (𝑝 𝑗 ∗ 𝑚))

=
∑
𝑖, 𝑗 ,𝑘 (𝑡𝑘𝑔 𝑗 𝑠𝑖 · 𝑥) ⊗ (𝑠𝑘 𝑡𝑖 · 𝑦) ⊗ (𝑝 𝑗 ∗ 𝑚).

Part (b) holds by Proposition 4.3, and Lemma 3.26(b). �

Next, we use the braided module category structure of E𝐻 -mod(𝐴-mod) in the lemma above to induce
such a structure for 𝐻𝐴 DH(𝐻).

Proposition 6.4. We have that

E𝐻 -mod (𝐴-mod)
br.mod
� 𝐻

𝐴 DH(𝐻),

as braided left (𝐻-mod)-module categories, where

(a) The left (𝐻-mod)-module category structure on 𝐻
𝐴 DH(𝐻) is given by

► : 𝐻-mod × 𝐻
𝐴 DH(𝐻) −→ 𝐻

𝐴 DH(𝐻)

((𝑌, ·), (𝑀, ∗, 𝜑)) ↦→ (𝑌 ⊗ 𝑀, ∗̃, 𝜑),

for 𝑎 ∗̃ (𝑦 ⊗ 𝑚) = (𝑎 [−1] · 𝑦) ⊗ (𝑎 [0] ∗ 𝑚) with 𝑎 ∈ 𝐴, 𝑦 ∈ 𝑌 , 𝑚 ∈ 𝑀 , and for 𝜑(𝑚) := 𝑚−1 ⊗ 𝑚0,

𝜑(𝑦 ⊗ 𝑚) =
∑
𝑖, 𝑗 (𝑡 𝑗𝑚−1𝑠𝑖) ⊗ (𝑠 𝑗 𝑡𝑖 · 𝑦) ⊗ 𝑚0. (6.5)
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(b) The braiding on 𝐻
𝐴 DH(𝐻) is given by

𝑒DH
𝑋, (𝑀,∗,𝜑) (𝑥 ⊗ 𝑚) := (𝑚−1 · 𝑥) ⊗ 𝑚0,

for 𝑋 ∈ 𝐻-mod and (𝑀, ∗, 𝜑) ∈ 𝐻
𝐴 DH(𝐻), with 𝑥 ∈ 𝑋, 𝑚 ∈ 𝑀 .

Proof. (a) By Proposition 3.21(a), the action ► is induced by the action ⊲ from Lemma 6.2(a), the
functor F from Proposition 5.10, and its inverse G from Proposition 5.16 as follows:

► : 𝐻-mod × 𝐻
𝐴 DH(𝐻)

Id×𝐺
−→ 𝐻-mod × E𝐻 -mod (𝐴-mod)

⊲
−→ E𝐻 -mod (𝐴-mod)

𝐹
−→ 𝐻

𝐴 DH(𝐻).

The formula for ∗̃ then follows from Lemma 6.2. Moreover, the formula for 𝜑 follows from the compu-
tations below:

∑
𝑗 𝑔 𝑗 ⊗ (𝑝 𝑗 ∗ 𝑚) = 𝑒𝑀𝐻 (1𝐻 ⊗ 𝑚)

Prop. 5.16
= 𝑚−1 ⊗ 𝑚0 (for Id × 𝐺 applied to 𝜑),

⇒ 𝑒𝑌 ⊗𝑀𝐻 (1𝐻 ⊗ 𝑦 ⊗ 𝑚)
(6.3)
=

∑
𝑖, 𝑗 𝑡 𝑗𝑚−1𝑠𝑖 ⊗ (𝑠 𝑗 𝑡𝑖 · 𝑦) ⊗ 𝑚0 (then applying ⊲),

∴ 𝜑(𝑦 ⊗ 𝑚)
Prop. 5.10

= 𝑒𝑌 ⊗𝑀𝐻 (1𝐻 ⊗ 𝑦 ⊗ 𝑚) (finally applying 𝐹).

(b) This follows from Proposition 3.21(b), Lemma 6.2(b) and computations as in part (a). �

6.2. Reflective algebras as H-comodule algebras with quantum K-matrices

By (5.19), we have the category isomorphism

E𝐻 -mod (𝐴-mod) � 𝑅𝐻 (𝐴)-mod.

The goal of this subsection is to describe explicitly the corresponding braided 𝐻-mod module category
structure of 𝑅𝐻 (𝐴)-mod. This will be akin to the isomorphism of braided categories, Z (𝐻-mod)

⊗
�

Drin(𝐻)-mod mentioned in (2.6).

Theorem 6.6. For a finite-dimensional quasitriangular Hopf algebra H and a left H-comodule algebra
A, we have that

E𝐻 -mod(𝐴-mod)
br.mod
� 𝑅𝐻 (𝐴)-mod, (6.7)

as braided left (𝐻-mod)-module categories, where

(a) The left (𝐻-mod)-module category structure on 𝑅𝐻 (𝐴)-mod is given by

► : 𝐻-mod × 𝑅𝐻 (𝐴)-mod −→ 𝑅𝐻 (𝐴)-mod

((𝑌, ·), (𝑀, ∗, ★)) ↦→
(
𝑌 ⊗ 𝑀, ∗̃, ★̃

)
,

for 𝑎 ∗̃ (𝑦 ⊗ 𝑚) = (𝑎 [−1] · 𝑦) ⊗ (𝑎 [0] ∗ 𝑚) with 𝑎 ∈ 𝐴, 𝑦 ∈ 𝑌 , 𝑚 ∈ 𝑀 . Also for 𝜉 ∈ (𝐻∗)op:

𝜉 ★̃ (𝑦 ⊗ 𝑚) =
∑
𝑖, 𝑗 ,𝑑 〈𝜉, 𝑡 𝑗ℎ𝑑𝑠𝑖〉(𝑠 𝑗 𝑡𝑖 · 𝑦) ⊗ (𝜉𝑑 ★𝑚). (6.8)

Here, {ℎ𝑑 , 𝜉𝑑}𝑑 is a dual basis of H.
(a) The braiding on 𝑅𝐻 (𝐴)-mod is given by

𝑒𝑅𝐻

𝑋, (𝑀,★)
(𝑥 ⊗ 𝑚) :=

∑
𝑑 (ℎ𝑑 · 𝑥) ⊗ (𝜉𝑑 ★𝑚),

for 𝑋 ∈ 𝐻-mod and (𝑀,★) ∈ 𝑅𝐻 (𝐴)-mod, with 𝑥 ∈ 𝑋, 𝑚 ∈ 𝑀 .
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Proof. The braided isomorphism between E𝐻 -mod (𝐴-mod) and 𝐻
𝐴 DH(𝐻) follows from Proposition 6.4.

To establish the braided isomorphism between 𝐻
𝐴 DH(𝐻) and 𝑅𝐻 (𝐴)-mod, see the work below.

(a) According to Proposition 3.21(a), the action ► is induced by the action ► from Proposition 6.4(a),
the functors Ω and its inverse from Corollary 5.28 as such:

► : 𝐻-mod × 𝐻
𝐴 DH(𝐻)

Id×𝐺
−→ 𝐻-mod × E𝐻 -mod (𝐴-mod)

⊲
−→ E𝐻 -mod (𝐴-mod)

𝐹
−→ 𝐻

𝐴 DH(𝐻).

The formula for ∗̃ follows from Lemma 6.2. The formula for ★̃ := ★̃𝜑★ is from the computations below:

𝑚−1 ⊗ 𝑚0 = 𝜑(𝑚)
Lem. 5.23

=
∑
𝑑 ℎ𝑑 ⊗ (𝜉𝑑 ★𝑚) (for Id ⊗ Ω−1 applied to ★),

⇒ 𝜑★(𝑦 ⊗ 𝑚)
(6.5)
=

∑
𝑖, 𝑗 ,𝑑 (𝑡 𝑗ℎ𝑑𝑠𝑖) ⊗ (𝑠 𝑗 𝑡𝑖 · 𝑦) ⊗ (𝜉𝑑 ★𝑚) (then applying ►),

∴ 𝜉 ★̃ (𝑦 ⊗ 𝑚)
Lem. 5.23

=
∑
𝑖, 𝑗 ,𝑑 〈𝜉, 𝑡 𝑗ℎ𝑑𝑠𝑖〉(𝑠 𝑗 𝑡𝑖 · 𝑦) ⊗ (𝜉𝑑 ★𝑚) (finally applying Ω).

(b) This follows from Propositions 3.21(b) and 6.4(b), and computations as in part (a). �

Now we obtain a quasitriangular structure for the reflective algebra 𝑅𝐻 (𝐴).

Corollary 6.9. For a finite-dimensional quasitriangular Hopf algebra H and a left H-comodule algebra
A, we have the statements below about the reflective algebra 𝑅𝐻 (𝐴).

(a) 𝑅𝐻 (𝐴) is a left H-comodule algebra with left H-coaction 𝛿ref on 𝑅𝐻 (𝐴) given by

𝛿ref (𝑎) := 𝑎 [−1] ⊗ 𝑎 [0] ,

𝛿ref (𝜉) :=
∑
𝑖, 𝑗 ,𝑑 〈𝜉, 𝑡 𝑗ℎ𝑑𝑠𝑖〉𝑠 𝑗 𝑡𝑖 ⊗ 𝜉𝑑 (=: 𝜉 [−1] ⊗ 𝜉 [0] ),

𝛿ref (𝑎 𝜉) := 𝛿ref (𝑎) 𝛿ref (𝜉) (=: 𝑎 [−1]𝜉 [−1] ⊗ 𝑎 [0]𝜉 [0] ),

for 𝑎 ∈ 𝐴 and 𝜉 ∈ (𝐻∗)op. Here, recall that
∑
𝑖 𝑠𝑖 ⊗ 𝑡𝑖 is the R-matrix of H and that {ℎ𝑑 , 𝜉𝑑}𝑑 is a

dual basis of H.
(b) 𝑅𝐻 (𝐴) is quasitriangular (as an H-comodule algebra) with K-matrix

𝐾ref(𝐴) :=
∑
𝑑 ℎ𝑑 ⊗ 𝜉𝑑 ∈ 𝐻 ⊗ (𝐻∗)op ⊂ 𝐻 ⊗ 𝑅𝐻 (𝐴). (6.10)

Proof. (a) Since (6.7) is an isomorphism of left 𝐻-mod-module categories,

𝑟 · (𝑥 ⊗ 𝑚) = 𝛿ref (𝑟) (𝑥 ⊗ 𝑚), (6.11)

for all 𝑟 ∈ 𝑅𝐻 (𝐴), 𝑥 ∈ 𝑋 , 𝑚 ∈ 𝑀 for some 𝛿ref : 𝑅𝐻 (𝐴) → 𝐻 ⊗ 𝑅𝐻 (𝐴) comodule algebra map. The
formulas for 𝛿ref (𝑎) and 𝛿ref (𝜉) follow from the formulas for ∗̃ and ★̃, respectively, in Theorem 6.6(a),
applied to the left regular modules 𝑋 = 𝐻, 𝑀 = 𝐴 and the elements 𝑥 = 1𝐻 , 𝑚 = 1𝐴.

(b) This follows from Lemma 3.26(b) and Theorem 6.6(b). In the arXiv version 1 of this article, it is
shown directly that 𝛿ref defines an H-comodule algebra structure and that the axioms (3.23)-(3.25) hold
for 𝐾ref(𝐴). �

Example 6.12. Corollary 6.9 implies that the isomorphism 𝑅𝐻 (k) � (𝐻∗)op from Example 5.30 is an
isomorphism of H-comodule algebras.

Example 6.13. When H is cocommutative, it is quasitriangular with 𝑅 = 1𝐻 ⊗ 1𝐻 . Here, 𝑅𝐻 (𝐴) is a
left H-comodule algebra, where for 𝑎 ∈ 𝐴 and 𝜉 ∈ (𝐻∗)op, we have 𝛿ref(𝑎) = 𝑎 [−1] ⊗ 𝑎 [0] (identified
with 𝑎 [−1] ⊗ (𝑎 [0] ⊗ 𝜀̂) in 𝐻 ⊗ 𝑅𝐻 (𝐴)) and

𝛿ref(𝜉) =
∑
𝑖, 𝑗 ,𝑑 〈𝜉, ℎ𝑑〉 ⊗ 𝜉𝑑

(5.1)
= 𝜉 (identified with 1𝐻 ⊗ (1𝐴 ⊗ 𝜉) in 𝐻 ⊗ 𝑅𝐻 (𝐴)).
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6.3. Universality of the reflective algebra 𝑅𝐻 (k)

In this part, we show that the reflective algebra 𝑅𝐻 (k) arises as an initial object of the category of
quasitriangular left H-comodule algebras. Here, we assume that H is finite-dimensional.

Definition 6.14. Let 𝐻QT be the category of quasitriangular left H-comodule algebras. Namely,

(a) Objects are pairs, (𝑄, 𝐾), where Q is a left H-comodule algebra, and 𝐾 := 𝐾 (𝑄) ∈ 𝐻 ⊗ 𝑄 is a
quantum K-matrix for Q, and

(b) A morphism from (𝑄1, 𝐾1) to (𝑄2, 𝐾2) is a linear map 𝜙 : 𝑄1 → 𝑄2 that is both a left H-comodule
morphism and an algebra morphism, such that 𝐾2 = (Id𝐻 ⊗ 𝜙) (𝐾1).

Indeed, if (𝑄, 𝐾) ∈ 𝐻QT, then the identity morphism Id(𝑄,𝐾 ) is equal to Id𝑄 because Id𝑄 is a left
H-comodule algebra morphism and 𝐾 = (Id𝐻 ⊗ Id𝑄) (𝐾). Also if we have morphisms 𝜙1 : (𝑄1, 𝐾1) →
(𝑄2, 𝐾2) and 𝜙2 : (𝑄2, 𝐾2) → (𝑄3, 𝐾3) in 𝐻QT, then 𝜙2𝜙1 : (𝑄1, 𝐾1) → (𝑄3, 𝐾3) is in 𝐻QT since it
is a left H-comodule algebra morphism and (Id𝐻 ⊗ 𝜙2𝜙1) (𝐾1) = (Id𝐻 ⊗ 𝜙2) (𝐾2) = 𝐾3.

Examples of objects of 𝐻QT include the pairs (𝑅𝐻 (𝐴), 𝐾ref(𝐴)), for the reflective algebra 𝑅𝐻 (𝐴)
of A from Section 5.3.3, with K-matrix 𝐾ref(𝐴) given in (6.10).

Now the main result of this section is given below.

Theorem 6.15. When H is a finite-dimensional quasitriangular Hopf algebra over k, we have that
(𝑅𝐻 (k), 𝐾ref(k)) is an initial object of 𝐻QT.

Proof. For an arbitrary object (𝑄, 𝐾) ∈ 𝐻QT, our task is to produce a unique morphism

𝜅 := 𝜅 (𝑄,𝐾 ) : (𝑅𝐻 (k), 𝐾ref(k)) → (𝑄, 𝐾)

in 𝐻QT. Toward this, recall that 𝑅𝐻 (k) � (𝐻∗)op as left H-comodule algebras [Example 6.12]. So,
𝑅𝐻 (k) � 𝐻∗ as vector spaces [Definition 5.7]. Now we use the element 𝐾 :=

∑
𝑖 𝑔𝑖 ⊗ 𝑝𝑖 ∈ 𝐻 ⊗ 𝑄 to

yield a linear map:

𝜅 := 𝜅 (𝑄,𝐾 ) : 𝑅𝐻 (k) � 𝐻∗ → 𝑄, 𝜉 ↦→
∑
𝑖 〈𝜉, 𝑔𝑖〉 𝑝𝑖 . (6.16)

It now remains to verify the following conditions for the linear map in (6.16).

(i) It is a left H-comodule morphism.
(ii) It is an algebra morphism;

(iii) 𝐾 = (Id𝐻 ⊗ 𝜅) (𝐾ref(k)).
(iv) Uniqueness: If 𝜅′ : 𝐻∗ → 𝑄 is a linear map satisfying (i)–(iii), then 𝜅′ = 𝜅.

Toward (i), we have that the left H-comodule structure on 𝑅𝐻 (k) � (𝐻∗)op is given by

𝛿ref(𝜉) =
∑
𝑖, 𝑗 ,𝑑 〈𝜉, 𝑡 𝑗ℎ𝑑𝑠𝑖〉𝑠 𝑗 𝑡𝑖 ⊗ 𝜉𝑑

for 𝜉 ∈ (𝐻∗)op by Corollary 6.9(a). Here,
∑
𝑖 𝑠𝑖 ⊗ 𝑡𝑖 is the R-matrix of H, and {ℎ𝑑 , 𝜉𝑑}𝑑 is a dual basis

of H. Now (6.16) is a left H-comodule morphism as shown below:

𝛿𝑄 (𝜅(𝜉)) =
∑
𝑖 〈𝜉, 𝑔𝑖〉 (𝑝𝑖)[−1] ⊗ (𝑝𝑖)[0]

(3.24)
=

∑
𝑗 ,𝑘,ℓ 〈𝜉, 𝑡 𝑗𝑔𝑘 𝑠𝑙〉 𝑠 𝑗 𝑡𝑙 ⊗ 𝑝𝑘

(5.2)
=

∑
𝑖, 𝑗 ,𝑘,𝑑 〈𝜉, 𝑡 𝑗ℎ𝑑𝑠𝑖〉 〈𝜉𝑑 , 𝑔𝑘〉 𝑠 𝑗 𝑡𝑖 ⊗ 𝑝𝑘 = (Id𝐻 ⊗ 𝜅) (𝛿ref(𝜉)).
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To verify (ii), take 𝜉, 𝜁 ∈ (𝐻∗)op, and consider the computation below:

𝜅(𝜉𝜁) =
∑
𝑖 〈𝜉𝜁, 𝑔𝑖〉 𝑝𝑖

(6.1), Def. 5.7
=

∑
𝑖, 𝑗′,𝑘′ 〈𝜁, 𝑡𝑘′ (𝑔𝑖)(1) 𝑡 𝑗′ 〉 〈𝜉, (𝑔𝑖)(2) 𝑠 𝑗′𝑆

−1 (𝑠𝑘′ )〉 𝑝𝑖
(3.23)
=

∑
𝑗 ,𝑘,𝑙,𝑚, 𝑗′,𝑘′ 〈𝜁, 𝑡𝑘′𝑡𝑘𝑔𝑙𝑡

𝑚𝑡 𝑗′ 〉 〈𝜉, 𝑔 𝑗 𝑠𝑘 𝑠
𝑚𝑠 𝑗′𝑆

−1(𝑠𝑘′ )〉 𝑝 𝑗 𝑝𝑙

=
∑
𝑗 ,𝑘,𝑙,𝑘′ 〈𝜁, 𝑡𝑘′𝑡𝑘𝑔𝑙〉 〈𝜉, 𝑔 𝑗𝑆

−1 (𝑠𝑘′𝑆(𝑠𝑘 ))〉 𝑝 𝑗 𝑝𝑙
(2.15)
=

∑
𝑗 ,𝑙 〈𝜁, 𝑔𝑙〉 〈𝜉, 𝑔 𝑗 )〉 𝑝 𝑗 𝑝𝑙

= 𝜅(𝜉)𝜅(𝜁).

Next, we establish (iii) as follows:

(Id𝐻 ⊗ 𝜅) (𝐾ref(k))
(6.10)
=

∑
𝑖,𝑑 〈𝜉𝑑 , 𝑔𝑖〉 ℎ𝑑 ⊗ 𝑝𝑖

(5.2)
=

∑
𝑖 𝑔𝑖 ⊗ 𝑝𝑖 = 𝐾.

Finally, we verify (iv). If 𝐾 = (Id𝐻 ⊗ 𝜅′) (𝐾ref(k)), then
∑
𝑖 𝑔𝑖 ⊗ 𝑝𝑖 =

∑
𝑑 ℎ𝑑 ⊗ 𝜅′(𝜉𝑑). Applying

〈𝜉𝑑 ,−〉 to the first factor yields 𝜅′(𝜉𝑑) =
∑
𝑖 〈𝜉𝑑 , 𝑔𝑖〉 𝑝𝑖 , for all d. Since {𝜉𝑑}𝑑 is a basis for 𝐻∗, we get

that 𝜅′(𝜉) =
∑
𝑖 〈𝜉, 𝑔𝑖〉 𝑝𝑖 for all 𝜉 ∈ 𝐻∗, as desired. �

One may compare the result above to [Rad94, Theorem 1] on Drin(𝐻) realized as a universal
quasitriangular envelope of H. Moreover, the verification of (ii) in the proof above compares to [BZBJ18,
Theorem 4.9] with the distinction that we work with H-comodule algebras A. Next, consider the following
example.
Example 6.17. For the object (𝑅𝐻 (𝐴), 𝐾ref(𝐴)) ∈

𝐻QT, we obtain via Lemma 5.22 a canonical algebra
embedding

𝜄𝐴 : 𝑅𝐻 (k) � (𝐻∗)op ↩→ 𝑅𝐻 (𝐴).

By Corollary 6.9(a), this is an embedding of H-comodule algebras, and from (6.10), we have
𝜄𝐴(𝐾ref (k)) = 𝐾ref(𝐴). Therefore, 𝜄𝐴 is the unique homomorphism 𝜅 (𝑅𝐻 (𝐴) ,𝐾ref (𝐴)) from the proof
of Theorem 6.15.

6.4. Example for the Drinfeld double of a finite group

In this subsection, we illustrate how our results apply to the case when H is the Drinfeld double of a
finite group.

Take G to be a finite group. Let k𝐺 be the group algebra on G, and consider its Hopf dual, (k𝐺)∗,
the algebra of functions on G. Denote by {𝑥}𝑥∈𝐺 and {𝛿𝑥}𝑥∈𝐺 the standard k-bases of k𝐺 and (k𝐺)∗,
respectively. Also, take 𝛿𝑔,ℎ to be the Kronecker delta function, for 𝑔, ℎ ∈ 𝐺.

The Drinfeld double Drin(𝐺) := Drin(k𝐺) contains k𝐺 and ((k𝐺)∗)op as Hopf subalgebras, and is
(k𝐺)∗ ⊗ k𝐺 as a k-coalgebra. The k-basis of Drin(𝐺) is given by {𝛿𝑥𝑦}𝑥,𝑦∈𝐺 , with product

(
𝛿𝑥𝑦

) (
𝛿𝑥′𝑦

′
)
= 𝛿𝑥,𝑦𝑥′𝑦−1 𝛿𝑥 𝑦𝑦′,

for 𝑥, 𝑥 ′, 𝑦, 𝑦′ ∈ 𝐺. The quantum R-matrix of Drin(𝐺) is

𝑅 =
∑
𝑔∈𝐺 𝛿𝑔 ⊗ 𝑔. (6.18)

Also, as k-algebras, (Drin(𝐺))∗ is isomorphic to k𝐺 ⊗ (k𝐺)∗, with k-basis {𝑥𝛿𝑦}𝑥,𝑦∈𝐺 and product

(𝑥𝛿𝑦) (𝑥
′𝛿𝑦′ ) = 𝛿𝑦,𝑦′ 𝑥𝑥

′ 𝛿𝑦 .

Now we illustrate Corollary 6.9 (and Theorem 6.15) for the left Drin(𝐺)-comodule algebra k.
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Proposition 6.19. Retain the notation above, and take 𝐻 := Drin(𝐺). Then we obtain that the reflection
algebra 𝑅𝐻 (k) � (𝐻∗)op is a quasitriangular left H-comodule algebra as follows:

(a) Its algebra structure is given as follows, for all 𝑥, 𝑦, 𝑥 ′, 𝑦′ ∈ 𝐺:
(
𝑥𝛿𝑦

) (
𝑥 ′𝛿𝑦′

)
= 𝛿𝑦′,𝑦−1𝑥−1𝑦𝑥𝑦 𝑦−1𝑥𝑦𝑥 ′𝑦−1𝑥−1𝑦𝑥 𝛿𝑦 .

(b) Its left H-comodule structure is given as follows, for all 𝑥, 𝑦 ∈ 𝐺:

𝛿ref (𝑥𝛿𝑦) =
∑
𝑔∈𝐺 𝛿𝑔 𝑦−1𝑥𝑦 ⊗ 𝑔−1𝑥𝑔 𝛿𝑔−1𝑦 ∈ 𝐻 ⊗ 𝐻∗ ⊂ 𝐻 ⊗ 𝑅𝐻 (𝐴).

(c) Its quantum K-matrix is given by 𝐾 =
∑
𝑔,ℎ∈𝐺 𝛿𝑔ℎ ⊗ 𝑔𝛿ℎ ∈ 𝐻 ⊗ 𝑅𝐻 (𝐴).

Proof. (a) To start, we compute

〈𝑔 � 𝑥𝛿𝑦 � ℎ, 𝛿𝑢𝑣〉 = 〈𝑥𝛿𝑦 , ℎ𝛿𝑢𝑣𝑔〉 = 〈𝑥𝛿𝑦 , 𝛿ℎ𝑢ℎ−1ℎ𝑣𝑔〉 = 𝛿𝑢,ℎ−1𝑥ℎ 𝛿𝑣,ℎ−1𝑦𝑔−1

for all 𝑥, 𝑦, 𝑔, ℎ, 𝑢, 𝑣 ∈ 𝐺. Thus, for 𝑥, 𝑦, 𝑔, ℎ ∈ 𝐺,

𝑔 � 𝑥𝛿𝑦 � ℎ = ℎ−1𝑥ℎ 𝛿ℎ−1𝑦𝑔−1 .

Analogously, one obtains, for 𝑥, 𝑦, 𝑔 ∈ 𝐺,

𝛿𝑔 � 𝑥𝛿𝑦 = 𝛿𝑔,𝑦−1𝑥𝑦 𝑥𝛿𝑦 .

Lemma 5.26(a) and (6.18) now imply that the product structure of (𝐻∗)op is given by

(𝑥𝛿𝑦) (𝑥
′𝛿𝑦′ ) =

∑
𝑔,ℎ∈𝐺 (𝑔 � 𝑥 ′𝛿𝑦′ � ℎ−1) (𝛿𝑔𝛿ℎ � 𝑥𝛿𝑦) =

∑
𝑔∈𝐺 (𝑔 � 𝑥 ′𝛿𝑦′ � 𝑔−1) (𝛿𝑔 � 𝑥𝛿𝑦)

=
∑
𝑔∈𝐺 𝛿𝑔,𝑦−1𝑥𝑦 𝛿𝑔𝑦′𝑔−1 ,𝑦 𝑔𝑥 ′𝑔−1𝑥 𝛿𝑦 ,

which yields the statement in part (a) after simplifying the right-hand side.
(b) Note that {𝛿𝑘 𝑘 ′, 𝑘𝛿𝑘′ }𝑘,𝑘′ ∈𝐺 is a dual basis of H. Corollary 6.9(a) and (6.18) imply

𝛿ref (𝑥𝛿𝑦) =
∑
𝑔,ℎ,𝑘,𝑘′ ∈𝐺 〈𝑥𝛿𝑦 , 𝑔𝛿𝑘 𝑘

′𝛿ℎ〉 𝛿𝑔ℎ ⊗ 𝑘𝛿𝑘′

=
∑
𝑔,ℎ,𝑘,𝑘′ ∈𝐺 〈𝑥𝛿𝑦 , 𝛿𝑔𝑘𝑔−1 𝛿𝑔𝑘′ℎ (𝑘′)−1𝑔−1 𝑔𝑘 ′〉 𝛿𝑔ℎ ⊗ 𝑘𝛿𝑘′

=
∑
𝑔,ℎ,𝑘,𝑘′ ∈𝐺 𝛿𝑥,𝑔𝑘𝑔−1 𝛿𝑥,𝑔𝑘′ℎ (𝑘′)−1𝑔−1 𝛿𝑦,𝑔𝑘′ 𝛿𝑔ℎ ⊗ 𝑘𝛿𝑘′

=
∑
𝑔∈𝐺 𝛿𝑔 𝑦−1𝑥𝑦 ⊗ 𝑔−1𝑥𝑔 𝛿𝑔−1𝑦 ,

where on the fourth line, the delta functions imply 𝑘 ′ = 𝑔−1𝑦, 𝑘 = 𝑔−1𝑥𝑔 and ℎ = 𝑦−1𝑥𝑦. The statement
in part (b) is then obtained after simplifying the right-hand side.

Part (c) follows directly from Corollary 6.9(b). �

6.5. Reflective algebras as comodule algebras over Drinfeld doubles

We return to the general standing notation from Section 5.1.
The action ofZ (𝐻-mod) on E𝐻 -mod (𝐴-mod) from Corollary 4.6(a) can be explicitly computed. Based

on this, one obtains explicit actions of the category of Yetter–Drinfeld modules 𝐻
𝐻YD on the category

of Doi–Hopf modules 𝐻
𝐴 DH(𝐻) and, when H is a finite-dimensional Hopf algebra, of Drin(𝐻)-mod on

𝑅𝐻 (𝐴)-mod. The latter result equips 𝑅𝐻 (𝐴) with a left Drin(𝐻)-comodule algebra structure. These
results and their detailed proofs appear in Section 7 of the arXiv version 1 of this article. Here, we only
record the last result:
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Proposition 6.20. If H is a finite-dimensional Hopf algebra and A a left H-comodule algebra, then the
reflective algebra 𝑅𝐻 (𝐴) is a left Drin(𝐻)-comodule algebra as follows:

𝛿Drin
ref (𝑎) := 𝑎 [−1] ⊗ 𝑎 [0] ,

𝛿Drin
ref (𝜉) :=

∑
𝑘,𝑑,𝑑′ 〈𝜉, 𝑡𝑘ℎ𝑑′𝑆

−1 (ℎ𝑑)〉
(
(𝑠𝑘 )(3) � 𝜉𝑑 � 𝑆((𝑠𝑘 )(1) )

)
(𝑠𝑘 )(2) ⊗ 𝜉𝑑′ ,

𝛿Drin
ref (𝑎 𝜉) := 𝛿ref (𝑎) 𝛿

Drin
ref (𝜉),

for 𝑎 ∈ 𝐴 and 𝜉 ∈ (𝐻∗)op. Here, recall that
∑
𝑘 𝑠𝑘 ⊗ 𝑡𝑘 is the R-matrix of H, and that {ℎ𝑑 , 𝜉𝑑}𝑑 ,

{ℎ𝑑′ , 𝜉𝑑′ }𝑑′ are dual bases of H.

Example 6.21. Let us continue Example 6.13 when H is cocommutative with 𝑅 = 1𝐻⊗1𝐻 . Here, 𝑅𝐻 (𝐴)
is a left Drin(𝐻)-comodule algebra, where for 𝑎 ∈ 𝐴 and 𝜉 ∈ (𝐻∗)op, we have 𝛿Drin

ref (𝑎) = 𝑎 [−1] ⊗ 𝑎 [0]
(identified with (𝜀 ⊗ 𝑎 [−1] ) ⊗ (𝑎 [0] ⊗ 𝜀̂) in Drin(𝐻) ⊗ 𝑅𝐻 (𝐴)) and

𝛿Drin
ref (𝜉) =

∑
𝑑,𝑑′ 〈𝜉, ℎ𝑑′𝑆

−1 (ℎ𝑑)〉(1𝐻 � 𝜉𝑑 � 1𝐻 ) ⊗ 𝜉𝑑′ =
∑
𝑑,𝑑′ 〈𝜉, ℎ𝑑′𝑆

−1 (ℎ𝑑)〉 𝜉𝑑 ⊗ 𝜉𝑑′ .

Here, 𝜉𝑑 ⊗ 𝜉𝑑′ is identified with (𝜉𝑑 ⊗ 1𝐻 ) ⊗ (1𝐴 ⊗ 𝜉𝑑′ ) in Drin(𝐻) ⊗ 𝑅𝐻 (𝐴).
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